
Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

MARCH 2021 • VOLUME XIII • NUMBER 126

INFOCOMMUNICATIONS JOURNAL

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

Gábor Szűcs1 and Marcell Németh2

 1 Department of Telecommunications and Media Informatics, Budapest
University of Technology and Economics (BME), Budapest, Hungary
(e-mail: szucs@tmit.bme.hu)

DOI: 10.36244/ICJ.2021.1.4

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract — The research topic presented in this paper belongs
to small training data problem in machine learning (especially in
deep learning), it intends to help the work of those working in
medicine by analyzing pathological X-ray recordings, using only
very few images. This scenario is a particularly hot issue
nowadays: how could a new disease for which only limited data
are available be diagnosed using features of previous diseases? In
this problem, so-called few-shot learning, the difficulty of the
classification task is to learn the unique feature characteristics
associated with the classes. Although there are solutions, but if the
images come from different views, they will not handle these views
well. We proposed an improved method, so-called Double-View
Matching Network (DVMN based on the deep neural network),
which solves the few-shot learning problem as well as the different
views of the pathological recordings in the images. The main
contribution of this is the convolutional neural network for feature
extraction and handling the multi-view in image representation.
Our method was tested in the classification of images showing
unknown COVID-19 symptoms in an environment designed for
learning a few samples, with prior meta-learning on images of
other diseases only. The results show that DVMN reaches better
accuracy on multi-view dataset than simple Matching Network
without multi-view handling.

Index Terms — COVID-19, convolutional neural network, deep
learning, feature extraction, few-shot learning, image
classification, image representation, machine learning, multi-view

I. INTRODUCTION
A necessary, but not sufficient condition for the effective use

of machine learning (especially deep learning) methods is the
availability of large amounts of training data. This condition
cannot be satisfied in many applications (e.g., in image
classification [15], especially in medical images [12]), in most
cases due to a lack of available knowledge or excessive costs of
expertise [23]. The research topic presented in this paper
belongs to this problem type that is often lacking in such data,
it intends to help the work of those working in medicine by
analyzing pathological recordings, using only very few images.
This scenario is a particularly hot issue nowadays: how could a
new disease for which only limited data are available be
diagnosed using features of previous diseases? (If the number
of labeled data is small, but the huge amount of unlabeled data
is available, then this can lead to active learning [14], but in this
paper, we consider that there is no unlabeled data at all.)

1 Department of Telecommunications and Media Informatics, Budapest

University of Technology and Economics (BME), Budapest, Hungary (e-mail:
szucs@tmit.bme.hu)

In the case of learning from a small amount of labeled data,
so-called “few-shot learning” (FSL), there are only a few
samples from each class, so the difficulty of the classification
task is to learn the unique feature characteristics associated with
the classes as quickly and accurately as possible. In the few-
shot learning literature A-way-B-shot means that we use B
samples from A different classes for learning, so the training set
has a total of 𝐼𝐼 = 𝐴𝐴 ∙ 𝐵𝐵 samples. This type of meta-learning in
image recognition area requires knowledge transfer of high-
level characteristics of training images similar to the target
images. Although there are methods that can solve the problem,
but if the images come from different views [17][24], they will
not handle these views well. In this paper, we proposed an
improved method, so-called Double-View Matching Network,
which solves the few-shot learning problem as well as the
different views of the pathological recordings in the images.

The next section discusses the theory of few-shot type
machine learning in hypothesis space and its limits in Hilbert
spaces. Then the paper presents the advanced methods,
particularly the Matching Network (with a special focus on the
attention mechanism and neural network architecture) for few-
shot learning. For improvement and handling more views in the
images, we suggested Double-View Matching Network, which
is capable of recognizing multi-view recordings. The suggested
method was tested in the classification of images showing
unknown COVID-19 symptoms in an environment designed for
learning a few samples, with prior meta-learning on images of
other diseases only. The results of the new method are detailed
at the end of the paper.

II. FEW-SHOT HYPOTHESIS LEARNING

A. Hypothesis Learning
Most few-shot learning tasks can be traced back to

supervised learning problems, with only a few labeled samples
from each class available to the classifier [4] (at unsupervised
case, e.g., the graph clustering can be used [28]). The most
common applications are image recognition, emotion
recognition, object classification and multimedia analysis.

The general task of the problem is to parameterize a classifier
ℎ using only a very small number of samples that predicts label
𝑦𝑦𝑖𝑖 for each input 𝑥𝑥𝑖𝑖. When a machine learner is trained on a
large amount of training data, several models can be created at

2 M. Németh is a student in BME Balatonfüred Student Research Group (his
e-mail: marcell.nemeth@edu.bme.hu)

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

Gábor Szűcs1 and Marcell Németh2

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract — The research topic presented in this paper belongs
to small training data problem in machine learning (especially in
deep learning), it intends to help the work of those working in
medicine by analyzing pathological X-ray recordings, using only
very few images. This scenario is a particularly hot issue
nowadays: how could a new disease for which only limited data
are available be diagnosed using features of previous diseases? In
this problem, so-called few-shot learning, the difficulty of the
classification task is to learn the unique feature characteristics
associated with the classes. Although there are solutions, but if the
images come from different views, they will not handle these views
well. We proposed an improved method, so-called Double-View
Matching Network (DVMN based on the deep neural network),
which solves the few-shot learning problem as well as the different
views of the pathological recordings in the images. The main
contribution of this is the convolutional neural network for feature
extraction and handling the multi-view in image representation.
Our method was tested in the classification of images showing
unknown COVID-19 symptoms in an environment designed for
learning a few samples, with prior meta-learning on images of
other diseases only. The results show that DVMN reaches better
accuracy on multi-view dataset than simple Matching Network
without multi-view handling.

Index Terms — COVID-19, convolutional neural network, deep
learning, feature extraction, few-shot learning, image
classification, image representation, machine learning, multi-view

I. INTRODUCTION
A necessary, but not sufficient condition for the effective use

of machine learning (especially deep learning) methods is the
availability of large amounts of training data. This condition
cannot be satisfied in many applications (e.g., in image
classification [15], especially in medical images [12]), in most
cases due to a lack of available knowledge or excessive costs of
expertise [23]. The research topic presented in this paper
belongs to this problem type that is often lacking in such data,
it intends to help the work of those working in medicine by
analyzing pathological recordings, using only very few images.
This scenario is a particularly hot issue nowadays: how could a
new disease for which only limited data are available be
diagnosed using features of previous diseases? (If the number
of labeled data is small, but the huge amount of unlabeled data
is available, then this can lead to active learning [14], but in this
paper, we consider that there is no unlabeled data at all.)

1 Department of Telecommunications and Media Informatics, Budapest

University of Technology and Economics (BME), Budapest, Hungary (e-mail:
szucs@tmit.bme.hu)

In the case of learning from a small amount of labeled data,
so-called “few-shot learning” (FSL), there are only a few
samples from each class, so the difficulty of the classification
task is to learn the unique feature characteristics associated with
the classes as quickly and accurately as possible. In the few-
shot learning literature A-way-B-shot means that we use B
samples from A different classes for learning, so the training set
has a total of 𝐼𝐼 = 𝐴𝐴 ∙ 𝐵𝐵 samples. This type of meta-learning in
image recognition area requires knowledge transfer of high-
level characteristics of training images similar to the target
images. Although there are methods that can solve the problem,
but if the images come from different views [17][24], they will
not handle these views well. In this paper, we proposed an
improved method, so-called Double-View Matching Network,
which solves the few-shot learning problem as well as the
different views of the pathological recordings in the images.

The next section discusses the theory of few-shot type
machine learning in hypothesis space and its limits in Hilbert
spaces. Then the paper presents the advanced methods,
particularly the Matching Network (with a special focus on the
attention mechanism and neural network architecture) for few-
shot learning. For improvement and handling more views in the
images, we suggested Double-View Matching Network, which
is capable of recognizing multi-view recordings. The suggested
method was tested in the classification of images showing
unknown COVID-19 symptoms in an environment designed for
learning a few samples, with prior meta-learning on images of
other diseases only. The results of the new method are detailed
at the end of the paper.

II. FEW-SHOT HYPOTHESIS LEARNING

A. Hypothesis Learning
Most few-shot learning tasks can be traced back to

supervised learning problems, with only a few labeled samples
from each class available to the classifier [4] (at unsupervised
case, e.g., the graph clustering can be used [28]). The most
common applications are image recognition, emotion
recognition, object classification and multimedia analysis.

The general task of the problem is to parameterize a classifier
ℎ using only a very small number of samples that predicts label
𝑦𝑦𝑖𝑖 for each input 𝑥𝑥𝑖𝑖. When a machine learner is trained on a
large amount of training data, several models can be created at

2 M. Németh is a student in BME Balatonfüred Student Research Group (his
e-mail: marcell.nemeth@edu.bme.hu)

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

Gábor Szűcs1 and Marcell Németh2

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the end of the learning that are able to produce output from the
input samples. However, with only a few data, a much larger
number of such models can be “fitted” to the input-output pairs
due to the wide variety of options (fewer constraints). These
models can be considered as hypothesis, that is, a function that
produces the output from the input; and the aim is to find the
best solution in this hypothesis space, as we present in the
following based on a tutorial [10].

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the
so-called empirical error:

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1)

Thus, with the previous notations, we can formalize the
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the
hypothesis space for the functions

𝑓𝑓 ∶ X → Y (2)

and 𝑆𝑆 = (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real
error is minimal:

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not

possible to minimize it clearly since we do not know the
distribution 𝐷𝐷. However, it is possible to find an estimation by
taking advantage of the fact that in most cases, the real error of
the hypotheses takes on values significantly similar to the
empirical error. The difference between the two errors is
influenced by the flexibility of the used model (i.e., how many
degrees of freedom it has). The disadvantage of a large number
of degrees of freedom is that the hypothesis space is
accompanied by a tendency to overfit the model, as we can fit
innumerable functions to the desired distribution. Based on this
idea, the so-called uniform convergence bounds can be defined,
for all hypotheses f in a given hypothesis space, it is true that
[10]:

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error.

Despite the uniform convergence bounds defined by (4),
there may be some training sets for which the model produces
poor results, so the probability of the good results can be written
with the following inequality for a given distribution D:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5)

The main difficulty of finding a solution to this problem is
that in the absence of accurate knowledge of 𝐷𝐷, the above
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌
space (i.e., not just for a given distribution of 𝐷𝐷). However,
inequality (5) should also be satisfied with a probability of
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function
f we can write this formula within all possible distributions of
𝐷𝐷, so that we get the following:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 ∀𝑓𝑓 ∈ 𝐹𝐹 (6)

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹,
except for the 𝛿𝛿 proportion of samples sampled “unlucky”,
equation (4) will be true. Inequality (6) is easier to accomplish
because it is easier to achieve the same success rate in the whole
set than the same rate within each subset. In contrast, the
inequality (5) has the advantage that we can tell from sampling
whether a given set of the training set is “lucky” or “unlucky”.
If it is “lucky”, the inequality will be true for all hypotheses at
once, i.e., we have achieved our goal. Based on this, it is
advisable to write equation (5) in the following formula:

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓]] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 (7)

The distinction between (7) and (6) is essential for what we
want to use the bounds in the future; in the case of the FSL
learning problem, the most important is the error of the
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which
depends significantly on the choice of the training set.

The error of the model is influenced by the number of
samples in the available training set 𝑆𝑆 and the hypothesis space
𝐹𝐹. Starting from this statement, error minimization can be
approached from several sides to reduce estimation inaccuracy
using prior knowledge [26]. The possible approaches are the
number of samples (a larger training set could help, but in FSL,
only very few samples are available), and the algorithm for
finding optimal parameters. The last method approaches the
part of the model, which is responsible for defining and
narrowing the hypothesis space. In this case, the use of a priori
knowledge is aimed at reducing the complexity of the
hypothesis space, excluding several potential hypotheses in
advance.

B. Hilbert-space methods
Minimizing only empirical error is not sufficient, as this type

of approach can lead to overfitting. To avoid this, it is necessary
to narrow hypothesis F with certain limits. To solve this,
starting from equation (4), we can introduce a penalty term,
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and
minimizes the following error instead of the method presented
in equation (1) [10]:

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8)

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the
regularized error. The learning problem should therefore focus
on three components: the loss function 𝐿𝐿, the regularization
term 𝛺𝛺 and hypothesis space 𝐹𝐹.

In constructing the hypothesis space 𝐹𝐹, the natural
expectation is that 𝐹𝐹 is a linear function space in which for any
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹.

In addition, the structure of 𝐹𝐹 should be related to the
regularization term 𝛺𝛺 in some way. This property is defined by
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are

2 M. Németh is a student in BME Balatonfüred Student Research Group
(e-mail: marcell.nemeth@edu.bme.hu)

mailto:szucs%40tmit.bme.hu?subject=
http://doi.org/10.36244/ICJ.2021.1.4
mailto:marcell.nemeth%40edu.bme.hu?subject=

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

INFOCOMMUNICATIONS JOURNAL

MARCH 2021 • VOLUME XIII • NUMBER 1 27

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the end of the learning that are able to produce output from the
input samples. However, with only a few data, a much larger
number of such models can be “fitted” to the input-output pairs
due to the wide variety of options (fewer constraints). These
models can be considered as hypothesis, that is, a function that
produces the output from the input; and the aim is to find the
best solution in this hypothesis space, as we present in the
following based on a tutorial [10].

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the
so-called empirical error:

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1)

Thus, with the previous notations, we can formalize the
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the
hypothesis space for the functions

𝑓𝑓 ∶ X → Y (2)

and 𝑆𝑆 = (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real
error is minimal:

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not

possible to minimize it clearly since we do not know the
distribution 𝐷𝐷. However, it is possible to find an estimation by
taking advantage of the fact that in most cases, the real error of
the hypotheses takes on values significantly similar to the
empirical error. The difference between the two errors is
influenced by the flexibility of the used model (i.e., how many
degrees of freedom it has). The disadvantage of a large number
of degrees of freedom is that the hypothesis space is
accompanied by a tendency to overfit the model, as we can fit
innumerable functions to the desired distribution. Based on this
idea, the so-called uniform convergence bounds can be defined,
for all hypotheses f in a given hypothesis space, it is true that
[10]:

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error.

Despite the uniform convergence bounds defined by (4),
there may be some training sets for which the model produces
poor results, so the probability of the good results can be written
with the following inequality for a given distribution D:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5)

The main difficulty of finding a solution to this problem is
that in the absence of accurate knowledge of 𝐷𝐷, the above
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌
space (i.e., not just for a given distribution of 𝐷𝐷). However,
inequality (5) should also be satisfied with a probability of
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function
f we can write this formula within all possible distributions of
𝐷𝐷, so that we get the following:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 ∀𝑓𝑓 ∈ 𝐹𝐹 (6)

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹,
except for the 𝛿𝛿 proportion of samples sampled “unlucky”,
equation (4) will be true. Inequality (6) is easier to accomplish
because it is easier to achieve the same success rate in the whole
set than the same rate within each subset. In contrast, the
inequality (5) has the advantage that we can tell from sampling
whether a given set of the training set is “lucky” or “unlucky”.
If it is “lucky”, the inequality will be true for all hypotheses at
once, i.e., we have achieved our goal. Based on this, it is
advisable to write equation (5) in the following formula:

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓]] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 (7)

The distinction between (7) and (6) is essential for what we
want to use the bounds in the future; in the case of the FSL
learning problem, the most important is the error of the
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which
depends significantly on the choice of the training set.

The error of the model is influenced by the number of
samples in the available training set 𝑆𝑆 and the hypothesis space
𝐹𝐹. Starting from this statement, error minimization can be
approached from several sides to reduce estimation inaccuracy
using prior knowledge [26]. The possible approaches are the
number of samples (a larger training set could help, but in FSL,
only very few samples are available), and the algorithm for
finding optimal parameters. The last method approaches the
part of the model, which is responsible for defining and
narrowing the hypothesis space. In this case, the use of a priori
knowledge is aimed at reducing the complexity of the
hypothesis space, excluding several potential hypotheses in
advance.

B. Hilbert-space methods
Minimizing only empirical error is not sufficient, as this type

of approach can lead to overfitting. To avoid this, it is necessary
to narrow hypothesis F with certain limits. To solve this,
starting from equation (4), we can introduce a penalty term,
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and
minimizes the following error instead of the method presented
in equation (1) [10]:

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8)

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the
regularized error. The learning problem should therefore focus
on three components: the loss function 𝐿𝐿, the regularization
term 𝛺𝛺 and hypothesis space 𝐹𝐹.

In constructing the hypothesis space 𝐹𝐹, the natural
expectation is that 𝐹𝐹 is a linear function space in which for any
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹.

In addition, the structure of 𝐹𝐹 should be related to the
regularization term 𝛺𝛺 in some way. This property is defined by
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the end of the learning that are able to produce output from the
input samples. However, with only a few data, a much larger
number of such models can be “fitted” to the input-output pairs
due to the wide variety of options (fewer constraints). These
models can be considered as hypothesis, that is, a function that
produces the output from the input; and the aim is to find the
best solution in this hypothesis space, as we present in the
following based on a tutorial [10].

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the
so-called empirical error:

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1)

Thus, with the previous notations, we can formalize the
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the
hypothesis space for the functions

𝑓𝑓 ∶ X → Y (2)

and 𝑆𝑆 = (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real
error is minimal:

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not

possible to minimize it clearly since we do not know the
distribution 𝐷𝐷. However, it is possible to find an estimation by
taking advantage of the fact that in most cases, the real error of
the hypotheses takes on values significantly similar to the
empirical error. The difference between the two errors is
influenced by the flexibility of the used model (i.e., how many
degrees of freedom it has). The disadvantage of a large number
of degrees of freedom is that the hypothesis space is
accompanied by a tendency to overfit the model, as we can fit
innumerable functions to the desired distribution. Based on this
idea, the so-called uniform convergence bounds can be defined,
for all hypotheses f in a given hypothesis space, it is true that
[10]:

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error.

Despite the uniform convergence bounds defined by (4),
there may be some training sets for which the model produces
poor results, so the probability of the good results can be written
with the following inequality for a given distribution D:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5)

The main difficulty of finding a solution to this problem is
that in the absence of accurate knowledge of 𝐷𝐷, the above
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌
space (i.e., not just for a given distribution of 𝐷𝐷). However,
inequality (5) should also be satisfied with a probability of
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function
f we can write this formula within all possible distributions of
𝐷𝐷, so that we get the following:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 ∀𝑓𝑓 ∈ 𝐹𝐹 (6)

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹,
except for the 𝛿𝛿 proportion of samples sampled “unlucky”,
equation (4) will be true. Inequality (6) is easier to accomplish
because it is easier to achieve the same success rate in the whole
set than the same rate within each subset. In contrast, the
inequality (5) has the advantage that we can tell from sampling
whether a given set of the training set is “lucky” or “unlucky”.
If it is “lucky”, the inequality will be true for all hypotheses at
once, i.e., we have achieved our goal. Based on this, it is
advisable to write equation (5) in the following formula:

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓]] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 (7)

The distinction between (7) and (6) is essential for what we
want to use the bounds in the future; in the case of the FSL
learning problem, the most important is the error of the
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which
depends significantly on the choice of the training set.

The error of the model is influenced by the number of
samples in the available training set 𝑆𝑆 and the hypothesis space
𝐹𝐹. Starting from this statement, error minimization can be
approached from several sides to reduce estimation inaccuracy
using prior knowledge [26]. The possible approaches are the
number of samples (a larger training set could help, but in FSL,
only very few samples are available), and the algorithm for
finding optimal parameters. The last method approaches the
part of the model, which is responsible for defining and
narrowing the hypothesis space. In this case, the use of a priori
knowledge is aimed at reducing the complexity of the
hypothesis space, excluding several potential hypotheses in
advance.

