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Abstract — The research topic presented in this paper belongs 
to small training data problem in machine learning (especially in 
deep learning), it intends to help the work of those working in 
medicine by analyzing pathological X-ray recordings, using only 
very few images. This scenario is a particularly hot issue 
nowadays: how could a new disease for which only limited data 
are available be diagnosed using features of previous diseases? In 
this problem, so-called few-shot learning, the difficulty of the 
classification task is to learn the unique feature characteristics 
associated with the classes. Although there are solutions, but if the 
images come from different views, they will not handle these views 
well. We proposed an improved method, so-called Double-View 
Matching Network (DVMN based on the deep neural network), 
which solves the few-shot learning problem as well as the different 
views of the pathological recordings in the images. The main 
contribution of this is the convolutional neural network for feature 
extraction and handling the multi-view in image representation. 
Our method was tested in the classification of images showing 
unknown COVID-19 symptoms in an environment designed for 
learning a few samples, with prior meta-learning on images of 
other diseases only. The results show that DVMN reaches better 
accuracy on multi-view dataset than simple Matching Network 
without multi-view handling. 
 

Index Terms — COVID-19, convolutional neural network, deep 
learning, feature extraction, few-shot learning, image 
classification, image representation, machine learning, multi-view 

I. INTRODUCTION 
A necessary, but not sufficient condition for the effective use 

of machine learning (especially deep learning) methods is the 
availability of large amounts of training data. This condition 
cannot be satisfied in many applications (e.g., in image 
classification [15], especially in medical images [12]), in most 
cases due to a lack of available knowledge or excessive costs of 
expertise [23]. The research topic presented in this paper 
belongs to this problem type that is often lacking in such data, 
it intends to help the work of those working in medicine by 
analyzing pathological recordings, using only very few images. 
This scenario is a particularly hot issue nowadays: how could a 
new disease for which only limited data are available be 
diagnosed using features of previous diseases? (If the number 
of labeled data is small, but the huge amount of unlabeled data 
is available, then this can lead to active learning [14], but in this 
paper, we consider that there is no unlabeled data at all.) 
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In the case of learning from a small amount of labeled data, 
so-called “few-shot learning” (FSL), there are only a few 
samples from each class, so the difficulty of the classification 
task is to learn the unique feature characteristics associated with 
the classes as quickly and accurately as possible. In the few-
shot learning literature A-way-B-shot means that we use B 
samples from A different classes for learning, so the training set 
has a total of 𝐼𝐼 = 𝐴𝐴 ∙ 𝐵𝐵 samples. This type of meta-learning in 
image recognition area requires knowledge transfer of high-
level characteristics of training images similar to the target 
images. Although there are methods that can solve the problem, 
but if the images come from different views [17][24], they will 
not handle these views well. In this paper, we proposed an 
improved method, so-called Double-View Matching Network, 
which solves the few-shot learning problem as well as the 
different views of the pathological recordings in the images.  

The next section discusses the theory of few-shot type 
machine learning in hypothesis space and its limits in Hilbert 
spaces. Then the paper presents the advanced methods, 
particularly the Matching Network (with a special focus on the 
attention mechanism and neural network architecture) for few-
shot learning. For improvement and handling more views in the 
images, we suggested Double-View Matching Network, which 
is capable of recognizing multi-view recordings. The suggested 
method was tested in the classification of images showing 
unknown COVID-19 symptoms in an environment designed for 
learning a few samples, with prior meta-learning on images of 
other diseases only. The results of the new method are detailed 
at the end of the paper. 

II. FEW-SHOT HYPOTHESIS LEARNING 

A. Hypothesis Learning 
Most few-shot learning tasks can be traced back to 

supervised learning problems, with only a few labeled samples 
from each class available to the classifier [4] (at unsupervised 
case, e.g., the graph clustering can be used [28]). The most 
common applications are image recognition, emotion 
recognition, object classification and multimedia analysis. 

The general task of the problem is to parameterize a classifier 
ℎ using only a very small number of samples that predicts label 
𝑦𝑦𝑖𝑖 for each input 𝑥𝑥𝑖𝑖. When a machine learner is trained on a 
large amount of training data, several models can be created at 
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the end of the learning that are able to produce output from the 
input samples. However, with only a few data, a much larger 
number of such models can be “fitted” to the input-output pairs 
due to the wide variety of options (fewer constraints). These 
models can be considered as hypothesis, that is, a function that 
produces the output from the input; and the aim is to find the 
best solution in this hypothesis space, as we present in the 
following based on a tutorial [10]. 

