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Abstract—Managing the frequent traffic congestion (traffic
jams) of the road networks of large cities is a major challenge for
municipal traffic management organizations. In order to manage
these situations, it is crucial to understand the processes that
lead to congestion and propagation, because the occurrence of a
traffic jam does not merely paralyze one street or road, but could
spill over onto the whole vicinity (even an entire neighborhood).
Solutions can be found in professional literature, but they either
oversimplify the problem, or fail to provide a scalable solution.

In this article, we describe a new method that not only provides
an accurate road network model, but is also a scalable solution
for identifying the direction of traffic congestion propagation.

Our method was subjected to a detailed performance analysis,
which was based on real road network data. According to testing,
our method outperforms the ones that have been used to date.

Index Terms—congestion propagation, frequent propagation
trees, traffic study, city planning

I. INTRODUCTION

One of the major problems of traffic in big cities around the
world is the phenomenon of traffic congestion (traffic jams)
on the road network. Traffic jams have a serious effect not
only on the lives of drivers, but also on every city inhabitant.
Traffic jams increase not only energy and fuel consumption
[1], but also harmful emissions [2]. According to a laboratory
testing [3], congestion-related emissions cause increased cases
of allergies and exacerbate existing conditions among people
who are sensitive to it. Additionally, other research [4] shows
that traffic jams raise the risk of heart attack. That is why
attention needs to be paid to avoiding traffic jams and possibly
eliminating them, because in addition to significant economic
costs [5], they are also harmful to the health of city inhabitants
(which can also be expressed as a financial costs for health
insurers).

Intelligent city management systems can provide a solution
to these problems, or at least substantially reduce the negative
effects on the daily life of city dwellers. It is the task of
these systems to continually monitor the traffic and to provide
information on the basis of the collected data, as well as to
manage the automated allocation of resources [6], for example,
opening new lanes or closing them, adapting traffic lights
to current traffic conditions [7] or assisting route planning
applications with accurate forecasts.
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In the first generation of the intelligent traffic management
systems, the utilized data sources were different type of pres-
ence sensors in fixed positions, which were able to detect the
presence of nearby vehicles. Initially, inductive loop detectors
were the most popular, but nowadays, a wide variety of sensors
became available such as traffic cameras, laser radar sensors
or microwave radar sensors [8], [6]. Recently, the advent of
GPS equipped smartphones and vehicles has given rise to
a relatively new type of data source that could supplement
presence type sensors to gather more detailed information or
to get data about the roads, which have not been covered
with presence sensors yet. In addition to existing data sources,
the emerging Vehicle to Everything (V2X) communication
technologies [9], [10] will become a vital data source in the
future that can improve the performance of intelligent traffic
management systems. The V2X defines messaging protocols
to communicate between cars and the infrastructure. The V2X
protocols are already integrated into the newest vehicles, but
the number of equipped vehicles is still low; thus, the role of
V2X will be more significant in future applications.

When a traffic jam starts to develop on a segment of
the road network, it often also affects the surrounding road
segments of the network. These effects are complicated -
they always depend on current environmental factors (time
of day, weather, holidays, etc.) but if we examine properly
chosen time periods, we can collect useful information. The
information gathered could make the operation of intelligent
city management systems more efficient and provide new data
to city planners and managers.

There are several studies exploring the propagation of the
effects of developing traffic jams, which face a number of
significant challenges. The first is that the road networks of
large cities form an extensive and complex system in which
the study of the traffic jam propagation is difficult to scale.
Several studies have developed alternative models for solving
the problem, but these oversimplify the road network, and
so the output of their methods are imprecise. The second
challenge is that it is not enough to detect a traffic jam, it
is also important be able to identify the relationships between
the road segments.

In this article, we would like to present a new method
we have developed, which takes into account the spatial and
temporal relationships:

1) is able to identify the appearance of congestion propa-
gation across the entire road network in a scalable way,

2) is able to identify frequently occurring traffic jam prop-
agation within these (the importance of which will be
explained later).
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The output of the process can be used by city traffic manage-
ment system operators to map the source and propagation of
frequently occurring traffic jams, and identify bottlenecks of
the road network, which can be used in city traffic network
planning and real-time interventions (if they have an Intelligent
Transportation System (ITS) system). The output can be
useful for route planning methods and can be used to refine
forecasts of traffic prediction methods as well.

The remainder of this article contains the following chap-
ters. Section II summarizes what research has been done
in this field to date. In Section III, we introduce a new
definition for traffic jams that, unlike the definition used in
previous research, does not require manual parameter setting.
We then introduce our developed congestion propagation
detection method in Section IV and we perform a detailed
performance analysis in Section V. We end the article with a
short conclusion in the Section VI.

II. RELATED RESEARCH

A. Congestion occurrence

To be able to reliably identify a traffic jam occurrence from
traffic data, you first need to define exactly what a traffic jam
is. Traffic jam definitions are not uniform in the literature [11],
and they often depend to a large extent on empirically set
parameters.

Methods found in the literature, which are used to explore
the propagation of traffic jams or predict traffic congestions
rely almost exclusively on the speed data to determine the
size of a traffic jam. In addition, we have also found other
definitions from related researches that use other types of data.
The definitions can be separated into three main categories:

• speed-based methods,
• travel time-based methods,
• volume-based methods.
The speed-based methods can be separated to threshold-

based and ratio-based subcategories. In the case of threshold-
based methods [12], [13], [14], the researchers manually, in
advance, determine the possible traffic states (typically 4-5
traffic classes) and their associated boundaries. Then the mea-
sured speed data is categorized into the defined traffic classes.
As an extension, the authors of [15] defined the boundaries
between traffic classes as fuzzy and also incorporated other
coefficients such as traffic volume.

The ratio-based methods [16], [17], [18], [19], [20], [13],
[21] do not determine velocity limits but numbers in a ratio.
They compare the current measured speeds with the previously
measured average or free-flow speeds. The free-flow is the
speed at which the vehicle drivers would be able to travel
if unimpeded by other vehicles [22]. In the literature, we have
found two ways to determine the free-flow speed. The Speed
Reduction Index (SRI) definition [23], [24] uses the 85th
percentile of the off-peak speed, while the Speed Performance
Index (SPI) definition [24] applies the maximum permissible
road speed.

If the ratio of current speed to the average (free-flow)
speed is lower than the pre-determined ratio, then the current
measured speed is considered a traffic jam situation, that is,

based on the velocities measured in the area, they determine
that a traffic jam has occurred. Some methods [16], [13], [24]
define more than one traffic class. In these cases, different
ratios are established for every traffic class.

The travel time-based methods use probe vehicle data to
determine the congestion level of the examined road segments.
The Travel rate method [25] calculates the ratio of the current
segment travel time and the segment length to quantify the
congestion level. The Delay rate [26], [25] and Delay ratio
[26], [25] methods are the extensions of the Travel rate method
where the measured travel rate is compared with a predefined
acceptable travel rate value. The Relative Congestion Index
(RCI) definition [27] relies on the ratio of the current mea-
sured travel time and the free-flow travel time. The free-flow
travel time can be calculated with the ratio of the road segment
length and free-flow.

The volume-based methods examine the traffic volume that
denotes the number of passing vehicles in predefined time
frames. A well-known volume-based method is the Volume
to Capacity (V/C) ratio definition [28] that compares the
measured volume with the maximum number of vehicles that a
segment can handle within its capacity. The V/C ratio is often
used together with the Level of Service (LOS) [29] where the
measured V/C ratio values are classified in 6 traffic classes.

Using the criteria of a good congestion measure from article
[11], the majority of these methods’ weak point is that they
only take one data type into consideration, and except for some
definitions [24], [28], do not describe the state of the traffic
appropriately because the occurrence of the traffic jam always
depends on the properties of the road segment as well. For
example, the number of lanes, the speed limits for a given
segment of road, the number of vehicles passing through, or
the road segment’s capacity all affect whether or not a traffic
jam has occurred.

Another problem that appears is if the method uses manually
set values or values that rely on previously measured data.
Unfortunately, several cases occur where an explanation is
missing as to why a threshold value or a ratio is used,
seemingly depending on the subjective decision of the authors.

B. Congestion propagation

As opposed to the occurrence of a traffic jam, the definition
of the propagation of a traffic jam is mostly uniform in the
professional literature. A road segment can be in one of two
states: congested (1) or free flowing vehicle movement (0).
Traffic jam propagates between neighboring road segments A
and B, if at time t road segment A is congested and B isn’t,
but at time t+ 1 segment B is congested too.

The Propagation Probability Graph (PPG) [20] method
models the road network as a directed graph. It relies on a
historical database to decide on the probability of traffic jam
propagation between two neighboring road segments. It states
that the propagation of the traffic jam has a Markov property.
In this context, this means that the likelihood of a traffic jam
propagating between road segments A and B is independent
of what traffic propagation probabilities have been measured
before road segment A. The PPG method uses this property
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to assign probabilities to each traffic jam propagation path.
It then only pays attention to whichever possibility is greater
than a predetermined value γ. PPG does not take into account
those situations where other road segments than A also flow
into road segment B, and therefore in these cases the results
can be imprecise.

The Congestion Prediction Model with ConvLSTM (CPM-
CONVLSTM) [30] method also models the road network
with a directed graph. It collects propagation patterns from
the road network, but unfortunately does not specify how it
does this. It places a square grid over the road network, and
then maps the propagation. Thus, the propagations can be
described by directed edges between the points of the square
grid. The CPM-CONVLSTM method, like PPG, also focuses
on predicting traffic jam propagations. Using the square grid
model, they train a Convolutional Long Short Term Memory
(CONVLSTM) network [31]. A major disadvantage of this
method is that the square grid-based model oversimplifies
the road network, and this simplification makes the modeling
inaccurate. For example, if a busy highway and another
nearby unfrequented road are in the same cell they cannot
be distinguished despite the fact that they have completely
different traffic demand.

The Cascading Patterns in Scale-Free Network (CP-SFN)
[32] method also models the road networks as a directed
graph. This method’s purpose is to find propagation graphs
in a graph of the road network. These propagation graphs
will be subgraphs of the road network graph. It considered
two components to determine propagation paths: Individual
Transmission Likelihood (ITL) and Environmental Intensity
Inference (EMT). The ITL determines the probability of
traffic jam propagation between two road segments. The
monotonic exponential model used in social networks [33]
was used to model propagation. The EMT component collects
environmental information for the study, which is than used to
weigh the output of the ITL. The EMT takes into account the
Point of Interest (POI) that are close to the road segments and
what weather conditions have been measured in the studied
areas. The search for propagation patterns is carried out by the
authors of the article using their own approximation procedure,
since the Network Inference problem used in the article is an
NP-hard problem [34]. The disadvantage of this method is that
the original monotonic exponential model applied by CP-SFN
operates on scale-free [35] graphs, while the road networks
form a scale-rich [35] graph.

The aim of the Spatio-Temporal Outlier (STO) [36] method
is to find frequent traffic jam propagation trees in the road
network. The authors of the article did not study the road
network as a graph, but divided the road network into regions
using the Connected Components Labeling (CCL) process
[37]. Relationships between regions were determined based
on vehicle trajectories. The STO method identifies congestion
as an outlier, and therefore when examining propagations it
follows the propagation of outliers. It constructs congestion
propagation graphs from the propagations using a recursive
approach. The disadvantage of the STO method is that the
regional division oversimplifies the road network. To overcome
this problem, the authors of [38] implemented an extension of

STO in which they already use the directed graph of the road
network instead of regions. The other disadvantage of the STO
method is that due to the search for recursive propagation
trees its complexity is O(NT−1), where T is the length of
the studied period in time intervals and N is the number of
congestion phenomena in the period of time T .

The Spatio-Temporal Congestion (STC) [39] process de-
velops the STO method further. Instead of using regions it
models the road network as a directed graph of road segments.
Congestion propagations are described by a directed graph of
the road segments involved in the propagation that form a
directed tree. It uses a new approach to search for congestion
propagations, which examines the congestion trees backwards
in time, so that the complexity of the procedure is only
O(TN2), where T is the length of the examined period in time
intervals and N is the number of traffic jam phenomena during
period T . It then filters out frequent congestion propagation
trees from the collected propagation trees using the Apriori
algorithm [40]. A congestion propagation tree counts as fre-
quent if its occurrence is above an ε threshold in the studied
time interval, so its frequency is greater than a predefined
threshold value. Within a frequent congestion propagation tree,
a propagation path is a directed path that connects the root of
the tree to any leaf.

Although STC is significantly faster than the STO method,
the O(TN2) complexity remains too high for modeling a city
with an extensive road network. The other problem is that the
Apriori algorithm has exponential complexity O(2M ), where
M is the number of congestion propagation found.

The Spatio-Temporal Congestion Subgraph (STCS) [41]
method is a further development of the STC in which the FP-
Growth algorithm [42] is used instead of the Apriori algorithm.
Because the complexity of the FP-Growth algorithm is lower
than that of the Apriori algorithm, its use made the search for
frequent congestion propagation trees quicker, but STCS uses
STC found propagation trees, which has O(TN2) complexity.

After reviewing the literature, it can be seen that the
problem is actively studied by many researchers and they have
presented several methods to solve the problem of finding
frequent congestion propagation trees.

The problem with these solutions is that either the models
of the road network are overly simplified (for example, with
a square grid), or the method’s complexity is so high that in
a real environment it is not able to search effectively or find
every propagation in a sprawling city. They can not be used
this way in real time, but even if the speed of the algorithms
is not critical, they still require a lot of processing, which can
be costly.

In the following chapters we introduce our newly developed
method that solves the search for traffic jam propagation trees,
in a way that:

1) describes the road network as a directed graph in the
greatest detail possible,

2) while the algorithmic complexity is only linear, and
therefore surpasses the existing solutions.
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Fig. 1: Example for modeling a common intersection.

III. FLOW-SPEED RATIO-BASED CONGESTION DEFINITION

In Section II-A we have seen that there is currently no
uniform traffic jam definition that does not use manually preset
values. In this section, before introducing the Spatial Con-
gestion Propagation Patterns (SCPP) algorithm, we thought
it necessary to introduce a new traffic jam definition that
does not require manual setting of thresholds or ratios, but
does so automatically. Using our definition, it is easier and
more reliable to generate input data for the Spatial Congestion
Propagation Patterns (SCPP) algorithm.

In a real environment, the correct interpretation of a traffic
jam always depends on the current road segment. Each road
segment has a capacity value that determines how many
vehicles can pass through that road segment per hour. The
capacity is the theoretical upper limit of the number of vehicles
that the measured hourly vehicle number never exceeds. If a
higher load is imposed on a road segment it will mean that
as the number of vehicles increases, their speed will begin
to decrease. This will cause an increase in the ratio of traffic
flow (volume) and speed until it finally reaches a critical value
above which the traffic phenomenon can be considered a traffic
jam. The critical flow-speed rate can be determined by the ratio
of the capacity and the upper speed limit of the road segment.

Let N (I,R) be a directed graph representing a city’s
road network, where I = {I1, I2, . . . , I|I|} is the set of
intersections and R = {R1, R2, . . . , R|R|} the set of road
segments. Since the road network model uses directed edges,
the bidirectional road segments will be represented with two
directed edges. It is not uncommon to see that vehicles
can turn only in specific directions in complex intersections.
To model these intersections, additional intermediate nodes
(intersections) have to be added. On Figure 1, we show an
example for modeling a common intersection. The blue dots
denote the intersections as the nodes of the graph, while the
orange arrows are the directed edges. The red dots depict the
intermediate nodes. These intermediate nodes help to model
the allowed turning directions properly.

Using the recommendation of the Highway Capacity Man-
ual 2016 (HCM2016) [43] and considering the current speed
limit, the theoretical capacity of a segment of Rr (Free-way
(FW)) road is described in Equation 1, where SRr,limit is the
maximum allowed speed in mph for road segment Rr, while
the Lanes is the number of lanes on the road segment Rr.
This equation is only valid for freeways, whereas equations
for multi-lane highways, signalized highways and other road
types can be found in HCM2016 [43]. It is worth mentioning

that the spread of autonomous vehicle will change the capacity
formula in the future because the throughput of road segments
will be increased due to better resource utilization [44], [45],
[46].