B. Hilbert-space methods
Minimizing only empirical error is not sufficient, as this type

of approach can lead to overfitting. To avoid this, it is necessary
to narrow hypothesis F with certain limits. To solve this,
starting from equation (4), we can introduce a penalty term,
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and
minimizes the following error instead of the method presented
in equation (1) [10]:

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8)

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the
regularized error. The learning problem should therefore focus
on three components: the loss function 𝐿𝐿, the regularization
term 𝛺𝛺 and hypothesis space 𝐹𝐹.

In constructing the hypothesis space 𝐹𝐹, the natural
expectation is that 𝐹𝐹 is a linear function space in which for any
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹.

In addition, the structure of 𝐹𝐹 should be related to the
regularization term 𝛺𝛺 in some way. This property is defined by
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the end of the learning that are able to produce output from the
input samples. However, with only a few data, a much larger
number of such models can be “fitted” to the input-output pairs
due to the wide variety of options (fewer constraints). These
models can be considered as hypothesis, that is, a function that
produces the output from the input; and the aim is to find the
best solution in this hypothesis space, as we present in the
following based on a tutorial [10].

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the
so-called empirical error:

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1)

Thus, with the previous notations, we can formalize the
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the
hypothesis space for the functions

𝑓𝑓 ∶ X → Y (2)

and 𝑆𝑆 = (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real
error is minimal:

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not

possible to minimize it clearly since we do not know the
distribution 𝐷𝐷. However, it is possible to find an estimation by
taking advantage of the fact that in most cases, the real error of
the hypotheses takes on values significantly similar to the
empirical error. The difference between the two errors is
influenced by the flexibility of the used model (i.e., how many
degrees of freedom it has). The disadvantage of a large number
of degrees of freedom is that the hypothesis space is
accompanied by a tendency to overfit the model, as we can fit
innumerable functions to the desired distribution. Based on this
idea, the so-called uniform convergence bounds can be defined,
for all hypotheses f in a given hypothesis space, it is true that
[10]:

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error.

Despite the uniform convergence bounds defined by (4),
there may be some training sets for which the model produces
poor results, so the probability of the good results can be written
with the following inequality for a given distribution D:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5)

The main difficulty of finding a solution to this problem is
that in the absence of accurate knowledge of 𝐷𝐷, the above
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌
space (i.e., not just for a given distribution of 𝐷𝐷). However,
inequality (5) should also be satisfied with a probability of
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function
f we can write this formula within all possible distributions of
𝐷𝐷, so that we get the following:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 ∀𝑓𝑓 ∈ 𝐹𝐹 (6)

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹,
except for the 𝛿𝛿 proportion of samples sampled “unlucky”,
equation (4) will be true. Inequality (6) is easier to accomplish
because it is easier to achieve the same success rate in the whole
set than the same rate within each subset. In contrast, the
inequality (5) has the advantage that we can tell from sampling
whether a given set of the training set is “lucky” or “unlucky”.
If it is “lucky”, the inequality will be true for all hypotheses at
once, i.e., we have achieved our goal. Based on this, it is
advisable to write equation (5) in the following formula:

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓]] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 (7)

The distinction between (7) and (6) is essential for what we
want to use the bounds in the future; in the case of the FSL
learning problem, the most important is the error of the
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which
depends significantly on the choice of the training set.

The error of the model is influenced by the number of
samples in the available training set 𝑆𝑆 and the hypothesis space
𝐹𝐹. Starting from this statement, error minimization can be
approached from several sides to reduce estimation inaccuracy
using prior knowledge [26]. The possible approaches are the
number of samples (a larger training set could help, but in FSL,
only very few samples are available), and the algorithm for
finding optimal parameters. The last method approaches the
part of the model, which is responsible for defining and
narrowing the hypothesis space. In this case, the use of a priori
knowledge is aimed at reducing the complexity of the
hypothesis space, excluding several potential hypotheses in
advance.

B. Hilbert-space methods
Minimizing only empirical error is not sufficient, as this type

of approach can lead to overfitting. To avoid this, it is necessary
to narrow hypothesis F with certain limits. To solve this,
starting from equation (4), we can introduce a penalty term,
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and
minimizes the following error instead of the method presented
in equation (1) [10]:

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8)

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the
regularized error. The learning problem should therefore focus
on three components: the loss function 𝐿𝐿, the regularization
term 𝛺𝛺 and hypothesis space 𝐹𝐹.

In constructing the hypothesis space 𝐹𝐹, the natural
expectation is that 𝐹𝐹 is a linear function space in which for any
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹.

In addition, the structure of 𝐹𝐹 should be related to the
regularization term 𝛺𝛺 in some way. This property is defined by
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

called Hibert space, and the great advantage of this is that
Frigyes Riesz’s theory can be applied to the present problem
because in Hilbert spaces, the Riesz representation theorem is
true [6], as a result of which for any x ∈ X there exists a
representation 𝑘𝑘𝑥𝑥, for which it is true that:

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉 ∀𝑓𝑓 ∈ 𝐹𝐹 (9)

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that
it exists. A key element of the idea is that it creates a connection
between the abstract structure of F and the elements in it, and
we can use its representation instead of any x. If we rewrite the
complete regularized error problem as follows

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10)

then it can be seen that f appears only in the form F with scalar
products of other functions. It follows that if we know the scalar
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form
each vector takes, and leaving the unnecessary elements, it can
be seen that the quality of the algorithm is determined by the
internal products called kernels:

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11)

The only condition for kernels is that they should be
symmetric as well as satisfying the following expression:

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12)

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0.

Summarizing the above, the learning problem has been
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁,
since the error term depends only on the internal product of 𝑓𝑓
with different 𝑘𝑘, while the regularization term will affect all its
dimensions. If 𝑓𝑓 has a component that is orthogonal to the
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be
affected, but the regularization term will be. It follows that the
optimal 𝑓𝑓 will entirely be in the subspace spanned by the
representatives:

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13)

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias).
Substituting formula (13) into (10), it can be observed that the
task of the learning algorithm has been simplified to calculating
the offset and the coefficients (the interpretation of these
coefficients is the learnt knowledge after the learning).

III. MATCHING NETWORK ARCHITECTURE

A. Matching Network for few-shot learning
Several methods have been developed to solve the FSL

problem: Prototypical Network [20], Attentive Recurrent
Comparators [18], Simple Neural AttentIve Learner (SNAIL)
[13], Memory-Augmented Neural Network (MANN) [2],
ModelAgnostic Meta-Learning [3], Relation Network [21] and
Siamese networks [9][16]. Based on the sources in the FSL
literature, analyzing the results and considering further
potential improvements, we chose one of the best methods,
Matching Network [25], as the basis of our research. This
solution adapts many techniques, including deep parameterized
networks and metric learning [7] using feature vectors and deep
neural networks with memory.

The essential idea of the Matching Network classifiers is to
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is
realized in the Hilbert-type spaces detailed in the previous
section, while the k-NN-type classification takes place in the
last phase during comparing feature vectors.

In the first phase, neural networks can be used. The main task
of this phase is to learn a distance metric, a metric space in
which the representations of samples from different classes are
separated from each other as much as possible. Thus, the task
of the applied neural networks is to parameterize a metric with
such properties, i.e., an optimal hypothesis function to calculate
the coefficients based on what is described in the previous
section.

Figure 1. Matching Network architecture

The training set of the few-shot learner is called support set.

The applied method in Matching Network defines a classifier
(𝑆𝑆 → 𝐶𝐶𝑆𝑆(∙) mapping) for each support set sampled from the
training set, and then combines the stored mappings to make the
best use of the available knowledge. Thus, Matching Network
type classifiers are able to categorize unknown classes with
high efficiency without changing the networks.

In the following, we define the task description in more
detail. Let 𝑆𝑆 be a support set containing 𝑛𝑛 sample-label pairs:
𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1. As shown in Figure 1, the operation of the
model was illustrated by recognizing dog breeds. The sample-
label pairs (label means class label) of the support set are given
as input to a classifier 𝐶𝐶𝑆𝑆(�̂�𝑥), which defines a probability
distribution for a given sample �̂�𝑥 based on the class label �̂�𝑦. This
mapping can be written as follows: S → 𝐶𝐶𝑆𝑆(�̂�𝑥) = 𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆),

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the end of the learning that are able to produce output from the
input samples. However, with only a few data, a much larger
number of such models can be “fitted” to the input-output pairs
due to the wide variety of options (fewer constraints). These
models can be considered as hypothesis, that is, a function that
produces the output from the input; and the aim is to find the
best solution in this hypothesis space, as we present in the
following based on a tutorial [10].

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the
so-called empirical error:

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1)

Thus, with the previous notations, we can formalize the
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the
hypothesis space for the functions

𝑓𝑓 ∶ X → Y (2)

and 𝑆𝑆 = (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real
error is minimal:

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not

possible to minimize it clearly since we do not know the
distribution 𝐷𝐷. However, it is possible to find an estimation by
taking advantage of the fact that in most cases, the real error of
the hypotheses takes on values significantly similar to the
empirical error. The difference between the two errors is
influenced by the flexibility of the used model (i.e., how many
degrees of freedom it has). The disadvantage of a large number
of degrees of freedom is that the hypothesis space is
accompanied by a tendency to overfit the model, as we can fit
innumerable functions to the desired distribution. Based on this
idea, the so-called uniform convergence bounds can be defined,
for all hypotheses f in a given hypothesis space, it is true that
[10]:

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error.

Despite the uniform convergence bounds defined by (4),
there may be some training sets for which the model produces
poor results, so the probability of the good results can be written
with the following inequality for a given distribution D:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5)

The main difficulty of finding a solution to this problem is
that in the absence of accurate knowledge of 𝐷𝐷, the above
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌
space (i.e., not just for a given distribution of 𝐷𝐷). However,
inequality (5) should also be satisfied with a probability of
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function
f we can write this formula within all possible distributions of
𝐷𝐷, so that we get the following:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 ∀𝑓𝑓 ∈ 𝐹𝐹 (6)

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹,
except for the 𝛿𝛿 proportion of samples sampled “unlucky”,
equation (4) will be true. Inequality (6) is easier to accomplish
because it is easier to achieve the same success rate in the whole
set than the same rate within each subset. In contrast, the
inequality (5) has the advantage that we can tell from sampling
whether a given set of the training set is “lucky” or “unlucky”.
If it is “lucky”, the inequality will be true for all hypotheses at
once, i.e., we have achieved our goal. Based on this, it is
advisable to write equation (5) in the following formula:

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓]] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 (7)

The distinction between (7) and (6) is essential for what we
want to use the bounds in the future; in the case of the FSL
learning problem, the most important is the error of the
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which
depends significantly on the choice of the training set.

The error of the model is influenced by the number of
samples in the available training set 𝑆𝑆 and the hypothesis space
𝐹𝐹. Starting from this statement, error minimization can be
approached from several sides to reduce estimation inaccuracy
using prior knowledge [26]. The possible approaches are the
number of samples (a larger training set could help, but in FSL,
only very few samples are available), and the algorithm for
finding optimal parameters. The last method approaches the
part of the model, which is responsible for defining and
narrowing the hypothesis space. In this case, the use of a priori
knowledge is aimed at reducing the complexity of the
hypothesis space, excluding several potential hypotheses in
advance.

B. Hilbert-space methods
Minimizing only empirical error is not sufficient, as this type

of approach can lead to overfitting. To avoid this, it is necessary
to narrow hypothesis F with certain limits. To solve this,
starting from equation (4), we can introduce a penalty term,
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and
minimizes the following error instead of the method presented
in equation (1) [10]:

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8)

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the
regularized error. The learning problem should therefore focus
on three components: the loss function 𝐿𝐿, the regularization
term 𝛺𝛺 and hypothesis space 𝐹𝐹.

In constructing the hypothesis space 𝐹𝐹, the natural
expectation is that 𝐹𝐹 is a linear function space in which for any
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹.

In addition, the structure of 𝐹𝐹 should be related to the
regularization term 𝛺𝛺 in some way. This property is defined by
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the end of the learning that are able to produce output from the
input samples. However, with only a few data, a much larger
number of such models can be “fitted” to the input-output pairs
due to the wide variety of options (fewer constraints). These
models can be considered as hypothesis, that is, a function that
produces the output from the input; and the aim is to find the
best solution in this hypothesis space, as we present in the
following based on a tutorial [10].

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the
so-called empirical error:

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1)

Thus, with the previous notations, we can formalize the
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the
hypothesis space for the functions

𝑓𝑓 ∶ X → Y (2)

and 𝑆𝑆 = (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real
error is minimal:

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not

possible to minimize it clearly since we do not know the
distribution 𝐷𝐷. However, it is possible to find an estimation by
taking advantage of the fact that in most cases, the real error of
the hypotheses takes on values significantly similar to the
empirical error. The difference between the two errors is
influenced by the flexibility of the used model (i.e., how many
degrees of freedom it has). The disadvantage of a large number
of degrees of freedom is that the hypothesis space is
accompanied by a tendency to overfit the model, as we can fit
innumerable functions to the desired distribution. Based on this
idea, the so-called uniform convergence bounds can be defined,
for all hypotheses f in a given hypothesis space, it is true that
[10]:

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error.

Despite the uniform convergence bounds defined by (4),
there may be some training sets for which the model produces
poor results, so the probability of the good results can be written
with the following inequality for a given distribution D:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5)

The main difficulty of finding a solution to this problem is
that in the absence of accurate knowledge of 𝐷𝐷, the above
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌
space (i.e., not just for a given distribution of 𝐷𝐷). However,
inequality (5) should also be satisfied with a probability of
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function
f we can write this formula within all possible distributions of
𝐷𝐷, so that we get the following:

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 ∀𝑓𝑓 ∈ 𝐹𝐹 (6)

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹,
except for the 𝛿𝛿 proportion of samples sampled “unlucky”,
equation (4) will be true. Inequality (6) is easier to accomplish
because it is easier to achieve the same success rate in the whole
set than the same rate within each subset. In contrast, the
inequality (5) has the advantage that we can tell from sampling
whether a given set of the training set is “lucky” or “unlucky”.
If it is “lucky”, the inequality will be true for all hypotheses at
once, i.e., we have achieved our goal. Based on this, it is
advisable to write equation (5) in the following formula:

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓]] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿 (7)

The distinction between (7) and (6) is essential for what we
want to use the bounds in the future; in the case of the FSL
learning problem, the most important is the error of the
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which
depends significantly on the choice of the training set.

The error of the model is influenced by the number of
samples in the available training set 𝑆𝑆 and the hypothesis space
𝐹𝐹. Starting from this statement, error minimization can be
approached from several sides to reduce estimation inaccuracy
using prior knowledge [26]. The possible approaches are the
number of samples (a larger training set could help, but in FSL,
only very few samples are available), and the algorithm for
finding optimal parameters. The last method approaches the
part of the model, which is responsible for defining and
narrowing the hypothesis space. In this case, the use of a priori
knowledge is aimed at reducing the complexity of the
hypothesis space, excluding several potential hypotheses in
advance.

B. Hilbert-space methods
Minimizing only empirical error is not sufficient, as this type

of approach can lead to overfitting. To avoid this, it is necessary
to narrow hypothesis F with certain limits. To solve this,
starting from equation (4), we can introduce a penalty term,
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and
minimizes the following error instead of the method presented
in equation (1) [10]:

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8)

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the
regularized error. The learning problem should therefore focus
on three components: the loss function 𝐿𝐿, the regularization
term 𝛺𝛺 and hypothesis space 𝐹𝐹.

In constructing the hypothesis space 𝐹𝐹, the natural
expectation is that 𝐹𝐹 is a linear function space in which for any
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹.

In addition, the structure of 𝐹𝐹 should be related to the
regularization term 𝛺𝛺 in some way. This property is defined by
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

MARCH 2021 • VOLUME XIII • NUMBER 128

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

called Hibert space, and the great advantage of this is that
Frigyes Riesz’s theory can be applied to the present problem
because in Hilbert spaces, the Riesz representation theorem is
true [6], as a result of which for any x ∈ X there exists a
representation 𝑘𝑘𝑥𝑥, for which it is true that:

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉 ∀𝑓𝑓 ∈ 𝐹𝐹 (9)

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that
it exists. A key element of the idea is that it creates a connection
between the abstract structure of F and the elements in it, and
we can use its representation instead of any x. If we rewrite the
complete regularized error problem as follows

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10)

then it can be seen that f appears only in the form F with scalar
products of other functions. It follows that if we know the scalar
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form
each vector takes, and leaving the unnecessary elements, it can
be seen that the quality of the algorithm is determined by the
internal products called kernels:

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11)

The only condition for kernels is that they should be
symmetric as well as satisfying the following expression:

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12)

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0.

Summarizing the above, the learning problem has been
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁,
since the error term depends only on the internal product of 𝑓𝑓
with different 𝑘𝑘, while the regularization term will affect all its
dimensions. If 𝑓𝑓 has a component that is orthogonal to the
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be
affected, but the regularization term will be. It follows that the
optimal 𝑓𝑓 will entirely be in the subspace spanned by the
representatives:

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13)

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias).
Substituting formula (13) into (10), it can be observed that the
task of the learning algorithm has been simplified to calculating
the offset and the coefficients (the interpretation of these
coefficients is the learnt knowledge after the learning).

III. MATCHING NETWORK ARCHITECTURE

A. Matching Network for few-shot learning
Several methods have been developed to solve the FSL

problem: Prototypical Network [20], Attentive Recurrent
Comparators [18], Simple Neural AttentIve Learner (SNAIL)
[13], Memory-Augmented Neural Network (MANN) [2],
ModelAgnostic Meta-Learning [3], Relation Network [21] and
Siamese networks [9][16]. Based on the sources in the FSL
literature, analyzing the results and considering further
potential improvements, we chose one of the best methods,
Matching Network [25], as the basis of our research. This
solution adapts many techniques, including deep parameterized
networks and metric learning [7] using feature vectors and deep
neural networks with memory.

The essential idea of the Matching Network classifiers is to
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is
realized in the Hilbert-type spaces detailed in the previous
section, while the k-NN-type classification takes place in the
last phase during comparing feature vectors.

In the first phase, neural networks can be used. The main task
of this phase is to learn a distance metric, a metric space in
which the representations of samples from different classes are
separated from each other as much as possible. Thus, the task
of the applied neural networks is to parameterize a metric with
such properties, i.e., an optimal hypothesis function to calculate
the coefficients based on what is described in the previous
section.

Figure 1. Matching Network architecture

The training set of the few-shot learner is called support set.

The applied method in Matching Network defines a classifier
(𝑆𝑆 → 𝐶𝐶𝑆𝑆(∙) mapping) for each support set sampled from the
training set, and then combines the stored mappings to make the
best use of the available knowledge. Thus, Matching Network
type classifiers are able to categorize unknown classes with
high efficiency without changing the networks.

In the following, we define the task description in more
detail. Let 𝑆𝑆 be a support set containing 𝑛𝑛 sample-label pairs:
𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1. As shown in Figure 1, the operation of the
model was illustrated by recognizing dog breeds. The sample-
label pairs (label means class label) of the support set are given
as input to a classifier 𝐶𝐶𝑆𝑆(�̂�𝑥), which defines a probability
distribution for a given sample �̂�𝑥 based on the class label �̂�𝑦. This
mapping can be written as follows: S → 𝐶𝐶𝑆𝑆(�̂�𝑥) = 𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆),

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

called Hibert space, and the great advantage of this is that
Frigyes Riesz’s theory can be applied to the present problem
because in Hilbert spaces, the Riesz representation theorem is
true [6], as a result of which for any x ∈ X there exists a
representation 𝑘𝑘𝑥𝑥, for which it is true that:

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉 ∀𝑓𝑓 ∈ 𝐹𝐹 (9)

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that
it exists. A key element of the idea is that it creates a connection
between the abstract structure of F and the elements in it, and
we can use its representation instead of any x. If we rewrite the
complete regularized error problem as follows

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10)

then it can be seen that f appears only in the form F with scalar
products of other functions. It follows that if we know the scalar
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form
each vector takes, and leaving the unnecessary elements, it can
be seen that the quality of the algorithm is determined by the
internal products called kernels:

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11)

The only condition for kernels is that they should be
symmetric as well as satisfying the following expression:

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12)

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0.

