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Abstract—The complexity of network infrastructures is expo-
nentially growing. Real-time monitoring of these infrastructures
is essential to secure their reliable operation. The concept of
telemetry has been introduced in recent years to foster this
process by streaming time-series data that contain feature-rich
information concerning the state of network components. In
this paper, we focus on a particular application of telemetry —
anomaly detection on time-series data. We rigorously examined
state-of-the-art anomaly detection methods. Upon close inspection
of the methods, we observed that none of them suits our
requirements as they typically face several limitations when
applied on time-series data. This paper presents Alter-Re2,
an improved version of ReRe, a state-of-the-art Long Short-
Term Memory-based machine learning algorithm. Throughout
a systematic examination, we demonstrate that by introducing
the concepts of ageing and sliding window, the major limitations
of ReRe can be overcome. We assessed the efficacy of Alter-Re2
using ten different datasets and achieved promising results. Alter-
Re2 performs three times better on average when compared to
ReRe.

Index Terms—anomaly detection, LSTM, neural network,
time-series data, Alter-Re2.

I. INTRODUCTION

NOWADAYS, infrastructure monitoring, including net-
works, systems, and services, is more critical than ever

before. It is essential for several reasons, such as alerting
partial or total system malfunction, outage prevention based
on predictive identification of such situations, performance
tracking, and, last but not least, security detection of system
penetration.

However, with the exponential increase in the number of
interconnected devices and traffic volume, it has become far
from obvious how to achieve timely, reliable, and sound
infrastructure monitoring. It requires understanding the details
of system processes and recognize how they influence each
other or the whole infrastructure. The concept of network
telemetry has been introduced to streamline this goal. It allows
automated, fast, and simultaneous collection of a wide variety
of time-series data from a large number of devices. However,
processing massive data volumes is challenging, especially in
terms of timeliness and scalability.

Machine learning techniques can process, understand, and
classify problematic infrastructure behaviours, even in massive
data volumes. Despite recent advances in machine learning,
their application to anomaly detection remains poorly under-
stood and investigated in the network telemetry domain. This
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paper attempts to shed new light on anomaly detection on
time-series telemetry data.

Anomaly detection is a critical component of network and
services management as it can provide valuable insights into
the operation of the network and its components. Broadly
speaking, measurement data are created by a generating pro-
cess. If this generating process behaves unusually due to the
system’s abnormal behaviour or the entity that impacts the
generating process, it produces anomalies. The manifestation
of anomalous behaviour can be identified by examining the
generated time-series data.

Our survey of anomaly detection on time-series data yielded
ReRe [1], a Long Short-Term Memory (LSTM) [2] based
machine learning algorithm, as one of the most promising
state-of-the-art approaches. ReRe is claimed to achieve high
accuracy in detecting abnormal behaviour while minimizing
false positives and re-trainings. However, our evaluation re-
vealed several limitations when ReRe was applied on time-
series data. Thus, we introduce Alter-Re2, an enhanced version
of ReRe which extends the original algorithm with two addi-
tional features to improve its efficacy. The first feature ensures
that the collected data ages out; thus, its weight decreases as
time passes, allowing faster adaption to short-term history and
more precise anomaly detection. The second feature serves
the purpose of a sliding window that reduces the anomaly
detector’s resource demands.

The evaluation of our approach with ten different time-series
datasets has shown promising results. Alter-Re2 achieved
approximately three times higher but never worse anomaly
detection accuracy as opposed to ReRe. Not only could we
eliminate issues obstructing real-time use, but we also en-
hanced sensitivity to detect anomalies with smaller amplitude
and length. That said, we argue the strong applicability of
Alter-Re2 in real-world scenarios.

The rest of this paper is organized as follows. In Sec-
tion II, we discuss related works in the field of anomaly
detection on time series, especially network telemetry-related
data. Section III describes two state-of-the-art time-series
anomaly detection algorithms — RePAD [3] and ReRe [1].
In Section IV, we present Alter-Re2, our approach to address
the identified limitations. In Section V, we present experiments
to examine Alter-Re2 performance when compared to ReRe.
Finally, Section VI draws conclusions while also discussing
further research implications and work directions.

II. RELATED WORK

Despite the recent proliferation of telemetry in networking,
there is only a handful of research in the topic of anomaly
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detection. Putina et al. [4] at Cisco developed a streaming
telemetry-based anomaly detection engine for BGP anomalies.
However, it uses a legacy clustering algorithm called Den-
Stream [5] that has limited performance.

Other works with limited applicability to anomalies and
computer networks include [6], [7]. Ye et al. [6] use a
statistical approach to detect zero-day attacks and malicious
intent. The paper claims that machine learning techniques miss
the bigger picture of network behaviour. Kaiafas et al. [7]
use multiple unsupervised machine learning algorithms in an
ensemble to identify fraudulent private exchange phone calls,
yet their approach only works on off-line data.

More generic real-time anomaly detection approaches
are AnomalyDetectionTs (ADT) and AnomalyDetectionVec
(ADV) developed by Twitter [8]. ADT works on time-series
data, while ADV is designed for vectors without timestamp
information. These algorithms employ statistical-based ap-
proaches, therefore require massive data points. This results
in poor applicability to streaming time-series data.

In spite of the limited number of directly applicable research
in the area of network traffic anomaly detection, the trend of
using machine learning solutions for time-series analysis is
emerging. Syal et al. [9] propose an SVM (Support Vector
Machine) [10] based supervised learning method to detect
abnormally slow network transfers in real time, focusing on
TCP flows. Pilinszki-Nagy et al. [11] analyze and investigate
a special type of artificial neural network called HTM (Hierar-
chical Temporal Memory) [12] to model and predict sequential
data, including time series. They use off-line, unsupervised
learning to train the HTM model. Unfortunately, they discuss
only the prediction part of anomaly detection and do not deal
with the decision logic to indicate anomalous data.