Let FRr = {F1, F2, . . . , FT } be the time series of vehicle
numbers (volume), where Rr is the edge of the road network
graph N (I,R), where the data was measured, T is the length
of the time series, and Ft ∈ R+ (t = 1, 2, . . . , T ). The vehicle
speed time series is given by SRr = {S1, S2, . . . , ST },where
Rr is the edge of the road network graph N (I,R), where
the data was measured, T is the length of the time series, and
St ∈ R+ (t = 1, 2, . . . , T ).

Using time series FRr and SRr the road segment’s
FSRRr = {FSR1, FSR2, . . . , FSRT } flow-speed rate
time series can also be calculated. The instantaneous rate
FSRt of a road segment Rr can be determined using the
following formula:

FSRt =
Ft

St
t = 1, 2, . . . , T FSRt ∈ R+. (2)

The critical flow-speed rate value for the road segment Rr:

FSRRr,critical =
CP (SRr,limit)

SRr,limit
, (3)

where CP (SRr,limit) is the capacity of the road segment and
SRr,limit is the speed limit of the road segment in mph.
Critical flow-speed rate FSRRr,critical is a predetermined
constant value that does not vary with time.

Using the instantaneous and critical flow-speed rate, the
current level of the traffic jam CRr = {C1, C2, . . . , CT } can
be determined, where

Ct =
FSRt

FSRRr,critical
t = 1, 2, . . . , T Dt ∈ R+. (4)

Definition 1. At time t a traffic jam will occur on the road
segment Rr of the road network N (I,R), if Ct ≥ 1 (Ct ∈
CRr ) so FSRt ≥ FSRRr,critical.

Figure 2 shows an example of a flow-speed rate-based
congestion definition. Data shown in the figure were obtained
from the Caltrans Performance Measurement System (PEMS)
[47]. The first and second rows of the figure show vehicle
number and speed data. The third row contains the momentary
congestion levels. The dashed red line is the critical flow-speed
rate of congestion. Times above the line can be considered a
traffic jam. It is worth noting that in all periods where the
speed has declined significantly, the congestion level is above
the critical value.

Traffic congestion propagation identification  
method in smart cities
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CP (SRr,limit) = min(2200 + 10(SRr,limit − 50), 2400)× Lanes, (1)

Fig. 2: Example for flow-speed ratio based congestion

This means that the flow-speed ratio-based method identifies
traffic jams at the same time intervals as the speed-based
methods. This is an important result, because while most of
the methods from the literature require manually adjusting the
parameters for each segment of the road, the parameters of
the flow-speed ratio-based method are set automatically and
an adaptive manner for each segment of the road.

In the case of propagation examining methods, it is often
enough to know if the traffic jam had occurred, the actual level
is not important (how much it is below or above the threshold).
The momentary level of the congestion CRr can be converted
to a ĈRr = {Ĉ1, Ĉ2, . . . , ĈT } time series, where Rr is a road
segment in the road network graph N (I,R), T is the length
of the time series, and Ĉt ∈ {0, 1}.

The Z : CRr → ĈRr transformation can be used, where
∀Ct can be converted to Ĉt as:

Ĉt =

{
1 , if Ct ≥ 1

0 , if Ct < 1.
(5)

We wanted to validate the correctness of our definition, so
we compared the binary output with other definitions from
the literature. In our investigations, the SRI and SPI methods
were implemented, and the used dataset was collected from
the PEMS. The SRI required the precalculation of free-flow
speed parameter, which were set to the 85th percentile of the
off-peak speed. The SPI’s max speed parameter was set to
upper speed limit. In the examined dataset, the result of the
Flow-speed ratio method differed from the SPI’s output by
only 2.8%, while 2.9% was the difference in the case of SRI.
It is a minimal difference that means the Flow-speed ratio
method gives appropriate output.

We have also checked the seven criteria of a good con-
gestion measure from [11], and we have seen that the flow-
speed ratio-based method satisfies all the listed criteria. The

great advantage of the flow-speed ratio-based method is that
it does not require the manual tuning of parameters for each
segment of the road, and utilizes two data types for the
calculation of the congestion level. Thanks to the used capacity
function, our method adapts to the parameters of the given road
segment. Using flow and speed data together could also be a
disadvantage because the flow-speed ratio-based congestion
definition cannot be used if only the flow, the speed, or the
travel time data is available alone.

IV. SPATIAL CONGESTION PROPAGATION PATTERNS
(SCPP) ALGORITHM

In this chapter, we will explain the operation of the Spatial
Congestion Propagation Patterns (SCPP) algorithm in detail.
The SCPP algorithm is able to solve the problem of searching
for frequent congestion propagation paths with linear com-
plexity while describing the road network in as much detail
as possible using a directed graph. The presented algorithm is
a brand new algorithm, and we did not use parts from other
algorithms in the literature. We would like to highlight that the
presented algorithm supports arbitrary congestion definition,
which can produce binary congestion information (signalling if
congestion occured or not). It means that the SCPP algorithm
can also be used when the Flow-speed ratio-based congestion
definition is not applicable.

First we define the necessary concepts, followed by the
pseudo-codes and an explanation of the two main components
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2) Frequent Propagations (FP) method: Using the output
of the Propagation Tree (PT) method and a certain
threshold value, it searches for the most frequent traffic
jam propagation patterns in the road network.

To run the SCPP algorithm, you need three input param-
eters: data matrix CN , edge-adjacency matrix AN , and a ε
threshold value.
CN is a |R|×T matrix containing the traffic jam observa-

tions of road segments R within road network N (I,R) for
a period of time T . Every field in the matrix has a value of 0
or 1 (CRr,t ∈ {0, 1}, if Rr ∈ R), where 1 means there is a
traffic jam and 0 is a state of free-flow.

The matrix AN is the |R| × |R| sized edge-adjacency
matrix of directed graph N (I,R), which can be determined
from the adjacency matrix of the line graph of the graph
N (I,R). ARu,Rv

= 1 if two road segments are adjacent
to each other, otherwise ARu,Rv = 0 (Ru, Rv ∈ R).

Here ε is the threshold value that determines the minimum
frequency. It is worthwhile to determine its value based on the
length of the examined time period T , but it also depends on
what qualifies as a frequent traffic jam in the environment, so
designers can set it themselves depending on the traffic control
and optimization goals.

Before beginning the presentation of methods PT and FP,
we need to define what exactly “congestion occurrence” and
“congestion propagation” are.

Definition 2. Let Rv (Rv ∈ R) be any segment of the road
network N (I,R). Let AN be the |R|× |R| edge-adjacency
matrix of the road network N (I,R). Congestion occurence
is observed on the segment Rv at time t + 1, if Rv was not
congested at time t (CRv,t = 0) but is by the time t + 1

(CRv,t+1 = 1). In addition, none of the neighbors of road
segment Rv were congested at time t, so for ∀Ru it is true
that CRu,t = 0 if Ru ∈ R and ARu,Rv = 1.

Definition 3. Let Ru and Rv (Ru �= Rv; Ru, Rv ∈ R) be the
two road segments of road network N (I,R) . Let AN be the
|R| × |R| edge-adjacency matrix of road network N (I,R).
Congestion propagation is observed between Ru and Rv at
time t + 1, if Ru was congested at time t (CRu,t = 1) while
Rv was not (CRv,t = 0), but by time t+1 it is (CRv,t+1 = 1).
Ru and Rv are adjacent to each other (ARu,Rv

= 1).

A. Propagation Tree (PT) method

The Propagation Tree (PT) method uses data matrix CN and
the edge-adjacency matrix AN as input to generate a directed
tree describing the propagation path P(V ,L), which contains
all the congestion propagation paths according to Definition 3
observed within the data matrix. Propagation paths are directed
paths within a propagation tree that connect the root of the tree
to any leaf.
V = {V0, V1, V2, . . . , V|V|} is the set of vertices of the

tree in which any vertex Vv = {Rx → . . . → Ry}
contains an observed unique propagation path. For example,
let V1 = {R1 → R2} be an observed propagation path. There
is a directed edge from V1 to Vv , if Vv = {R1 → R2 → Rr},

so that road segment Rr is adjacent to the road segment R2

according to the edge-adjacency matrix AN and propagation
path Vv is observable in data matrix CN .

The root of the directed tree describing propagation paths
P(V ,L) will be vertex V0 = {−1}, which does not contain
a valid propagation path. Edge Ll exists between V0 and
any vertex Vv = {Rr} if a traffic jam occurrence according
to Definition 2 or a traffic jam propagation according to
Definition 3 has been observed on road segment Rr ∈ R.
In addition, each edge Ll records a freq value that describes
the frequency of propagation. Everytime when a propagation
is detected between Vu and Vv , freq value of Ll is increased
by one (Ll is the directed edge from Vu to Vv).

-1

R1 R2

R1->R2

R1

R2 R2R1->R2

Propagation Tree
(directed graph)

current propagations 
(key-value storage)

freq=1 freq=1

freq=1

Fig. 3: Example of the relationship between
current_propagations and tree variables.

The steps of the Propagation Tree (PT) method are as
follows. In the first step, we query the dimensions of the
input data matrix, from which we determine the number of
road segments (variable R) and the lenght of the examined
period (variable T ) (line 1). We then initialize the variables that
store the results (lines 3-5). The tree stores the propagation
paths observed so far in a directed graph. In addition to
the tree, an important variable is current_propagations,
which records which propagation paths are currently active.
The variable is a key-value storage in which the keys are
the identifiers of each road segment and the values are the
propagation paths in which the road segment in the key is
the last road segment of the propagation path. This way, if
the traffic jam propagates from the road segment in the key
it is possible to follow which propagation paths need to be
further developed. Figure 3 is an example of the relationship
between the current_propagations and tree variables when
an R1 → R2 propagation happens.

PT starts processing the matrix data_mx forward in time
(lines 7-38). The c_state variable stores the state at the current
time (line 9), while the p_state variable contains the previous
state. The where method gives us the identifiers of the road
segments on which the traffic jam phenomenon was observed
by returning the array indices where the value is 1.

In the first loop, the previous state (p_state) will still be
empty, so we simply copy the value of the current state (lines
10-14) to the tree and current_propagations variables using
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length of the examined time period T , but it also depends on
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designers can set it themselves depending on the traffic control
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Before beginning the presentation of methods PT and FP,
we need to define what exactly “congestion occurrence” and
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network N (I,R). Let AN be the |R|× |R| edge-adjacency
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that CRu,t = 0 if Ru ∈ R and ARu,Rv = 1.

Definition 3. Let Ru and Rv (Ru �= Rv; Ru, Rv ∈ R) be the
two road segments of road network N (I,R) . Let AN be the
|R| × |R| edge-adjacency matrix of road network N (I,R).
Congestion propagation is observed between Ru and Rv at
time t + 1, if Ru was congested at time t (CRu,t = 1) while
Rv was not (CRv,t = 0), but by time t+1 it is (CRv,t+1 = 1).
Ru and Rv are adjacent to each other (ARu,Rv

= 1).

A. Propagation Tree (PT) method

The Propagation Tree (PT) method uses data matrix CN and
the edge-adjacency matrix AN as input to generate a directed
tree describing the propagation path P(V ,L), which contains
all the congestion propagation paths according to Definition 3
observed within the data matrix. Propagation paths are directed
paths within a propagation tree that connect the root of the tree
to any leaf.
V = {V0, V1, V2, . . . , V|V|} is the set of vertices of the

tree in which any vertex Vv = {Rx → . . . → Ry}
contains an observed unique propagation path. For example,
let V1 = {R1 → R2} be an observed propagation path. There
is a directed edge from V1 to Vv , if Vv = {R1 → R2 → Rr},

so that road segment Rr is adjacent to the road segment R2

according to the edge-adjacency matrix AN and propagation
path Vv is observable in data matrix CN .

The root of the directed tree describing propagation paths
P(V ,L) will be vertex V0 = {−1}, which does not contain
a valid propagation path. Edge Ll exists between V0 and
any vertex Vv = {Rr} if a traffic jam occurrence according
to Definition 2 or a traffic jam propagation according to
Definition 3 has been observed on road segment Rr ∈ R.
In addition, each edge Ll records a freq value that describes
the frequency of propagation. Everytime when a propagation
is detected between Vu and Vv , freq value of Ll is increased
by one (Ll is the directed edge from Vu to Vv).
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Fig. 3: Example of the relationship between
current_propagations and tree variables.

The steps of the Propagation Tree (PT) method are as
follows. In the first step, we query the dimensions of the
input data matrix, from which we determine the number of
road segments (variable R) and the lenght of the examined
period (variable T ) (line 1). We then initialize the variables that
store the results (lines 3-5). The tree stores the propagation
paths observed so far in a directed graph. In addition to
the tree, an important variable is current_propagations,
which records which propagation paths are currently active.
The variable is a key-value storage in which the keys are
the identifiers of each road segment and the values are the
propagation paths in which the road segment in the key is
the last road segment of the propagation path. This way, if
the traffic jam propagates from the road segment in the key
it is possible to follow which propagation paths need to be
further developed. Figure 3 is an example of the relationship
between the current_propagations and tree variables when
an R1 → R2 propagation happens.

PT starts processing the matrix data_mx forward in time
(lines 7-38). The c_state variable stores the state at the current
time (line 9), while the p_state variable contains the previous
state. The where method gives us the identifiers of the road
segments on which the traffic jam phenomenon was observed
by returning the array indices where the value is 1.

In the first loop, the previous state (p_state) will still be
empty, so we simply copy the value of the current state (lines
10-14) to the tree and current_propagations variables using
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2) Frequent Propagations (FP) method: Using the output
of the Propagation Tree (PT) method and a certain
threshold value, it searches for the most frequent traffic
jam propagation patterns in the road network.

To run the SCPP algorithm, you need three input param-
eters: data matrix CN , edge-adjacency matrix AN , and a ε
threshold value.
CN is a |R|×T matrix containing the traffic jam observa-

tions of road segments R within road network N (I,R) for
a period of time T . Every field in the matrix has a value of 0
or 1 (CRr,t ∈ {0, 1}, if Rr ∈ R), where 1 means there is a
traffic jam and 0 is a state of free-flow.

The matrix AN is the |R| × |R| sized edge-adjacency
matrix of directed graph N (I,R), which can be determined
from the adjacency matrix of the line graph of the graph
N (I,R). ARu,Rv

= 1 if two road segments are adjacent
to each other, otherwise ARu,Rv = 0 (Ru, Rv ∈ R).

Here ε is the threshold value that determines the minimum
frequency. It is worthwhile to determine its value based on the
length of the examined time period T , but it also depends on
what qualifies as a frequent traffic jam in the environment, so
designers can set it themselves depending on the traffic control
and optimization goals.

Before beginning the presentation of methods PT and FP,
we need to define what exactly “congestion occurrence” and
“congestion propagation” are.

Definition 2. Let Rv (Rv ∈ R) be any segment of the road
network N (I,R). Let AN be the |R|× |R| edge-adjacency
matrix of the road network N (I,R). Congestion occurence
is observed on the segment Rv at time t + 1, if Rv was not
congested at time t (CRv,t = 0) but is by the time t + 1

(CRv,t+1 = 1). In addition, none of the neighbors of road
segment Rv were congested at time t, so for ∀Ru it is true
that CRu,t = 0 if Ru ∈ R and ARu,Rv = 1.

Definition 3. Let Ru and Rv (Ru �= Rv; Ru, Rv ∈ R) be the
two road segments of road network N (I,R) . Let AN be the
|R| × |R| edge-adjacency matrix of road network N (I,R).
Congestion propagation is observed between Ru and Rv at
time t + 1, if Ru was congested at time t (CRu,t = 1) while
Rv was not (CRv,t = 0), but by time t+1 it is (CRv,t+1 = 1).
Ru and Rv are adjacent to each other (ARu,Rv

= 1).