Summarizing the above, the learning problem has been
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁,
since the error term depends only on the internal product of 𝑓𝑓
with different 𝑘𝑘, while the regularization term will affect all its
dimensions. If 𝑓𝑓 has a component that is orthogonal to the
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be
affected, but the regularization term will be. It follows that the
optimal 𝑓𝑓 will entirely be in the subspace spanned by the
representatives:

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13)

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias).
Substituting formula (13) into (10), it can be observed that the
task of the learning algorithm has been simplified to calculating
the offset and the coefficients (the interpretation of these
coefficients is the learnt knowledge after the learning).

III. MATCHING NETWORK ARCHITECTURE

A. Matching Network for few-shot learning
Several methods have been developed to solve the FSL

problem: Prototypical Network [20], Attentive Recurrent
Comparators [18], Simple Neural AttentIve Learner (SNAIL)
[13], Memory-Augmented Neural Network (MANN) [2],
ModelAgnostic Meta-Learning [3], Relation Network [21] and
Siamese networks [9][16]. Based on the sources in the FSL
literature, analyzing the results and considering further
potential improvements, we chose one of the best methods,
Matching Network [25], as the basis of our research. This
solution adapts many techniques, including deep parameterized
networks and metric learning [7] using feature vectors and deep
neural networks with memory.

The essential idea of the Matching Network classifiers is to
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is
realized in the Hilbert-type spaces detailed in the previous
section, while the k-NN-type classification takes place in the
last phase during comparing feature vectors.

In the first phase, neural networks can be used. The main task
of this phase is to learn a distance metric, a metric space in
which the representations of samples from different classes are
separated from each other as much as possible. Thus, the task
of the applied neural networks is to parameterize a metric with
such properties, i.e., an optimal hypothesis function to calculate
the coefficients based on what is described in the previous
section.

Figure 1. Matching Network architecture

The training set of the few-shot learner is called support set.

The applied method in Matching Network defines a classifier
(𝑆𝑆 → 𝐶𝐶𝑆𝑆(∙) mapping) for each support set sampled from the
training set, and then combines the stored mappings to make the
best use of the available knowledge. Thus, Matching Network
type classifiers are able to categorize unknown classes with
high efficiency without changing the networks.

In the following, we define the task description in more
detail. Let 𝑆𝑆 be a support set containing 𝑛𝑛 sample-label pairs:
𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1. As shown in Figure 1, the operation of the
model was illustrated by recognizing dog breeds. The sample-
label pairs (label means class label) of the support set are given
as input to a classifier 𝐶𝐶𝑆𝑆(�̂�𝑥), which defines a probability
distribution for a given sample �̂�𝑥 based on the class label �̂�𝑦. This
mapping can be written as follows: S → 𝐶𝐶𝑆𝑆(�̂�𝑥) = 𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆),

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

called Hibert space, and the great advantage of this is that
Frigyes Riesz’s theory can be applied to the present problem
because in Hilbert spaces, the Riesz representation theorem is
true [6], as a result of which for any x ∈ X there exists a
representation 𝑘𝑘𝑥𝑥, for which it is true that:

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉 ∀𝑓𝑓 ∈ 𝐹𝐹 (9)

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that
it exists. A key element of the idea is that it creates a connection
between the abstract structure of F and the elements in it, and
we can use its representation instead of any x. If we rewrite the
complete regularized error problem as follows

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10)

then it can be seen that f appears only in the form F with scalar
products of other functions. It follows that if we know the scalar
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form
each vector takes, and leaving the unnecessary elements, it can
be seen that the quality of the algorithm is determined by the
internal products called kernels:

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11)

The only condition for kernels is that they should be
symmetric as well as satisfying the following expression:

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12)

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0.

Summarizing the above, the learning problem has been
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁,
since the error term depends only on the internal product of 𝑓𝑓
with different 𝑘𝑘, while the regularization term will affect all its
dimensions. If 𝑓𝑓 has a component that is orthogonal to the
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be
affected, but the regularization term will be. It follows that the
optimal 𝑓𝑓 will entirely be in the subspace spanned by the
representatives:

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13)

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias).
Substituting formula (13) into (10), it can be observed that the
task of the learning algorithm has been simplified to calculating
the offset and the coefficients (the interpretation of these
coefficients is the learnt knowledge after the learning).

III. MATCHING NETWORK ARCHITECTURE

A. Matching Network for few-shot learning
Several methods have been developed to solve the FSL

problem: Prototypical Network [20], Attentive Recurrent
Comparators [18], Simple Neural AttentIve Learner (SNAIL)
[13], Memory-Augmented Neural Network (MANN) [2],
ModelAgnostic Meta-Learning [3], Relation Network [21] and
Siamese networks [9][16]. Based on the sources in the FSL
literature, analyzing the results and considering further
potential improvements, we chose one of the best methods,
Matching Network [25], as the basis of our research. This
solution adapts many techniques, including deep parameterized
networks and metric learning [7] using feature vectors and deep
neural networks with memory.

The essential idea of the Matching Network classifiers is to
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is
realized in the Hilbert-type spaces detailed in the previous
section, while the k-NN-type classification takes place in the
last phase during comparing feature vectors.

In the first phase, neural networks can be used. The main task
of this phase is to learn a distance metric, a metric space in
which the representations of samples from different classes are
separated from each other as much as possible. Thus, the task
of the applied neural networks is to parameterize a metric with
such properties, i.e., an optimal hypothesis function to calculate
the coefficients based on what is described in the previous
section.

Figure 1. Matching Network architecture

The training set of the few-shot learner is called support set.

The applied method in Matching Network defines a classifier
(𝑆𝑆 → 𝐶𝐶𝑆𝑆(∙) mapping) for each support set sampled from the
training set, and then combines the stored mappings to make the
best use of the available knowledge. Thus, Matching Network
type classifiers are able to categorize unknown classes with
high efficiency without changing the networks.

In the following, we define the task description in more
detail. Let 𝑆𝑆 be a support set containing 𝑛𝑛 sample-label pairs:
𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1. As shown in Figure 1, the operation of the
model was illustrated by recognizing dog breeds. The sample-
label pairs (label means class label) of the support set are given
as input to a classifier 𝐶𝐶𝑆𝑆(�̂�𝑥), which defines a probability
distribution for a given sample �̂�𝑥 based on the class label �̂�𝑦. This
mapping can be written as follows: S → 𝐶𝐶𝑆𝑆(�̂�𝑥) = 𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆),

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

called Hibert space, and the great advantage of this is that
Frigyes Riesz’s theory can be applied to the present problem
because in Hilbert spaces, the Riesz representation theorem is
true [6], as a result of which for any x ∈ X there exists a
representation 𝑘𝑘𝑥𝑥, for which it is true that:

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉 ∀𝑓𝑓 ∈ 𝐹𝐹 (9)

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that
it exists. A key element of the idea is that it creates a connection
between the abstract structure of F and the elements in it, and
we can use its representation instead of any x. If we rewrite the
complete regularized error problem as follows

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10)

then it can be seen that f appears only in the form F with scalar
products of other functions. It follows that if we know the scalar
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form
each vector takes, and leaving the unnecessary elements, it can
be seen that the quality of the algorithm is determined by the
internal products called kernels:

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11)

The only condition for kernels is that they should be
symmetric as well as satisfying the following expression:

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12)

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0.

Summarizing the above, the learning problem has been
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁,
since the error term depends only on the internal product of 𝑓𝑓
with different 𝑘𝑘, while the regularization term will affect all its
dimensions. If 𝑓𝑓 has a component that is orthogonal to the
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be
affected, but the regularization term will be. It follows that the
optimal 𝑓𝑓 will entirely be in the subspace spanned by the
representatives:

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13)

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias).
Substituting formula (13) into (10), it can be observed that the
task of the learning algorithm has been simplified to calculating
the offset and the coefficients (the interpretation of these
coefficients is the learnt knowledge after the learning).

III. MATCHING NETWORK ARCHITECTURE

A. Matching Network for few-shot learning
Several methods have been developed to solve the FSL

problem: Prototypical Network [20], Attentive Recurrent
Comparators [18], Simple Neural AttentIve Learner (SNAIL)
[13], Memory-Augmented Neural Network (MANN) [2],
ModelAgnostic Meta-Learning [3], Relation Network [21] and
Siamese networks [9][16]. Based on the sources in the FSL
literature, analyzing the results and considering further
potential improvements, we chose one of the best methods,
Matching Network [25], as the basis of our research. This
solution adapts many techniques, including deep parameterized
networks and metric learning [7] using feature vectors and deep
neural networks with memory.

The essential idea of the Matching Network classifiers is to
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is
realized in the Hilbert-type spaces detailed in the previous
section, while the k-NN-type classification takes place in the
last phase during comparing feature vectors.

In the first phase, neural networks can be used. The main task
of this phase is to learn a distance metric, a metric space in
which the representations of samples from different classes are
separated from each other as much as possible. Thus, the task
of the applied neural networks is to parameterize a metric with
such properties, i.e., an optimal hypothesis function to calculate
the coefficients based on what is described in the previous
section.

Figure 1. Matching Network architecture

The training set of the few-shot learner is called support set.

The applied method in Matching Network defines a classifier
(𝑆𝑆 → 𝐶𝐶𝑆𝑆(∙) mapping) for each support set sampled from the
training set, and then combines the stored mappings to make the
best use of the available knowledge. Thus, Matching Network
type classifiers are able to categorize unknown classes with
high efficiency without changing the networks.

In the following, we define the task description in more
detail. Let 𝑆𝑆 be a support set containing 𝑛𝑛 sample-label pairs:
𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1. As shown in Figure 1, the operation of the
model was illustrated by recognizing dog breeds. The sample-
label pairs (label means class label) of the support set are given
as input to a classifier 𝐶𝐶𝑆𝑆(�̂�𝑥), which defines a probability
distribution for a given sample �̂�𝑥 based on the class label �̂�𝑦. This
mapping can be written as follows: S → 𝐶𝐶𝑆𝑆(�̂�𝑥) = 𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆),

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

where the function P is parameterized by neural networks. This
construction allows us to use the model parameterized during
learning to classify all elements of an 𝑆𝑆′ support set containing
unseen patterns. The class prediction of each sample can be
described as follows:

𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆) = ∑ 𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (14)

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 are the samples, and their associated labels from
the 𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1 support set, and 𝑎𝑎(∙,∙) is the kernel (also
known as attention kernel or attention mechanism). It is worth
noting that the above relation produces the output (label) of the
samples of the new classes as a linear combination of the
sample labels in the support set.

Appropriate selection of the model components that make up
the attention kernel is key to the effectiveness of the model. In
its most basic form, the kernel can be written using the softmax
function applied to cosine distances as follows:

𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑐𝑐(𝑓𝑓(�̂�𝑥),𝑔𝑔(𝑥𝑥𝑖𝑖))

∑ 𝑒𝑒𝑐𝑐(𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥𝑗𝑗))𝑛𝑛
𝑗𝑗=1

 (15)

where function c describes the cosine similarity, functions 𝑓𝑓
and 𝑔𝑔 are the neural networks responsible for constructing the
feature vector formed from 𝑥𝑥𝑖𝑖 and 𝑥𝑥 (𝑓𝑓 and 𝑔𝑔 preferably have
the same architecture).

B. Multiple views challenge in images
In the first phase of the Matching Network, the appropriate

feature vectors are essential. In our task, images of pathological
chest X-rays were available; and we used a deep neural network
(Convolutional Neural Network – CNN) detailed later to
generate the characteristic vectors of the X-rays. The largest
challenge in the image data set was that two types of recording
perspectives - frontal and profile (side) recording - were stored
for each disease type in the data set, but only one of them
(frontal or profile) was available at each patient. In order to
handle more views in the method, we developed an extended
(improvement) version of the Matching Network, the so-called
Double-View Matching Network. The next section presents this
proposed method.

IV. DOUBLE-VIEW MATCHING NETWORK

A. Convolutional Neural Network for Feature Extraction
At image recognition topic, there is a frequent case that

samples come from different perspectives. In the investigated
dataset of medical images (in our case chest X-ray images), this
was also true, the dataset contained two views. Our research
focused on how recordings from the same class but from
different perspectives can be used effectively. Our proposed
method, the so-called Double-View Matching Network
(DVMN for short) answers the question. In this section, we
present the DVMN in two parts; firstly, the architecture and the
details of the Convolutional Neural Network for feature
extraction, then the solution of the combination of more views.

Proper selection of neural networks generating mappings
from image into a common feature space (i.e., the feature
extraction), is a key component of the accuracy. The publication

of Matching Network [25], which is considered as the basic
paper of our research, shared only small information about the
neural network architecture for feature extraction that VGG
[19] and Inception [22] networks can be used. However, these
network architectures are not dedicated to medical images.
Thus, we deviated from this approach and used our own
structure, which is shown in Table 1, where each Convolution
row consists of a convolution layer, then a batch normalization,
and ReLu.

Images sampled from the set of training data serve as input
to the convolutional network that produces the mapping. During
the learning, an extra FC (fully connected) layer was added after
the last layers of the CNN network to generate the output
vectors. The CNN was used to the two networks, f and g having
the same architecture (Figure 1.).

Operation

layer

filters
Size of
filter

Stride
value

Padding
value

Size of
output

Convolution 64 3x3x64 1x1 1x1 460x460x64
MaxPooling 1 2x2 2x2 0 230x230x64
Convolution 64 3x3x64 1x1 1x1 230x230x64
MaxPooling 1 2x2 2x2 0 115x115x64
Convolution 64 3x3x64 1x1 1x1 115x115x64
MaxPooling 1 2x2 2x2 0 57x57x64
Convolution 64 3x3x64 1x1 1x1 57x57x64
MaxPooling 1 2x2 2x2 0 28x28x64

Table 1. CNN network architecture

It is important to note that the mapping of each 𝑥𝑥𝑖𝑖 per support
set is independent of other samples. If the mapping of a sample
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is close to each other in the parameter space, it is
worthwhile to change the parameters of the model in order to
refine the feature vectors, taking into account the mappings of
other samples. Based on this idea, a component containing
memory, the context embedding layer, was added to the
network, similar to the original paper of Matching Network
[25]. A bidirectional LSTM layer was used to embed each 𝑥𝑥𝑖𝑖
sample, which stores the other feature mappings of the 𝑥𝑥𝑖𝑖
sample support set:

𝑓𝑓(�̂�𝑥, 𝑆𝑆) = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), 𝑔𝑔(𝑆𝑆), 𝐾𝐾) (17)

where 𝑓𝑓′(�̂�𝑥) denotes the characteristics generated by CNN that
serve as input to the LSTM, 𝑔𝑔(𝑆𝑆) is the mapping of the given
support set by 𝑔𝑔, and 𝐾𝐾 is the number of “time steps” of the
LSTM. This allows the attention mechanism to utilize only
certain elements of the support set that add meaningful value to
the mappings.

Context embedding of the classifier's 𝑓𝑓 network based on
equation (17) assuming a previous step 𝑘𝑘:

ℎ̂𝑘𝑘, 𝑐𝑐𝑘𝑘 = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), [ℎ𝑘𝑘−1, 𝑟𝑟𝑘𝑘−1], 𝑐𝑐𝑘𝑘−1) (18)

ℎ𝑘𝑘 = ℎ̂𝑘𝑘 + 𝑓𝑓′(�̂�𝑥) (19)

𝑟𝑟𝑘𝑘 = ∑ 𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) 𝑔𝑔(𝑥𝑥𝑗𝑗)
|𝑆𝑆|

𝑗𝑗=1
 (20)

𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) = 𝑒𝑒ℎ 𝑇𝑇
𝑘𝑘−1𝑔𝑔(𝑥𝑥𝑗𝑗)

∑ ℎ 𝑇𝑇
𝑘𝑘−1 𝑔𝑔(𝑥𝑥𝑗𝑗)|𝑆𝑆|

𝑗𝑗=1
 , (21)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

called Hibert space, and the great advantage of this is that
Frigyes Riesz’s theory can be applied to the present problem
because in Hilbert spaces, the Riesz representation theorem is
true [6], as a result of which for any x ∈ X there exists a
representation 𝑘𝑘𝑥𝑥, for which it is true that:

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉 ∀𝑓𝑓 ∈ 𝐹𝐹 (9)

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that
it exists. A key element of the idea is that it creates a connection
between the abstract structure of F and the elements in it, and
we can use its representation instead of any x. If we rewrite the
complete regularized error problem as follows

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10)

then it can be seen that f appears only in the form F with scalar
products of other functions. It follows that if we know the scalar
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form
each vector takes, and leaving the unnecessary elements, it can
be seen that the quality of the algorithm is determined by the
internal products called kernels:

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11)

The only condition for kernels is that they should be
symmetric as well as satisfying the following expression:

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12)

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0.

Summarizing the above, the learning problem has been
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁,
since the error term depends only on the internal product of 𝑓𝑓
with different 𝑘𝑘, while the regularization term will affect all its
dimensions. If 𝑓𝑓 has a component that is orthogonal to the
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be
affected, but the regularization term will be. It follows that the
optimal 𝑓𝑓 will entirely be in the subspace spanned by the
representatives:

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13)

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias).
Substituting formula (13) into (10), it can be observed that the
task of the learning algorithm has been simplified to calculating
the offset and the coefficients (the interpretation of these
coefficients is the learnt knowledge after the learning).

III. MATCHING NETWORK ARCHITECTURE

A. Matching Network for few-shot learning
Several methods have been developed to solve the FSL

problem: Prototypical Network [20], Attentive Recurrent
Comparators [18], Simple Neural AttentIve Learner (SNAIL)
[13], Memory-Augmented Neural Network (MANN) [2],
ModelAgnostic Meta-Learning [3], Relation Network [21] and
Siamese networks [9][16]. Based on the sources in the FSL
literature, analyzing the results and considering further
potential improvements, we chose one of the best methods,
Matching Network [25], as the basis of our research. This
solution adapts many techniques, including deep parameterized
networks and metric learning [7] using feature vectors and deep
neural networks with memory.

The essential idea of the Matching Network classifiers is to
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is
realized in the Hilbert-type spaces detailed in the previous
section, while the k-NN-type classification takes place in the
last phase during comparing feature vectors.

In the first phase, neural networks can be used. The main task
of this phase is to learn a distance metric, a metric space in
which the representations of samples from different classes are
separated from each other as much as possible. Thus, the task
of the applied neural networks is to parameterize a metric with
such properties, i.e., an optimal hypothesis function to calculate
the coefficients based on what is described in the previous
section.

Figure 1. Matching Network architecture

The training set of the few-shot learner is called support set.

The applied method in Matching Network defines a classifier
(𝑆𝑆 → 𝐶𝐶𝑆𝑆(∙) mapping) for each support set sampled from the
training set, and then combines the stored mappings to make the
best use of the available knowledge. Thus, Matching Network
type classifiers are able to categorize unknown classes with
high efficiency without changing the networks.

In the following, we define the task description in more
detail. Let 𝑆𝑆 be a support set containing 𝑛𝑛 sample-label pairs:
𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1. As shown in Figure 1, the operation of the
model was illustrated by recognizing dog breeds. The sample-
label pairs (label means class label) of the support set are given
as input to a classifier 𝐶𝐶𝑆𝑆(�̂�𝑥), which defines a probability
distribution for a given sample �̂�𝑥 based on the class label �̂�𝑦. This
mapping can be written as follows: S → 𝐶𝐶𝑆𝑆(�̂�𝑥) = 𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆),

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

INFOCOMMUNICATIONS JOURNAL

MARCH 2021 • VOLUME XIII • NUMBER 1 29

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

where the function P is parameterized by neural networks. This
construction allows us to use the model parameterized during
learning to classify all elements of an 𝑆𝑆′ support set containing
unseen patterns. The class prediction of each sample can be
described as follows:

𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆) = ∑ 𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (14)

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 are the samples, and their associated labels from
the 𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1 support set, and 𝑎𝑎(∙,∙) is the kernel (also
known as attention kernel or attention mechanism). It is worth
noting that the above relation produces the output (label) of the
samples of the new classes as a linear combination of the
sample labels in the support set.