A few recent works have proposed and investigated the ap-
plicability of deep learning, especially LSTM [2] and AutoEn-
coder [13] based methods for anomaly detection on time-series
data. Zhou et al. [14] propose an off-line, variational LSTM
learning model based on reconstructed feature representation
to detect anomaly on industrial big data. Lazaris et al. [15] aim
to predict fine-grained network traffic using an LSTM model in
the domain of SDN (Software-Defined Networking). Soheil et
al. [16] investigate aspects of network traffic forecasting using
real-world data streams and two machine learning models,
namely LSTM and SARIMA (Sequential Auto-Regressive
Integrated Moving Average) [17], in a supervised manner.
Unfortunately, they focus only on traffic prediction and do
not deal with the anomaly detection logic. Gjorgiev et al. [18]
propose several off-line deep learning architectures based on
variational AutoEncoders [19] for detecting cyber-attacks on
water distribution system. They calculate the Mahalanobis
distance [20] instead of the traditional mean square error in the
objective function to get better performance. RE-ADTS [21]
is an unsupervised anomaly detection approach using a deep
AutoEncoder model that can be applied either to batch or
real-time anomaly detection. It seems to perform evenly well
on time-series datasets from various domains. STAD [22]
is a dynamic on-line data mining technique; an automated
framework to detect cellular network anomalies. It uses a
combination of machine learning methods, such as OC-SVM

(One-class SVM) [23], SVR (Support Vector Regression) [24],
and LSTM. Similarly, Said Elsayed et al. [25] propose a hyper
approach based on LSTM AutoEncoder and OC-SVM to de-
tect anomalies based attacks in SDN environments. However,
it is not clear how this method can be applied in real time.
LSTM-FUZZY [26] is a system to detect and mitigate different
attacks in SDN environments. In this system, LSTM is used
for network traffic forecasting since fuzzy logic is applied for
anomaly detection.

The Greenhouse [27] algorithm fits our design goals best,
combining state-of-the-art machine learning and data manage-
ment methods for anomaly prediction over immense volumes
of time-series data. The algorithm must be trained on normal
data but does not require labeled anomalies, which technique
is referred to as ‘zero-positive’ or semi-supervised learning.
Greenhouse uses a look-back, predict-forward approach to
detect anomalies. It employs an LSTM model to first predict
new values based on old ones, then compares the prediction
to the actual data point. RePAD [3] is an improvement of
Greenhouse that eliminates the need for normal training data.
ReRe [1] is an upgrade of RePAD that aims to mitigate false
positive detections. As ReRe appeared to be the most suitable
approach for our work, we base our approach for streaming
telemetry anomaly detection on it. A detailed description of
RePAD and ReRe is provided in Section III.

In summary, there is only a handful of existing works aimed
at anomaly detection in streaming telemetry data. Generic real-
time anomaly detectors, however, have gone through a major
improvement in the last decade. Despite recent advances, they
still face several challenges. For example, anomaly detection
in an unsupervised manner is limited, while other approaches
need domain knowledge to set critical parameters or cannot
adapt to changing behaviours.

III. BACKGROUND AND MOTIVATION

A. RePAD

RePAD [3] developed by Lee et al. is a cutting-edge LSTM-
based algorithm designed for time-series anomaly detection.
The authors claim that RePAD can detect anomalies proac-
tively in real time, without domain knowledge.

RePAD uses short-term historical data points to predict the
upcoming value; then, it compares this prediction with the real
value to determine if an anomaly is likely to happen in the near
future. RePAD can adjust detection thresholds dynamically,
making it well-suited to tolerate minor pattern changes as
well. Its fast convergence (i.e., it can detect anomalies soon
after start) and unsupervised training (i.e., it does not require
a labelled dataset) set it apart from previous approaches.

A key part of RePAD is the LSTM model used for data
prediction. LSTMs are a type of recurrent artificial neural
networks (RNNs). LSTMs form layers of neurons. One neuron
can have many input and output connections. We assign
weights to these connections that impact the propagation of
information through the network. Training consists of multiple
forward and backward passes (one round is called an ‘epoch’)
during which these weights and other parameters are tuned
to reflect certain patterns. Essentially, if an LSTM model has
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a complicated structure or the training data is large, training
time increases significantly, limiting real-time use. That is why
the LSTM model used in RePAD has only one hidden layer
with ten hidden units. Additionally, a fast learning speed is
guaranteed by a learning rate of 0.15. The number of epochs
is a key factor in determining the precision and speed of a
neural network model. RePAD employs Early Stopping [28]
to choose the number of epochs dynamically, which aims
to prevent overfitting and underfitting. A detailed discussion
of LSTMs is out of the scope of this work. For a better
comprehension of the topic, we refer the reader to [2], [29],
[30].

RePAD is based on a so-called ‘look back, predict forward’
approach. It takes the previous b data points (b is the look-back
parameter) and uses them to predict the next f data points (f
is the predict-forward parameter). RePAD uses f = 1. The
operation of RePAD is presented in Algorithm 1 (M , M ′

denote the LSTM models). The algorithm uses four equations:

AAREt =
1

t− b+ 1
·

t∑
y=b

|vy − v̂y|
vy

(1)

where
AAREx = Average Absolute Relative Error at timestep x;
t = current timestep, starts from t = 0;
b = look-back parameter;
vx = data point at timestep x;
v̂x = predicted data point for timestep x.

AARE is a well-known measure for determining the ac-
curacy of prediction. A low AARE value indicates that the
forecast value is close to the observed value [3].

µAARE,t =
1

t− b+ 1
·

t∑
y=b

AAREy (2)

where

µAARE,x = the average of AAREy values at timestep x.

σAARE,t =

√∑t
y=b(AAREy − µAARE,t)2

t− b+ 1
(3)

where
σAARE,x = the standard deviation of AAREy values at

timestep x.

thdt = µAARE,t + 3 · σAARE,t (4)

where

thdx = threshold value at timestep x.

As seen above in Equation (4), the thdx values are deter-
mined using the Three-Sigma Rule [31], which is commonly
used for anomaly detection threshold calculation.