A. Propagation Tree (PT) method

The Propagation Tree (PT) method uses data matrix CN and
the edge-adjacency matrix AN as input to generate a directed
tree describing the propagation path P(V ,L), which contains
all the congestion propagation paths according to Definition 3
observed within the data matrix. Propagation paths are directed
paths within a propagation tree that connect the root of the tree
to any leaf.
V = {V0, V1, V2, . . . , V|V|} is the set of vertices of the

tree in which any vertex Vv = {Rx → . . . → Ry}
contains an observed unique propagation path. For example,
let V1 = {R1 → R2} be an observed propagation path. There
is a directed edge from V1 to Vv , if Vv = {R1 → R2 → Rr},

so that road segment Rr is adjacent to the road segment R2

according to the edge-adjacency matrix AN and propagation
path Vv is observable in data matrix CN .

The root of the directed tree describing propagation paths
P(V ,L) will be vertex V0 = {−1}, which does not contain
a valid propagation path. Edge Ll exists between V0 and
any vertex Vv = {Rr} if a traffic jam occurrence according
to Definition 2 or a traffic jam propagation according to
Definition 3 has been observed on road segment Rr ∈ R.
In addition, each edge Ll records a freq value that describes
the frequency of propagation. Everytime when a propagation
is detected between Vu and Vv , freq value of Ll is increased
by one (Ll is the directed edge from Vu to Vv).
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Fig. 3: Example of the relationship between
current_propagations and tree variables.

The steps of the Propagation Tree (PT) method are as
follows. In the first step, we query the dimensions of the
input data matrix, from which we determine the number of
road segments (variable R) and the lenght of the examined
period (variable T ) (line 1). We then initialize the variables that
store the results (lines 3-5). The tree stores the propagation
paths observed so far in a directed graph. In addition to
the tree, an important variable is current_propagations,
which records which propagation paths are currently active.
The variable is a key-value storage in which the keys are
the identifiers of each road segment and the values are the
propagation paths in which the road segment in the key is
the last road segment of the propagation path. This way, if
the traffic jam propagates from the road segment in the key
it is possible to follow which propagation paths need to be
further developed. Figure 3 is an example of the relationship
between the current_propagations and tree variables when
an R1 → R2 propagation happens.

PT starts processing the matrix data_mx forward in time
(lines 7-38). The c_state variable stores the state at the current
time (line 9), while the p_state variable contains the previous
state. The where method gives us the identifiers of the road
segments on which the traffic jam phenomenon was observed
by returning the array indices where the value is 1.

In the first loop, the previous state (p_state) will still be
empty, so we simply copy the value of the current state (lines
10-14) to the tree and current_propagations variables using
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of the Propagation Tree (PT) method and a certain
threshold value, it searches for the most frequent traffic
jam propagation patterns in the road network.

To run the SCPP algorithm, you need three input param-
eters: data matrix CN , edge-adjacency matrix AN , and a ε
threshold value.

CN is a |R|×T matrix containing the traffic jam observa-
tions of road segments R within road network N (I,R) for
a period of time T . Every field in the matrix has a value of 0
or 1 (CRr,t ∈ {0, 1}, if Rr ∈ R), where 1 means there is a
traffic jam and 0 is a state of free-flow.

The matrix AN is the |R| × |R| sized edge-adjacency
matrix of directed graph N (I,R), which can be determined
from the adjacency matrix of the line graph of the graph
N (I,R). ARu,Rv

= 1 if two road segments are adjacent
to each other, otherwise ARu,Rv = 0 (Ru, Rv ∈ R).

Here ε is the threshold value that determines the minimum
frequency. It is worthwhile to determine its value based on the
length of the examined time period T , but it also depends on
what qualifies as a frequent traffic jam in the environment, so
designers can set it themselves depending on the traffic control
and optimization goals.

Before beginning the presentation of methods PT and FP,
we need to define what exactly “congestion occurrence” and
“congestion propagation” are.

Definition 2. Let Rv (Rv ∈ R) be any segment of the road
network N (I,R). Let AN be the |R|× |R| edge-adjacency
matrix of the road network N (I,R). Congestion occurence
is observed on the segment Rv at time t + 1, if Rv was not
congested at time t (CRv,t = 0) but is by the time t + 1

(CRv,t+1 = 1). In addition, none of the neighbors of road
segment Rv were congested at time t, so for ∀Ru it is true
that CRu,t = 0 if Ru ∈ R and ARu,Rv = 1.

Definition 3. Let Ru and Rv (Ru �= Rv; Ru, Rv ∈ R) be the
two road segments of road network N (I,R) . Let AN be the
|R| × |R| edge-adjacency matrix of road network N (I,R).
Congestion propagation is observed between Ru and Rv at
time t + 1, if Ru was congested at time t (CRu,t = 1) while
Rv was not (CRv,t = 0), but by time t+1 it is (CRv,t+1 = 1).
Ru and Rv are adjacent to each other (ARu,Rv

= 1).

A. Propagation Tree (PT) method

The Propagation Tree (PT) method uses data matrix CN and
the edge-adjacency matrix AN as input to generate a directed
tree describing the propagation path P(V ,L), which contains
all the congestion propagation paths according to Definition 3
observed within the data matrix. Propagation paths are directed
paths within a propagation tree that connect the root of the tree
to any leaf.
V = {V0, V1, V2, . . . , V|V|} is the set of vertices of the

tree in which any vertex Vv = {Rx → . . . → Ry}
contains an observed unique propagation path. For example,
let V1 = {R1 → R2} be an observed propagation path. There
is a directed edge from V1 to Vv , if Vv = {R1 → R2 → Rr},

so that road segment Rr is adjacent to the road segment R2

according to the edge-adjacency matrix AN and propagation
path Vv is observable in data matrix CN .

The root of the directed tree describing propagation paths
P(V ,L) will be vertex V0 = {−1}, which does not contain
a valid propagation path. Edge Ll exists between V0 and
any vertex Vv = {Rr} if a traffic jam occurrence according
to Definition 2 or a traffic jam propagation according to
Definition 3 has been observed on road segment Rr ∈ R.
In addition, each edge Ll records a freq value that describes
the frequency of propagation. Everytime when a propagation
is detected between Vu and Vv , freq value of Ll is increased
by one (Ll is the directed edge from Vu to Vv).

-1

R1 R2

R1->R2

R1

R2 R2R1->R2

Propagation Tree
(directed graph)

current propagations 
(key-value storage)

freq=1 freq=1

freq=1

Fig. 3: Example of the relationship between
current_propagations and tree variables.

The steps of the Propagation Tree (PT) method are as
follows. In the first step, we query the dimensions of the
input data matrix, from which we determine the number of
road segments (variable R) and the lenght of the examined
period (variable T ) (line 1). We then initialize the variables that
store the results (lines 3-5). The tree stores the propagation
paths observed so far in a directed graph. In addition to
the tree, an important variable is current_propagations,
which records which propagation paths are currently active.
The variable is a key-value storage in which the keys are
the identifiers of each road segment and the values are the
propagation paths in which the road segment in the key is
the last road segment of the propagation path. This way, if
the traffic jam propagates from the road segment in the key
it is possible to follow which propagation paths need to be
further developed. Figure 3 is an example of the relationship
between the current_propagations and tree variables when
an R1 → R2 propagation happens.

PT starts processing the matrix data_mx forward in time
(lines 7-38). The c_state variable stores the state at the current
time (line 9), while the p_state variable contains the previous
state. The where method gives us the identifiers of the road
segments on which the traffic jam phenomenon was observed
by returning the array indices where the value is 1.

In the first loop, the previous state (p_state) will still be
empty, so we simply copy the value of the current state (lines
10-14) to the tree and current_propagations variables using

INFOCOMMUNICATIONS JOURNAL 7

the add_propagations method (Algorithm 2) and then go to
the second loop immediately.

Starting from the second loop, we iterate over the road
segments that are congested in their current state (lines 15-
27). If the congested road segment (c_road) was not present
in the previous state, it is worth investigating, because this is
when important state change occurs (lines 17-26). We then
extract the adjacent road segments (source_roads) preceding
the examined road segment from the edge-adjacency matrix
adj_mx and see if we find them in the previous state (lines
18-19).

If none are found, it means that we have detected a
congestion occurrence on the examined road segment (lines
20-22). Propagations that occur within the loop are stored in
the propagations key-value variable (line 15), where the key
is the source of the propagation and the value is the road
segment to which the traffic jam has propagated. In the case
of a new propagation, the source of the propagation is the −1
identifier (line 21).

Otherwise, the congestion has not occurred on the examined
road segment, but on one of the neighboring road segment
(lines 22-25). Because it cannot be ruled out that several con-
gested neighbors are affecting it simultaneously, all possible
cases must be added to the propagations variable.

Once we have traversed all the road segments from
cstate, we add the propagations registered in propagations
to the tree and current_propagations variables using the
add_propagationsmethod (lines 28-30).

We then go through the road segments that were congested
in the previous state and see which of them are still congested
in the current state (lines 32-36). If the traffic jam on a
road segment has ended, the propagation pointers of the road
segment are removed from current_propagations.

Since we have to study all road segments where a congestion
phenomenon has occurred within all time intervals, the step
number of the PT method is O(T |R|), where T is the length
of the examined period in time intervals and |R| the number
of road segments, which is the upper estimate for the number
of traffic jams that have occurred.

Another important part of the PT method is the
add_propagations submethod. Its function is to maintain the
tree describing the propagation (tree) and the currently tracked
traffic jams (current_propagations). When these variables
need to be updated, add_propagations receives these two
variables as input parameters and modifies their internal state.

As the first step, add_propagations checks to see if the
source of the propagation (from_road) obtained as a param-
eter is the same as node −1. If so, the propagation is added to
the tree as a congestion occurrence (lines 1-10). In this case,
it adds the target road segments to the tree variable if they
do not exist yet (lines 3-6) and then increments the associated
frequency freq counter by one (line 7). It then registers the
node in the current_propagations variable as a one-element
propagation path identifier (line 8).

If the traffic jam has not occurred on that segment of road,
it should be added to the tree as a propagation (lines 10-
30). We have to iterate over all the cases where the source
of the propagation was previously active. These are contained

Input: data_mx:data matrix CN ;
adj_mx:edge-adjacency matrix AN

Output: Directed graph describing the propagations
P(V ,L)

1 R, T = data_mx.shape
2

3 current_propagations = empty
4 tree = DirectedGraph()
5 tree.add_node(−1, route_id = −1)
6

7 p_state = None
8 for t = 1 to T do
9 c_state = where(data_mx[:, t] == 1)

10 if p_state is None then
11 add_propagations(−1, c_state,

current_propagations, tree)
p_state = c_state

12 continue
13 end
14 propagations = empty
15 for c_road in c_state do
16 if c_road not in p_state then
17 pred_roads = where(adj_mx[:

, c_road] == 1)
18 source_roads =

intersect(pred_roads, p_state)
19 if len(source_roads) < 1 then
20 propagations[−1].append(c_road)
21 else
22 for s_road in source_roads do
23 propagations[s_road].append(c_road)

24 end
25 end
26 end
27 for from_road, to_roads in propagations do
28 add_propagations(from_road, to_roads,

current_propagations, tree)

29 end
30

31 for c_road in p_state do
32 if c_road not in c_state then
33 current_propagations[c_road] = []
34 end
35 end
36 p_state = c_state
37 end

Algorithm 1: The pseudo code of the PT method
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the add_propagations method (Algorithm 2) and then go to
the second loop immediately.

Starting from the second loop, we iterate over the road
segments that are congested in their current state (lines 15-
27). If the congested road segment (c_road) was not present
in the previous state, it is worth investigating, because this is
when important state change occurs (lines 17-26). We then
extract the adjacent road segments (source_roads) preceding
the examined road segment from the edge-adjacency matrix
adj_mx and see if we find them in the previous state (lines
18-19).

If none are found, it means that we have detected a
congestion occurrence on the examined road segment (lines
20-22). Propagations that occur within the loop are stored in
the propagations key-value variable (line 15), where the key
is the source of the propagation and the value is the road
segment to which the traffic jam has propagated. In the case
of a new propagation, the source of the propagation is the −1
identifier (line 21).

Otherwise, the congestion has not occurred on the examined
road segment, but on one of the neighboring road segment
(lines 22-25). Because it cannot be ruled out that several con-
gested neighbors are affecting it simultaneously, all possible
cases must be added to the propagations variable.

Once we have traversed all the road segments from
cstate, we add the propagations registered in propagations
to the tree and current_propagations variables using the
add_propagationsmethod (lines 28-30).

We then go through the road segments that were congested
in the previous state and see which of them are still congested
in the current state (lines 32-36). If the traffic jam on a
road segment has ended, the propagation pointers of the road
segment are removed from current_propagations.

Since we have to study all road segments where a congestion
phenomenon has occurred within all time intervals, the step
number of the PT method is O(T |R|), where T is the length
of the examined period in time intervals and |R| the number
of road segments, which is the upper estimate for the number
of traffic jams that have occurred.

Another important part of the PT method is the
add_propagations submethod. Its function is to maintain the
tree describing the propagation (tree) and the currently tracked
traffic jams (current_propagations). When these variables
need to be updated, add_propagations receives these two
variables as input parameters and modifies their internal state.

As the first step, add_propagations checks to see if the
source of the propagation (from_road) obtained as a param-
eter is the same as node −1. If so, the propagation is added to
the tree as a congestion occurrence (lines 1-10). In this case,
it adds the target road segments to the tree variable if they
do not exist yet (lines 3-6) and then increments the associated
frequency freq counter by one (line 7). It then registers the
node in the current_propagations variable as a one-element
propagation path identifier (line 8).

If the traffic jam has not occurred on that segment of road,
it should be added to the tree as a propagation (lines 10-
30). We have to iterate over all the cases where the source
of the propagation was previously active. These are contained

Input: data_mx:data matrix CN ;
adj_mx:edge-adjacency matrix AN

Output: Directed graph describing the propagations
P(V ,L)

1 R, T = data_mx.shape
2

3 current_propagations = empty
4 tree = DirectedGraph()
5 tree.add_node(−1, route_id = −1)
6

7 p_state = None
8 for t = 1 to T do
9 c_state = where(data_mx[:, t] == 1)

10 if p_state is None then
11 add_propagations(−1, c_state,

current_propagations, tree)
p_state = c_state

12 continue
13 end
14 propagations = empty
15 for c_road in c_state do
16 if c_road not in p_state then
17 pred_roads = where(adj_mx[:

, c_road] == 1)
18 source_roads =

intersect(pred_roads, p_state)
19 if len(source_roads) < 1 then
20 propagations[−1].append(c_road)
21 else
22 for s_road in source_roads do
23 propagations[s_road].append(c_road)

24 end
25 end
26 end
27 for from_road, to_roads in propagations do
28 add_propagations(from_road, to_roads,

current_propagations, tree)

29 end
30

31 for c_road in p_state do
32 if c_road not in c_state then
33 current_propagations[c_road] = []
34 end
35 end
36 p_state = c_state
37 end

Algorithm 1: The pseudo code of the PT method
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the add_propagations method (Algorithm 2) and then go to
the second loop immediately.
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(lines 22-25). Because it cannot be ruled out that several con-
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cases must be added to the propagations variable.

Once we have traversed all the road segments from
cstate, we add the propagations registered in propagations
to the tree and current_propagations variables using the
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We then go through the road segments that were congested
in the previous state and see which of them are still congested
in the current state (lines 32-36). If the traffic jam on a
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segment are removed from current_propagations.

Since we have to study all road segments where a congestion
phenomenon has occurred within all time intervals, the step
number of the PT method is O(T |R|), where T is the length
of the examined period in time intervals and |R| the number
of road segments, which is the upper estimate for the number
of traffic jams that have occurred.

Another important part of the PT method is the
add_propagations submethod. Its function is to maintain the
tree describing the propagation (tree) and the currently tracked
traffic jams (current_propagations). When these variables
need to be updated, add_propagations receives these two
variables as input parameters and modifies their internal state.