Appropriate selection of the model components that make up
the attention kernel is key to the effectiveness of the model. In
its most basic form, the kernel can be written using the softmax
function applied to cosine distances as follows:

𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑐𝑐(𝑓𝑓(�̂�𝑥),𝑔𝑔(𝑥𝑥𝑖𝑖))

∑ 𝑒𝑒𝑐𝑐(𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥𝑗𝑗))𝑛𝑛
𝑗𝑗=1

 (15)

where function c describes the cosine similarity, functions 𝑓𝑓
and 𝑔𝑔 are the neural networks responsible for constructing the
feature vector formed from 𝑥𝑥𝑖𝑖 and 𝑥𝑥 (𝑓𝑓 and 𝑔𝑔 preferably have
the same architecture).

B. Multiple views challenge in images
In the first phase of the Matching Network, the appropriate

feature vectors are essential. In our task, images of pathological
chest X-rays were available; and we used a deep neural network
(Convolutional Neural Network – CNN) detailed later to
generate the characteristic vectors of the X-rays. The largest
challenge in the image data set was that two types of recording
perspectives - frontal and profile (side) recording - were stored
for each disease type in the data set, but only one of them
(frontal or profile) was available at each patient. In order to
handle more views in the method, we developed an extended
(improvement) version of the Matching Network, the so-called
Double-View Matching Network. The next section presents this
proposed method.

IV. DOUBLE-VIEW MATCHING NETWORK

A. Convolutional Neural Network for Feature Extraction
At image recognition topic, there is a frequent case that

samples come from different perspectives. In the investigated
dataset of medical images (in our case chest X-ray images), this
was also true, the dataset contained two views. Our research
focused on how recordings from the same class but from
different perspectives can be used effectively. Our proposed
method, the so-called Double-View Matching Network
(DVMN for short) answers the question. In this section, we
present the DVMN in two parts; firstly, the architecture and the
details of the Convolutional Neural Network for feature
extraction, then the solution of the combination of more views.

Proper selection of neural networks generating mappings
from image into a common feature space (i.e., the feature
extraction), is a key component of the accuracy. The publication

of Matching Network [25], which is considered as the basic
paper of our research, shared only small information about the
neural network architecture for feature extraction that VGG
[19] and Inception [22] networks can be used. However, these
network architectures are not dedicated to medical images.
Thus, we deviated from this approach and used our own
structure, which is shown in Table 1, where each Convolution
row consists of a convolution layer, then a batch normalization,
and ReLu.

Images sampled from the set of training data serve as input
to the convolutional network that produces the mapping. During
the learning, an extra FC (fully connected) layer was added after
the last layers of the CNN network to generate the output
vectors. The CNN was used to the two networks, f and g having
the same architecture (Figure 1.).

Operation

layer

filters
Size of
filter

Stride
value

Padding
value

Size of
output

Convolution 64 3x3x64 1x1 1x1 460x460x64
MaxPooling 1 2x2 2x2 0 230x230x64
Convolution 64 3x3x64 1x1 1x1 230x230x64
MaxPooling 1 2x2 2x2 0 115x115x64
Convolution 64 3x3x64 1x1 1x1 115x115x64
MaxPooling 1 2x2 2x2 0 57x57x64
Convolution 64 3x3x64 1x1 1x1 57x57x64
MaxPooling 1 2x2 2x2 0 28x28x64

Table 1. CNN network architecture

It is important to note that the mapping of each 𝑥𝑥𝑖𝑖 per support
set is independent of other samples. If the mapping of a sample
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is close to each other in the parameter space, it is
worthwhile to change the parameters of the model in order to
refine the feature vectors, taking into account the mappings of
other samples. Based on this idea, a component containing
memory, the context embedding layer, was added to the
network, similar to the original paper of Matching Network
[25]. A bidirectional LSTM layer was used to embed each 𝑥𝑥𝑖𝑖
sample, which stores the other feature mappings of the 𝑥𝑥𝑖𝑖
sample support set:

𝑓𝑓(�̂�𝑥, 𝑆𝑆) = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), 𝑔𝑔(𝑆𝑆), 𝐾𝐾) (17)

where 𝑓𝑓′(�̂�𝑥) denotes the characteristics generated by CNN that
serve as input to the LSTM, 𝑔𝑔(𝑆𝑆) is the mapping of the given
support set by 𝑔𝑔, and 𝐾𝐾 is the number of “time steps” of the
LSTM. This allows the attention mechanism to utilize only
certain elements of the support set that add meaningful value to
the mappings.

Context embedding of the classifier's 𝑓𝑓 network based on
equation (17) assuming a previous step 𝑘𝑘:

ℎ̂𝑘𝑘, 𝑐𝑐𝑘𝑘 = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), [ℎ𝑘𝑘−1, 𝑟𝑟𝑘𝑘−1], 𝑐𝑐𝑘𝑘−1) (18)

ℎ𝑘𝑘 = ℎ̂𝑘𝑘 + 𝑓𝑓′(�̂�𝑥) (19)

𝑟𝑟𝑘𝑘 = ∑ 𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) 𝑔𝑔(𝑥𝑥𝑗𝑗)
|𝑆𝑆|

𝑗𝑗=1
 (20)

𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) = 𝑒𝑒ℎ 𝑇𝑇
𝑘𝑘−1𝑔𝑔(𝑥𝑥𝑗𝑗)

∑ ℎ 𝑇𝑇
𝑘𝑘−1 𝑔𝑔(𝑥𝑥𝑗𝑗)|𝑆𝑆|

𝑗𝑗=1
 , (21)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

where the function P is parameterized by neural networks. This
construction allows us to use the model parameterized during
learning to classify all elements of an 𝑆𝑆′ support set containing
unseen patterns. The class prediction of each sample can be
described as follows:

𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆) = ∑ 𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (14)

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 are the samples, and their associated labels from
the 𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1 support set, and 𝑎𝑎(∙,∙) is the kernel (also
known as attention kernel or attention mechanism). It is worth
noting that the above relation produces the output (label) of the
samples of the new classes as a linear combination of the
sample labels in the support set.

Appropriate selection of the model components that make up
the attention kernel is key to the effectiveness of the model. In
its most basic form, the kernel can be written using the softmax
function applied to cosine distances as follows:

𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑐𝑐(𝑓𝑓(�̂�𝑥),𝑔𝑔(𝑥𝑥𝑖𝑖))

∑ 𝑒𝑒𝑐𝑐(𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥𝑗𝑗))𝑛𝑛
𝑗𝑗=1

 (15)

where function c describes the cosine similarity, functions 𝑓𝑓
and 𝑔𝑔 are the neural networks responsible for constructing the
feature vector formed from 𝑥𝑥𝑖𝑖 and 𝑥𝑥 (𝑓𝑓 and 𝑔𝑔 preferably have
the same architecture).

B. Multiple views challenge in images
In the first phase of the Matching Network, the appropriate

feature vectors are essential. In our task, images of pathological
chest X-rays were available; and we used a deep neural network
(Convolutional Neural Network – CNN) detailed later to
generate the characteristic vectors of the X-rays. The largest
challenge in the image data set was that two types of recording
perspectives - frontal and profile (side) recording - were stored
for each disease type in the data set, but only one of them
(frontal or profile) was available at each patient. In order to
handle more views in the method, we developed an extended
(improvement) version of the Matching Network, the so-called
Double-View Matching Network. The next section presents this
proposed method.

IV. DOUBLE-VIEW MATCHING NETWORK

A. Convolutional Neural Network for Feature Extraction
At image recognition topic, there is a frequent case that

samples come from different perspectives. In the investigated
dataset of medical images (in our case chest X-ray images), this
was also true, the dataset contained two views. Our research
focused on how recordings from the same class but from
different perspectives can be used effectively. Our proposed
method, the so-called Double-View Matching Network
(DVMN for short) answers the question. In this section, we
present the DVMN in two parts; firstly, the architecture and the
details of the Convolutional Neural Network for feature
extraction, then the solution of the combination of more views.

Proper selection of neural networks generating mappings
from image into a common feature space (i.e., the feature
extraction), is a key component of the accuracy. The publication

of Matching Network [25], which is considered as the basic
paper of our research, shared only small information about the
neural network architecture for feature extraction that VGG
[19] and Inception [22] networks can be used. However, these
network architectures are not dedicated to medical images.
Thus, we deviated from this approach and used our own
structure, which is shown in Table 1, where each Convolution
row consists of a convolution layer, then a batch normalization,
and ReLu.

Images sampled from the set of training data serve as input
to the convolutional network that produces the mapping. During
the learning, an extra FC (fully connected) layer was added after
the last layers of the CNN network to generate the output
vectors. The CNN was used to the two networks, f and g having
the same architecture (Figure 1.).

Operation

layer

filters
Size of
filter

Stride
value

Padding
value

Size of
output

Convolution 64 3x3x64 1x1 1x1 460x460x64
MaxPooling 1 2x2 2x2 0 230x230x64
Convolution 64 3x3x64 1x1 1x1 230x230x64
MaxPooling 1 2x2 2x2 0 115x115x64
Convolution 64 3x3x64 1x1 1x1 115x115x64
MaxPooling 1 2x2 2x2 0 57x57x64
Convolution 64 3x3x64 1x1 1x1 57x57x64
MaxPooling 1 2x2 2x2 0 28x28x64

Table 1. CNN network architecture

It is important to note that the mapping of each 𝑥𝑥𝑖𝑖 per support
set is independent of other samples. If the mapping of a sample
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is close to each other in the parameter space, it is
worthwhile to change the parameters of the model in order to
refine the feature vectors, taking into account the mappings of
other samples. Based on this idea, a component containing
memory, the context embedding layer, was added to the
network, similar to the original paper of Matching Network
[25]. A bidirectional LSTM layer was used to embed each 𝑥𝑥𝑖𝑖
sample, which stores the other feature mappings of the 𝑥𝑥𝑖𝑖
sample support set:

𝑓𝑓(�̂�𝑥, 𝑆𝑆) = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), 𝑔𝑔(𝑆𝑆), 𝐾𝐾) (17)

where 𝑓𝑓′(�̂�𝑥) denotes the characteristics generated by CNN that
serve as input to the LSTM, 𝑔𝑔(𝑆𝑆) is the mapping of the given
support set by 𝑔𝑔, and 𝐾𝐾 is the number of “time steps” of the
LSTM. This allows the attention mechanism to utilize only
certain elements of the support set that add meaningful value to
the mappings.

Context embedding of the classifier's 𝑓𝑓 network based on
equation (17) assuming a previous step 𝑘𝑘:

ℎ̂𝑘𝑘, 𝑐𝑐𝑘𝑘 = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), [ℎ𝑘𝑘−1, 𝑟𝑟𝑘𝑘−1], 𝑐𝑐𝑘𝑘−1) (18)

ℎ𝑘𝑘 = ℎ̂𝑘𝑘 + 𝑓𝑓′(�̂�𝑥) (19)

𝑟𝑟𝑘𝑘 = ∑ 𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) 𝑔𝑔(𝑥𝑥𝑗𝑗)
|𝑆𝑆|

𝑗𝑗=1
 (20)

𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) = 𝑒𝑒ℎ 𝑇𝑇
𝑘𝑘−1𝑔𝑔(𝑥𝑥𝑗𝑗)

∑ ℎ 𝑇𝑇
𝑘𝑘−1 𝑔𝑔(𝑥𝑥𝑗𝑗)|𝑆𝑆|

𝑗𝑗=1
 , (21)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

where the function P is parameterized by neural networks. This
construction allows us to use the model parameterized during
learning to classify all elements of an 𝑆𝑆′ support set containing
unseen patterns. The class prediction of each sample can be
described as follows:

𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆) = ∑ 𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (14)

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 are the samples, and their associated labels from
the 𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛

𝑖𝑖=1 support set, and 𝑎𝑎(∙,∙) is the kernel (also
known as attention kernel or attention mechanism). It is worth
noting that the above relation produces the output (label) of the
samples of the new classes as a linear combination of the
sample labels in the support set.

Appropriate selection of the model components that make up
the attention kernel is key to the effectiveness of the model. In
its most basic form, the kernel can be written using the softmax
function applied to cosine distances as follows:

𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑐𝑐(𝑓𝑓(�̂�𝑥),𝑔𝑔(𝑥𝑥𝑖𝑖))

∑ 𝑒𝑒𝑐𝑐(𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥𝑗𝑗))𝑛𝑛
𝑗𝑗=1

 (15)

where function c describes the cosine similarity, functions 𝑓𝑓
and 𝑔𝑔 are the neural networks responsible for constructing the
feature vector formed from 𝑥𝑥𝑖𝑖 and 𝑥𝑥 (𝑓𝑓 and 𝑔𝑔 preferably have
the same architecture).

B. Multiple views challenge in images
In the first phase of the Matching Network, the appropriate

feature vectors are essential. In our task, images of pathological
chest X-rays were available; and we used a deep neural network
(Convolutional Neural Network – CNN) detailed later to
generate the characteristic vectors of the X-rays. The largest
challenge in the image data set was that two types of recording
perspectives - frontal and profile (side) recording - were stored
for each disease type in the data set, but only one of them
(frontal or profile) was available at each patient. In order to
handle more views in the method, we developed an extended
(improvement) version of the Matching Network, the so-called
Double-View Matching Network. The next section presents this
proposed method.

IV. DOUBLE-VIEW MATCHING NETWORK

A. Convolutional Neural Network for Feature Extraction
At image recognition topic, there is a frequent case that

samples come from different perspectives. In the investigated
dataset of medical images (in our case chest X-ray images), this
was also true, the dataset contained two views. Our research
focused on how recordings from the same class but from
different perspectives can be used effectively. Our proposed
method, the so-called Double-View Matching Network
(DVMN for short) answers the question. In this section, we
present the DVMN in two parts; firstly, the architecture and the
details of the Convolutional Neural Network for feature
extraction, then the solution of the combination of more views.

Proper selection of neural networks generating mappings
from image into a common feature space (i.e., the feature
extraction), is a key component of the accuracy. The publication

of Matching Network [25], which is considered as the basic
paper of our research, shared only small information about the
neural network architecture for feature extraction that VGG
[19] and Inception [22] networks can be used. However, these
network architectures are not dedicated to medical images.
Thus, we deviated from this approach and used our own
structure, which is shown in Table 1, where each Convolution
row consists of a convolution layer, then a batch normalization,
and ReLu.

Images sampled from the set of training data serve as input
to the convolutional network that produces the mapping. During
the learning, an extra FC (fully connected) layer was added after
the last layers of the CNN network to generate the output
vectors. The CNN was used to the two networks, f and g having
the same architecture (Figure 1.).

Operation

layer

filters
Size of
filter

Stride
value

Padding
value

Size of
output

Convolution 64 3x3x64 1x1 1x1 460x460x64
MaxPooling 1 2x2 2x2 0 230x230x64
Convolution 64 3x3x64 1x1 1x1 230x230x64
MaxPooling 1 2x2 2x2 0 115x115x64
Convolution 64 3x3x64 1x1 1x1 115x115x64
MaxPooling 1 2x2 2x2 0 57x57x64
Convolution 64 3x3x64 1x1 1x1 57x57x64
MaxPooling 1 2x2 2x2 0 28x28x64

Table 1. CNN network architecture

It is important to note that the mapping of each 𝑥𝑥𝑖𝑖 per support
set is independent of other samples. If the mapping of a sample
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is close to each other in the parameter space, it is
worthwhile to change the parameters of the model in order to
refine the feature vectors, taking into account the mappings of
other samples. Based on this idea, a component containing
memory, the context embedding layer, was added to the
network, similar to the original paper of Matching Network
[25]. A bidirectional LSTM layer was used to embed each 𝑥𝑥𝑖𝑖
sample, which stores the other feature mappings of the 𝑥𝑥𝑖𝑖
sample support set:

𝑓𝑓(�̂�𝑥, 𝑆𝑆) = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), 𝑔𝑔(𝑆𝑆), 𝐾𝐾) (17)

where 𝑓𝑓′(�̂�𝑥) denotes the characteristics generated by CNN that
serve as input to the LSTM, 𝑔𝑔(𝑆𝑆) is the mapping of the given
support set by 𝑔𝑔, and 𝐾𝐾 is the number of “time steps” of the
LSTM. This allows the attention mechanism to utilize only
certain elements of the support set that add meaningful value to
the mappings.

Context embedding of the classifier's 𝑓𝑓 network based on
equation (17) assuming a previous step 𝑘𝑘:

ℎ̂𝑘𝑘, 𝑐𝑐𝑘𝑘 = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), [ℎ𝑘𝑘−1, 𝑟𝑟𝑘𝑘−1], 𝑐𝑐𝑘𝑘−1) (18)

ℎ𝑘𝑘 = ℎ̂𝑘𝑘 + 𝑓𝑓′(�̂�𝑥) (19)

𝑟𝑟𝑘𝑘 = ∑ 𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) 𝑔𝑔(𝑥𝑥𝑗𝑗)
|𝑆𝑆|

𝑗𝑗=1
 (20)

𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) = 𝑒𝑒ℎ 𝑇𝑇
𝑘𝑘−1𝑔𝑔(𝑥𝑥𝑗𝑗)

∑ ℎ 𝑇𝑇
𝑘𝑘−1 𝑔𝑔(𝑥𝑥𝑗𝑗)|𝑆𝑆|

𝑗𝑗=1
 , (21)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate)
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the
attention mechanism with softmax activation. Context
embedding of the classifier's 𝑔𝑔 (target image) network:

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗ ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22)
B. Handling the views

Our idea was to separate the different perspectives in some
way in order to find a better model. In designing our solution
with more views, the most important task was the optimal use
of the feature vectors (hereafter vectors) of the images taken
from each view. In DVMN, we suggested that the vectors of
each perspective should be constructed by different CNN
networks with separate parameters instead of a common one
[5][27]. Behind this idea was that during training iterations, due
to the small number of samples, tuning the model parameters to
the appropriate “direction” is key, and recordings from different
perspectives can easily miscalibrate weight settings. In
addition, the mappings generated by the two separate networks
need to be aggregated before classification [8], as the Matching
Network would learn the difference between views instead of
similarities among images from the same class, so our solution
was based on the basic idea of working with a union of views.

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image
set that contains only the images in the first view and whose
images we want to use to teach a metric space. To generate
feature vectors from the images, we used a self-made CNN,
because it is more flexible to learn new types of images than a
pretrained deep neural network. By separating the last FC layers
of CNN, the remained network generates a feature vector of n
elements for each input image, denoting this feature extraction
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this
way is denoted by 𝑉𝑉𝐿𝐿1:

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23)
The Matching Network generates a new vector from each

entered feature vector that already describes the image in the
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus
obtained is denoted by 𝑉𝑉′𝐿𝐿1:

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24)

For an unknown class set (by unknown, we mean the set of
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of
classes of the unknown set are disjoint sets, i.e., their
intersection is an empty set, but the new set has some class
labeled images) we want to use the learned new vector space,
where the image set also consists only of images from the first
view. With the previously learned CNN and MN models,
vectors can be generated for all images (without the labels of
the unknown image set), so we denote the set of new vectors
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be:

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25)
If we select the vectors with the class label from the elements

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other

vectors with unknown class labels by predicting the class label
whose the support vector is closest to the vector to be classified.