From Algorithm 1, it is evident that RePAD requires only
a short preparation for anomaly detection. However, a major
flaw of this approach is the relatively high number of false pos-
itives it yields. Lee et al. strive to overcome this shortcoming
by ReRe, a refinement of the RePAD algorithm.

Algorithm 1 RePAD

1: t = 0
2: while (t++) do
3: Collect data point vt
4: if t < b - 1 then
5: � Step 1: collect b− 1 points passively
6: else if t == b - 1 then
7: � Step 2: first training and prediction
8: Train the LSTM model M using the first b data

points: v0, . . . , vt = vb−1

9: Predict the next data point v̂t+1 = v̂b using M
10: else if b - 1 < t < 2b - 1 then
11: � Step 3: preparing for detection
12: Calculate AAREt using Equation (1)
13: Train the LSTM model M using the previous b

data points: vt−b+1, . . . , vt
14: Predict the next data point v̂t+1 using M
15: else if t ≥ 2b - 1 then
16: � Step 4: anomaly detection
17: Calculate AAREt using Equation (1)
18: Calculate thdt using Equations (2), (3) and (4)
19: if AAREt ≤ thdt then
20: � vt is similar to previous points, NO

ANOMALY
21: Predict the next data point v̂t+1 using M
22: else
23: � Pattern change or anomaly
24: Train the LSTM model M ′ using the previous

b data points
25: Predict the current point v̂t again using M ′

26: Recalculate AAREt using Equation (1)
27: if AAREt > thdt then
28: Signal an ANOMALY
29: Discard M ′ and use M to predict the next

data point v̂t+1

30: else
31: Signal a PATTERN CHANGE
32: Replace M with M ′ to predict new points

accurately
33: Use M to predict the next data point v̂t+1

B. ReRe

ReRe employs two LSTM models that provide two levels
of detection sensitivity. They are deployed in two detectors:

Detector 1: operates the same way as RePAD described
in Section III-A. It first acquires t and vt values and then
produces one of the three output signals, namely ‘normal,’
‘pattern change,’ and ‘anomaly.’ Fundamentally, it stores and
calculates AAREt and thdt using RePAD methods and Equa-
tions (1) to (4). When it detects a pattern change, it retrains its
own LSTM model, M1 that is used for data value prediction.

Detector 2: uses the same algorithm structure as RePAD
while also acquiring t and vt in the same way. However, the
input values for AAREt and thdt are calculated variously.
Specifically, Detector 2 uses its own M2 LSTM model to
predict the values. M2 is structurally identical to M1, but it
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produces various predictions as it uses a different equation for
calculating the thdt threshold. Indeed, Detector 2 uses only
AAREx for this calculation, where vx is considered ‘normal’
(no ‘pattern change’ or ‘anomaly’) by itself. Broadly speak-
ing, this difference results in giving ReRe the capability to
suppress anomalies detected by Detector 1 (RePAD). Finally,
an anomaly or pattern change is only detected and signalled if
both detectors return the same detection for a given timestep.

C. Limitations

The current implementation of ReRe stores all the computed
values and derived information since the beginning of its
operation. Consequently, there is no upper bound on the
memory requirements of ReRe. Moreover, the performance
of ReRe significantly depends on the setting of the look-back
parameter b, which has been pointed out and also discussed
by the authors of RePAD / ReRe in their recent study [32].
Additionally, ReRe can only detect anomalies when both
detectors have an AAREt value higher than thdt, and both
detectors indicate no pattern change. That means, typically,
AAREy values are lower than thdy .

In both RePAD and ReRe, the AAREt and thdt values are
computed using Equation (1) and Equation (4). Both values
include a sum whose starting value is fixed (i.e., timestep y =
b) and ends at the current timestep (y = t). All terms in these
sums have an equal weight of 1, which means that all terms
have an equal priority in determining current AAREt and thdt
values. As a result, the speed of anomaly detection is adversely
impacted.

error values

timestep (y)
a10

D a2d1 d2

thdy

AAREy

Fig. 1: The slope of AARE depends on the current timestep.

This issue is illustrated in Figure 1 on the left side of the
graph. At timestep a1, there is an anomaly in the dataset.
AAREy values start to rise rapidly as new absolute relative
error terms are high, and there are only a few error terms
to be averaged. At timestep d1, the AAREy curve crosses
the thdy curve and an anomaly is detected. However, when a
considerable time has passed (D is at least a few thousand
timesteps), a high count of terms in AAREt calculation
is to be averaged. Consequently, when an anomaly occurs
at timestep a2, the AAREy curve starts to rise slowly, as
averages increase slower with more terms (the impact of one
new high term is proportionally less). As the starting timestep
for the average is always y = b, the steepness of the slope
decreases as y increases. That is why the anomaly at a2 is
only detected at d2.

Consider the algorithm runs in a real-world production
environment, uninterrupted. Due to the flaw mentioned above,

it becomes very likely that some anomalies are unnoticed past
a certain timestep. Indeed, in such a scenario, the AAREy

curve may never reach the thdy curve since it normalises
before normal data points arrive. These limitations of ReRe
have motivated us to introduce our enhancements.

IV. ALTER-RE2

Streaming network telemetry anomaly detection is not obvi-
ous. While there has been some attempts to detect anomalies
on time-series data, as described above, they fall short when
applied in a real-world production environment. To fill this
important gap in the field, we enhanced ReRe, a real-time
anomaly detection algorithm that is, to the best of our knowl-
edge, a cutting-edge technique. Alter-Re2, our attempt towards
machine learning-based anomaly detection on time-series data,
comprises two enhancements — ageing and sliding window.
In what follows, we describe these enhancements.