As the first step, add_propagations checks to see if the
source of the propagation (from_road) obtained as a param-
eter is the same as node −1. If so, the propagation is added to
the tree as a congestion occurrence (lines 1-10). In this case,
it adds the target road segments to the tree variable if they
do not exist yet (lines 3-6) and then increments the associated
frequency freq counter by one (line 7). It then registers the
node in the current_propagations variable as a one-element
propagation path identifier (line 8).

If the traffic jam has not occurred on that segment of road,
it should be added to the tree as a propagation (lines 10-
30). We have to iterate over all the cases where the source
of the propagation was previously active. These are contained

Input: data_mx:data matrix CN ;
adj_mx:edge-adjacency matrix AN

Output: Directed graph describing the propagations
P(V ,L)

1 R, T = data_mx.shape
2

3 current_propagations = empty
4 tree = DirectedGraph()
5 tree.add_node(−1, route_id = −1)
6

7 p_state = None
8 for t = 1 to T do
9 c_state = where(data_mx[:, t] == 1)

10 if p_state is None then
11 add_propagations(−1, c_state,

current_propagations, tree)
p_state = c_state

12 continue
13 end
14 propagations = empty
15 for c_road in c_state do
16 if c_road not in p_state then
17 pred_roads = where(adj_mx[:

, c_road] == 1)
18 source_roads =

intersect(pred_roads, p_state)
19 if len(source_roads) < 1 then
20 propagations[−1].append(c_road)
21 else
22 for s_road in source_roads do
23 propagations[s_road].append(c_road)

24 end
25 end
26 end
27 for from_road, to_roads in propagations do
28 add_propagations(from_road, to_roads,

current_propagations, tree)

29 end
30

31 for c_road in p_state do
32 if c_road not in c_state then
33 current_propagations[c_road] = []
34 end
35 end
36 p_state = c_state
37 end

Algorithm 1: The pseudo code of the PT method
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Input: from_road: source of the propagation;
to_roads: target of propagation,
current_propagations: currently congested
road segments, tree: tree describing the
propagations

Output: void
1 if from_road == -1 then
2 for to_road in to_roads do
3 if to_road not in tree then
4 tree.add_node(to_road, route_id =

to_road)
5 tree.add_edge(−1, to_road, freq = 0)
6 end
7 tree.edges[−1, to_road][′freq′]+ = 1
8 current_propagations[to_road] = [to_road]
9 end

10 else
11 for c_prop in current_propagations[from_road] do
12 for to_road in to_roads do
13 prop_pointer = c_prop+′ _′ + to_road
14 if prop_pointer not in tree then
15 tree.add_node(prop_pointer,

route_id = to_road)
tree.add_edge(c_prop,
prop_pointer, freq = 0)

16 end
17 tree.edges[c_prop, prop_pointer][′freq′]+ =

1
18 current_propagations[to_road]

.append(prop_pointer)
19 if to_road not in tree then
20 tree.add_node(to_road, route_id =

to_road)
21 tree.add_edge(−1, to_road, freq = 0)
22 end
23 tree.edges[−1, to_road][′freq′]+ = 1
24 if to_road not in

current_propagations[to_road] then
25 current_propagations[to_road]

.append(to_road)
26 end
27 end
28 end

Algorithm 2: The pseudo code for add_propagations
submethod

in current_propagations[from_road] (line 11). Since the
traffic jam can propagate from one road segment to several
road segments at the same time, we have to go through these
as well (lines 12).

We generate a pointer for the propagation path, which has
occurred from the concatenation of the previous propagation
path identifier and the congested road segment (line 13). If
the propagation path identifier has not yet been included, we
add it to the tree as a new node (lines 14-16), then increase
the frequency counter (line 17) and register the propagation
path identifier in the current_propagations variable to the

to_road road segment (line 18).
It may be that part of a propagation path occurs more

frequently than the entire propagation path itself, e.g., from
the propagation R1 → R2 → R3, the propagation R2 → R3

occurs more frequently. This may be due to the fact that a
traffic jam has already occurred in R2 or that R2 is connected
with another road segment R4 from which the congestion often
propagates as part of an R4 → R2 → R3 propagation. To
record these as well, we add the variable to_road to the graph
describing the propagations (tree) as a congestion occurrence
and also register this in the variable current_propagations
to the road segment to_road (lines 21-28).

B. Frequent Propagations (FP) method

Input: tree: graph describing propagations P(V ,L),
eps: ε frequency threshold

Output: subtrees: frequent propagation graphs
1 tree_cp = tree.copy()
2 removable_edges = []
3 for edge in tree_cp.edges do
4 if edge.freq < eps then
5 removable_edges.append(edge)
6 end
7 end
8 tree_cp.remove_edges_from(removable_edges)
9

10 isolated = get_isolated_nodes(tree_cp))
11 tree_cp.remove_nodes_from(isolated)
12

13 if not tree_cp.has_node(−1) then
14 return[]
15 end
16 propagation_sources = tree_cp.successors(′−1′)
17 sub_trees = []
18 for propagation_source in propagation_sources do
19 sub_tree =

bfs_tree(tree_cp, propagation_source)
20 if sub_tree is not None then
21 sub_trees.append(sub_tree)
22 end
23 end

Algorithm 3: Pseudo code for the FP method

The task of the FP method is to find the frequent propa-
gations based on the descriptive tree P(V ,L) constructed by
the PT method and a ε threshold (ε ∈ N+). To do this, the
FP method iterate over the edges of the graph P(V ,L) and
deletes all edges whose frequency freq value is less than the
threshold value. This will result in the originalε breaking into
several subgraphs that now only contain edges that satisfy the
condition.

It is worth noting that the graph P(V ,L) only needs to be
calculated once, and after that any number of ε thresholds can
be tested on it. This is a faster approach to the problem than
if the propagation graph had to be rebuilt for each ε threshold.

The first step of the algorithm is to copy the original tree
(line 1). This is necessary because the graph describing the
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Input: from_road: source of the propagation;
to_roads: target of propagation,
current_propagations: currently congested
road segments, tree: tree describing the
propagations

Output: void
1 if from_road == -1 then
2 for to_road in to_roads do
3 if to_road not in tree then
4 tree.add_node(to_road, route_id =

to_road)
5 tree.add_edge(−1, to_road, freq = 0)
6 end
7 tree.edges[−1, to_road][′freq′]+ = 1
8 current_propagations[to_road] = [to_road]
9 end

10 else
11 for c_prop in current_propagations[from_road] do
12 for to_road in to_roads do
13 prop_pointer = c_prop+′ _′ + to_road
14 if prop_pointer not in tree then
15 tree.add_node(prop_pointer,

route_id = to_road)
tree.add_edge(c_prop,
prop_pointer, freq = 0)

16 end
17 tree.edges[c_prop, prop_pointer][′freq′]+ =

1
18 current_propagations[to_road]

.append(prop_pointer)
19 if to_road not in tree then
20 tree.add_node(to_road, route_id =

to_road)
21 tree.add_edge(−1, to_road, freq = 0)
22 end
23 tree.edges[−1, to_road][′freq′]+ = 1
24 if to_road not in

current_propagations[to_road] then
25 current_propagations[to_road]

.append(to_road)
26 end
27 end
28 end

Algorithm 2: The pseudo code for add_propagations
submethod

in current_propagations[from_road] (line 11). Since the
traffic jam can propagate from one road segment to several
road segments at the same time, we have to go through these
as well (lines 12).

We generate a pointer for the propagation path, which has
occurred from the concatenation of the previous propagation
path identifier and the congested road segment (line 13). If
the propagation path identifier has not yet been included, we
add it to the tree as a new node (lines 14-16), then increase
the frequency counter (line 17) and register the propagation
path identifier in the current_propagations variable to the

to_road road segment (line 18).
It may be that part of a propagation path occurs more

frequently than the entire propagation path itself, e.g., from
the propagation R1 → R2 → R3, the propagation R2 → R3

occurs more frequently. This may be due to the fact that a
traffic jam has already occurred in R2 or that R2 is connected
with another road segment R4 from which the congestion often
propagates as part of an R4 → R2 → R3 propagation. To
record these as well, we add the variable to_road to the graph
describing the propagations (tree) as a congestion occurrence
and also register this in the variable current_propagations
to the road segment to_road (lines 21-28).

B. Frequent Propagations (FP) method

Input: tree: graph describing propagations P(V ,L),
eps: ε frequency threshold

Output: subtrees: frequent propagation graphs
1 tree_cp = tree.copy()
2 removable_edges = []
3 for edge in tree_cp.edges do
4 if edge.freq < eps then
5 removable_edges.append(edge)
6 end
7 end
8 tree_cp.remove_edges_from(removable_edges)
9

10 isolated = get_isolated_nodes(tree_cp))
11 tree_cp.remove_nodes_from(isolated)
12

13 if not tree_cp.has_node(−1) then
14 return[]
15 end
16 propagation_sources = tree_cp.successors(′−1′)
17 sub_trees = []
18 for propagation_source in propagation_sources do
19 sub_tree =

bfs_tree(tree_cp, propagation_source)
20 if sub_tree is not None then
21 sub_trees.append(sub_tree)
22 end
23 end

Algorithm 3: Pseudo code for the FP method

The task of the FP method is to find the frequent propa-
gations based on the descriptive tree P(V ,L) constructed by
the PT method and a ε threshold (ε ∈ N+). To do this, the
FP method iterate over the edges of the graph P(V ,L) and
deletes all edges whose frequency freq value is less than the
threshold value. This will result in the originalε breaking into
several subgraphs that now only contain edges that satisfy the
condition.

It is worth noting that the graph P(V ,L) only needs to be
calculated once, and after that any number of ε thresholds can
be tested on it. This is a faster approach to the problem than
if the propagation graph had to be rebuilt for each ε threshold.

The first step of the algorithm is to copy the original tree
(line 1). This is necessary because the graph describing the
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Input: from_road: source of the propagation;
to_roads: target of propagation,
current_propagations: currently congested
road segments, tree: tree describing the
propagations

Output: void
1 if from_road == -1 then
2 for to_road in to_roads do
3 if to_road not in tree then
4 tree.add_node(to_road, route_id =

to_road)
5 tree.add_edge(−1, to_road, freq = 0)
6 end
7 tree.edges[−1, to_road][′freq′]+ = 1
8 current_propagations[to_road] = [to_road]
9 end

10 else
11 for c_prop in current_propagations[from_road] do
12 for to_road in to_roads do
13 prop_pointer = c_prop+′ _′ + to_road
14 if prop_pointer not in tree then
15 tree.add_node(prop_pointer,

route_id = to_road)
tree.add_edge(c_prop,
prop_pointer, freq = 0)

16 end
17 tree.edges[c_prop, prop_pointer][′freq′]+ =

1
18 current_propagations[to_road]

.append(prop_pointer)
19 if to_road not in tree then
20 tree.add_node(to_road, route_id =

to_road)
21 tree.add_edge(−1, to_road, freq = 0)
22 end
23 tree.edges[−1, to_road][′freq′]+ = 1
24 if to_road not in

current_propagations[to_road] then
25 current_propagations[to_road]

.append(to_road)
26 end
27 end
28 end

Algorithm 2: The pseudo code for add_propagations
submethod

in current_propagations[from_road] (line 11). Since the
traffic jam can propagate from one road segment to several
road segments at the same time, we have to go through these
as well (lines 12).

We generate a pointer for the propagation path, which has
occurred from the concatenation of the previous propagation
path identifier and the congested road segment (line 13). If
the propagation path identifier has not yet been included, we
add it to the tree as a new node (lines 14-16), then increase
the frequency counter (line 17) and register the propagation
path identifier in the current_propagations variable to the

to_road road segment (line 18).
It may be that part of a propagation path occurs more

frequently than the entire propagation path itself, e.g., from
the propagation R1 → R2 → R3, the propagation R2 → R3

occurs more frequently. This may be due to the fact that a
traffic jam has already occurred in R2 or that R2 is connected
with another road segment R4 from which the congestion often
propagates as part of an R4 → R2 → R3 propagation. To
record these as well, we add the variable to_road to the graph
describing the propagations (tree) as a congestion occurrence
and also register this in the variable current_propagations
to the road segment to_road (lines 21-28).

B. Frequent Propagations (FP) method

Input: tree: graph describing propagations P(V ,L),
eps: ε frequency threshold

Output: subtrees: frequent propagation graphs
1 tree_cp = tree.copy()
2 removable_edges = []
3 for edge in tree_cp.edges do
4 if edge.freq < eps then
5 removable_edges.append(edge)
6 end
7 end
8 tree_cp.remove_edges_from(removable_edges)
9

10 isolated = get_isolated_nodes(tree_cp))
11 tree_cp.remove_nodes_from(isolated)
12

13 if not tree_cp.has_node(−1) then
14 return[]
15 end
16 propagation_sources = tree_cp.successors(′−1′)
17 sub_trees = []
18 for propagation_source in propagation_sources do
19 sub_tree =

bfs_tree(tree_cp, propagation_source)
20 if sub_tree is not None then
21 sub_trees.append(sub_tree)
22 end
23 end

Algorithm 3: Pseudo code for the FP method

The task of the FP method is to find the frequent propa-
gations based on the descriptive tree P(V ,L) constructed by
the PT method and a ε threshold (ε ∈ N+). To do this, the
FP method iterate over the edges of the graph P(V ,L) and
deletes all edges whose frequency freq value is less than the
threshold value. This will result in the originalε breaking into
several subgraphs that now only contain edges that satisfy the
condition.

It is worth noting that the graph P(V ,L) only needs to be
calculated once, and after that any number of ε thresholds can
be tested on it. This is a faster approach to the problem than
if the propagation graph had to be rebuilt for each ε threshold.

The first step of the algorithm is to copy the original tree
(line 1). This is necessary because the graph describing the
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Input: from_road: source of the propagation;
to_roads: target of propagation,
current_propagations: currently congested
road segments, tree: tree describing the
propagations

Output: void
1 if from_road == -1 then
2 for to_road in to_roads do
3 if to_road not in tree then
4 tree.add_node(to_road, route_id =

to_road)
5 tree.add_edge(−1, to_road, freq = 0)
6 end
7 tree.edges[−1, to_road][′freq′]+ = 1
8 current_propagations[to_road] = [to_road]
9 end

10 else
11 for c_prop in current_propagations[from_road] do
12 for to_road in to_roads do
13 prop_pointer = c_prop+′ _′ + to_road
14 if prop_pointer not in tree then
15 tree.add_node(prop_pointer,

route_id = to_road)
tree.add_edge(c_prop,
prop_pointer, freq = 0)

16 end
17 tree.edges[c_prop, prop_pointer][′freq′]+ =

1
18 current_propagations[to_road]

.append(prop_pointer)
19 if to_road not in tree then
20 tree.add_node(to_road, route_id =

to_road)
21 tree.add_edge(−1, to_road, freq = 0)
22 end
23 tree.edges[−1, to_road][′freq′]+ = 1
24 if to_road not in

current_propagations[to_road] then
25 current_propagations[to_road]

.append(to_road)
26 end
27 end
28 end

Algorithm 2: The pseudo code for add_propagations
submethod

in current_propagations[from_road] (line 11). Since the
traffic jam can propagate from one road segment to several
road segments at the same time, we have to go through these
as well (lines 12).

We generate a pointer for the propagation path, which has
occurred from the concatenation of the previous propagation
path identifier and the congested road segment (line 13). If
the propagation path identifier has not yet been included, we
add it to the tree as a new node (lines 14-16), then increase
the frequency counter (line 17) and register the propagation
path identifier in the current_propagations variable to the

to_road road segment (line 18).
It may be that part of a propagation path occurs more

frequently than the entire propagation path itself, e.g., from
the propagation R1 → R2 → R3, the propagation R2 → R3

occurs more frequently. This may be due to the fact that a
traffic jam has already occurred in R2 or that R2 is connected
with another road segment R4 from which the congestion often
propagates as part of an R4 → R2 → R3 propagation. To
record these as well, we add the variable to_road to the graph
describing the propagations (tree) as a congestion occurrence
and also register this in the variable current_propagations
to the road segment to_road (lines 21-28).