Using the notations used in the previous paragraphs in an
analogous way to the second view:

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26)
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27)
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28)
This mathematical framework of handling multi-view data is

our contribution in this paper. In B-shot learning the images of
each view are fed to the two CNNs, they will output two 𝑚𝑚 long
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and
in the second view, respectively in a given class. If the image
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will
have a dimension 𝑛𝑛 × 2𝑚𝑚 at the case of the concatenation of
vectors belonging to two views. In a real environment,
expecting an ideal dataset would be an unrealistic requirement,
so the following options are available at this point:

• If at least one image is available from both views, but
the number of images in a view is larger, the images
already used can be re-input as the replacement for the
missing images (in order to get the same number in each
view). This method can easily lead to overfitting due to
the repetition of samples.

• In order to get the same number in each view the other
solution is the selection the minimum number among
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is
used from both views, so the size of the input data table
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation.
The negative result of this solution is the artificial
reduction of the number and the expected decrease in
accuracy based on the measurements.

• Instead of the concatenation of the vectors, we can get
the union of the set of vectors. There is a requirement for
the number of samples per view, the only condition is
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with
the union of views eliminates the imbalanced problem,
thus our method works with this, and the dimension of
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚.

C. DVMN on multiple views
During the DVMN method, we trained two CNNs based on

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2 be sets of
characteristic vectors analogous to equation (23) and (26). The
solution presented below builds the model to take advantage of
the union of views. Consider the union of feature vectors:

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29)
This complete set is given to the Matching Network (MN) to

perform the vector space teaching required for a few-shot
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus
obtained is denoted by 𝑉𝑉′𝐿𝐿:

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30)
For using the learned new vector space for an unknown

image set, the previously learned CNN1 and CNN2 (depending
on whether the unknown image is in the first or second view)
and MN can be applied to generate vectors for all images, so we

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

MARCH 2021 • VOLUME XIII • NUMBER 130

INFOCOMMUNICATIONS JOURNAL
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate)
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the
attention mechanism with softmax activation. Context
embedding of the classifier's 𝑔𝑔 (target image) network:

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗ ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22)
B. Handling the views

Our idea was to separate the different perspectives in some
way in order to find a better model. In designing our solution
with more views, the most important task was the optimal use
of the feature vectors (hereafter vectors) of the images taken
from each view. In DVMN, we suggested that the vectors of
each perspective should be constructed by different CNN
networks with separate parameters instead of a common one
[5][27]. Behind this idea was that during training iterations, due
to the small number of samples, tuning the model parameters to
the appropriate “direction” is key, and recordings from different
perspectives can easily miscalibrate weight settings. In
addition, the mappings generated by the two separate networks
need to be aggregated before classification [8], as the Matching
Network would learn the difference between views instead of
similarities among images from the same class, so our solution
was based on the basic idea of working with a union of views.

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image
set that contains only the images in the first view and whose
images we want to use to teach a metric space. To generate
feature vectors from the images, we used a self-made CNN,
because it is more flexible to learn new types of images than a
pretrained deep neural network. By separating the last FC layers
of CNN, the remained network generates a feature vector of n
elements for each input image, denoting this feature extraction
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this
way is denoted by 𝑉𝑉𝐿𝐿1:

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23)
The Matching Network generates a new vector from each

entered feature vector that already describes the image in the
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus
obtained is denoted by 𝑉𝑉′𝐿𝐿1:

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24)

For an unknown class set (by unknown, we mean the set of
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of
classes of the unknown set are disjoint sets, i.e., their
intersection is an empty set, but the new set has some class
labeled images) we want to use the learned new vector space,
where the image set also consists only of images from the first
view. With the previously learned CNN and MN models,
vectors can be generated for all images (without the labels of
the unknown image set), so we denote the set of new vectors
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be:

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25)
If we select the vectors with the class label from the elements

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other

vectors with unknown class labels by predicting the class label
whose the support vector is closest to the vector to be classified.

Using the notations used in the previous paragraphs in an
analogous way to the second view:

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26)
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27)
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28)
This mathematical framework of handling multi-view data is

our contribution in this paper. In B-shot learning the images of
each view are fed to the two CNNs, they will output two 𝑚𝑚 long
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and
in the second view, respectively in a given class. If the image
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will
have a dimension 𝑛𝑛 × 2𝑚𝑚 at the case of the concatenation of
vectors belonging to two views. In a real environment,
expecting an ideal dataset would be an unrealistic requirement,
so the following options are available at this point:

• If at least one image is available from both views, but
the number of images in a view is larger, the images
already used can be re-input as the replacement for the
missing images (in order to get the same number in each
view). This method can easily lead to overfitting due to
the repetition of samples.

• In order to get the same number in each view the other
solution is the selection the minimum number among
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is
used from both views, so the size of the input data table
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation.
The negative result of this solution is the artificial
reduction of the number and the expected decrease in
accuracy based on the measurements.

• Instead of the concatenation of the vectors, we can get
the union of the set of vectors. There is a requirement for
the number of samples per view, the only condition is
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with
the union of views eliminates the imbalanced problem,
thus our method works with this, and the dimension of
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚.

C. DVMN on multiple views
During the DVMN method, we trained two CNNs based on

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2 be sets of
characteristic vectors analogous to equation (23) and (26). The
solution presented below builds the model to take advantage of
the union of views. Consider the union of feature vectors:

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29)
This complete set is given to the Matching Network (MN) to

perform the vector space teaching required for a few-shot
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus
obtained is denoted by 𝑉𝑉′𝐿𝐿:

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30)
For using the learned new vector space for an unknown

image set, the previously learned CNN1 and CNN2 (depending
on whether the unknown image is in the first or second view)
and MN can be applied to generate vectors for all images, so we

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate)
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the
attention mechanism with softmax activation. Context
embedding of the classifier's 𝑔𝑔 (target image) network:

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗ ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22)
B. Handling the views

Our idea was to separate the different perspectives in some
way in order to find a better model. In designing our solution
with more views, the most important task was the optimal use
of the feature vectors (hereafter vectors) of the images taken
from each view. In DVMN, we suggested that the vectors of
each perspective should be constructed by different CNN
networks with separate parameters instead of a common one
[5][27]. Behind this idea was that during training iterations, due
to the small number of samples, tuning the model parameters to
the appropriate “direction” is key, and recordings from different
perspectives can easily miscalibrate weight settings. In
addition, the mappings generated by the two separate networks
need to be aggregated before classification [8], as the Matching
Network would learn the difference between views instead of
similarities among images from the same class, so our solution
was based on the basic idea of working with a union of views.

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image
set that contains only the images in the first view and whose
images we want to use to teach a metric space. To generate
feature vectors from the images, we used a self-made CNN,
because it is more flexible to learn new types of images than a
pretrained deep neural network. By separating the last FC layers
of CNN, the remained network generates a feature vector of n
elements for each input image, denoting this feature extraction
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this
way is denoted by 𝑉𝑉𝐿𝐿1:

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23)
The Matching Network generates a new vector from each

entered feature vector that already describes the image in the
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus
obtained is denoted by 𝑉𝑉′𝐿𝐿1:

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24)

For an unknown class set (by unknown, we mean the set of
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of
classes of the unknown set are disjoint sets, i.e., their
intersection is an empty set, but the new set has some class
labeled images) we want to use the learned new vector space,
where the image set also consists only of images from the first
view. With the previously learned CNN and MN models,
vectors can be generated for all images (without the labels of
the unknown image set), so we denote the set of new vectors
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be:

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25)
If we select the vectors with the class label from the elements

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other

vectors with unknown class labels by predicting the class label
whose the support vector is closest to the vector to be classified.

Using the notations used in the previous paragraphs in an
analogous way to the second view:

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26)
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27)
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28)
This mathematical framework of handling multi-view data is

our contribution in this paper. In B-shot learning the images of
each view are fed to the two CNNs, they will output two 𝑚𝑚 long
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and
in the second view, respectively in a given class. If the image
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will
have a dimension 𝑛𝑛 × 2𝑚𝑚 at the case of the concatenation of
vectors belonging to two views. In a real environment,
expecting an ideal dataset would be an unrealistic requirement,
so the following options are available at this point:

• If at least one image is available from both views, but
the number of images in a view is larger, the images
already used can be re-input as the replacement for the
missing images (in order to get the same number in each
view). This method can easily lead to overfitting due to
the repetition of samples.

• In order to get the same number in each view the other
solution is the selection the minimum number among
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is
used from both views, so the size of the input data table
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation.
The negative result of this solution is the artificial
reduction of the number and the expected decrease in
accuracy based on the measurements.

• Instead of the concatenation of the vectors, we can get
the union of the set of vectors. There is a requirement for
the number of samples per view, the only condition is
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with
the union of views eliminates the imbalanced problem,
thus our method works with this, and the dimension of
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚.

C. DVMN on multiple views
During the DVMN method, we trained two CNNs based on

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2 be sets of
characteristic vectors analogous to equation (23) and (26). The
solution presented below builds the model to take advantage of
the union of views. Consider the union of feature vectors:

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29)
This complete set is given to the Matching Network (MN) to

perform the vector space teaching required for a few-shot
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus
obtained is denoted by 𝑉𝑉′𝐿𝐿:

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30)
For using the learned new vector space for an unknown

image set, the previously learned CNN1 and CNN2 (depending
on whether the unknown image is in the first or second view)
and MN can be applied to generate vectors for all images, so we

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate)
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the
attention mechanism with softmax activation. Context
embedding of the classifier's 𝑔𝑔 (target image) network:

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗ ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22)
B. Handling the views

Our idea was to separate the different perspectives in some
way in order to find a better model. In designing our solution
with more views, the most important task was the optimal use
of the feature vectors (hereafter vectors) of the images taken
from each view. In DVMN, we suggested that the vectors of
each perspective should be constructed by different CNN
networks with separate parameters instead of a common one
[5][27]. Behind this idea was that during training iterations, due
to the small number of samples, tuning the model parameters to
the appropriate “direction” is key, and recordings from different
perspectives can easily miscalibrate weight settings. In
addition, the mappings generated by the two separate networks
need to be aggregated before classification [8], as the Matching
Network would learn the difference between views instead of
similarities among images from the same class, so our solution
was based on the basic idea of working with a union of views.

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image
set that contains only the images in the first view and whose
images we want to use to teach a metric space. To generate
feature vectors from the images, we used a self-made CNN,
because it is more flexible to learn new types of images than a
pretrained deep neural network. By separating the last FC layers
of CNN, the remained network generates a feature vector of n
elements for each input image, denoting this feature extraction
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this
way is denoted by 𝑉𝑉𝐿𝐿1:

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23)
The Matching Network generates a new vector from each

entered feature vector that already describes the image in the
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus
obtained is denoted by 𝑉𝑉′𝐿𝐿1:

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24)

For an unknown class set (by unknown, we mean the set of
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of
classes of the unknown set are disjoint sets, i.e., their
intersection is an empty set, but the new set has some class
labeled images) we want to use the learned new vector space,
where the image set also consists only of images from the first
view. With the previously learned CNN and MN models,
vectors can be generated for all images (without the labels of
the unknown image set), so we denote the set of new vectors
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be:

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25)
If we select the vectors with the class label from the elements

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other

vectors with unknown class labels by predicting the class label
whose the support vector is closest to the vector to be classified.

Using the notations used in the previous paragraphs in an
analogous way to the second view:

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26)
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27)
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28)
This mathematical framework of handling multi-view data is

our contribution in this paper. In B-shot learning the images of
each view are fed to the two CNNs, they will output two 𝑚𝑚 long
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and
in the second view, respectively in a given class. If the image
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will
have a dimension 𝑛𝑛 × 2𝑚𝑚 at the case of the concatenation of
vectors belonging to two views. In a real environment,
expecting an ideal dataset would be an unrealistic requirement,
so the following options are available at this point:

• If at least one image is available from both views, but
the number of images in a view is larger, the images
already used can be re-input as the replacement for the
missing images (in order to get the same number in each
view). This method can easily lead to overfitting due to
the repetition of samples.

• In order to get the same number in each view the other
solution is the selection the minimum number among
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is
used from both views, so the size of the input data table
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation.
The negative result of this solution is the artificial
reduction of the number and the expected decrease in
accuracy based on the measurements.

• Instead of the concatenation of the vectors, we can get
the union of the set of vectors. There is a requirement for
the number of samples per view, the only condition is
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with
the union of views eliminates the imbalanced problem,
thus our method works with this, and the dimension of
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚.

C. DVMN on multiple views
During the DVMN method, we trained two CNNs based on

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2 be sets of
characteristic vectors analogous to equation (23) and (26). The
solution presented below builds the model to take advantage of
the union of views. Consider the union of feature vectors:

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29)
This complete set is given to the Matching Network (MN) to

perform the vector space teaching required for a few-shot
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus
obtained is denoted by 𝑉𝑉′𝐿𝐿:

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30)
For using the learned new vector space for an unknown

image set, the previously learned CNN1 and CNN2 (depending
on whether the unknown image is in the first or second view)
and MN can be applied to generate vectors for all images, so we

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate)
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the
attention mechanism with softmax activation. Context
embedding of the classifier's 𝑔𝑔 (target image) network:

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗ ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22)
B. Handling the views

Our idea was to separate the different perspectives in some
way in order to find a better model. In designing our solution
with more views, the most important task was the optimal use
of the feature vectors (hereafter vectors) of the images taken
from each view. In DVMN, we suggested that the vectors of
each perspective should be constructed by different CNN
networks with separate parameters instead of a common one
[5][27]. Behind this idea was that during training iterations, due
to the small number of samples, tuning the model parameters to
the appropriate “direction” is key, and recordings from different
perspectives can easily miscalibrate weight settings. In
addition, the mappings generated by the two separate networks
need to be aggregated before classification [8], as the Matching
Network would learn the difference between views instead of
similarities among images from the same class, so our solution
was based on the basic idea of working with a union of views.

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image
set that contains only the images in the first view and whose
images we want to use to teach a metric space. To generate
feature vectors from the images, we used a self-made CNN,
because it is more flexible to learn new types of images than a
pretrained deep neural network. By separating the last FC layers
of CNN, the remained network generates a feature vector of n
elements for each input image, denoting this feature extraction
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this
way is denoted by 𝑉𝑉𝐿𝐿1:

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23)
The Matching Network generates a new vector from each

entered feature vector that already describes the image in the
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus
obtained is denoted by 𝑉𝑉′𝐿𝐿1:

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24)

For an unknown class set (by unknown, we mean the set of
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of
classes of the unknown set are disjoint sets, i.e., their
intersection is an empty set, but the new set has some class
labeled images) we want to use the learned new vector space,
where the image set also consists only of images from the first
view. With the previously learned CNN and MN models,
vectors can be generated for all images (without the labels of
the unknown image set), so we denote the set of new vectors
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be:

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25)
If we select the vectors with the class label from the elements

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other

vectors with unknown class labels by predicting the class label
whose the support vector is closest to the vector to be classified.

Using the notations used in the previous paragraphs in an
analogous way to the second view:

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26)
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27)
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28)
This mathematical framework of handling multi-view data is

our contribution in this paper. In B-shot learning the images of
each view are fed to the two CNNs, they will output two 𝑚𝑚 long
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and
in the second view, respectively in a given class. If the image
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will
have a dimension 𝑛𝑛 × 2𝑚𝑚 at the case of the concatenation of
vectors belonging to two views. In a real environment,
expecting an ideal dataset would be an unrealistic requirement,
so the following options are available at this point:

• If at least one image is available from both views, but
the number of images in a view is larger, the images
already used can be re-input as the replacement for the
missing images (in order to get the same number in each
view). This method can easily lead to overfitting due to
the repetition of samples.

• In order to get the same number in each view the other
solution is the selection the minimum number among
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is
used from both views, so the size of the input data table
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation.
The negative result of this solution is the artificial
reduction of the number and the expected decrease in
accuracy based on the measurements.

• Instead of the concatenation of the vectors, we can get
the union of the set of vectors. There is a requirement for
the number of samples per view, the only condition is
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with
the union of views eliminates the imbalanced problem,
thus our method works with this, and the dimension of
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚.

C. DVMN on multiple views
During the DVMN method, we trained two CNNs based on

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2 be sets of
characteristic vectors analogous to equation (23) and (26). The
solution presented below builds the model to take advantage of
the union of views. Consider the union of feature vectors:

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29)
This complete set is given to the Matching Network (MN) to

perform the vector space teaching required for a few-shot
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus
obtained is denoted by 𝑉𝑉′𝐿𝐿:

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30)
For using the learned new vector space for an unknown

image set, the previously learned CNN1 and CNN2 (depending
on whether the unknown image is in the first or second view)
and MN can be applied to generate vectors for all images, so we

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

denote the set of new vectors obtained for the unknown image
set by 𝑉𝑉′𝑈𝑈, which will be:

𝑉𝑉′
𝑈𝑈 = {𝑣𝑣′

𝑈𝑈| 𝑣𝑣
′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1

𝑣𝑣′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2

} (31)

The depicting part of the support set of the Double-View
Matching Network architecture, which makes efficient use of
multiple views and can handle the problem of unbalanced
classes, is shown in Figure 2.

As a concluding point of the section, although the present
implementation (described above) uses only two types of views
due to the characteristics of the data set (and the architecture of
the model), it would be able to take advantage of more different
perspectives instead of two.

Figure 2. Mapping the Double-View Matching Network

support vector

D. Training setup
So far, the operation of the Matching Network has been

presented, which uses a set of support as an input of an 𝑆𝑆 →
𝐶𝐶(𝑥𝑥) classifier. In the method, using set-by-set sampling, a
mapping in the form 𝑃𝑃𝜃𝜃(𝑦𝑦|�̂�𝑥, 𝑆𝑆) is obtained, in which θ denotes
the parameters of the model.

In learning, in each iteration/epoch in which the gradients are
calculated, and the model parameters are updated, we first
sample a class set 𝐶𝐶 from a set 𝐹𝐹 (all classes) that contains a
subset of all classes. Next, using 𝐶𝐶, we select the elements of
the support set 𝑆𝑆, along with a 𝑆𝑆𝐵𝐵 batch that contains some
instances of the classes of the 𝐶𝐶 set.

The model parameters are then parameterized in such a way
that the error of the class predictions given to the samples in 𝑆𝑆𝐵𝐵
is minimized when trained on 𝑆𝑆:

𝜃𝜃 = 𝑎𝑎𝑟𝑟𝑔𝑔 max
𝜃𝜃

𝐸𝐸𝐶𝐶~𝐹𝐹 [𝐸𝐸𝑆𝑆~𝐶𝐶,𝑆𝑆𝐵𝐵~𝐶𝐶 [∑ log 𝑃𝑃𝜃𝜃(𝑦𝑦|𝑥𝑥, 𝑆𝑆)
(𝑥𝑥,𝑦𝑦)∈𝑆𝑆𝐵𝐵

]] (32)

Sampling batches through different iterations helps to avoid
overfitting by providing the model with inputs of combinations
of available images that it has not yet encountered in a given
order of occurrence. This type of approach is particularly
advantageous in context embedding, as identical sequences of
repetitive images may in themselves lead to overfitting due to
their repetitive (non-random) order through iterations. On the
other hand, if we vary not only the images but also the order of
their context learning, then the context embedding layer can
perform different parameter tunings due to the changing
environment.

V. EXPERIMENTAL RESULTS

A. Dataset
We investigated a real problem for testing the Double-View

Matching Network method in the recognition and classification
of viral diseases using pathological chest X-rays, for which only
a very limited number of training samples are available. It is
easy to imagine the potential of such a solution, which can
detect new, almost unknown diseases without the use of
extensive data collection and expertise (oracle), even at the
beginning of an outbreak like COVID-19.