A. Ageing

We designed ageing so that it places greater emphasis on a
few previous data points instead of averaging them with the
same weight. Our ultimate goal was to decrease the weight
of a given data point as time elapses. We achieve this by
introducing an extra ageing coefficient Cy in Equation (1),
which yields the following formula:

AAREt,ageing =
1

t− b+ 1
·

t∑
y=b

Cy ·
|vy − v̂y|

vy
(5)

The Cy coefficient is calculated using the following equa-
tion:

Cy =

(
y −W

t−W

)AP

(6)

where

y = timestep running variable in the sum;
W = starting timestep of the window (see details in

Section IV-B);
AP = age power;
Cy = ageing coefficient.

B. Sliding Window

ReRe stores all data from the point in time they were
generated. We mitigate the consequence of this issue by storing
only the previous value of the average error terms and the
number of data points it was calculated from. This recursive
method is formally expressed as follows:

AAREt =
1

t− b+ 1
·
(
AAREt−1 · (t− b) +

|vt − v̂t|
vt

)

(7)
To calculate the threshold value thdt, we need to deter-

mine the standard deviation of the AAREy values. However,
σAARE,t cannot be expressed only using values from the
previous timestep t−1 and the number of timesteps due to the
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changing µAARE,y values in every timestep. Therefore, every
AAREy value must be stored from the beginning.

We avoid storing every data point by implementing a sliding
window with only one parameter — WINDOW SIZE or
simply WS. The starting timestep W is calculated via the
following formula:

{
W = t−WS + 1 if t−WS + 1 > b

W = b if t−WS + 1 ≤ b
(8)

where

W = beginning timestep of the window.

As a result, the data points before the beginning of the
window are discarded. The equations known from ReRe (see
Section III) are modified according to the following formulas:

AAREt =
1

t−W + 1
·

t∑
y=W

Cy ·
|vy − v̂y|

vy
(9)

µAARE,t =
1

t−W + 1
·

t∑
y=W

AAREy (10)

σAARE,t =

√∑t
y=W (AAREy − µAARE,t)2

t−W + 1
(11)

thdt = µAARE,t + 3 · σAARE,t (12)

C. Effects of the Enhancements

The effects of ageing and sliding window can perhaps
be best comprehended via Figure 2. The impact of ageing
becomes evident, as the age power variable (AP ) in Equa-
tion (6) determines the pace of ageing, i.e., the extent to which
previous data points should impact the operation of ageing. If
AP = 1, there is linear ageing. Negative numbers are not
recommended, as they result in inverse ageing.

coefficient (C )y

timestep (y)

W ty

0

0

1
AGE_POWER

WINDOW_SIZE

current timestepwindow beginning

Fig. 2: The operational principles of ageing and sliding win-
dow.

Obviously, AP becomes an additional hyperparameter of
the algorithm. Equation (6) always produces a number between
0 and 1 for Cy if y ∈ [W, t]. This way, the last few data
points will remain approximately the same, while the ones
closer to the start will be scaled down. Ageing gives the
algorithm the capability to address slow or no reaction to

certain anomalies (see Section III-C) since new high error
terms influence AAREy values more than older smaller ones.

The implemented sliding window has a significant benefit,
as shown in Figure 2. The values of thdy are calculated using
AAREy values only from within the window. Therefore, the
detection threshold adjusts faster and more precisely, and high
AAREy values from a few thousand past timesteps do not
distort the performance until the very end of the operation.

Figure 2 also demonstrates the dependence between ageing
and sliding window. Equation (6) produces values of 0 at the
beginning of the window (timestep W ) and produces values
of 1 at the current timestep t. If ageing is deactivated, all
values of Cy are set to 1. On the other hand, if the sliding
window is disabled, the window size parameter WS is set to
one more than the current timestep t. This way, Equation (8)
always chooses the timestep b as the beginning of the window
because the first predicted value is produced then. In this case,
ageing is implemented on the whole previous dataset, i.e., from
b to the current timestep t. The disabled sliding window and
disabled ageing effects are visualized in Figure 3.
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Fig. 3: Effects of disabled sliding window and ageing.

V. RESULTS

The introduced enhancements in the previous section serve
the purpose of real-time anomaly detection on time-series data.
In what follows, we assess the performance of Alter-Re2 when
compared to ReRe.

A. Preliminaries

To date, there is no publicly available implementation (i.e.
source code) of the RePAD and ReRe algorithms. Therefore,
we have implemented them in Python. However, it is worth
mentioning that our way of implementing LSTM, including
the functions used for training/testing, might differ from
the method implemented by Lee et al. This speaks to the
continuous research challenge of reproducibility.

Initially, we configured ReRe with the parameters used
in [1]. Specifically, we defined one hidden LSTM layer and set
the number of its neurons to 10. However, such a configuration
has been shown to be insufficient, as the neural network model
made unreasonable predictions likely due to the inability to
learn data patterns with enough complexity at the beginning.
After rigorous experimentation with various configuration set-
tings and manual hyperparameter optimization, we observed
that 30 neurons in the one hidden layer with 30 epochs
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yielded the best results. On the one hand, increasing these
numbers further significantly increased the training time. On
the other hand, decreasing these values degraded the prediction
performance.

We also conducted experiments to determine the look-back
parameter (b). Lee et al. used a relatively low parameter, i.e.,
b = 3. Interestingly, in our assessment, such a value of b
could not produce satisfying results. Upon experimenting with
the effect of all parameters on the overall performance, we
concluded that setting b to 30 resulted in the best performance.
A higher or lower number has occasionally manifested in a
constant offset between the original and predicted data points.
The predict-forward parameter f was set to a constant value
of 1, as discussed in Section III-A (ReRe predicts only the
next datapoint v̂t+1).

Our finding regarding the WINDOW SIZE (WS) parameter
is that a too-small value results in an unstable operation
since the number of data points are low to learn long-term
dependencies. The upper bound on WS is the storage capacity
allocated for the algorithm. CPU and time constraints might
also have to be considered as the volume of data points impacts
the computational complexity and timeliness. Eventually, we
deduced experimentally that the setting of WS to 1000 was
optimal with the datasets we performed our tests on.