B. Frequent Propagations (FP) method

Input: tree: graph describing propagations P(V ,L),
eps: ε frequency threshold

Output: subtrees: frequent propagation graphs
1 tree_cp = tree.copy()
2 removable_edges = []
3 for edge in tree_cp.edges do
4 if edge.freq < eps then
5 removable_edges.append(edge)
6 end
7 end
8 tree_cp.remove_edges_from(removable_edges)
9

10 isolated = get_isolated_nodes(tree_cp))
11 tree_cp.remove_nodes_from(isolated)
12

13 if not tree_cp.has_node(−1) then
14 return[]
15 end
16 propagation_sources = tree_cp.successors(′−1′)
17 sub_trees = []
18 for propagation_source in propagation_sources do
19 sub_tree =

bfs_tree(tree_cp, propagation_source)
20 if sub_tree is not None then
21 sub_trees.append(sub_tree)
22 end
23 end

Algorithm 3: Pseudo code for the FP method

The task of the FP method is to find the frequent propa-
gations based on the descriptive tree P(V ,L) constructed by
the PT method and a ε threshold (ε ∈ N+). To do this, the
FP method iterate over the edges of the graph P(V ,L) and
deletes all edges whose frequency freq value is less than the
threshold value. This will result in the originalε breaking into
several subgraphs that now only contain edges that satisfy the
condition.

It is worth noting that the graph P(V ,L) only needs to be
calculated once, and after that any number of ε thresholds can
be tested on it. This is a faster approach to the problem than
if the propagation graph had to be rebuilt for each ε threshold.

The first step of the algorithm is to copy the original tree
(line 1). This is necessary because the graph describing the
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Input: from_road: source of the propagation;
to_roads: target of propagation,
current_propagations: currently congested
road segments, tree: tree describing the
propagations

Output: void
1 if from_road == -1 then
2 for to_road in to_roads do
3 if to_road not in tree then
4 tree.add_node(to_road, route_id =

to_road)
5 tree.add_edge(−1, to_road, freq = 0)
6 end
7 tree.edges[−1, to_road][′freq′]+ = 1
8 current_propagations[to_road] = [to_road]
9 end

10 else
11 for c_prop in current_propagations[from_road] do
12 for to_road in to_roads do
13 prop_pointer = c_prop+′ _′ + to_road
14 if prop_pointer not in tree then
15 tree.add_node(prop_pointer,

route_id = to_road)
tree.add_edge(c_prop,
prop_pointer, freq = 0)

16 end
17 tree.edges[c_prop, prop_pointer][′freq′]+ =

1
18 current_propagations[to_road]

.append(prop_pointer)
19 if to_road not in tree then
20 tree.add_node(to_road, route_id =

to_road)
21 tree.add_edge(−1, to_road, freq = 0)
22 end
23 tree.edges[−1, to_road][′freq′]+ = 1
24 if to_road not in

current_propagations[to_road] then
25 current_propagations[to_road]

.append(to_road)
26 end
27 end
28 end

Algorithm 2: The pseudo code for add_propagations
submethod

in current_propagations[from_road] (line 11). Since the
traffic jam can propagate from one road segment to several
road segments at the same time, we have to go through these
as well (lines 12).

We generate a pointer for the propagation path, which has
occurred from the concatenation of the previous propagation
path identifier and the congested road segment (line 13). If
the propagation path identifier has not yet been included, we
add it to the tree as a new node (lines 14-16), then increase
the frequency counter (line 17) and register the propagation
path identifier in the current_propagations variable to the

to_road road segment (line 18).
It may be that part of a propagation path occurs more

frequently than the entire propagation path itself, e.g., from
the propagation R1 → R2 → R3, the propagation R2 → R3

occurs more frequently. This may be due to the fact that a
traffic jam has already occurred in R2 or that R2 is connected
with another road segment R4 from which the congestion often
propagates as part of an R4 → R2 → R3 propagation. To
record these as well, we add the variable to_road to the graph
describing the propagations (tree) as a congestion occurrence
and also register this in the variable current_propagations
to the road segment to_road (lines 21-28).

B. Frequent Propagations (FP) method

Input: tree: graph describing propagations P(V ,L),
eps: ε frequency threshold

Output: subtrees: frequent propagation graphs
1 tree_cp = tree.copy()
2 removable_edges = []
3 for edge in tree_cp.edges do
4 if edge.freq < eps then
5 removable_edges.append(edge)
6 end
7 end
8 tree_cp.remove_edges_from(removable_edges)
9

10 isolated = get_isolated_nodes(tree_cp))
11 tree_cp.remove_nodes_from(isolated)
12

13 if not tree_cp.has_node(−1) then
14 return[]
15 end
16 propagation_sources = tree_cp.successors(′−1′)
17 sub_trees = []
18 for propagation_source in propagation_sources do
19 sub_tree =

bfs_tree(tree_cp, propagation_source)
20 if sub_tree is not None then
21 sub_trees.append(sub_tree)
22 end
23 end

Algorithm 3: Pseudo code for the FP method

The task of the FP method is to find the frequent propa-
gations based on the descriptive tree P(V ,L) constructed by
the PT method and a ε threshold (ε ∈ N+). To do this, the
FP method iterate over the edges of the graph P(V ,L) and
deletes all edges whose frequency freq value is less than the
threshold value. This will result in the originalε breaking into
several subgraphs that now only contain edges that satisfy the
condition.

It is worth noting that the graph P(V ,L) only needs to be
calculated once, and after that any number of ε thresholds can
be tested on it. This is a faster approach to the problem than
if the propagation graph had to be rebuilt for each ε threshold.

The first step of the algorithm is to copy the original tree
(line 1). This is necessary because the graph describing the
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Input: from_road: source of the propagation;
to_roads: target of propagation,
current_propagations: currently congested
road segments, tree: tree describing the
propagations

Output: void
1 if from_road == -1 then
2 for to_road in to_roads do
3 if to_road not in tree then
4 tree.add_node(to_road, route_id =

to_road)
5 tree.add_edge(−1, to_road, freq = 0)
6 end
7 tree.edges[−1, to_road][′freq′]+ = 1
8 current_propagations[to_road] = [to_road]
9 end

10 else
11 for c_prop in current_propagations[from_road] do
12 for to_road in to_roads do
13 prop_pointer = c_prop+′ _′ + to_road
14 if prop_pointer not in tree then
15 tree.add_node(prop_pointer,

route_id = to_road)
tree.add_edge(c_prop,
prop_pointer, freq = 0)

16 end
17 tree.edges[c_prop, prop_pointer][′freq′]+ =

1
18 current_propagations[to_road]

.append(prop_pointer)
19 if to_road not in tree then
20 tree.add_node(to_road, route_id =

to_road)
21 tree.add_edge(−1, to_road, freq = 0)
22 end
23 tree.edges[−1, to_road][′freq′]+ = 1
24 if to_road not in

current_propagations[to_road] then
25 current_propagations[to_road]

.append(to_road)
26 end
27 end
28 end

Algorithm 2: The pseudo code for add_propagations
submethod

in current_propagations[from_road] (line 11). Since the
traffic jam can propagate from one road segment to several
road segments at the same time, we have to go through these
as well (lines 12).

We generate a pointer for the propagation path, which has
occurred from the concatenation of the previous propagation
path identifier and the congested road segment (line 13). If
the propagation path identifier has not yet been included, we
add it to the tree as a new node (lines 14-16), then increase
the frequency counter (line 17) and register the propagation
path identifier in the current_propagations variable to the

to_road road segment (line 18).
It may be that part of a propagation path occurs more

frequently than the entire propagation path itself, e.g., from
the propagation R1 → R2 → R3, the propagation R2 → R3

occurs more frequently. This may be due to the fact that a
traffic jam has already occurred in R2 or that R2 is connected
with another road segment R4 from which the congestion often
propagates as part of an R4 → R2 → R3 propagation. To
record these as well, we add the variable to_road to the graph
describing the propagations (tree) as a congestion occurrence
and also register this in the variable current_propagations
to the road segment to_road (lines 21-28).

B. Frequent Propagations (FP) method

Input: tree: graph describing propagations P(V ,L),
eps: ε frequency threshold

Output: subtrees: frequent propagation graphs
1 tree_cp = tree.copy()
2 removable_edges = []
3 for edge in tree_cp.edges do
4 if edge.freq < eps then
5 removable_edges.append(edge)
6 end
7 end
8 tree_cp.remove_edges_from(removable_edges)
9

10 isolated = get_isolated_nodes(tree_cp))
11 tree_cp.remove_nodes_from(isolated)
12

13 if not tree_cp.has_node(−1) then
14 return[]
15 end
16 propagation_sources = tree_cp.successors(′−1′)
17 sub_trees = []
18 for propagation_source in propagation_sources do
19 sub_tree =

bfs_tree(tree_cp, propagation_source)
20 if sub_tree is not None then
21 sub_trees.append(sub_tree)
22 end
23 end

Algorithm 3: Pseudo code for the FP method

The task of the FP method is to find the frequent propa-
gations based on the descriptive tree P(V ,L) constructed by
the PT method and a ε threshold (ε ∈ N+). To do this, the
FP method iterate over the edges of the graph P(V ,L) and
deletes all edges whose frequency freq value is less than the
threshold value. This will result in the originalε breaking into
several subgraphs that now only contain edges that satisfy the
condition.

It is worth noting that the graph P(V ,L) only needs to be
calculated once, and after that any number of ε thresholds can
be tested on it. This is a faster approach to the problem than
if the propagation graph had to be rebuilt for each ε threshold.

The first step of the algorithm is to copy the original tree
(line 1). This is necessary because the graph describing the
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propagation does not have to be recalculated for each new
eps.

We then iterate over the edges of the copied tree and collect
those with a freq value less than eps (lines 2-7). The edges
collected in the removable_edges variable are then deleted
from the tree_cp tree (line 8).

After the step, there may be vertices in the graph that have
no edges connected to them. Using the get_isolated_nodes
method, we collect these and then delete them from the graph
as well (lines 10-11).

If there is no node −1 in the graph after that, it means that
no edge met the condition, so we return with an empty array
(lines 13-15).

In the last step, we go through the direct descendants
of node −1, which are the starting road segments of the
propagations (lines 16-23). Starting from each starting road
segment (propagation_source), we perform a breadth-first
search with the bfs_tree method. In this, we traverse the
subtree (sub_tree) and add it to the list of subtrees sub_tree),
but only if the traversed subtree is not empty.

The number of steps of the FP method can be estimated by
the cardinality of the edge sets (|L|) of the graph P(V ,L).
To delete edges that do not meet the ε threshold |L| number
of steps are required. The maximum number of steps of the
breadth-first search even in the worst case can be estimated
with the value of |L|. Thus the FP method’s number of steps
will be O(2|L|) → O(|L|). This also means that the number
of steps of the entire SCPP algorithm is O(T |R|+ |L|).

V. EVALUATION OF THE SCPP ALGORITHM

The performance of the SCPP algorithm was compared
with the performance of the STC algorithm, because of all
the methods described in the professional literature, only this
one uses a quadratic number of steps.

In addition, the algorithm’s author made the implementation
of the method [48], and the test data set they used open source,
so we could reproduce their results and compare them with
the results of our own algorithm.

We were forced to modify the implementation of the STC
algorithm at one point because we noticed that there was a
theoretical error in the original implementation: The STCTree
method of the algorithm [39] examines whether the traffic
jam currently being examined may be a source of a previous
propagation in a nested loop (line 20 of STCTree). However,
when specifying the if condition, it does not take into account
whether the previous propagation had already existed at the
time of the occurrence of the currently examined traffic jam.
Thus, it also included propagations in the comparison that did
not actually exist.

In the first step of our study, we compared the output
of the modified implementation of STC with the output of
our own solution (Section V-A). Our goal was to examine
the differences in the outputs of the two algorithms. We
then wondered whether SCPP, which in theory is faster,
would actually find frequent propagations sooner than STC,
considering the changing input parameters (Section V-B).

In our performance analysis, we examined how much the
average execution times depend on:

• the length of the examined time period,
• the size of the road network,
• the value of the threshold value.
The dataset [49] used in the evaluation for each test was

the same and identical to that used in [39]. This is a real
dataset recorded between June 17, 2013 and July 14, 2013 in
Melbourne. The provided dataset contained only the required
binary congestion data. Thus, we could not execute the Flow-
speed ratio congestion definition on the dataset, but we could
use it as an input for SCPP because it supports binary
congestion data. The examined road network contains 586 road
segments, from which data were collected every 5 minutes on
average, and in total 7,657 times. Each test case was run at
least 10 times to be sure that a temporary slow-down of the
test system does not affect the results’ correctness. During the
evaluations, we used the average value of these executions’
result.

A. Testing of the congestion propagation path identification

To be able to compare the outputs of the SCPP and STC
algorithms, we need to better understand how the STC works.
The STC algorithm uses the Apriori algorithm to discover
frequent propagation paths (subtrees). The Apriori algorithm
was basically invented to search for association rules (frequent
coincidences) in a large database. A good example of this is
understanding people’s shopping habits, where the question is
what products are purchased together by customers. With each
purchase, the store saves what was in a customer’s basket at the
time of payment. On the database built from these baskets, we
can execute the Apriori algorithm, which looks for products
that were purchased together frequently. A product list will
be common if the items in it are listed together at least ε
times. This, in the context of a congestion study, means that
a congestion path is considered to be frequent if the road
segments within in the path have been congested together at
least ε times.

It is important to note that STC and SCPP interpret the
meaning of ε differently. While SCPP simply considers this
value as a frequency (εSCPP ∈ R+), the STC algorithm uses
the Apriori algorithm to filter out frequent propagation, in
which ε as a ratio to the total number of propagations found
(εSTC ∈ (0, 1)) where the size of the set of propagations found
is denoted by M . To make the results comparable, we first
ran the STC procedure with the εSTC values that are being
examined. Based on this, a propagation is considered frequent
if it has occurred at least εSTC ×M times, so εSCPP can be
calculated as εSCPP = εSTC ×M . The SCPP algorithm was
run with the εSCPP value derived from the STC algorithm,
so the efficiency of the two methods can be compared.

To make the notation system simple in the following, when
we refer to ε, we mean εSTC .

To compare SCPP and STC, propagation paths were gen-
erated from the output propagation trees of both algorithms as
shown in Figure 4 to include partial propagation paths in the
comparison.

We then examined whether the propagation paths of one
algorithm could be found among the propagation paths of the
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Input: from_road: source of the propagation;
to_roads: target of propagation,
current_propagations: currently congested
road segments, tree: tree describing the
propagations

Output: void
1 if from_road == -1 then
2 for to_road in to_roads do
3 if to_road not in tree then
4 tree.add_node(to_road, route_id =

to_road)
5 tree.add_edge(−1, to_road, freq = 0)
6 end
7 tree.edges[−1, to_road][′freq′]+ = 1
8 current_propagations[to_road] = [to_road]
9 end

10 else
11 for c_prop in current_propagations[from_road] do
12 for to_road in to_roads do
13 prop_pointer = c_prop+′ _′ + to_road
14 if prop_pointer not in tree then
15 tree.add_node(prop_pointer,

route_id = to_road)
tree.add_edge(c_prop,
prop_pointer, freq = 0)

16 end
17 tree.edges[c_prop, prop_pointer][′freq′]+ =

1
18 current_propagations[to_road]

.append(prop_pointer)
19 if to_road not in tree then
20 tree.add_node(to_road, route_id =

to_road)
21 tree.add_edge(−1, to_road, freq = 0)
22 end
23 tree.edges[−1, to_road][′freq′]+ = 1
24 if to_road not in

current_propagations[to_road] then
25 current_propagations[to_road]

.append(to_road)
26 end
27 end
28 end

Algorithm 2: The pseudo code for add_propagations
submethod

in current_propagations[from_road] (line 11). Since the
traffic jam can propagate from one road segment to several
road segments at the same time, we have to go through these
as well (lines 12).