A publicly available COVID-19 data set [1] was used to
design the experimental environment, which was expanded
with chest X-rays of other diseases. It is important to note that
the recordings are not assignable to humans, are completely
anonymized, and do not contain any patient-specific
information in their metadata. As we mentioned before, two
types of recording perspectives for each disease in the data set
are available - frontal and profile (side) recording. The well-
known multi-view solutions [11] cannot be used because only
one view was recorded at each patient.

The complete data set contains 758 records of a total of 19
disease classes. After data cleaning (removal of erroneous,
watermarked, etc. recordings), 680 recordings from 15 classes
were added to the final data set. Another special circumstance
is that image collections from different sources have different
resolutions, with the smallest reaching only 150x150 and the
largest reaching up to 2500x2500 pixels. Regarding the classes
of the data set, it shows an unequal number of samples for each
perspective:

• Completely unbalanced (only images from one
perspective can be found in the samples) classes include
the following diseases: ecoli, ards, sars.

• Balanced (same number of images from both views):
influenza, mycoplasma, bacterial, chlamydophila,
COVID-19.

• For the other classes, there are recordings from both
perspectives, but not in equal numbers: klebsiella,
legionella, lipoid, pneumocystis, pneumonia,
streptococcus, varicella.

The abnormalities of the lung caused by the COVID-19 virus
are well recognized in the images in Figure 3 as a good
example. Left side: symptoms are recognizable from “denser”
lung areas, right side: “denser” areas are depicted on a heat map.

Figure 3. Chest X-ray showing COVID-19 symptoms.

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

INFOCOMMUNICATIONS JOURNAL

MARCH 2021 • VOLUME XIII • NUMBER 1 31

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

denote the set of new vectors obtained for the unknown image
set by 𝑉𝑉′𝑈𝑈, which will be:

𝑉𝑉′
𝑈𝑈 = {𝑣𝑣′

𝑈𝑈| 𝑣𝑣
′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1

𝑣𝑣′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2

} (31)

The depicting part of the support set of the Double-View
Matching Network architecture, which makes efficient use of
multiple views and can handle the problem of unbalanced
classes, is shown in Figure 2.

As a concluding point of the section, although the present
implementation (described above) uses only two types of views
due to the characteristics of the data set (and the architecture of
the model), it would be able to take advantage of more different
perspectives instead of two.

Figure 2. Mapping the Double-View Matching Network

support vector

D. Training setup
So far, the operation of the Matching Network has been

presented, which uses a set of support as an input of an 𝑆𝑆 →
𝐶𝐶(𝑥𝑥) classifier. In the method, using set-by-set sampling, a
mapping in the form 𝑃𝑃𝜃𝜃(𝑦𝑦|�̂�𝑥, 𝑆𝑆) is obtained, in which θ denotes
the parameters of the model.

In learning, in each iteration/epoch in which the gradients are
calculated, and the model parameters are updated, we first
sample a class set 𝐶𝐶 from a set 𝐹𝐹 (all classes) that contains a
subset of all classes. Next, using 𝐶𝐶, we select the elements of
the support set 𝑆𝑆, along with a 𝑆𝑆𝐵𝐵 batch that contains some
instances of the classes of the 𝐶𝐶 set.

The model parameters are then parameterized in such a way
that the error of the class predictions given to the samples in 𝑆𝑆𝐵𝐵
is minimized when trained on 𝑆𝑆:

𝜃𝜃 = 𝑎𝑎𝑟𝑟𝑔𝑔 max
𝜃𝜃

𝐸𝐸𝐶𝐶~𝐹𝐹 [𝐸𝐸𝑆𝑆~𝐶𝐶,𝑆𝑆𝐵𝐵~𝐶𝐶 [∑ log 𝑃𝑃𝜃𝜃(𝑦𝑦|𝑥𝑥, 𝑆𝑆)
(𝑥𝑥,𝑦𝑦)∈𝑆𝑆𝐵𝐵

]] (32)

Sampling batches through different iterations helps to avoid
overfitting by providing the model with inputs of combinations
of available images that it has not yet encountered in a given
order of occurrence. This type of approach is particularly
advantageous in context embedding, as identical sequences of
repetitive images may in themselves lead to overfitting due to
their repetitive (non-random) order through iterations. On the
other hand, if we vary not only the images but also the order of
their context learning, then the context embedding layer can
perform different parameter tunings due to the changing
environment.

V. EXPERIMENTAL RESULTS

A. Dataset
We investigated a real problem for testing the Double-View

Matching Network method in the recognition and classification
of viral diseases using pathological chest X-rays, for which only
a very limited number of training samples are available. It is
easy to imagine the potential of such a solution, which can
detect new, almost unknown diseases without the use of
extensive data collection and expertise (oracle), even at the
beginning of an outbreak like COVID-19.

A publicly available COVID-19 data set [1] was used to
design the experimental environment, which was expanded
with chest X-rays of other diseases. It is important to note that
the recordings are not assignable to humans, are completely
anonymized, and do not contain any patient-specific
information in their metadata. As we mentioned before, two
types of recording perspectives for each disease in the data set
are available - frontal and profile (side) recording. The well-
known multi-view solutions [11] cannot be used because only
one view was recorded at each patient.

The complete data set contains 758 records of a total of 19
disease classes. After data cleaning (removal of erroneous,
watermarked, etc. recordings), 680 recordings from 15 classes
were added to the final data set. Another special circumstance
is that image collections from different sources have different
resolutions, with the smallest reaching only 150x150 and the
largest reaching up to 2500x2500 pixels. Regarding the classes
of the data set, it shows an unequal number of samples for each
perspective:

• Completely unbalanced (only images from one
perspective can be found in the samples) classes include
the following diseases: ecoli, ards, sars.

• Balanced (same number of images from both views):
influenza, mycoplasma, bacterial, chlamydophila,
COVID-19.

• For the other classes, there are recordings from both
perspectives, but not in equal numbers: klebsiella,
legionella, lipoid, pneumocystis, pneumonia,
streptococcus, varicella.

The abnormalities of the lung caused by the COVID-19 virus
are well recognized in the images in Figure 3 as a good
example. Left side: symptoms are recognizable from “denser”
lung areas, right side: “denser” areas are depicted on a heat map.

Figure 3. Chest X-ray showing COVID-19 symptoms.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

denote the set of new vectors obtained for the unknown image
set by 𝑉𝑉′𝑈𝑈, which will be:

𝑉𝑉′
𝑈𝑈 = {𝑣𝑣′

𝑈𝑈| 𝑣𝑣
′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1

𝑣𝑣′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2

} (31)

The depicting part of the support set of the Double-View
Matching Network architecture, which makes efficient use of
multiple views and can handle the problem of unbalanced
classes, is shown in Figure 2.

As a concluding point of the section, although the present
implementation (described above) uses only two types of views
due to the characteristics of the data set (and the architecture of
the model), it would be able to take advantage of more different
perspectives instead of two.

Figure 2. Mapping the Double-View Matching Network

support vector

D. Training setup
So far, the operation of the Matching Network has been

presented, which uses a set of support as an input of an 𝑆𝑆 →
𝐶𝐶(𝑥𝑥) classifier. In the method, using set-by-set sampling, a
mapping in the form 𝑃𝑃𝜃𝜃(𝑦𝑦|�̂�𝑥, 𝑆𝑆) is obtained, in which θ denotes
the parameters of the model.

In learning, in each iteration/epoch in which the gradients are
calculated, and the model parameters are updated, we first
sample a class set 𝐶𝐶 from a set 𝐹𝐹 (all classes) that contains a
subset of all classes. Next, using 𝐶𝐶, we select the elements of
the support set 𝑆𝑆, along with a 𝑆𝑆𝐵𝐵 batch that contains some
instances of the classes of the 𝐶𝐶 set.

The model parameters are then parameterized in such a way
that the error of the class predictions given to the samples in 𝑆𝑆𝐵𝐵
is minimized when trained on 𝑆𝑆:

𝜃𝜃 = 𝑎𝑎𝑟𝑟𝑔𝑔 max
𝜃𝜃

𝐸𝐸𝐶𝐶~𝐹𝐹 [𝐸𝐸𝑆𝑆~𝐶𝐶,𝑆𝑆𝐵𝐵~𝐶𝐶 [∑ log 𝑃𝑃𝜃𝜃(𝑦𝑦|𝑥𝑥, 𝑆𝑆)
(𝑥𝑥,𝑦𝑦)∈𝑆𝑆𝐵𝐵

]] (32)

Sampling batches through different iterations helps to avoid
overfitting by providing the model with inputs of combinations
of available images that it has not yet encountered in a given
order of occurrence. This type of approach is particularly
advantageous in context embedding, as identical sequences of
repetitive images may in themselves lead to overfitting due to
their repetitive (non-random) order through iterations. On the
other hand, if we vary not only the images but also the order of
their context learning, then the context embedding layer can
perform different parameter tunings due to the changing
environment.

V. EXPERIMENTAL RESULTS

A. Dataset
We investigated a real problem for testing the Double-View

Matching Network method in the recognition and classification
of viral diseases using pathological chest X-rays, for which only
a very limited number of training samples are available. It is
easy to imagine the potential of such a solution, which can
detect new, almost unknown diseases without the use of
extensive data collection and expertise (oracle), even at the
beginning of an outbreak like COVID-19.

A publicly available COVID-19 data set [1] was used to
design the experimental environment, which was expanded
with chest X-rays of other diseases. It is important to note that
the recordings are not assignable to humans, are completely
anonymized, and do not contain any patient-specific
information in their metadata. As we mentioned before, two
types of recording perspectives for each disease in the data set
are available - frontal and profile (side) recording. The well-
known multi-view solutions [11] cannot be used because only
one view was recorded at each patient.

The complete data set contains 758 records of a total of 19
disease classes. After data cleaning (removal of erroneous,
watermarked, etc. recordings), 680 recordings from 15 classes
were added to the final data set. Another special circumstance
is that image collections from different sources have different
resolutions, with the smallest reaching only 150x150 and the
largest reaching up to 2500x2500 pixels. Regarding the classes
of the data set, it shows an unequal number of samples for each
perspective:

• Completely unbalanced (only images from one
perspective can be found in the samples) classes include
the following diseases: ecoli, ards, sars.

• Balanced (same number of images from both views):
influenza, mycoplasma, bacterial, chlamydophila,
COVID-19.

• For the other classes, there are recordings from both
perspectives, but not in equal numbers: klebsiella,
legionella, lipoid, pneumocystis, pneumonia,
streptococcus, varicella.

The abnormalities of the lung caused by the COVID-19 virus
are well recognized in the images in Figure 3 as a good
example. Left side: symptoms are recognizable from “denser”
lung areas, right side: “denser” areas are depicted on a heat map.

Figure 3. Chest X-ray showing COVID-19 symptoms.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

denote the set of new vectors obtained for the unknown image
set by 𝑉𝑉′𝑈𝑈, which will be:

𝑉𝑉′
𝑈𝑈 = {𝑣𝑣′

𝑈𝑈| 𝑣𝑣
′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1

𝑣𝑣′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2

} (31)

The depicting part of the support set of the Double-View
Matching Network architecture, which makes efficient use of
multiple views and can handle the problem of unbalanced
classes, is shown in Figure 2.

As a concluding point of the section, although the present
implementation (described above) uses only two types of views
due to the characteristics of the data set (and the architecture of
the model), it would be able to take advantage of more different
perspectives instead of two.

Figure 2. Mapping the Double-View Matching Network

support vector

D. Training setup
So far, the operation of the Matching Network has been

presented, which uses a set of support as an input of an 𝑆𝑆 →
𝐶𝐶(𝑥𝑥) classifier. In the method, using set-by-set sampling, a
mapping in the form 𝑃𝑃𝜃𝜃(𝑦𝑦|�̂�𝑥, 𝑆𝑆) is obtained, in which θ denotes
the parameters of the model.

In learning, in each iteration/epoch in which the gradients are
calculated, and the model parameters are updated, we first
sample a class set 𝐶𝐶 from a set 𝐹𝐹 (all classes) that contains a
subset of all classes. Next, using 𝐶𝐶, we select the elements of
the support set 𝑆𝑆, along with a 𝑆𝑆𝐵𝐵 batch that contains some
instances of the classes of the 𝐶𝐶 set.

The model parameters are then parameterized in such a way
that the error of the class predictions given to the samples in 𝑆𝑆𝐵𝐵
is minimized when trained on 𝑆𝑆:

𝜃𝜃 = 𝑎𝑎𝑟𝑟𝑔𝑔 max
𝜃𝜃

𝐸𝐸𝐶𝐶~𝐹𝐹 [𝐸𝐸𝑆𝑆~𝐶𝐶,𝑆𝑆𝐵𝐵~𝐶𝐶 [∑ log 𝑃𝑃𝜃𝜃(𝑦𝑦|𝑥𝑥, 𝑆𝑆)
(𝑥𝑥,𝑦𝑦)∈𝑆𝑆𝐵𝐵

]] (32)

Sampling batches through different iterations helps to avoid
overfitting by providing the model with inputs of combinations
of available images that it has not yet encountered in a given
order of occurrence. This type of approach is particularly
advantageous in context embedding, as identical sequences of
repetitive images may in themselves lead to overfitting due to
their repetitive (non-random) order through iterations. On the
other hand, if we vary not only the images but also the order of
their context learning, then the context embedding layer can
perform different parameter tunings due to the changing
environment.

V. EXPERIMENTAL RESULTS

A. Dataset
We investigated a real problem for testing the Double-View

Matching Network method in the recognition and classification
of viral diseases using pathological chest X-rays, for which only
a very limited number of training samples are available. It is
easy to imagine the potential of such a solution, which can
detect new, almost unknown diseases without the use of
extensive data collection and expertise (oracle), even at the
beginning of an outbreak like COVID-19.

A publicly available COVID-19 data set [1] was used to
design the experimental environment, which was expanded
with chest X-rays of other diseases. It is important to note that
the recordings are not assignable to humans, are completely
anonymized, and do not contain any patient-specific
information in their metadata. As we mentioned before, two
types of recording perspectives for each disease in the data set
are available - frontal and profile (side) recording. The well-
known multi-view solutions [11] cannot be used because only
one view was recorded at each patient.

The complete data set contains 758 records of a total of 19
disease classes. After data cleaning (removal of erroneous,
watermarked, etc. recordings), 680 recordings from 15 classes
were added to the final data set. Another special circumstance
is that image collections from different sources have different
resolutions, with the smallest reaching only 150x150 and the
largest reaching up to 2500x2500 pixels. Regarding the classes
of the data set, it shows an unequal number of samples for each
perspective:

• Completely unbalanced (only images from one
perspective can be found in the samples) classes include
the following diseases: ecoli, ards, sars.

• Balanced (same number of images from both views):
influenza, mycoplasma, bacterial, chlamydophila,
COVID-19.

• For the other classes, there are recordings from both
perspectives, but not in equal numbers: klebsiella,
legionella, lipoid, pneumocystis, pneumonia,
streptococcus, varicella.

The abnormalities of the lung caused by the COVID-19 virus
are well recognized in the images in Figure 3 as a good
example. Left side: symptoms are recognizable from “denser”
lung areas, right side: “denser” areas are depicted on a heat map.

Figure 3. Chest X-ray showing COVID-19 symptoms.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

denote the set of new vectors obtained for the unknown image
set by 𝑉𝑉′𝑈𝑈, which will be:

𝑉𝑉′
𝑈𝑈 = {𝑣𝑣′

𝑈𝑈| 𝑣𝑣
′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1

𝑣𝑣′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2

} (31)

The depicting part of the support set of the Double-View
Matching Network architecture, which makes efficient use of
multiple views and can handle the problem of unbalanced
classes, is shown in Figure 2.

As a concluding point of the section, although the present
implementation (described above) uses only two types of views
due to the characteristics of the data set (and the architecture of
the model), it would be able to take advantage of more different
perspectives instead of two.

Figure 2. Mapping the Double-View Matching Network

support vector

D. Training setup
So far, the operation of the Matching Network has been

presented, which uses a set of support as an input of an 𝑆𝑆 →
𝐶𝐶(𝑥𝑥) classifier. In the method, using set-by-set sampling, a
mapping in the form 𝑃𝑃𝜃𝜃(𝑦𝑦|�̂�𝑥, 𝑆𝑆) is obtained, in which θ denotes
the parameters of the model.

In learning, in each iteration/epoch in which the gradients are
calculated, and the model parameters are updated, we first
sample a class set 𝐶𝐶 from a set 𝐹𝐹 (all classes) that contains a
subset of all classes. Next, using 𝐶𝐶, we select the elements of
the support set 𝑆𝑆, along with a 𝑆𝑆𝐵𝐵 batch that contains some
instances of the classes of the 𝐶𝐶 set.

The model parameters are then parameterized in such a way
that the error of the class predictions given to the samples in 𝑆𝑆𝐵𝐵
is minimized when trained on 𝑆𝑆:

𝜃𝜃 = 𝑎𝑎𝑟𝑟𝑔𝑔 max
𝜃𝜃

𝐸𝐸𝐶𝐶~𝐹𝐹 [𝐸𝐸𝑆𝑆~𝐶𝐶,𝑆𝑆𝐵𝐵~𝐶𝐶 [∑ log 𝑃𝑃𝜃𝜃(𝑦𝑦|𝑥𝑥, 𝑆𝑆)
(𝑥𝑥,𝑦𝑦)∈𝑆𝑆𝐵𝐵

]] (32)

Sampling batches through different iterations helps to avoid
overfitting by providing the model with inputs of combinations
of available images that it has not yet encountered in a given
order of occurrence. This type of approach is particularly
advantageous in context embedding, as identical sequences of
repetitive images may in themselves lead to overfitting due to
their repetitive (non-random) order through iterations. On the
other hand, if we vary not only the images but also the order of
their context learning, then the context embedding layer can
perform different parameter tunings due to the changing
environment.

V. EXPERIMENTAL RESULTS

A. Dataset
We investigated a real problem for testing the Double-View

Matching Network method in the recognition and classification
of viral diseases using pathological chest X-rays, for which only
a very limited number of training samples are available. It is
easy to imagine the potential of such a solution, which can
detect new, almost unknown diseases without the use of
extensive data collection and expertise (oracle), even at the
beginning of an outbreak like COVID-19.

A publicly available COVID-19 data set [1] was used to
design the experimental environment, which was expanded
with chest X-rays of other diseases. It is important to note that
the recordings are not assignable to humans, are completely
anonymized, and do not contain any patient-specific
information in their metadata. As we mentioned before, two
types of recording perspectives for each disease in the data set
are available - frontal and profile (side) recording. The well-
known multi-view solutions [11] cannot be used because only
one view was recorded at each patient.

The complete data set contains 758 records of a total of 19
disease classes. After data cleaning (removal of erroneous,
watermarked, etc. recordings), 680 recordings from 15 classes
were added to the final data set. Another special circumstance
is that image collections from different sources have different
resolutions, with the smallest reaching only 150x150 and the
largest reaching up to 2500x2500 pixels. Regarding the classes
of the data set, it shows an unequal number of samples for each
perspective:

• Completely unbalanced (only images from one
perspective can be found in the samples) classes include
the following diseases: ecoli, ards, sars.

• Balanced (same number of images from both views):
influenza, mycoplasma, bacterial, chlamydophila,
COVID-19.

• For the other classes, there are recordings from both
perspectives, but not in equal numbers: klebsiella,
legionella, lipoid, pneumocystis, pneumonia,
streptococcus, varicella.

The abnormalities of the lung caused by the COVID-19 virus
are well recognized in the images in Figure 3 as a good
example. Left side: symptoms are recognizable from “denser”
lung areas, right side: “denser” areas are depicted on a heat map.

Figure 3. Chest X-ray showing COVID-19 symptoms.

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

MARCH 2021 • VOLUME XIII • NUMBER 132

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

B. Baseline classifier
Before measuring the performance of the proposed method,

a baseline solution with k-NN (k-Nearest Neighbor) classifier
was developed as a baseline. Measurement results were
obtained by comparing and classifying 1-NN (nearest neighbor)
characteristic vectors for averaging over 5 random test sets, as
shown in the Table 2.