Last, we also observed that the most promising results could
be obtained by setting the AGE POWER (AP) parameter to
2. This ends up in a quadratic ageing equation. If AP is
significantly lower, old data points have a strong influence
on the current AAREt value, which is undesirable. On the
contrary, if AP is too high, only the last data points affect
the performance, resulting in unstable operation. In our ex-
periments, we eventually set AP to 2. Table I summarizes the
parameter settings we have used in our experiments.

TABLE I: Summary of the used parameter settings.

Parameter ReRe Alter-Re2

neurons 30 30
epochs 30 30

b 30 30
WS - 1000
AP - 2.0

B. ReRe vs. Alter-Re2

Our experiments have used the Numenta Anomaly Bench-
mark (NAB) [33] datasets. NAB is destined for evaluating
streaming and real-time applications of anomaly detection
algorithms. The datasets comprise real-world and artificial data
containing human-labelled anomalous behaviour periods. The
majority of the data is real-world from various sources such as
AWS server metrics, Twitter volume, advertisement clicking
metrics, and traffic data. Data are ordered, timestamped, and
single-valued metrics. The timestamps of the anomaly labels
are provided as a separate file.

We examined the efficacy of Alter-Re2 compared to ReRe
using various datasets (see Table II for details on the used
NAB datasets containing anomalies related to CPU utiliza-
tion, request latency, and request count, among others). In

this work, we detail the observations achieved with the
‘ec2 cpu utilization ac20cd’ dataset, which contains CPU
utilization percentages collected from AWS servers using the
CloudWatch monitoring tool [34].

Figures 4 and 5 depict the detection results achieved by
ReRe and Alter-Re2, respectively. The figures have the same
layout. They consist of three graphs that show the details of
algorithm operation. The top graphs show the original data
points (vy) with green, and the LSTM-predicted data points
(v̂y) using red. The original and predicted values have been
scaled down to the [0, 1] interval (a requirement of LSTM). In
the middle graph, we plot the absolute average relative error
(AAREy) using blue and the thresholds (thdy) with yellow.
The bottom figures display detections made by ReRe. Fur-
thermore, anomaly detection is drawn with purple, while the
pattern changes have a turquoise colour. The configuration of
WINDOW SIZE (WS) and AGE POWER (AP ) parameters
used in our experiment are shown in the figure captions. In
the captions, we also indicate the timesteps of the anomaly
labels.

From Figures 4 and 5, we find that the first anomaly is
detected by both algorithms (see the bottom graphs). When the
AARE curve in the middle graph rises above the thd curve,
the algorithms determine that an anomaly has occurred. At
around timestep 600, the original data rises again. Both ReRe
and Alter-Re2 signal a pattern change as a result and retrain
the LSTM models accordingly.

However, the shortcoming of ReRe comes to the surface
soon. As shown in the middle graph of Figure 4, after detecting
the first anomaly, thd values rise significantly as they are
calculated using the average and standard deviation of AARE
values. Additionally, as the second anomaly comes at timestep
3576, many data points have already been collected, and the
issue (the slope of the AARE curve is much lower) arises. In
consequence, ReRe fails to detect the anomaly.

Alter-Re2, on the other hand, reliably detects the second
anomaly, as shown in Figure 5. The thd curve is being
‘reset’ between timesteps 1500 and 2500 caused by the slid-
ing window. This leads to increased detection accuracy. The
slope of the AARE curve increases significantly due to the
implemented ageing. Note that because of the limited range
of the plots that can be expressed, there is a trade-off in these
figures between the visibility of the individual points and the
expression of pattern changes/anomalies.

C. Discussion

The above-discussed experiment had also been performed
using nine other NAB datasets. The used datasets contain
anomalies related to CPU utilization, request latency, and
request count, among others.

The properties of these datasets are highlighted in Ta-
ble II. We have used the same parameter settings, collected
in Table I, in all of the experiments. Interestingly, these
LSTM based methods provide, on each occasion, slightly
deviating predictions even in the case of running the same
test with the same settings on the same dataset. This deviation
can be explained by the inherent randomness in the LSTM
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Fig. 4: ReRe output for ec2 cpu utilization ac20cd.csv (no
ageing, no window). Labeled anomalies at timesteps 421,
3576.

model’s implementation, resulting in different initial weights
and parameters. Unfortunately, we were unable to compare
our implementation with the original one because there was
no publicly available source code of the ReRe algorithm as
the date of carrying out this work. However, the apparent
difference of prediction visible in Figures 4 and 5 is not due to
this phenomenon. Instead, it results from the difference in the
timesteps where the algorithms triggered an LSTM retrain. To
recap, this happens when ReRe or Alter-Re2 detects a pattern
change. From this point on, they use their new LSTM model
that, in this case, are trained on slightly different data resulting
in slightly different predictions. Nonetheless, reducing the
offset between predicted and original values constitutes a high
priority task on our list of future work.

The results of the ten experiments mentioned above are
presented in Table III. For the traditional performance metrics,
like Precision, Recall and F-score, to be calculated, the ele-
ments of the confusion matrix have to be populated. These are
the True Positives (TP), False Positives (FP), True Negatives
(TN) and False Negatives (FN). Other special metrics, e.g.,
LSTM retrain ratio, can also provide valuable pivots in per-
formance evaluation. We selected the metrics to be used in this
work and implemented their calculation techniques according
to the study of Lee et al. [32].

Mapping the ground truth anomalies to the detected ones
relies on anomaly windows around the timesteps of the ground
truth labels. The only parameter K determines the size of this
anomaly window. If the timestep for a ground truth anomaly
is denoted by yGT , the anomaly window starts at yGT −K and
ends at yGT +K. We set K = 7, as per the recommendations
in [35] for minute-based time series.

Anomaly signals have also been processed. More specifi-
cally, all detections longer than one timestep are remapped to

Fig. 5: Alter-Re2 output for ec2 cpu utilization ac20cd.csv
(AP : 2, WS: 1000). Labeled anomalies at timesteps 421,
3576.

the timestep they started at. After creating anomaly windows
and remapping signals, the algorithm calculates the confusion
matrix elements in the following way. All signals outside the
anomaly window are considered as false positive. Only the first
signal inside each window is regarded as a true positive. All
others inside the same window are discarded. If no signals are
present in the whole window, the number of false negatives is
incremented by one. True negatives are the remaining number
of timesteps to ensure the length of the dataset is equal to the
sum of the elements in the confusion matrix.