We generate a pointer for the propagation path, which has
occurred from the concatenation of the previous propagation
path identifier and the congested road segment (line 13). If
the propagation path identifier has not yet been included, we
add it to the tree as a new node (lines 14-16), then increase
the frequency counter (line 17) and register the propagation
path identifier in the current_propagations variable to the

to_road road segment (line 18).
It may be that part of a propagation path occurs more

frequently than the entire propagation path itself, e.g., from
the propagation R1 → R2 → R3, the propagation R2 → R3

occurs more frequently. This may be due to the fact that a
traffic jam has already occurred in R2 or that R2 is connected
with another road segment R4 from which the congestion often
propagates as part of an R4 → R2 → R3 propagation. To
record these as well, we add the variable to_road to the graph
describing the propagations (tree) as a congestion occurrence
and also register this in the variable current_propagations
to the road segment to_road (lines 21-28).

B. Frequent Propagations (FP) method

Input: tree: graph describing propagations P(V ,L),
eps: ε frequency threshold

Output: subtrees: frequent propagation graphs
1 tree_cp = tree.copy()
2 removable_edges = []
3 for edge in tree_cp.edges do
4 if edge.freq < eps then
5 removable_edges.append(edge)
6 end
7 end
8 tree_cp.remove_edges_from(removable_edges)
9

10 isolated = get_isolated_nodes(tree_cp))
11 tree_cp.remove_nodes_from(isolated)
12

13 if not tree_cp.has_node(−1) then
14 return[]
15 end
16 propagation_sources = tree_cp.successors(′−1′)
17 sub_trees = []
18 for propagation_source in propagation_sources do
19 sub_tree =

bfs_tree(tree_cp, propagation_source)
20 if sub_tree is not None then
21 sub_trees.append(sub_tree)
22 end
23 end

Algorithm 3: Pseudo code for the FP method

The task of the FP method is to find the frequent propa-
gations based on the descriptive tree P(V ,L) constructed by
the PT method and a ε threshold (ε ∈ N+). To do this, the
FP method iterate over the edges of the graph P(V ,L) and
deletes all edges whose frequency freq value is less than the
threshold value. This will result in the originalε breaking into
several subgraphs that now only contain edges that satisfy the
condition.

It is worth noting that the graph P(V ,L) only needs to be
calculated once, and after that any number of ε thresholds can
be tested on it. This is a faster approach to the problem than
if the propagation graph had to be rebuilt for each ε threshold.

The first step of the algorithm is to copy the original tree
(line 1). This is necessary because the graph describing the
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Input: from_road: source of the propagation;
to_roads: target of propagation,
current_propagations: currently congested
road segments, tree: tree describing the
propagations

Output: void
1 if from_road == -1 then
2 for to_road in to_roads do
3 if to_road not in tree then
4 tree.add_node(to_road, route_id =

to_road)
5 tree.add_edge(−1, to_road, freq = 0)
6 end
7 tree.edges[−1, to_road][′freq′]+ = 1
8 current_propagations[to_road] = [to_road]
9 end

10 else
11 for c_prop in current_propagations[from_road] do
12 for to_road in to_roads do
13 prop_pointer = c_prop+′ _′ + to_road
14 if prop_pointer not in tree then
15 tree.add_node(prop_pointer,

route_id = to_road)
tree.add_edge(c_prop,
prop_pointer, freq = 0)

16 end
17 tree.edges[c_prop, prop_pointer][′freq′]+ =

1
18 current_propagations[to_road]

.append(prop_pointer)
19 if to_road not in tree then
20 tree.add_node(to_road, route_id =

to_road)
21 tree.add_edge(−1, to_road, freq = 0)
22 end
23 tree.edges[−1, to_road][′freq′]+ = 1
24 if to_road not in

current_propagations[to_road] then
25 current_propagations[to_road]

.append(to_road)
26 end
27 end
28 end

Algorithm 2: The pseudo code for add_propagations
submethod

in current_propagations[from_road] (line 11). Since the
traffic jam can propagate from one road segment to several
road segments at the same time, we have to go through these
as well (lines 12).

We generate a pointer for the propagation path, which has
occurred from the concatenation of the previous propagation
path identifier and the congested road segment (line 13). If
the propagation path identifier has not yet been included, we
add it to the tree as a new node (lines 14-16), then increase
the frequency counter (line 17) and register the propagation
path identifier in the current_propagations variable to the

to_road road segment (line 18).
It may be that part of a propagation path occurs more

frequently than the entire propagation path itself, e.g., from
the propagation R1 → R2 → R3, the propagation R2 → R3

occurs more frequently. This may be due to the fact that a
traffic jam has already occurred in R2 or that R2 is connected
with another road segment R4 from which the congestion often
propagates as part of an R4 → R2 → R3 propagation. To
record these as well, we add the variable to_road to the graph
describing the propagations (tree) as a congestion occurrence
and also register this in the variable current_propagations
to the road segment to_road (lines 21-28).

B. Frequent Propagations (FP) method

Input: tree: graph describing propagations P(V ,L),
eps: ε frequency threshold

Output: subtrees: frequent propagation graphs
1 tree_cp = tree.copy()
2 removable_edges = []
3 for edge in tree_cp.edges do
4 if edge.freq < eps then
5 removable_edges.append(edge)
6 end
7 end
8 tree_cp.remove_edges_from(removable_edges)
9

10 isolated = get_isolated_nodes(tree_cp))
11 tree_cp.remove_nodes_from(isolated)
12

13 if not tree_cp.has_node(−1) then
14 return[]
15 end
16 propagation_sources = tree_cp.successors(′−1′)
17 sub_trees = []
18 for propagation_source in propagation_sources do
19 sub_tree =

bfs_tree(tree_cp, propagation_source)
20 if sub_tree is not None then
21 sub_trees.append(sub_tree)
22 end
23 end

Algorithm 3: Pseudo code for the FP method

The task of the FP method is to find the frequent propa-
gations based on the descriptive tree P(V ,L) constructed by
the PT method and a ε threshold (ε ∈ N+). To do this, the
FP method iterate over the edges of the graph P(V ,L) and
deletes all edges whose frequency freq value is less than the
threshold value. This will result in the originalε breaking into
several subgraphs that now only contain edges that satisfy the
condition.

It is worth noting that the graph P(V ,L) only needs to be
calculated once, and after that any number of ε thresholds can
be tested on it. This is a faster approach to the problem than
if the propagation graph had to be rebuilt for each ε threshold.

The first step of the algorithm is to copy the original tree
(line 1). This is necessary because the graph describing the
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Input: from_road: source of the propagation;
to_roads: target of propagation,
current_propagations: currently congested
road segments, tree: tree describing the
propagations

Output: void
1 if from_road == -1 then
2 for to_road in to_roads do
3 if to_road not in tree then
4 tree.add_node(to_road, route_id =

to_road)
5 tree.add_edge(−1, to_road, freq = 0)
6 end
7 tree.edges[−1, to_road][′freq′]+ = 1
8 current_propagations[to_road] = [to_road]
9 end

10 else
11 for c_prop in current_propagations[from_road] do
12 for to_road in to_roads do
13 prop_pointer = c_prop+′ _′ + to_road
14 if prop_pointer not in tree then
15 tree.add_node(prop_pointer,

route_id = to_road)
tree.add_edge(c_prop,
prop_pointer, freq = 0)

16 end
17 tree.edges[c_prop, prop_pointer][′freq′]+ =

1
18 current_propagations[to_road]

.append(prop_pointer)
19 if to_road not in tree then
20 tree.add_node(to_road, route_id =

to_road)
21 tree.add_edge(−1, to_road, freq = 0)
22 end
23 tree.edges[−1, to_road][′freq′]+ = 1
24 if to_road not in

current_propagations[to_road] then
25 current_propagations[to_road]

.append(to_road)
26 end
27 end
28 end

Algorithm 2: The pseudo code for add_propagations
submethod

in current_propagations[from_road] (line 11). Since the
traffic jam can propagate from one road segment to several
road segments at the same time, we have to go through these
as well (lines 12).

We generate a pointer for the propagation path, which has
occurred from the concatenation of the previous propagation
path identifier and the congested road segment (line 13). If
the propagation path identifier has not yet been included, we
add it to the tree as a new node (lines 14-16), then increase
the frequency counter (line 17) and register the propagation
path identifier in the current_propagations variable to the

to_road road segment (line 18).
It may be that part of a propagation path occurs more

frequently than the entire propagation path itself, e.g., from
the propagation R1 → R2 → R3, the propagation R2 → R3

occurs more frequently. This may be due to the fact that a
traffic jam has already occurred in R2 or that R2 is connected
with another road segment R4 from which the congestion often
propagates as part of an R4 → R2 → R3 propagation. To
record these as well, we add the variable to_road to the graph
describing the propagations (tree) as a congestion occurrence
and also register this in the variable current_propagations
to the road segment to_road (lines 21-28).

B. Frequent Propagations (FP) method

Input: tree: graph describing propagations P(V ,L),
eps: ε frequency threshold

Output: subtrees: frequent propagation graphs
1 tree_cp = tree.copy()
2 removable_edges = []
3 for edge in tree_cp.edges do
4 if edge.freq < eps then
5 removable_edges.append(edge)
6 end
7 end
8 tree_cp.remove_edges_from(removable_edges)
9

10 isolated = get_isolated_nodes(tree_cp))
11 tree_cp.remove_nodes_from(isolated)
12

13 if not tree_cp.has_node(−1) then
14 return[]
15 end
16 propagation_sources = tree_cp.successors(′−1′)
17 sub_trees = []
18 for propagation_source in propagation_sources do
19 sub_tree =

bfs_tree(tree_cp, propagation_source)
20 if sub_tree is not None then
21 sub_trees.append(sub_tree)
22 end
23 end

Algorithm 3: Pseudo code for the FP method

The task of the FP method is to find the frequent propa-
gations based on the descriptive tree P(V ,L) constructed by
the PT method and a ε threshold (ε ∈ N+). To do this, the
FP method iterate over the edges of the graph P(V ,L) and
deletes all edges whose frequency freq value is less than the
threshold value. This will result in the originalε breaking into
several subgraphs that now only contain edges that satisfy the
condition.

It is worth noting that the graph P(V ,L) only needs to be
calculated once, and after that any number of ε thresholds can
be tested on it. This is a faster approach to the problem than
if the propagation graph had to be rebuilt for each ε threshold.

The first step of the algorithm is to copy the original tree
(line 1). This is necessary because the graph describing the
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propagation does not have to be recalculated for each new
eps.

We then iterate over the edges of the copied tree and collect
those with a freq value less than eps (lines 2-7). The edges
collected in the removable_edges variable are then deleted
from the tree_cp tree (line 8).

After the step, there may be vertices in the graph that have
no edges connected to them. Using the get_isolated_nodes
method, we collect these and then delete them from the graph
as well (lines 10-11).

If there is no node −1 in the graph after that, it means that
no edge met the condition, so we return with an empty array
(lines 13-15).

In the last step, we go through the direct descendants
of node −1, which are the starting road segments of the
propagations (lines 16-23). Starting from each starting road
segment (propagation_source), we perform a breadth-first
search with the bfs_tree method. In this, we traverse the
subtree (sub_tree) and add it to the list of subtrees sub_tree),
but only if the traversed subtree is not empty.

The number of steps of the FP method can be estimated by
the cardinality of the edge sets (|L|) of the graph P(V ,L).
To delete edges that do not meet the ε threshold |L| number
of steps are required. The maximum number of steps of the
breadth-first search even in the worst case can be estimated
with the value of |L|. Thus the FP method’s number of steps
will be O(2|L|) → O(|L|). This also means that the number
of steps of the entire SCPP algorithm is O(T |R|+ |L|).

V. EVALUATION OF THE SCPP ALGORITHM

The performance of the SCPP algorithm was compared
with the performance of the STC algorithm, because of all
the methods described in the professional literature, only this
one uses a quadratic number of steps.

In addition, the algorithm’s author made the implementation
of the method [48], and the test data set they used open source,
so we could reproduce their results and compare them with
the results of our own algorithm.

We were forced to modify the implementation of the STC
algorithm at one point because we noticed that there was a
theoretical error in the original implementation: The STCTree
method of the algorithm [39] examines whether the traffic
jam currently being examined may be a source of a previous
propagation in a nested loop (line 20 of STCTree). However,
when specifying the if condition, it does not take into account
whether the previous propagation had already existed at the
time of the occurrence of the currently examined traffic jam.
Thus, it also included propagations in the comparison that did
not actually exist.

In the first step of our study, we compared the output
of the modified implementation of STC with the output of
our own solution (Section V-A). Our goal was to examine
the differences in the outputs of the two algorithms. We
then wondered whether SCPP, which in theory is faster,
would actually find frequent propagations sooner than STC,
considering the changing input parameters (Section V-B).

In our performance analysis, we examined how much the
average execution times depend on:

• the length of the examined time period,
• the size of the road network,
• the value of the threshold value.
The dataset [49] used in the evaluation for each test was

the same and identical to that used in [39]. This is a real
dataset recorded between June 17, 2013 and July 14, 2013 in
Melbourne. The provided dataset contained only the required
binary congestion data. Thus, we could not execute the Flow-
speed ratio congestion definition on the dataset, but we could
use it as an input for SCPP because it supports binary
congestion data. The examined road network contains 586 road
segments, from which data were collected every 5 minutes on
average, and in total 7,657 times. Each test case was run at
least 10 times to be sure that a temporary slow-down of the
test system does not affect the results’ correctness. During the
evaluations, we used the average value of these executions’
result.

A. Testing of the congestion propagation path identification

To be able to compare the outputs of the SCPP and STC
algorithms, we need to better understand how the STC works.
The STC algorithm uses the Apriori algorithm to discover
frequent propagation paths (subtrees). The Apriori algorithm
was basically invented to search for association rules (frequent
coincidences) in a large database. A good example of this is
understanding people’s shopping habits, where the question is
what products are purchased together by customers. With each
purchase, the store saves what was in a customer’s basket at the
time of payment. On the database built from these baskets, we
can execute the Apriori algorithm, which looks for products
that were purchased together frequently. A product list will
be common if the items in it are listed together at least ε
times. This, in the context of a congestion study, means that
a congestion path is considered to be frequent if the road
segments within in the path have been congested together at
least ε times.

It is important to note that STC and SCPP interpret the
meaning of ε differently. While SCPP simply considers this
value as a frequency (εSCPP ∈ R+), the STC algorithm uses
the Apriori algorithm to filter out frequent propagation, in
which ε as a ratio to the total number of propagations found
(εSTC ∈ (0, 1)) where the size of the set of propagations found
is denoted by M . To make the results comparable, we first
ran the STC procedure with the εSTC values that are being
examined. Based on this, a propagation is considered frequent
if it has occurred at least εSTC ×M times, so εSCPP can be
calculated as εSCPP = εSTC ×M . The SCPP algorithm was
run with the εSCPP value derived from the STC algorithm,
so the efficiency of the two methods can be compared.

To make the notation system simple in the following, when
we refer to ε, we mean εSTC .

To compare SCPP and STC, propagation paths were gen-
erated from the output propagation trees of both algorithms as
shown in Figure 4 to include partial propagation paths in the
comparison.

We then examined whether the propagation paths of one
algorithm could be found among the propagation paths of the
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propagation does not have to be recalculated for each new
eps.

We then iterate over the edges of the copied tree and collect
those with a freq value less than eps (lines 2-7). The edges
collected in the removable_edges variable are then deleted
from the tree_cp tree (line 8).

After the step, there may be vertices in the graph that have
no edges connected to them. Using the get_isolated_nodes
method, we collect these and then delete them from the graph
as well (lines 10-11).

If there is no node −1 in the graph after that, it means that
no edge met the condition, so we return with an empty array
(lines 13-15).