Number of train and test

classes
accuracy

4 train – 2 test 0.6980
4 train – 4 test 0.6499
6 train – 2 test 0.6563
6 train – 4 test 0.6499
8 train – 2 test 0.6199
8 train – 4 test 0.5567

Average 0.6384
Table 2. Results of the k-NN classifier

The data in the table show the following trends: as the

number of known classes increases, the accuracy decreases, and
the accuracy of the model also decreases by estimating more
and more classes within the same class number group.

C. Test scenarios
After the implementation of DVMN classifier, it was

necessary to create a comprehensive plan. Three testing
scenarios have been developed that are suitable for testing
different types of tasks:
i. New world scenario: it measures the ability to classify

new classes after learning (e. g., the recognition of new
diseases).
1. phase: learning distance metrics based on set 𝑆𝑆𝐵𝐵 ,

where there are 𝑁𝑁𝐶𝐶 classes in set 𝑆𝑆𝐵𝐵 .
2. phase: selection of a support set (disjoint from set

𝑆𝑆𝐵𝐵) by selecting one (or a few) images per class
from 𝑀𝑀 new classes for the classifier.

3. phase: prediction for unknown images belonging to
one of the 𝑀𝑀 new classes.

ii. Standard scenario: after learning, measures the ability to
classify in learned classes on new samples (i.e., on a
disjoint test set).
1. phase is the same as in the first scenario (i/1).
2. phase: select support set from set 𝑆𝑆𝐵𝐵 .
3. phase: prediction for unknown images belonging to

one of the 𝑁𝑁𝐶𝐶 known classes.
iii. Hybrid scenario: after learning, measures the ability to

classify in learned and new classes (i.e., the test set
includes both known and unknown classes).
1. phase is the same as in the first scenario (i/1).
2. phase: selection of support set by selecting one (or

a few) images from class 𝐾𝐾 (known and unknown)
for each class.

3. phase: prediction for unknown images belonging to
one of the 𝐾𝐾 classes.

The results of each test plan are presented below, where the

tables show the accuracy values (i.e., the ratio of the correct
decision to the total classification decision). 1/2/5-shot learning
was tested using 1/2/5 samples per class, and the notation in the

header of the rows is as follows: C <training classes> / C <test
classes> / S <samples per class> / E <number of the epochs>.

The results in Table 3 were measured on the data set
described earlier with the baseline classifier (i.e., there was no
double-view feature as with DVMN), where the images include
recordings from multiple perspectives. As a baseline, we were
interested in the results of three scenarios simulating different
test circumstances. The measured values in the table clearly
show that even the baseline classifier is able to classify with
relatively good accuracy in the “Standard” scenario; the results
of the “New World” scenario provided an encouraging starting
point for recognizing unknown diseases as the main goal of the
research, using already known diseases.

Number of train,
test classes, shots

and epochs

New World
scenario

Standard
scenario

Hybrid
scenario

C4/C2/S2/E1 0.920 0.939 0.766
C4/C2/S2/E5 0.924 0.896 0.846

C4/C2/S2/E10 0.898 0.904 0.825
C4/C4/S2/E1 0.620 0.759 0.800
C4/C4/S2/E5 0.760 0.892 0.823

C4/C4/S2/E10 0.742 0.890 0.805
C6/C2/S2/E1 0.779 0.939 0.750
C6/C2/S2/E5 0.800 0.888 0.776

C6/C2/S2/E10 0.793 0.898 0.770
C6/C4/S2/E1 0.759 0.779 0.699
C6/C4/S2/E5 0.648 0.836 0.693

C6/C4/S2/E10 0.708 0.858 0.673
C8/C2/S2/E1 0.960 0.940 0.600
C8/C2/S2/E5 0.884 0.868 0.726

C8/C2/S2/E10 0.872 0.870 0.713
C8/C4/S2/E1 0.680 0.800 0.766
C8/C4/S2/E5 0.720 0.880 0.746

C8/C4/S2/E10 0.690 0.818 0.726
Average 0.7808 0.8696 0.7501

Table 3. Accuracy results of test scenarios

In the Table 3, the three numerical values below each other

belong to a common measurement in such a way that the
accuracy values after 1, 5, and 10 epochs were measured. In
most cases, after the 5th epoch, the training reached the accuracy
value after that the system could no longer learn. In order to
avoid overfitting, we used the results after the 5th epoch; and the
test results presented in the rest of the paper also include
learnings up to the first 5 epochs.

D. Classification of unknown diseases, like COVID-19
In the following, the measurements of the “New World”

scenario, which simulates the recognition of new diseases, is
the topic that gives the main objective of our research. The
tables compare the classifiers:

• MN (Matching Network) for only first, and for only
second view (and average accuracy of them),

• k-NN classifier for only first, and for only second view
(and average accuracy of them),

• DVMN as our proposed method
• k-NN classifier for two views

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

B. Baseline classifier
Before measuring the performance of the proposed method,

a baseline solution with k-NN (k-Nearest Neighbor) classifier
was developed as a baseline. Measurement results were
obtained by comparing and classifying 1-NN (nearest neighbor)
characteristic vectors for averaging over 5 random test sets, as
shown in the Table 2.

Number of train and test

classes
accuracy

4 train – 2 test 0.6980
4 train – 4 test 0.6499
6 train – 2 test 0.6563
6 train – 4 test 0.6499
8 train – 2 test 0.6199
8 train – 4 test 0.5567

Average 0.6384
Table 2. Results of the k-NN classifier

The data in the table show the following trends: as the

number of known classes increases, the accuracy decreases, and
the accuracy of the model also decreases by estimating more
and more classes within the same class number group.

C. Test scenarios
After the implementation of DVMN classifier, it was

necessary to create a comprehensive plan. Three testing
scenarios have been developed that are suitable for testing
different types of tasks:
i. New world scenario: it measures the ability to classify

new classes after learning (e. g., the recognition of new
diseases).
1. phase: learning distance metrics based on set 𝑆𝑆𝐵𝐵 ,

where there are 𝑁𝑁𝐶𝐶 classes in set 𝑆𝑆𝐵𝐵 .
2. phase: selection of a support set (disjoint from set

𝑆𝑆𝐵𝐵) by selecting one (or a few) images per class
from 𝑀𝑀 new classes for the classifier.

3. phase: prediction for unknown images belonging to
one of the 𝑀𝑀 new classes.

ii. Standard scenario: after learning, measures the ability to
classify in learned classes on new samples (i.e., on a
disjoint test set).
1. phase is the same as in the first scenario (i/1).
2. phase: select support set from set 𝑆𝑆𝐵𝐵 .
3. phase: prediction for unknown images belonging to

one of the 𝑁𝑁𝐶𝐶 known classes.
iii. Hybrid scenario: after learning, measures the ability to

classify in learned and new classes (i.e., the test set
includes both known and unknown classes).
1. phase is the same as in the first scenario (i/1).
2. phase: selection of support set by selecting one (or

a few) images from class 𝐾𝐾 (known and unknown)
for each class.

3. phase: prediction for unknown images belonging to
one of the 𝐾𝐾 classes.

The results of each test plan are presented below, where the

tables show the accuracy values (i.e., the ratio of the correct
decision to the total classification decision). 1/2/5-shot learning
was tested using 1/2/5 samples per class, and the notation in the

header of the rows is as follows: C <training classes> / C <test
classes> / S <samples per class> / E <number of the epochs>.

The results in Table 3 were measured on the data set
described earlier with the baseline classifier (i.e., there was no
double-view feature as with DVMN), where the images include
recordings from multiple perspectives. As a baseline, we were
interested in the results of three scenarios simulating different
test circumstances. The measured values in the table clearly
show that even the baseline classifier is able to classify with
relatively good accuracy in the “Standard” scenario; the results
of the “New World” scenario provided an encouraging starting
point for recognizing unknown diseases as the main goal of the
research, using already known diseases.

Number of train,
test classes, shots

and epochs

New World
scenario

Standard
scenario

Hybrid
scenario

C4/C2/S2/E1 0.920 0.939 0.766
C4/C2/S2/E5 0.924 0.896 0.846

C4/C2/S2/E10 0.898 0.904 0.825
C4/C4/S2/E1 0.620 0.759 0.800
C4/C4/S2/E5 0.760 0.892 0.823

C4/C4/S2/E10 0.742 0.890 0.805
C6/C2/S2/E1 0.779 0.939 0.750
C6/C2/S2/E5 0.800 0.888 0.776

C6/C2/S2/E10 0.793 0.898 0.770
C6/C4/S2/E1 0.759 0.779 0.699
C6/C4/S2/E5 0.648 0.836 0.693

C6/C4/S2/E10 0.708 0.858 0.673
C8/C2/S2/E1 0.960 0.940 0.600
C8/C2/S2/E5 0.884 0.868 0.726

C8/C2/S2/E10 0.872 0.870 0.713
C8/C4/S2/E1 0.680 0.800 0.766
C8/C4/S2/E5 0.720 0.880 0.746

C8/C4/S2/E10 0.690 0.818 0.726
Average 0.7808 0.8696 0.7501

Table 3. Accuracy results of test scenarios

In the Table 3, the three numerical values below each other

belong to a common measurement in such a way that the
accuracy values after 1, 5, and 10 epochs were measured. In
most cases, after the 5th epoch, the training reached the accuracy
value after that the system could no longer learn. In order to
avoid overfitting, we used the results after the 5th epoch; and the
test results presented in the rest of the paper also include
learnings up to the first 5 epochs.

D. Classification of unknown diseases, like COVID-19
In the following, the measurements of the “New World”

scenario, which simulates the recognition of new diseases, is
the topic that gives the main objective of our research. The
tables compare the classifiers:

• MN (Matching Network) for only first, and for only
second view (and average accuracy of them),

• k-NN classifier for only first, and for only second view
(and average accuracy of them),

• DVMN as our proposed method
• k-NN classifier for two views

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

B. Baseline classifier
Before measuring the performance of the proposed method,

a baseline solution with k-NN (k-Nearest Neighbor) classifier
was developed as a baseline. Measurement results were
obtained by comparing and classifying 1-NN (nearest neighbor)
characteristic vectors for averaging over 5 random test sets, as
shown in the Table 2.

Number of train and test

classes
accuracy

4 train – 2 test 0.6980
4 train – 4 test 0.6499
6 train – 2 test 0.6563
6 train – 4 test 0.6499
8 train – 2 test 0.6199
8 train – 4 test 0.5567

Average 0.6384
Table 2. Results of the k-NN classifier

The data in the table show the following trends: as the

number of known classes increases, the accuracy decreases, and
the accuracy of the model also decreases by estimating more
and more classes within the same class number group.

C. Test scenarios
After the implementation of DVMN classifier, it was

necessary to create a comprehensive plan. Three testing
scenarios have been developed that are suitable for testing
different types of tasks:
i. New world scenario: it measures the ability to classify

new classes after learning (e. g., the recognition of new
diseases).
1. phase: learning distance metrics based on set 𝑆𝑆𝐵𝐵 ,

where there are 𝑁𝑁𝐶𝐶 classes in set 𝑆𝑆𝐵𝐵 .
2. phase: selection of a support set (disjoint from set

𝑆𝑆𝐵𝐵) by selecting one (or a few) images per class
from 𝑀𝑀 new classes for the classifier.

3. phase: prediction for unknown images belonging to
one of the 𝑀𝑀 new classes.

ii. Standard scenario: after learning, measures the ability to
classify in learned classes on new samples (i.e., on a
disjoint test set).
1. phase is the same as in the first scenario (i/1).
2. phase: select support set from set 𝑆𝑆𝐵𝐵 .
3. phase: prediction for unknown images belonging to

one of the 𝑁𝑁𝐶𝐶 known classes.
iii. Hybrid scenario: after learning, measures the ability to

classify in learned and new classes (i.e., the test set
includes both known and unknown classes).
1. phase is the same as in the first scenario (i/1).
2. phase: selection of support set by selecting one (or

a few) images from class 𝐾𝐾 (known and unknown)
for each class.

3. phase: prediction for unknown images belonging to
one of the 𝐾𝐾 classes.

The results of each test plan are presented below, where the

tables show the accuracy values (i.e., the ratio of the correct
decision to the total classification decision). 1/2/5-shot learning
was tested using 1/2/5 samples per class, and the notation in the

header of the rows is as follows: C <training classes> / C <test
classes> / S <samples per class> / E <number of the epochs>.

The results in Table 3 were measured on the data set
described earlier with the baseline classifier (i.e., there was no
double-view feature as with DVMN), where the images include
recordings from multiple perspectives. As a baseline, we were
interested in the results of three scenarios simulating different
test circumstances. The measured values in the table clearly
show that even the baseline classifier is able to classify with
relatively good accuracy in the “Standard” scenario; the results
of the “New World” scenario provided an encouraging starting
point for recognizing unknown diseases as the main goal of the
research, using already known diseases.

Number of train,
test classes, shots

and epochs

New World
scenario

Standard
scenario

Hybrid
scenario

C4/C2/S2/E1 0.920 0.939 0.766
C4/C2/S2/E5 0.924 0.896 0.846

C4/C2/S2/E10 0.898 0.904 0.825
C4/C4/S2/E1 0.620 0.759 0.800
C4/C4/S2/E5 0.760 0.892 0.823

C4/C4/S2/E10 0.742 0.890 0.805
C6/C2/S2/E1 0.779 0.939 0.750
C6/C2/S2/E5 0.800 0.888 0.776

C6/C2/S2/E10 0.793 0.898 0.770
C6/C4/S2/E1 0.759 0.779 0.699
C6/C4/S2/E5 0.648 0.836 0.693

C6/C4/S2/E10 0.708 0.858 0.673
C8/C2/S2/E1 0.960 0.940 0.600
C8/C2/S2/E5 0.884 0.868 0.726

C8/C2/S2/E10 0.872 0.870 0.713
C8/C4/S2/E1 0.680 0.800 0.766
C8/C4/S2/E5 0.720 0.880 0.746

C8/C4/S2/E10 0.690 0.818 0.726
Average 0.7808 0.8696 0.7501

Table 3. Accuracy results of test scenarios

In the Table 3, the three numerical values below each other

belong to a common measurement in such a way that the
accuracy values after 1, 5, and 10 epochs were measured. In
most cases, after the 5th epoch, the training reached the accuracy
value after that the system could no longer learn. In order to
avoid overfitting, we used the results after the 5th epoch; and the
test results presented in the rest of the paper also include
learnings up to the first 5 epochs.

D. Classification of unknown diseases, like COVID-19
In the following, the measurements of the “New World”

scenario, which simulates the recognition of new diseases, is
the topic that gives the main objective of our research. The
tables compare the classifiers:

• MN (Matching Network) for only first, and for only
second view (and average accuracy of them),

• k-NN classifier for only first, and for only second view
(and average accuracy of them),

• DVMN as our proposed method
• k-NN classifier for two views

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

B. Baseline classifier
Before measuring the performance of the proposed method,

a baseline solution with k-NN (k-Nearest Neighbor) classifier
was developed as a baseline. Measurement results were
obtained by comparing and classifying 1-NN (nearest neighbor)
characteristic vectors for averaging over 5 random test sets, as
shown in the Table 2.

Number of train and test

classes
accuracy

4 train – 2 test 0.6980
4 train – 4 test 0.6499
6 train – 2 test 0.6563
6 train – 4 test 0.6499
8 train – 2 test 0.6199
8 train – 4 test 0.5567

Average 0.6384
Table 2. Results of the k-NN classifier

The data in the table show the following trends: as the

number of known classes increases, the accuracy decreases, and
the accuracy of the model also decreases by estimating more
and more classes within the same class number group.

C. Test scenarios
After the implementation of DVMN classifier, it was

necessary to create a comprehensive plan. Three testing
scenarios have been developed that are suitable for testing
different types of tasks:
i. New world scenario: it measures the ability to classify

new classes after learning (e. g., the recognition of new
diseases).
1. phase: learning distance metrics based on set 𝑆𝑆𝐵𝐵 ,

where there are 𝑁𝑁𝐶𝐶 classes in set 𝑆𝑆𝐵𝐵 .
2. phase: selection of a support set (disjoint from set

𝑆𝑆𝐵𝐵) by selecting one (or a few) images per class
from 𝑀𝑀 new classes for the classifier.

3. phase: prediction for unknown images belonging to
one of the 𝑀𝑀 new classes.

ii. Standard scenario: after learning, measures the ability to
classify in learned classes on new samples (i.e., on a
disjoint test set).
1. phase is the same as in the first scenario (i/1).
2. phase: select support set from set 𝑆𝑆𝐵𝐵 .
3. phase: prediction for unknown images belonging to

one of the 𝑁𝑁𝐶𝐶 known classes.
iii. Hybrid scenario: after learning, measures the ability to

classify in learned and new classes (i.e., the test set
includes both known and unknown classes).
1. phase is the same as in the first scenario (i/1).
2. phase: selection of support set by selecting one (or

a few) images from class 𝐾𝐾 (known and unknown)
for each class.

3. phase: prediction for unknown images belonging to
one of the 𝐾𝐾 classes.

The results of each test plan are presented below, where the

tables show the accuracy values (i.e., the ratio of the correct
decision to the total classification decision). 1/2/5-shot learning
was tested using 1/2/5 samples per class, and the notation in the

header of the rows is as follows: C <training classes> / C <test
classes> / S <samples per class> / E <number of the epochs>.

The results in Table 3 were measured on the data set
described earlier with the baseline classifier (i.e., there was no
double-view feature as with DVMN), where the images include
recordings from multiple perspectives. As a baseline, we were
interested in the results of three scenarios simulating different
test circumstances. The measured values in the table clearly
show that even the baseline classifier is able to classify with
relatively good accuracy in the “Standard” scenario; the results
of the “New World” scenario provided an encouraging starting
point for recognizing unknown diseases as the main goal of the
research, using already known diseases.

Number of train,
test classes, shots

and epochs

New World
scenario

Standard
scenario

Hybrid
scenario

C4/C2/S2/E1 0.920 0.939 0.766
C4/C2/S2/E5 0.924 0.896 0.846

C4/C2/S2/E10 0.898 0.904 0.825
C4/C4/S2/E1 0.620 0.759 0.800
C4/C4/S2/E5 0.760 0.892 0.823

C4/C4/S2/E10 0.742 0.890 0.805
C6/C2/S2/E1 0.779 0.939 0.750
C6/C2/S2/E5 0.800 0.888 0.776

C6/C2/S2/E10 0.793 0.898 0.770
C6/C4/S2/E1 0.759 0.779 0.699
C6/C4/S2/E5 0.648 0.836 0.693

C6/C4/S2/E10 0.708 0.858 0.673
C8/C2/S2/E1 0.960 0.940 0.600
C8/C2/S2/E5 0.884 0.868 0.726

C8/C2/S2/E10 0.872 0.870 0.713
C8/C4/S2/E1 0.680 0.800 0.766
C8/C4/S2/E5 0.720 0.880 0.746

C8/C4/S2/E10 0.690 0.818 0.726
Average 0.7808 0.8696 0.7501

Table 3. Accuracy results of test scenarios

In the Table 3, the three numerical values below each other

belong to a common measurement in such a way that the
accuracy values after 1, 5, and 10 epochs were measured. In
most cases, after the 5th epoch, the training reached the accuracy
value after that the system could no longer learn. In order to
avoid overfitting, we used the results after the 5th epoch; and the
test results presented in the rest of the paper also include
learnings up to the first 5 epochs.