The values of the selected performance metrics of our exper-
iments using the ten datasets listed in Table II are summarized
in Table III. In total, using the evaluation method detailed
above, Alter-Re2 was able to identify seven anomalies, while
ReRe detects only one correctly. Simultaneously, the number
of false positives (not depicted in the table) also increased
by introducing Alter-Re2. Upon closer examination of the
experiment results, we found that this phenomenon comes
from the oscillations in the anomaly signals (i.e., an alternation
between signal and no signal) just outside the anomaly window
and rarely from really false detections. Comparing the number
of true negatives (not depicted in the table) between the two
algorithms has little significance, as values differ only by
fractions of percentages. On the other hand, false negatives
(not depicted in the table) are reduced when contrasting Alter-
Re2 with ReRe.

In Table III, we have also depicted the traditional metrics
generally used for performance analysis. Precision is the num-
ber of correctly identified anomalies divided by the number
of all anomaly signals. It is a meaningful metric for anomaly
detection, and Alter-Re2 outperforms ReRe almost all the time,
as shown in the table (the ‘nan’ value means that division
by zero would be required to calculate the metric). The next
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TABLE II: Datasets used for evaluation.

No. Dataset First record time Last record time No. of data points No. of anomalies Sampling rate

01 ec2 cpu utilization 5f5533.csv 2014-02-14 14:27:00 2014-02-28 14:22:00 4032 2 5 min
02 ec2 cpu utilization 825cc2.csv 2014-04-10 00:04:00 2014-04-24 00:09:00 4032 2 5 min
03 ec2 cpu utilization ac20cd.csv 2014-04-02 14:29:00 2014-04-16 14:49:00 4032 2 5 min
04 ec2 network in 257a54.csv 2014-04-10 00:04:00 2014-04-24 00:09:00 4032 1 5 min
05 ec2 request latency system failure.csv 2014-03-07 03:41:00 2014-03-21 03:41:00 4032 3 5 min
06 elb request count 8c0756.csv 2014-04-10 00:04:00 2014-04-24 00:39:00 4032 2 5 min
07 grok asg anomaly.csv 2014-01-16 00:00:00 2014-02-01 01:00:00 4621 3 5 min
08 iio us-east-1 i-a2eb1cd9 NetworkIn.csv 2013-10-09 16:25:00 2013-10-13 23:55:00 1243 2 5 min
09 rds cpu utilization cc0c53.csv 2014-02-14 14:30:00 2014-02-28 14:30:00 4032 2 5 min
10 rds cpu utilization e47b3b.csv 2014-04-10 00:02:00 2014-04-23 23:57:00 4032 2 5 min

Fig. 6: LSTM retrain ratio.

depicted metric is Recall, which denotes the ratio of the
number of true positives to the number of all ground truth
labels. This is also an essential indicator in anomaly detection,
and Alter-Re2 overperforms ReRe by also this regard in most
cases. Finally, we depicted the F-score, which is the harmonic
mean of Precision and Recall. When available, Alter-Re2 is
superior to ReRe considering this metric, as well.

We believe that a more appropriate setting of the anomaly
window (instead of K = 7) can eliminate the above-mentioned
phenomenon of indicating detection signals outside this win-
dow as false positives. Nonetheless, our experiment results
confirm the significance and superiority of our Alter-Re2

algorithm over ReRe since the performance metrics used in
the comparison were calculated in the same way. In order
to empirically compare the number of anomalies detected
by ReRe and Alter-Re2, we manually adjusted the number
of true positives (we increased the number of true positives
by the number of signals just outside of the given anomaly
window, that were clearly resulted from the given ground truth
anomaly). We found that even so, ReRe detected only three
anomalies compared to the ten ones identified by Alter-Re2,
resulting in a more than three-fold increase.

The other special metrics we have also used in our
evaluations were: a) LSTM retrain ratio (the number of
timesteps with an LSTM retrain divided by the total num-
ber of timesteps); b) Average timestep duration (total time
divided by the number of timesteps); and c) Preparation
period (number of timesteps after which ReRe or Alter-Re2

can detect anomalies). As depicted in Figure 6, the LSTM
retrain ratio increased significantly in the case of Alter-Re2 in

Fig. 7: Average timestep duration.

most of the experiments. This is due to the larger number
of signals (anomalies and pattern changes) raised by the
algorithm. Considering the Average timestep duration, the
two algorithms show similar performance in most of the
experiments as depicted in Figure 7. Finally, the Preparation
period was the same for both algorithms on all datasets, as
it depends solely on the b parameter. In our experiments, it
was 2b − 1 = 2 · 30 − 1 = 59. This can be interpreted as
both algorithms can detect anomalies soon, 59 timesteps after
being turned on.

Nevertheless, there are some limitations of LSTM based ap-
proaches. The predictive power of LSTM networks is relatively
low at the beginning. Essentially, LSTM was designed to learn
long term dependencies, i.e., it remembers the information
for long periods. A well-performing LSTM on very long se-
quences of non-stationary data commensurate with an increase
in required network capacity and training. In response, if a
pattern change is detected in our approach, the LSTM is re-
trained using the previous b data points. However, in extreme
scenarios where anomalies are relatively frequent, the LSTM
network might constantly have low predicting power.