In the last step, we go through the direct descendants
of node −1, which are the starting road segments of the
propagations (lines 16-23). Starting from each starting road
segment (propagation_source), we perform a breadth-first
search with the bfs_tree method. In this, we traverse the
subtree (sub_tree) and add it to the list of subtrees sub_tree),
but only if the traversed subtree is not empty.

The number of steps of the FP method can be estimated by
the cardinality of the edge sets (|L|) of the graph P(V ,L).
To delete edges that do not meet the ε threshold |L| number
of steps are required. The maximum number of steps of the
breadth-first search even in the worst case can be estimated
with the value of |L|. Thus the FP method’s number of steps
will be O(2|L|) → O(|L|). This also means that the number
of steps of the entire SCPP algorithm is O(T |R|+ |L|).

V. EVALUATION OF THE SCPP ALGORITHM

The performance of the SCPP algorithm was compared
with the performance of the STC algorithm, because of all
the methods described in the professional literature, only this
one uses a quadratic number of steps.

In addition, the algorithm’s author made the implementation
of the method [48], and the test data set they used open source,
so we could reproduce their results and compare them with
the results of our own algorithm.

We were forced to modify the implementation of the STC
algorithm at one point because we noticed that there was a
theoretical error in the original implementation: The STCTree
method of the algorithm [39] examines whether the traffic
jam currently being examined may be a source of a previous
propagation in a nested loop (line 20 of STCTree). However,
when specifying the if condition, it does not take into account
whether the previous propagation had already existed at the
time of the occurrence of the currently examined traffic jam.
Thus, it also included propagations in the comparison that did
not actually exist.

In the first step of our study, we compared the output
of the modified implementation of STC with the output of
our own solution (Section V-A). Our goal was to examine
the differences in the outputs of the two algorithms. We
then wondered whether SCPP, which in theory is faster,
would actually find frequent propagations sooner than STC,
considering the changing input parameters (Section V-B).

In our performance analysis, we examined how much the
average execution times depend on:

• the length of the examined time period,
• the size of the road network,
• the value of the threshold value.
The dataset [49] used in the evaluation for each test was

the same and identical to that used in [39]. This is a real
dataset recorded between June 17, 2013 and July 14, 2013 in
Melbourne. The provided dataset contained only the required
binary congestion data. Thus, we could not execute the Flow-
speed ratio congestion definition on the dataset, but we could
use it as an input for SCPP because it supports binary
congestion data. The examined road network contains 586 road
segments, from which data were collected every 5 minutes on
average, and in total 7,657 times. Each test case was run at
least 10 times to be sure that a temporary slow-down of the
test system does not affect the results’ correctness. During the
evaluations, we used the average value of these executions’
result.

A. Testing of the congestion propagation path identification

To be able to compare the outputs of the SCPP and STC
algorithms, we need to better understand how the STC works.
The STC algorithm uses the Apriori algorithm to discover
frequent propagation paths (subtrees). The Apriori algorithm
was basically invented to search for association rules (frequent
coincidences) in a large database. A good example of this is
understanding people’s shopping habits, where the question is
what products are purchased together by customers. With each
purchase, the store saves what was in a customer’s basket at the
time of payment. On the database built from these baskets, we
can execute the Apriori algorithm, which looks for products
that were purchased together frequently. A product list will
be common if the items in it are listed together at least ε
times. This, in the context of a congestion study, means that
a congestion path is considered to be frequent if the road
segments within in the path have been congested together at
least ε times.

It is important to note that STC and SCPP interpret the
meaning of ε differently. While SCPP simply considers this
value as a frequency (εSCPP ∈ R+), the STC algorithm uses
the Apriori algorithm to filter out frequent propagation, in
which ε as a ratio to the total number of propagations found
(εSTC ∈ (0, 1)) where the size of the set of propagations found
is denoted by M . To make the results comparable, we first
ran the STC procedure with the εSTC values that are being
examined. Based on this, a propagation is considered frequent
if it has occurred at least εSTC ×M times, so εSCPP can be
calculated as εSCPP = εSTC ×M . The SCPP algorithm was
run with the εSCPP value derived from the STC algorithm,
so the efficiency of the two methods can be compared.

To make the notation system simple in the following, when
we refer to ε, we mean εSTC .

To compare SCPP and STC, propagation paths were gen-
erated from the output propagation trees of both algorithms as
shown in Figure 4 to include partial propagation paths in the
comparison.

We then examined whether the propagation paths of one
algorithm could be found among the propagation paths of the
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propagation does not have to be recalculated for each new
eps.

We then iterate over the edges of the copied tree and collect
those with a freq value less than eps (lines 2-7). The edges
collected in the removable_edges variable are then deleted
from the tree_cp tree (line 8).

After the step, there may be vertices in the graph that have
no edges connected to them. Using the get_isolated_nodes
method, we collect these and then delete them from the graph
as well (lines 10-11).

If there is no node −1 in the graph after that, it means that
no edge met the condition, so we return with an empty array
(lines 13-15).

In the last step, we go through the direct descendants
of node −1, which are the starting road segments of the
propagations (lines 16-23). Starting from each starting road
segment (propagation_source), we perform a breadth-first
search with the bfs_tree method. In this, we traverse the
subtree (sub_tree) and add it to the list of subtrees sub_tree),
but only if the traversed subtree is not empty.

The number of steps of the FP method can be estimated by
the cardinality of the edge sets (|L|) of the graph P(V ,L).
To delete edges that do not meet the ε threshold |L| number
of steps are required. The maximum number of steps of the
breadth-first search even in the worst case can be estimated
with the value of |L|. Thus the FP method’s number of steps
will be O(2|L|) → O(|L|). This also means that the number
of steps of the entire SCPP algorithm is O(T |R|+ |L|).

V. EVALUATION OF THE SCPP ALGORITHM

The performance of the SCPP algorithm was compared
with the performance of the STC algorithm, because of all
the methods described in the professional literature, only this
one uses a quadratic number of steps.

In addition, the algorithm’s author made the implementation
of the method [48], and the test data set they used open source,
so we could reproduce their results and compare them with
the results of our own algorithm.

We were forced to modify the implementation of the STC
algorithm at one point because we noticed that there was a
theoretical error in the original implementation: The STCTree
method of the algorithm [39] examines whether the traffic
jam currently being examined may be a source of a previous
propagation in a nested loop (line 20 of STCTree). However,
when specifying the if condition, it does not take into account
whether the previous propagation had already existed at the
time of the occurrence of the currently examined traffic jam.
Thus, it also included propagations in the comparison that did
not actually exist.

In the first step of our study, we compared the output
of the modified implementation of STC with the output of
our own solution (Section V-A). Our goal was to examine
the differences in the outputs of the two algorithms. We
then wondered whether SCPP, which in theory is faster,
would actually find frequent propagations sooner than STC,
considering the changing input parameters (Section V-B).

In our performance analysis, we examined how much the
average execution times depend on:

• the length of the examined time period,
• the size of the road network,
• the value of the threshold value.
The dataset [49] used in the evaluation for each test was

the same and identical to that used in [39]. This is a real
dataset recorded between June 17, 2013 and July 14, 2013 in
Melbourne. The provided dataset contained only the required
binary congestion data. Thus, we could not execute the Flow-
speed ratio congestion definition on the dataset, but we could
use it as an input for SCPP because it supports binary
congestion data. The examined road network contains 586 road
segments, from which data were collected every 5 minutes on
average, and in total 7,657 times. Each test case was run at
least 10 times to be sure that a temporary slow-down of the
test system does not affect the results’ correctness. During the
evaluations, we used the average value of these executions’
result.

A. Testing of the congestion propagation path identification

To be able to compare the outputs of the SCPP and STC
algorithms, we need to better understand how the STC works.
The STC algorithm uses the Apriori algorithm to discover
frequent propagation paths (subtrees). The Apriori algorithm
was basically invented to search for association rules (frequent
coincidences) in a large database. A good example of this is
understanding people’s shopping habits, where the question is
what products are purchased together by customers. With each
purchase, the store saves what was in a customer’s basket at the
time of payment. On the database built from these baskets, we
can execute the Apriori algorithm, which looks for products
that were purchased together frequently. A product list will
be common if the items in it are listed together at least ε
times. This, in the context of a congestion study, means that
a congestion path is considered to be frequent if the road
segments within in the path have been congested together at
least ε times.

It is important to note that STC and SCPP interpret the
meaning of ε differently. While SCPP simply considers this
value as a frequency (εSCPP ∈ R+), the STC algorithm uses
the Apriori algorithm to filter out frequent propagation, in
which ε as a ratio to the total number of propagations found
(εSTC ∈ (0, 1)) where the size of the set of propagations found
is denoted by M . To make the results comparable, we first
ran the STC procedure with the εSTC values that are being
examined. Based on this, a propagation is considered frequent
if it has occurred at least εSTC ×M times, so εSCPP can be
calculated as εSCPP = εSTC ×M . The SCPP algorithm was
run with the εSCPP value derived from the STC algorithm,
so the efficiency of the two methods can be compared.

To make the notation system simple in the following, when
we refer to ε, we mean εSTC .

To compare SCPP and STC, propagation paths were gen-
erated from the output propagation trees of both algorithms as
shown in Figure 4 to include partial propagation paths in the
comparison.

We then examined whether the propagation paths of one
algorithm could be found among the propagation paths of the
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so we could reproduce their results and compare them with
the results of our own algorithm.
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algorithm at one point because we noticed that there was a
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method of the algorithm [39] examines whether the traffic
jam currently being examined may be a source of a previous
propagation in a nested loop (line 20 of STCTree). However,
when specifying the if condition, it does not take into account
whether the previous propagation had already existed at the
time of the occurrence of the currently examined traffic jam.
Thus, it also included propagations in the comparison that did
not actually exist.

In the first step of our study, we compared the output
of the modified implementation of STC with the output of
our own solution (Section V-A). Our goal was to examine
the differences in the outputs of the two algorithms. We
then wondered whether SCPP, which in theory is faster,
would actually find frequent propagations sooner than STC,
considering the changing input parameters (Section V-B).

In our performance analysis, we examined how much the
average execution times depend on:

• the length of the examined time period,
• the size of the road network,
• the value of the threshold value.
The dataset [49] used in the evaluation for each test was

the same and identical to that used in [39]. This is a real
dataset recorded between June 17, 2013 and July 14, 2013 in
Melbourne. The provided dataset contained only the required
binary congestion data. Thus, we could not execute the Flow-
speed ratio congestion definition on the dataset, but we could
use it as an input for SCPP because it supports binary
congestion data. The examined road network contains 586 road
segments, from which data were collected every 5 minutes on
average, and in total 7,657 times. Each test case was run at
least 10 times to be sure that a temporary slow-down of the
test system does not affect the results’ correctness. During the
evaluations, we used the average value of these executions’
result.

A. Testing of the congestion propagation path identification

To be able to compare the outputs of the SCPP and STC
algorithms, we need to better understand how the STC works.
The STC algorithm uses the Apriori algorithm to discover
frequent propagation paths (subtrees). The Apriori algorithm
was basically invented to search for association rules (frequent
coincidences) in a large database. A good example of this is
understanding people’s shopping habits, where the question is
what products are purchased together by customers. With each
purchase, the store saves what was in a customer’s basket at the
time of payment. On the database built from these baskets, we
can execute the Apriori algorithm, which looks for products
that were purchased together frequently. A product list will
be common if the items in it are listed together at least ε
times. This, in the context of a congestion study, means that
a congestion path is considered to be frequent if the road
segments within in the path have been congested together at
least ε times.

It is important to note that STC and SCPP interpret the
meaning of ε differently. While SCPP simply considers this
value as a frequency (εSCPP ∈ R+), the STC algorithm uses
the Apriori algorithm to filter out frequent propagation, in
which ε as a ratio to the total number of propagations found
(εSTC ∈ (0, 1)) where the size of the set of propagations found
is denoted by M . To make the results comparable, we first
ran the STC procedure with the εSTC values that are being
examined. Based on this, a propagation is considered frequent
if it has occurred at least εSTC ×M times, so εSCPP can be
calculated as εSCPP = εSTC ×M . The SCPP algorithm was
run with the εSCPP value derived from the STC algorithm,
so the efficiency of the two methods can be compared.

To make the notation system simple in the following, when
we refer to ε, we mean εSTC .

To compare SCPP and STC, propagation paths were gen-
erated from the output propagation trees of both algorithms as
shown in Figure 4 to include partial propagation paths in the
comparison.

We then examined whether the propagation paths of one
algorithm could be found among the propagation paths of the
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Fig. 4: Example of generating propagation paths.

Fig. 5: Comparison of the number of traffic jam propagation
paths found.

other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation
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other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation
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other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation
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other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation
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other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation
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paths between the measurement points were determined by
the Dijsktra algorithm running on the road network, which
was weighted by the length of the road segments.

Figure 7 shows two different examples from the city of
Melbourne. In the lower left corner of each example, there is
a color scale showing the hues associated with the frequencies.
With the visualization of SCPP, the propagation paths have
become well identifiable, which in several cases branch out.
In figure 7a spike-shaped propagations can be observed at
two separate points. This is because in some cases, the GPS
coordinates of the measurement points are not accurate, which
distorts the output.

Visualization of traffic jams is important because urban traf-
fic management authorities can discover correlations that can
help them plan long-term urban transport (traffic light settings,
public transport routes) and even shorter-term intervention.

VI. CONCLUSION

Managing the frequent congestion in the traffic networks
of large cities is a serious challenge for municipal traffic
managing organizations. In order to handle these situations, it
is crucial to understand the processes that lead to congestion
and propagation.

In this article, we introduce a new method capable of using
city traffic data to find frequent traffic jam propagations. We
introduce the steps of the method in detail and then we com-
pare the output to the accepted and the widely cited solutions
of the professional literature. In addition to introducing the
method, we also lay out a new definition for “traffic jam” that,
unlike previous solutions, does not rely on manually setting
parameters, and instead is able to define traffic jam levels on
the basis of the size of the road segment.

During our evaluation we look at how the performance of
our method depends on the input parameters and real datasets.
The results of our testing clearly show that SCPP carries
out its task significantly faster and more precisely than the
other solution, while also adding frequency information to

the output, further aiding the refinement of the road network
analysis and the visualization of propagations.

In the future, we would like to extend SCPP to use
continuous congestion data instead of binary congestion data,
as it can further improve the performance of the algorithm.

REFERENCES

[1] N. Zhong, J. Cao, and Y. Wang, “Traffic congestion, ambient air
pollution, and health: Evidence from driving restrictions in beijing,”
Journal of the Association of Environmental and Resource Economists,
vol. 4, no. 3, pp. 821–856, 2017, DOI: 10.1086/692115.

[2] M. Rosenlund, F. Forastiere, M. Stafoggia, D. Porta, M. Perucci,
A. Ranzi, F. Nussio, and C. A. Perucci, “Comparison of regression mod-
els with land-use and emissions data to predict the spatial distribution of
traffic-related air pollution in rome,” Journal of Exposure Science and
Environmental Epidemiology, vol. 18, no. 2, pp. 192–199, 2008, DOI:
10.1038/sj.jes.7500571.

[3] O. K. Kurt, J. Zhang, and K. E. Pinkerton, “Pulmonary health effects of
air pollution,” Current opinion in pulmonary medicine, vol. 22, no. 2,
p. 138, 2016, DOI: 10.1097/MCP.0000000000000248.

[4] K. Chen, A. Schneider, J. Cyrys, K. Wolf, C. Meisinger, M. Heier,
W. von Scheidt, B. Kuch, M. Pitz, A. Peters et al., “Hourly exposure
to ultrafine particle metrics and the onset of myocardial infarction in
augsburg, germany,” Environmental Health Perspectives, vol. 128, no. 1,
p. 017003, 2020, DOI: 10.1289/EHP5478.