D. Classification of unknown diseases, like COVID-19
In the following, the measurements of the “New World”

scenario, which simulates the recognition of new diseases, is
the topic that gives the main objective of our research. The
tables compare the classifiers:

• MN (Matching Network) for only first, and for only
second view (and average accuracy of them),

• k-NN classifier for only first, and for only second view
(and average accuracy of them),

• DVMN as our proposed method
• k-NN classifier for two views

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

INFOCOMMUNICATIONS JOURNAL

MARCH 2021 • VOLUME XIII • NUMBER 1 33

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

• MN (Matching Network) for all data (without
distinguishing views)

• k-NN classifier for all data (without distinguishing
views)

Looking at the results in Table 4, it can be seen that the
DVMN method performs best with an average accuracy of
81.2%, even when using a single sample for the one-shot-
learning task.

train,
test class,

shots

Average of
2 different views Double view

Without
distinguishing

views

accuracies Ave. of
2 MN

Ave. of
2 k-NN DVMN 2-view

k-NN MN k-NN

C4/C2/S1 0.8566 0.6560 0.7766 0.6200 0.8380 0.5833
C4/C4/S1 0.8683 0.6333 0.8333 0.6366 0.7640 0.6500
C6/C2/S1 0.8149 0.5933 0.8200 0.6600 0.7940 0.6499
C6/C4/S1 0.7599 0.5426 0.7600 0.5666 0.7240 0.5400
C8/C2/S1 0.7450 0.6205 0.8333 0.6000 0.8740 0.5600
C8/C4/S1 0.7900 0.6220 0.8466 0.5200 0.7700 0.6199
Average 0.8057 0.6112 0.8116 0.6005 0.7940 0.6005

F1 scores Ave. of
2 MN

Ave. of
2 k-NN DVMN 2-view

k-NN MN k-NN

C4/C2/S1 0.795 0.574 0.762 0.510 0.751 0.480
C4/C4/S1 0.743 0.570 0.795 0.593 0.746 0.546
C6/C2/S1 0.704 0.524 0.776 0.604 0.717 0.587
C6/C4/S1 0.701 0.492 0.724 0.530 0.709 0.519
C8/C2/S1 0.725 0.586 0.797 0.549 0.800 0.556
C8/C4/S1 0.745 0.577 0.810 0.507 0.766 0.532
Average 0.736 0.554 0.777 0.549 0.748 0.537

Table 4. Accuracies and F1 scores of 1-shot learning at New
World scenario

train,

test class,
shots

Average of
2 different views Double view

Without
distinguishing

views

accuracies Ave. of
2 MN

Ave. of
2 k-NN DVMN 2-view

k-NN MN k-NN

C4/C2/S2 0.9000 0.6828 0.8633 0.6300 0.924 0.6980
C4/C4/S2 0.9000 0.6616 0.8434 0.5833 0.760 0.6499
C6/C2/S2 0.8459 0.6425 0.8566 0.6166 0.800 0.6563
C6/C4/S2 0.7680 0.6649 0.7966 0.6500 0.678 0.6499
C8/C2/S2 0.7739 0.6636 0.9133 0.5333 0.884 0.6199
C8/C4/S2 0.7340 0.6499 0.8666 0.5833 0.720 0.5567
Average 0.8203 0.6608 0.8566 0.5994 0.7943 0.6384

F1 scores Ave. of
2 MN

Ave. of
2 k-NN DVMN 2-view

k-NN MN k-NN

C4/C2/S2 0.836 0.561 0.810 0.547 0.826 0.570
C4/C4/S2 0.792 0.526 0.772 0.515 0.731 0.535
C6/C2/S2 0.771 0.576 0.791 0.536 0.754 0.514
C6/C4/S2 0.707 0.511 0.745 0.510 0.667 0.556
C8/C2/S2 0.735 0.595 0.843 0.479 0.814 0.547
C8/C4/S2 0.684 0.540 0.786 0.524 0.659 0.486
Average 0.754 0.552 0.791 0.519 0.742 0.535

Table 5. Accuracies and F1 scores of 2-shot learning at New
World scenario

It can be read from Table 5 that in the case of increasing the

number of samples, in the vast majority of test cases, the

DVMN method achieves the best classification performance
with an average accuracy of 85.7% in 2-shot learning.

At 5-shot learning, significantly fewer samples are available
from the second view than from the first, so a comparison of the
results would not have been statistically possible. Although
fewer test cases were available compared to the previous two
measurements (Tables 4 and 5), the results of Table 6 showed
that the performance of the DVMN classifier is the best in this
case as well, with an average accuracy of 85.4%.

train,

test class,
shots

First view Double view
Without

distinguishing
views

accuracies
first
view

of MN

first
view of
k-NN

DVMN 2-view
k-NN MN k-NN

C4/C2/S5 0.8180 0.6333 0.8433 0.6400 0.7780 0.6100
C4/C4/S5 0.7580 0.5800 0.7960 0.5200 0.8159 0.6400
C6/C2/S5 0.8320 0.6599 0.924 0.4400 0.8539 0.6333

Average 0.8026 0.6244 0.8544 0.533 0.8159 0.6277

F1 scores
first
view

of MN

first
view of
k-NN

DVMN 2-view
k-NN MN k-NN

C4/C2/S5 0.746 0.529 0.770 0.568 0.710 0.535
C4/C4/S5 0.697 0.520 0.706 0.475 0.764 0.510
C6/C2/S5 0.763 0.547 0.836 0.437 0.776 0.493
Average 0.735 0.532 0.771 0.493 0.750 0.513

Table 6. Accuracies and F1 scores of 5-shot learning at New
World scenario

VI. CONCLUSION
The few-shot learning problem presented in this paper

intends to help the work of those working in medicine by
analyzing pathological X-ray recordings, using only very few
images. Although there are solutions, if the images come from
different views, they will not handle these views well. We
proposed an improved method, the so-called Double-View
Matching Network (DVMN based on the deep neural network),
which solves the few-shot learning problem as well as the
different views of the pathological recordings in the images.
The main contribution of this paper is the convolutional neural
network for feature extraction and handling the multi-view in
image representation. Our method was tested in the
classification of images showing unknown COVID-19
symptoms in an environment designed for learning a few
samples, with prior meta-learning on images of other diseases
only. We compared the results with k-NN classifiers, with
different variants of the Matching Network method (one variant
for only one view and another without distinguishing views).
The results show that DVMN reaches the best accuracy on
multi-view dataset (better than Matching Network as well) at 1-
shot, 2-shot, and 5-shot learning.

ACKNOWLEDGMENT
The research has been supported by the European Union, co-

financed by the European Social Fund (EFOP-3.6.2-16-2017-
00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and Info-
communications).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

• MN (Matching Network) for all data (without
distinguishing views)

• k-NN classifier for all data (without distinguishing
views)

Looking at the results in Table 4, it can be seen that the
DVMN method performs best with an average accuracy of
81.2%, even when using a single sample for the one-shot-
learning task.

train,
test class,

shots

Average of
2 different views Double view

Without
distinguishing

views

accuracies Ave. of
2 MN

Ave. of
2 k-NN DVMN 2-view

k-NN MN k-NN

C4/C2/S1 0.8566 0.6560 0.7766 0.6200 0.8380 0.5833
C4/C4/S1 0.8683 0.6333 0.8333 0.6366 0.7640 0.6500
C6/C2/S1 0.8149 0.5933 0.8200 0.6600 0.7940 0.6499
C6/C4/S1 0.7599 0.5426 0.7600 0.5666 0.7240 0.5400
C8/C2/S1 0.7450 0.6205 0.8333 0.6000 0.8740 0.5600
C8/C4/S1 0.7900 0.6220 0.8466 0.5200 0.7700 0.6199
Average 0.8057 0.6112 0.8116 0.6005 0.7940 0.6005

F1 scores Ave. of
2 MN

Ave. of
2 k-NN DVMN 2-view

k-NN MN k-NN

C4/C2/S1 0.795 0.574 0.762 0.510 0.751 0.480
C4/C4/S1 0.743 0.570 0.795 0.593 0.746 0.546
C6/C2/S1 0.704 0.524 0.776 0.604 0.717 0.587
C6/C4/S1 0.701 0.492 0.724 0.530 0.709 0.519
C8/C2/S1 0.725 0.586 0.797 0.549 0.800 0.556
C8/C4/S1 0.745 0.577 0.810 0.507 0.766 0.532
Average 0.736 0.554 0.777 0.549 0.748 0.537

Table 4. Accuracies and F1 scores of 1-shot learning at New
World scenario

train,

test class,
shots

Average of
2 different views Double view

Without
distinguishing

views

accuracies Ave. of
2 MN

Ave. of
2 k-NN DVMN 2-view

k-NN MN k-NN

C4/C2/S2 0.9000 0.6828 0.8633 0.6300 0.924 0.6980
C4/C4/S2 0.9000 0.6616 0.8434 0.5833 0.760 0.6499
C6/C2/S2 0.8459 0.6425 0.8566 0.6166 0.800 0.6563
C6/C4/S2 0.7680 0.6649 0.7966 0.6500 0.678 0.6499
C8/C2/S2 0.7739 0.6636 0.9133 0.5333 0.884 0.6199
C8/C4/S2 0.7340 0.6499 0.8666 0.5833 0.720 0.5567
Average 0.8203 0.6608 0.8566 0.5994 0.7943 0.6384

F1 scores Ave. of
2 MN

Ave. of
2 k-NN DVMN 2-view

k-NN MN k-NN

C4/C2/S2 0.836 0.561 0.810 0.547 0.826 0.570
C4/C4/S2 0.792 0.526 0.772 0.515 0.731 0.535
C6/C2/S2 0.771 0.576 0.791 0.536 0.754 0.514
C6/C4/S2 0.707 0.511 0.745 0.510 0.667 0.556
C8/C2/S2 0.735 0.595 0.843 0.479 0.814 0.547
C8/C4/S2 0.684 0.540 0.786 0.524 0.659 0.486
Average 0.754 0.552 0.791 0.519 0.742 0.535

Table 5. Accuracies and F1 scores of 2-shot learning at New
World scenario

It can be read from Table 5 that in the case of increasing the

number of samples, in the vast majority of test cases, the

DVMN method achieves the best classification performance
with an average accuracy of 85.7% in 2-shot learning.

At 5-shot learning, significantly fewer samples are available
from the second view than from the first, so a comparison of the
results would not have been statistically possible. Although
fewer test cases were available compared to the previous two
measurements (Tables 4 and 5), the results of Table 6 showed
that the performance of the DVMN classifier is the best in this
case as well, with an average accuracy of 85.4%.

train,

test class,
shots

First view Double view
Without

distinguishing
views

accuracies
first
view

of MN

first
view of
k-NN

DVMN 2-view
k-NN MN k-NN

C4/C2/S5 0.8180 0.6333 0.8433 0.6400 0.7780 0.6100
C4/C4/S5 0.7580 0.5800 0.7960 0.5200 0.8159 0.6400
C6/C2/S5 0.8320 0.6599 0.924 0.4400 0.8539 0.6333

Average 0.8026 0.6244 0.8544 0.533 0.8159 0.6277

F1 scores
first
view

of MN

first
view of
k-NN

DVMN 2-view
k-NN MN k-NN

C4/C2/S5 0.746 0.529 0.770 0.568 0.710 0.535
C4/C4/S5 0.697 0.520 0.706 0.475 0.764 0.510
C6/C2/S5 0.763 0.547 0.836 0.437 0.776 0.493
Average 0.735 0.532 0.771 0.493 0.750 0.513

Table 6. Accuracies and F1 scores of 5-shot learning at New
World scenario

VI. CONCLUSION
The few-shot learning problem presented in this paper

intends to help the work of those working in medicine by
analyzing pathological X-ray recordings, using only very few
images. Although there are solutions, if the images come from
different views, they will not handle these views well. We
proposed an improved method, the so-called Double-View
Matching Network (DVMN based on the deep neural network),
which solves the few-shot learning problem as well as the
different views of the pathological recordings in the images.
The main contribution of this paper is the convolutional neural
network for feature extraction and handling the multi-view in
image representation. Our method was tested in the
classification of images showing unknown COVID-19
symptoms in an environment designed for learning a few
samples, with prior meta-learning on images of other diseases
only. We compared the results with k-NN classifiers, with
different variants of the Matching Network method (one variant
for only one view and another without distinguishing views).
The results show that DVMN reaches the best accuracy on
multi-view dataset (better than Matching Network as well) at 1-
shot, 2-shot, and 5-shot learning.

ACKNOWLEDGMENT
The research has been supported by the European Union, co-

financed by the European Social Fund (EFOP-3.6.2-16-2017-
00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and Info-
communications).

Double-View Matching Network for Few-Shot
Learning to Classify Covid-19 in X-ray images

MARCH 2021 • VOLUME XIII • NUMBER 134

INFOCOMMUNICATIONS JOURNAL

Gábor Szűcs has received MSc in electrical en-
gineering and PhD in computer science from the
Budapest University of Technology and Econom-
ics (BME) in 1994 and in 2002, respectively. He
is an at Department of Telecommunications and
Media Informatics of BME. His research areas are data
science, artificial intelligence, deep learning, content-
based image retrieval, multimedia mining. The number
of his publications is more than 100. He is the president
of the Artificial Intelligence Section of HTE (Scientific

Association for Infocommunications), he is the leader of the research group
DCLAB (Data Science and Content Technologies). He has earned János Bolyai
Research Scholarship of the Hungarian Academy of Science some years ago.

Marcell Németh was born in Budapest, Hungary in
1997. He is a MSc student at the Budapest University
of Technology and Economics, Faculty of Electrical
Engineering and Informatics as computer engineering.
His research activities are data science, data series
analytics, image recognition and machine learning. He
took second place in the Students' Scientific Conference
2020 at Budapest University of Technology and
Economics.

RefeRences

 [1] Cohen, J. P., Morrison, P., Dao, L., Roth, K., Duong, T. Q. and
Ghassemi, M. (2020). COVID-19 Image Data Collection: Prospective
Predictions Are the Future, arXiv:2006.11988, https://github.com/
ieee8023/covid-chestxray-dataset

 [2] Collier, M., & Beel, J. (2019). Memory-Augmented Neural Networks
for Machine Translation. arXiv preprint arXiv:1909.08314.

 [3] Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of the
34th International Conference on Machine Learning (ICML 2017),
Volume 70 (pp. 1126-1135). doi: 10.5555/3305381.3305498

 [4] Garcia, V., & Bruna, J. (2017). Few-shot learning with graph neural
networks. arXiv preprint arXiv:1711.04043.

 [5] Geras, K. J., Wolfson, S., Shen, Y., Wu, N., Kim, S., Kim, E., ...
& Cho, K. (2017). High-resolution breast cancer screening with
multi-view deep convolutional neural networks. arXiv preprint
arXiv:1703.07047.

 [6] Goodrich, R. K. (1970). A Riesz representation theorem. Proceedings
of the American Mathematical Society, 24(3), 629-636.

 doi: 10.1090/S0002-9939-1963-0145334-0
 [7] Jain, P. (2018). Metric Learning Tutorial. https://parajain.github.io/

metric_learning_tutorial/
 [8] Kan M, Shan S. and Chen X., (2016). Multi-view Deep Network for

Cross-View Classification, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
pp. 4847-4855, doi: 10.1109/CVPR.2016.524

 [9] Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese neural
networks for one-shot image recognition. In ICML deep learning
workshop (Vol. 2).

 [10] Kondor, R. (2003). A Short Introduction to Hilbert Space Methods in
Machine Learning. Tutorial at Columbia University.

 [11] Li, Y., Yang, M., & Zhang, Z. (2018). A survey of multi-view
representation learning. IEEE transactions on knowledge and data
engineering, vol. 31, no. 10, pp. 1863-1883,

 doi: 10.1109/TKDE.2018.2872063
 [12] Metzen, J. H., Kröger, T., Schenk, A., Zidowitz, S., Peitgen, H.

O., & Jiang, X. (2009). Matching of anatomical tree structures for
registration of medical images. Image and Vision Computing, Volume
27, Issue 7, pp. 923-933. doi: 10.1016/j.imavis.2008.04.002

 [13] Mishra, N., Rohaninejad, M., Chen, X., & Abbeel, P. (2017).
Meta-learning with temporal convolutions. arXiv preprint
arXiv:1707.03141, v3.

 [14] Papp, D., & Szűcs, G. (2017). Balanced active learning method for
image classification. Acta Cybernetica, 23(2), 645-658.

 doi: 10.14232/actacyb.23.2.2017.13
 [15] Papp, D., & Szűcs, G. (2018). Double probability model for open set

problem at image classification. Informatica, 29(2), 353-369.
 doi: 10.15388/Informatica.2018.171
 [16] Ramachandra, B., Jones, M.J., & Vatsavai, R. (2020). Learning a

distance function with a Siamese network to localize anomalies in
videos. 2020 IEEE Winter Conference on Applications of Computer
Vision (WACV), 2587-2596.

 [17] Seeland, M., & Mäder, P. (2021). Multi-view classification with
convolutional neural networks. Plos ONE, 16(1), e0245230.

 doi: 10.1371/journal.pone.0245230
 [18] Shyam, P., Gupta, S., & Dukkipati, A. (2017). Attentive recurrent

comparators. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70 pp. 3173-3181.

 doi: 10.5555/3305890.3306009

 [19] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

 [20] Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks
for few-shot learning. In Advances in neural information processing
systems, pp. 4077-4087. doi: 10.5555/3294996.3295163

 [21] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., & Hospedales,
T. M. (2018). Learning to compare: Relation network for few-shot
learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 1199-1208).

 [22] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
... & Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) pp. 1-9. doi: 10.1109/CVPR.2015.7298594

 [23] Szűcs, G., & Henk, Z. (2015). Active clustering based classification
for cost effective prediction in few labeled data problem. Academy
of Economic Studies. Economy Informatics, vol. 15, no. 1/2015, pp.
5-13.

 [24] Szűcs, G., Papp, D., & Lovas, D. (2014). Viewpoints combined
classification method in image-based plant identification task. In
Working Notes for CLEF 2014 Conference, vol. 1180, pp. 763-770.

 [25] Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016).
Matching networks for one-shot learning. Advances in neural
information processing systems, 29, 3630-3638.

 doi: 10.5555/3157382.3157504
 [26] Wang, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2020). Generalizing from

a few examples: A survey on few-shot learning. ACM Computing
Surveys (CSUR), 53(3), 1-34. doi: 10.1145/3386252

[27] Zhao, A., Balakrishnan, G., Durand, F., Guttag, J. V., & Dalca, A. V.
(2019). Data augmentation using learned transformations for one-shot
medical image segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) pp. 8543-8553.
doi: 10.1109/CVPR.2019.00874

 [28] Ziko, I., Dolz, J., Granger, E., & Ayed, I. B. (2020). Laplacian
regularized few-shot learning. Proceedings of the 37th International
Conference on Machine Learning, PMLR 119, pp. 11660-11670.

https://arxiv.org/abs/2006.11988
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://arxiv.org/abs/1909.08314
https://dl.acm.org/doi/10.5555/3305381.3305498
https://arxiv.org/abs/1711.04043
https://arxiv.org/abs/1703.07047
https://doi.org/10.1090/S0002-9939-1963-0145334-0
https://parajain.github.io/metric_learning_tutorial/
https://parajain.github.io/metric_learning_tutorial/
https://doi.org/10.1109/CVPR.2016.524
https://doi.org/10.1109/TKDE.2018.2872063
https://doi.org/10.1016/j.imavis.2008.04.002
https://arxiv.org/abs/1707.03141
https://doi.org/10.14232/actacyb.23.2.2017.13
https://doi.org/10.15388/Informatica.2018.171
https://doi.org/10.1371/journal.pone.0245230
https://dl.acm.org/doi/10.5555/3305890.3306009
https://arxiv.org/abs/1409.1556
https://dl.acm.org/doi/10.5555/3294996.3295163
http://doi.org/10.1109/CVPR.2015.7298594
https://dl.acm.org/doi/10.5555/3157382.3157504
https://doi.org/10.1145/3386252
https://doi.org/10.1109/CVPR.2019.00874