Transfer learning appears suitable to address this limitation.
Broadly speaking, in transfer learning, a model developed
for a task is reused as the starting point for a model in
the next task. By applying this logic in LSTM time series,
the weights obtained from the first task could be used in
the next task [36]. Consequently, in cases where anomalies
are frequent, the low predictive performance of LSTM could
presumably be overcome. However, further research is needed
to study the applicability of transfer learning (and other

8
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the next task. By applying this logic in LSTM time series,
the weights obtained from the first task could be used in
the next task [36]. Consequently, in cases where anomalies
are frequent, the low predictive performance of LSTM could
presumably be overcome. However, further research is needed
to study the applicability of transfer learning (and other
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depicted metric is Recall, which denotes the ratio of the
number of true positives to the number of all ground truth
labels. This is also an essential indicator in anomaly detection,
and Alter-Re2 overperforms ReRe by also this regard in most
cases. Finally, we depicted the F-score, which is the harmonic
mean of Precision and Recall. When available, Alter-Re2 is
superior to ReRe considering this metric, as well.

We believe that a more appropriate setting of the anomaly
window (instead of K = 7) can eliminate the above-mentioned
phenomenon of indicating detection signals outside this win-
dow as false positives. Nonetheless, our experiment results
confirm the significance and superiority of our Alter-Re2

algorithm over ReRe since the performance metrics used in
the comparison were calculated in the same way. In order
to empirically compare the number of anomalies detected
by ReRe and Alter-Re2, we manually adjusted the number
of true positives (we increased the number of true positives
by the number of signals just outside of the given anomaly
window, that were clearly resulted from the given ground truth
anomaly). We found that even so, ReRe detected only three
anomalies compared to the ten ones identified by Alter-Re2,
resulting in a more than three-fold increase.

The other special metrics we have also used in our
evaluations were: a) LSTM retrain ratio (the number of
timesteps with an LSTM retrain divided by the total num-
ber of timesteps); b) Average timestep duration (total time
divided by the number of timesteps); and c) Preparation
period (number of timesteps after which ReRe or Alter-Re2

can detect anomalies). As depicted in Figure 6, the LSTM
retrain ratio increased significantly in the case of Alter-Re2 in
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most of the experiments. This is due to the larger number
of signals (anomalies and pattern changes) raised by the
algorithm. Considering the Average timestep duration, the
two algorithms show similar performance in most of the
experiments as depicted in Figure 7. Finally, the Preparation
period was the same for both algorithms on all datasets, as
it depends solely on the b parameter. In our experiments, it
was 2b − 1 = 2 · 30 − 1 = 59. This can be interpreted as
both algorithms can detect anomalies soon, 59 timesteps after
being turned on.

Nevertheless, there are some limitations of LSTM based ap-
proaches. The predictive power of LSTM networks is relatively
low at the beginning. Essentially, LSTM was designed to learn
long term dependencies, i.e., it remembers the information
for long periods. A well-performing LSTM on very long se-
quences of non-stationary data commensurate with an increase
in required network capacity and training. In response, if a
pattern change is detected in our approach, the LSTM is re-
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long term dependencies, i.e., it remembers the information
for long periods. A well-performing LSTM on very long se-
quences of non-stationary data commensurate with an increase
in required network capacity and training. In response, if a
pattern change is detected in our approach, the LSTM is re-
trained using the previous b data points. However, in extreme
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network might constantly have low predicting power.
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Broadly speaking, in transfer learning, a model developed
for a task is reused as the starting point for a model in
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TABLE III: Evaluation results (traditional metrics; R: ReRe, A: Alter-Re2).

Dataset no. No. of detected anomalies Precision Recall F-score
R A R A R A R A

1 0 1 nan 0.3333 0.0 0.5 nan 0.4
2 0 1 0.0 0.3333 0.0 0.5 nan 0.4
3 1 2 1.0 0.6667 0.5 1.0 0.6667 0.8
4 0 0 nan nan 0.0 0.0 nan nan
5 0 1 nan 0.3333 0.0 0.3333 nan 0.3333
6 0 0 nan nan 0.0 0.0 nan nan
7 0 1 0.0 0.2 0.0 0.3333 nan 0.25
8 0 0 nan nan 0.0 0.0 nan nan
9 0 1 nan 0.3333 0.0 0.5 nan 0.4

10 0 0 nan 0.0 0.0 0.0 nan nan

advanced approaches, such as online learning) in time-series
anomaly detection.

Furthermore, another question yet to be examined is the
efficiency of AARE. When an outlier value is detected in
our prototype implementation, its error is included in the
calculation. This can result in a significant increase of AARE,
implying that anomalies might remain undetected for the pe-
riod when AARE is high. Undoubtedly, further study is needed
to assess the practicability of AARE in anomaly detection
accuracy. A naive solution of this challenge considered in
future work could be excluding the extreme values causing
anomalies from the AARE calculation and focus only on the
values considered normal instead.

VI. CONCLUSIONS

Real-time anomaly detection in time-series data is an emerg-
ing area with approaches mostly based on neural networks,
while there is a noticeable increase in the use of LSTMs.
Despite recent advances in anomaly detection, classifying
abnormal behaviour in time-series data is still challenging.

In this paper, we introduced Alter-Re2, an enhancement of
the cutting-edge ReRe algorithm. Specifically, we discuss our
sliding window and ageing techniques. The former is aimed
at limiting memory and CPU overheads. The latter serves the
purpose of ageing the data points that are used for calculating
error terms. Ageing addresses the issue of slow anomaly
detection times. Furthermore, it is also destined to observe
abnormal behaviour that is unpredicted by prior works.

We rigorously evaluated Alter-Re2 and observed promising
results. Our approach achieved significantly better perfor-
mance when compared to ReRe. Specifically, it can detect
three times more anomalies. Furthermore, Alter-Re2 can detect
such anomalies too that ReRe falls short.

As future work, we plan to evaluate the applicability and
usefulness of several other concepts, such as offset compen-
sation, adaptive threshold sigma-coefficient, automatic setting
of some hyperparameters, introducing real-time normalization,
adapting the algorithm to support multivariate data, and in-
corporate them into our algorithm. We also plan to study
the applicability of transfer learning in time series anomaly
detection.

As time-series data streams are now an integral part of
almost every field of technology, real-time anomaly detection
on these data is a vital tool that deserves more attention.