[5] X. Tian, H. Dai, Y. Geng, J. Wilson, R. Wu, Y. Xie, and H. Hao, “Eco-
nomic impacts from pm2. 5 pollution-related health effects in china’s
road transport sector: A provincial-level analysis,” Environment interna-
tional, vol. 115, pp. 220–229, 2018, DOI: 10.1016/j.envint.2018.03.030.

[6] L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, “Big data analytics
in intelligent transportation systems: A survey,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 1, pp. 383–398, 2018,
DOI: 10.1109/TITS.2018.2815678.

[7] J. Li, Y. Zhang, and Y. Chen, “A self-adaptive traffic light control system
based on speed of vehicles,” in 2016 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C). IEEE,
2016, pp. 382–388, DOI: 10.1109/QRS-C.2016.58.

[8] L. A. Klein, M. K. Mills, and D. R. Gibson, “Traffic detector handbook:
3rd ed. — volume II,” Federal Highway Administration, Tech. Rep.
Publi. No. FHWA-HRT-06-139, October 2006.

[9] Z. MacHardy, A. Khan, K. Obana, and S. Iwashina, “V2x access
technologies: Regulation, research, and remaining challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1858–1877,
2018, DOI: 10.1109/COMST.2018.2808444.

[10] A. Paranjothi, M. S. Khan, and S. Zeadally, “A survey on congestion
detection and control in connected vehicles,” Ad Hoc Networks, vol.
108, p. 102277, 2020, DOI: 10.1016/j.adhoc.2020.102277.

INFOCOMMUNICATIONS JOURNAL 10

R4R3

R2

R1

R3

R2

R1

R4

R2

R1

R2

R1

R3

R2

R4

R2

Fig. 4: Example of generating propagation paths.

Fig. 5: Comparison of the number of traffic jam propagation
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other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation
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paths between the measurement points were determined by
the Dijsktra algorithm running on the road network, which
was weighted by the length of the road segments.

Figure 7 shows two different examples from the city of
Melbourne. In the lower left corner of each example, there is
a color scale showing the hues associated with the frequencies.
With the visualization of SCPP, the propagation paths have
become well identifiable, which in several cases branch out.
In figure 7a spike-shaped propagations can be observed at
two separate points. This is because in some cases, the GPS
coordinates of the measurement points are not accurate, which
distorts the output.

Visualization of traffic jams is important because urban traf-
fic management authorities can discover correlations that can
help them plan long-term urban transport (traffic light settings,
public transport routes) and even shorter-term intervention.

VI. CONCLUSION

Managing the frequent congestion in the traffic networks
of large cities is a serious challenge for municipal traffic
managing organizations. In order to handle these situations, it
is crucial to understand the processes that lead to congestion
and propagation.

In this article, we introduce a new method capable of using
city traffic data to find frequent traffic jam propagations. We
introduce the steps of the method in detail and then we com-
pare the output to the accepted and the widely cited solutions
of the professional literature. In addition to introducing the
method, we also lay out a new definition for “traffic jam” that,
unlike previous solutions, does not rely on manually setting
parameters, and instead is able to define traffic jam levels on
the basis of the size of the road segment.

During our evaluation we look at how the performance of
our method depends on the input parameters and real datasets.
The results of our testing clearly show that SCPP carries
out its task significantly faster and more precisely than the
other solution, while also adding frequency information to

the output, further aiding the refinement of the road network
analysis and the visualization of propagations.

In the future, we would like to extend SCPP to use
continuous congestion data instead of binary congestion data,
as it can further improve the performance of the algorithm.
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Fig. 5: Comparison of the number of traffic jam propagation
paths found.

other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation

INFOCOMMUNICATIONS JOURNAL 10

R4R3

R2

R1

R3

R2

R1

R4

R2

R1

R2

R1

R3

R2

R4

R2

Fig. 4: Example of generating propagation paths.
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other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation
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Fig. 5: Comparison of the number of traffic jam propagation
paths found.

other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation
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paths between the measurement points were determined by
the Dijsktra algorithm running on the road network, which
was weighted by the length of the road segments.

Figure 7 shows two different examples from the city of
Melbourne. In the lower left corner of each example, there is
a color scale showing the hues associated with the frequencies.
With the visualization of SCPP, the propagation paths have
become well identifiable, which in several cases branch out.
In figure 7a spike-shaped propagations can be observed at
two separate points. This is because in some cases, the GPS
coordinates of the measurement points are not accurate, which
distorts the output.

Visualization of traffic jams is important because urban traf-
fic management authorities can discover correlations that can
help them plan long-term urban transport (traffic light settings,
public transport routes) and even shorter-term intervention.

VI. CONCLUSION

Managing the frequent congestion in the traffic networks
of large cities is a serious challenge for municipal traffic
managing organizations. In order to handle these situations, it
is crucial to understand the processes that lead to congestion
and propagation.

In this article, we introduce a new method capable of using
city traffic data to find frequent traffic jam propagations. We
introduce the steps of the method in detail and then we com-
pare the output to the accepted and the widely cited solutions
of the professional literature. In addition to introducing the
method, we also lay out a new definition for “traffic jam” that,
unlike previous solutions, does not rely on manually setting
parameters, and instead is able to define traffic jam levels on
the basis of the size of the road segment.

During our evaluation we look at how the performance of
our method depends on the input parameters and real datasets.
The results of our testing clearly show that SCPP carries
out its task significantly faster and more precisely than the
other solution, while also adding frequency information to

the output, further aiding the refinement of the road network
analysis and the visualization of propagations.

In the future, we would like to extend SCPP to use
continuous congestion data instead of binary congestion data,
as it can further improve the performance of the algorithm.
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paths between the measurement points were determined by
the Dijsktra algorithm running on the road network, which
was weighted by the length of the road segments.

Figure 7 shows two different examples from the city of
Melbourne. In the lower left corner of each example, there is
a color scale showing the hues associated with the frequencies.
With the visualization of SCPP, the propagation paths have
become well identifiable, which in several cases branch out.
In figure 7a spike-shaped propagations can be observed at
two separate points. This is because in some cases, the GPS
coordinates of the measurement points are not accurate, which
distorts the output.

Visualization of traffic jams is important because urban traf-
fic management authorities can discover correlations that can
help them plan long-term urban transport (traffic light settings,
public transport routes) and even shorter-term intervention.

VI. CONCLUSION

Managing the frequent congestion in the traffic networks
of large cities is a serious challenge for municipal traffic
managing organizations. In order to handle these situations, it
is crucial to understand the processes that lead to congestion
and propagation.

In this article, we introduce a new method capable of using
city traffic data to find frequent traffic jam propagations. We
introduce the steps of the method in detail and then we com-
pare the output to the accepted and the widely cited solutions
of the professional literature. In addition to introducing the
method, we also lay out a new definition for “traffic jam” that,
unlike previous solutions, does not rely on manually setting
parameters, and instead is able to define traffic jam levels on
the basis of the size of the road segment.

During our evaluation we look at how the performance of
our method depends on the input parameters and real datasets.
The results of our testing clearly show that SCPP carries
out its task significantly faster and more precisely than the
other solution, while also adding frequency information to

the output, further aiding the refinement of the road network
analysis and the visualization of propagations.

In the future, we would like to extend SCPP to use
continuous congestion data instead of binary congestion data,
as it can further improve the performance of the algorithm.
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paths between the measurement points were determined by
the Dijsktra algorithm running on the road network, which
was weighted by the length of the road segments.

Figure 7 shows two different examples from the city of
Melbourne. In the lower left corner of each example, there is
a color scale showing the hues associated with the frequencies.
With the visualization of SCPP, the propagation paths have
become well identifiable, which in several cases branch out.
In figure 7a spike-shaped propagations can be observed at
two separate points. This is because in some cases, the GPS
coordinates of the measurement points are not accurate, which
distorts the output.

Visualization of traffic jams is important because urban traf-
fic management authorities can discover correlations that can
help them plan long-term urban transport (traffic light settings,
public transport routes) and even shorter-term intervention.

VI. CONCLUSION

Managing the frequent congestion in the traffic networks
of large cities is a serious challenge for municipal traffic
managing organizations. In order to handle these situations, it
is crucial to understand the processes that lead to congestion
and propagation.

In this article, we introduce a new method capable of using
city traffic data to find frequent traffic jam propagations. We
introduce the steps of the method in detail and then we com-
pare the output to the accepted and the widely cited solutions
of the professional literature. In addition to introducing the
method, we also lay out a new definition for “traffic jam” that,
unlike previous solutions, does not rely on manually setting
parameters, and instead is able to define traffic jam levels on
the basis of the size of the road segment.

During our evaluation we look at how the performance of
our method depends on the input parameters and real datasets.
The results of our testing clearly show that SCPP carries
out its task significantly faster and more precisely than the
other solution, while also adding frequency information to

the output, further aiding the refinement of the road network
analysis and the visualization of propagations.

In the future, we would like to extend SCPP to use
continuous congestion data instead of binary congestion data,
as it can further improve the performance of the algorithm.
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paths between the measurement points were determined by
the Dijsktra algorithm running on the road network, which
was weighted by the length of the road segments.

Figure 7 shows two different examples from the city of
Melbourne. In the lower left corner of each example, there is
a color scale showing the hues associated with the frequencies.
With the visualization of SCPP, the propagation paths have
become well identifiable, which in several cases branch out.
In figure 7a spike-shaped propagations can be observed at
two separate points. This is because in some cases, the GPS
coordinates of the measurement points are not accurate, which
distorts the output.

Visualization of traffic jams is important because urban traf-
fic management authorities can discover correlations that can
help them plan long-term urban transport (traffic light settings,
public transport routes) and even shorter-term intervention.

VI. CONCLUSION

Managing the frequent congestion in the traffic networks
of large cities is a serious challenge for municipal traffic
managing organizations. In order to handle these situations, it
is crucial to understand the processes that lead to congestion
and propagation.

In this article, we introduce a new method capable of using
city traffic data to find frequent traffic jam propagations. We
introduce the steps of the method in detail and then we com-
pare the output to the accepted and the widely cited solutions
of the professional literature. In addition to introducing the
method, we also lay out a new definition for “traffic jam” that,
unlike previous solutions, does not rely on manually setting
parameters, and instead is able to define traffic jam levels on
the basis of the size of the road segment.

During our evaluation we look at how the performance of
our method depends on the input parameters and real datasets.
The results of our testing clearly show that SCPP carries
out its task significantly faster and more precisely than the
other solution, while also adding frequency information to

the output, further aiding the refinement of the road network
analysis and the visualization of propagations.

In the future, we would like to extend SCPP to use
continuous congestion data instead of binary congestion data,
as it can further improve the performance of the algorithm.
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Fig. 5: Comparison of the number of traffic jam propagation
paths found.

other algorithm. Performance-efficiency studies were run at
different settings.

In all cases examined, it was true that the output of the
SCPP included the output of the STC, but that STC did not
include all the propagation paths of the SCPP. All of these
were cases where the propagation path already consisted of
at least 2 road segments and then propagated to a third road
segment as the traffic jam on segment 2 disappeared. These
cases were all successfully identified by the SCPP, while
the STC was unable to do so. To compare the cardinality
of the outputs, Figure 5 was prepared, where the number of
propagation paths found was also displayed as a function of ε.
At high ε values, the difference in the number of propagation
paths found can be small, even 0. However, as we move
toward the smaller ε values, the number of propagation paths
not found by the STC begins to increase. In some cases,
SCPP found up to 8.28% more, and on average 5.84% more,
propagations than STC. This is because, in the case of less
frequent propagations, the aforementioned situation when the
STC is unable to identify the propagation path occurs more.

B. Study of computational performance

We started our measurements by changing the size of the
studied time period. In these tests, we looked at how increasing
the length of the studied time period (T parameter) changes the
average execution time of the algorithms. Tests were started

off with T = 100 and then increased step by step up to T =
7657. It can be seen on Figure 6a that with the increase of T ,
the average execution time of STC and SCPP both increase,
but the STC is much steeper. The reason for this is that the
STC’s complexity is O(TN2), while that of the SCPP is only
O(TN), where T is the length of the examined time period in
time intervals and N is the number of traffic jam phenomena
that occurred during the period T . At maximum T , the STC
execution time was 7.499 seconds, while the SCPP completed
the task in 1.164 seconds. This means that SCPP solved the
task 763% faster. Looking at all the studied cases, the SCPP
performed calculations 483% faster on average.

We then looked at how increasing the number of road
segments affect average execution times. First |R| = 36 road
segments were examined, then we increased the number of
road segments by 50 every time up to |R| = 586. The
length of the studied time period was T = 7657 for all test
cases. The results are shown in Figure 6b. It is clear that
initially there is not much difference in the execution times
of the two algorithms, but then the execution time of the
STC starts to increase quadratically. The reason for this is
that with the addition of new road segments, the number of
traffic phenomena to be tested increases, of which the STC’s
complexity depends quadratically. Meanwhile, the runtime of
the SCPP increases almost linearly. In the cases studied,
SCPP was 146% faster on average, but at |R| = 586, the
difference was 308%.

We were also curious about how much the size of the ε
threshold value affects the average execution times. During the
tests |R| = 586 road segments and T = 7657 time periods
were used and only the value of ε was changed.

The result of the study is shown in Figure 6c, where the
scaling of the x-axis is logarithmic. It can be seen that as the
value of ε decreases, the average running time of the STC
increases exponentially. This is because the Apriori algorithm
has O(2M ) exponential complexity, where M is the number of
total propagations found. As we decrease ε’s value, the number
of propagations that meet the frequency condition increase.

In contrast, the average run time of the SCPP algorithm
remained nearly constant, independent of ε’s change. This is
explained by the fact that within the SCPP algorithm, the step
number of the Frequent Congestions (FC) method is O(|L|),
which does not correlate with ε.

This resulted in the fact that in the studied cases the SCPP
ran on average 10.79 times faster, while in the case of the
lowest ε value examined the execution time was 17.13 faster.

C. Visualization of results

The SCPP algorithm not only provides the frequent prop-
agation paths with greater accuracy and more quickly, unlike
previous methods it also provides the quantification of propa-
gation phenomena.

This is an extra piece of information when visualizing
frequent propagations, so we can weight the frequency of
propagation with appropriate coloring. The map used for
visualization was downloaded from OpenStreetMap and the
measurement points were mapped onto it. The propagation
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(c) The performance of the algorithms as a
function of ε
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paths between the measurement points were determined by
the Dijsktra algorithm running on the road network, which
was weighted by the length of the road segments.

Figure 7 shows two different examples from the city of
Melbourne. In the lower left corner of each example, there is
a color scale showing the hues associated with the frequencies.
With the visualization of SCPP, the propagation paths have
become well identifiable, which in several cases branch out.
In figure 7a spike-shaped propagations can be observed at
two separate points. This is because in some cases, the GPS
coordinates of the measurement points are not accurate, which
distorts the output.

Visualization of traffic jams is important because urban traf-
fic management authorities can discover correlations that can
help them plan long-term urban transport (traffic light settings,
public transport routes) and even shorter-term intervention.

VI. CONCLUSION

Managing the frequent congestion in the traffic networks
of large cities is a serious challenge for municipal traffic
managing organizations. In order to handle these situations, it
is crucial to understand the processes that lead to congestion
and propagation.

In this article, we introduce a new method capable of using
city traffic data to find frequent traffic jam propagations. We
introduce the steps of the method in detail and then we com-
pare the output to the accepted and the widely cited solutions
of the professional literature. In addition to introducing the
method, we also lay out a new definition for “traffic jam” that,
unlike previous solutions, does not rely on manually setting
parameters, and instead is able to define traffic jam levels on
the basis of the size of the road segment.

During our evaluation we look at how the performance of
our method depends on the input parameters and real datasets.
The results of our testing clearly show that SCPP carries
out its task significantly faster and more precisely than the
other solution, while also adding frequency information to

the output, further aiding the refinement of the road network
analysis and the visualization of propagations.

In the future, we would like to extend SCPP to use
continuous congestion data instead of binary congestion data,
as it can further improve the performance of the algorithm.
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