We believe that our contribution is valuable in facilitating the
development of relevant techniques, yet we argue our approach
has immediate real-world applicability.
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TABLE III: Evaluation results (traditional metrics; R: ReRe, A: Alter-Re2).

Dataset no. No. of detected anomalies Precision Recall F-score
R A R A R A R A

1 0 1 nan 0.3333 0.0 0.5 nan 0.4
2 0 1 0.0 0.3333 0.0 0.5 nan 0.4
3 1 2 1.0 0.6667 0.5 1.0 0.6667 0.8
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5 0 1 nan 0.3333 0.0 0.3333 nan 0.3333
6 0 0 nan nan 0.0 0.0 nan nan
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8 0 0 nan nan 0.0 0.0 nan nan
9 0 1 nan 0.3333 0.0 0.5 nan 0.4

10 0 0 nan 0.0 0.0 0.0 nan nan

advanced approaches, such as online learning) in time-series
anomaly detection.

Furthermore, another question yet to be examined is the
efficiency of AARE. When an outlier value is detected in
our prototype implementation, its error is included in the
calculation. This can result in a significant increase of AARE,
implying that anomalies might remain undetected for the pe-
riod when AARE is high. Undoubtedly, further study is needed
to assess the practicability of AARE in anomaly detection
accuracy. A naive solution of this challenge considered in
future work could be excluding the extreme values causing
anomalies from the AARE calculation and focus only on the
values considered normal instead.

VI. CONCLUSIONS

Real-time anomaly detection in time-series data is an emerg-
ing area with approaches mostly based on neural networks,
while there is a noticeable increase in the use of LSTMs.
Despite recent advances in anomaly detection, classifying
abnormal behaviour in time-series data is still challenging.

In this paper, we introduced Alter-Re2, an enhancement of
the cutting-edge ReRe algorithm. Specifically, we discuss our
sliding window and ageing techniques. The former is aimed
at limiting memory and CPU overheads. The latter serves the
purpose of ageing the data points that are used for calculating
error terms. Ageing addresses the issue of slow anomaly
detection times. Furthermore, it is also destined to observe
abnormal behaviour that is unpredicted by prior works.

We rigorously evaluated Alter-Re2 and observed promising
results. Our approach achieved significantly better perfor-
mance when compared to ReRe. Specifically, it can detect
three times more anomalies. Furthermore, Alter-Re2 can detect
such anomalies too that ReRe falls short.

As future work, we plan to evaluate the applicability and
usefulness of several other concepts, such as offset compen-
sation, adaptive threshold sigma-coefficient, automatic setting
of some hyperparameters, introducing real-time normalization,
adapting the algorithm to support multivariate data, and in-
corporate them into our algorithm. We also plan to study
the applicability of transfer learning in time series anomaly
detection.

As time-series data streams are now an integral part of
almost every field of technology, real-time anomaly detection
on these data is a vital tool that deserves more attention.

We believe that our contribution is valuable in facilitating the
development of relevant techniques, yet we argue our approach
has immediate real-world applicability.
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TABLE III: Evaluation results (traditional metrics; R: ReRe, A: Alter-Re2).

Dataset no. No. of detected anomalies Precision Recall F-score
R A R A R A R A

1 0 1 nan 0.3333 0.0 0.5 nan 0.4
2 0 1 0.0 0.3333 0.0 0.5 nan 0.4
3 1 2 1.0 0.6667 0.5 1.0 0.6667 0.8
4 0 0 nan nan 0.0 0.0 nan nan
5 0 1 nan 0.3333 0.0 0.3333 nan 0.3333
6 0 0 nan nan 0.0 0.0 nan nan
7 0 1 0.0 0.2 0.0 0.3333 nan 0.25
8 0 0 nan nan 0.0 0.0 nan nan
9 0 1 nan 0.3333 0.0 0.5 nan 0.4

10 0 0 nan 0.0 0.0 0.0 nan nan

advanced approaches, such as online learning) in time-series
anomaly detection.

Furthermore, another question yet to be examined is the
efficiency of AARE. When an outlier value is detected in
our prototype implementation, its error is included in the
calculation. This can result in a significant increase of AARE,
implying that anomalies might remain undetected for the pe-
riod when AARE is high. Undoubtedly, further study is needed
to assess the practicability of AARE in anomaly detection
accuracy. A naive solution of this challenge considered in
future work could be excluding the extreme values causing
anomalies from the AARE calculation and focus only on the
values considered normal instead.

VI. CONCLUSIONS

Real-time anomaly detection in time-series data is an emerg-
ing area with approaches mostly based on neural networks,
while there is a noticeable increase in the use of LSTMs.
Despite recent advances in anomaly detection, classifying
abnormal behaviour in time-series data is still challenging.

In this paper, we introduced Alter-Re2, an enhancement of
the cutting-edge ReRe algorithm. Specifically, we discuss our
sliding window and ageing techniques. The former is aimed
at limiting memory and CPU overheads. The latter serves the
purpose of ageing the data points that are used for calculating
error terms. Ageing addresses the issue of slow anomaly
detection times. Furthermore, it is also destined to observe
abnormal behaviour that is unpredicted by prior works.

We rigorously evaluated Alter-Re2 and observed promising
results. Our approach achieved significantly better perfor-
mance when compared to ReRe. Specifically, it can detect
three times more anomalies. Furthermore, Alter-Re2 can detect
such anomalies too that ReRe falls short.

As future work, we plan to evaluate the applicability and
usefulness of several other concepts, such as offset compen-
sation, adaptive threshold sigma-coefficient, automatic setting
of some hyperparameters, introducing real-time normalization,
adapting the algorithm to support multivariate data, and in-
corporate them into our algorithm. We also plan to study
the applicability of transfer learning in time series anomaly
detection.

As time-series data streams are now an integral part of
almost every field of technology, real-time anomaly detection
on these data is a vital tool that deserves more attention.

We believe that our contribution is valuable in facilitating the
development of relevant techniques, yet we argue our approach
has immediate real-world applicability.
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