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the 
so-called empirical error:  

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1) 

Thus, with the previous notations, we can formalize the 
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D 
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the 
hypothesis space for the functions 

𝑓𝑓 ∶  X →  Y (2) 

and 𝑆𝑆 =  (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on 
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real 
error is minimal: 

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not 

possible to minimize it clearly since we do not know the 
distribution 𝐷𝐷. However, it is possible to find an estimation by 
taking advantage of the fact that in most cases, the real error of 
the hypotheses takes on values significantly similar to the 
empirical error. The difference between the two errors is 
influenced by the flexibility of the used model (i.e., how many 
degrees of freedom it has). The disadvantage of a large number 
of degrees of freedom is that the hypothesis space is 
accompanied by a tendency to overfit the model, as we can fit 
innumerable functions to the desired distribution. Based on this 
idea, the so-called uniform convergence bounds can be defined, 
for all hypotheses f in a given hypothesis space, it is true that 
[10]: 

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error. 

Despite the uniform convergence bounds defined by (4), 
there may be some training sets for which the model produces 
poor results, so the probability of the good results can be written 
with the following inequality for a given distribution D: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5) 

The main difficulty of finding a solution to this problem is 
that in the absence of accurate knowledge of 𝐷𝐷, the above 
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌 
space (i.e., not just for a given distribution of 𝐷𝐷). However, 
inequality (5) should also be satisfied with a probability of     
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function 
f we can write this formula within all possible distributions of 
𝐷𝐷, so that we get the following: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿    ∀𝑓𝑓 ∈ 𝐹𝐹 (6) 

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹, 
except for the 𝛿𝛿 proportion of samples sampled “unlucky”, 
equation (4) will be true. Inequality (6) is easier to accomplish 
because it is easier to achieve the same success rate in the whole 
set than the same rate within each subset. In contrast, the 
inequality (5) has the advantage that we can tell from sampling 
whether a given set of the training set is “lucky” or “unlucky”. 
If it is “lucky”, the inequality will be true for all hypotheses at 
once, i.e., we have achieved our goal. Based on this, it is 
advisable to write equation (5) in the following formula: 

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[ 𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ] ≤ 𝜀𝜀 ] ≥ 1 − 𝛿𝛿 (7) 

The distinction between (7) and (6) is essential for what we 
want to use the bounds in the future; in the case of the FSL 
learning problem, the most important is the error of the 
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which 
depends significantly on the choice of the training set.  

The error of the model is influenced by the number of 
samples in the available training set 𝑆𝑆 and the hypothesis space 
𝐹𝐹. Starting from this statement, error minimization can be 
approached from several sides to reduce estimation inaccuracy 
using prior knowledge [26]. The possible approaches are the 
number of samples (a larger training set could help, but in FSL, 
only very few samples are available), and the algorithm for 
finding optimal parameters. The last method approaches the 
part of the model, which is responsible for defining and 
narrowing the hypothesis space. In this case, the use of a priori 
knowledge is aimed at reducing the complexity of the 
hypothesis space, excluding several potential hypotheses in 
advance. 

B. Hilbert-space methods 
Minimizing only empirical error is not sufficient, as this type 

of approach can lead to overfitting. To avoid this, it is necessary 
to narrow hypothesis F with certain limits. To solve this, 
starting from equation (4), we can introduce a penalty term, 
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and 
minimizes the following error instead of the method presented 
in equation (1) [10]: 

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8) 

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the 
regularized error. The learning problem should therefore focus 
on three components: the loss function 𝐿𝐿, the regularization 
term 𝛺𝛺 and hypothesis space 𝐹𝐹. 

In constructing the hypothesis space 𝐹𝐹, the natural 
expectation is that 𝐹𝐹 is a linear function space in which for any 
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹. 

In addition, the structure of 𝐹𝐹 should be related to the 
regularization term 𝛺𝛺 in some way. This property is defined by 
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings 
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a 
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are 
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on three components: the loss function 𝐿𝐿, the regularization 
term 𝛺𝛺 and hypothesis space 𝐹𝐹. 

In constructing the hypothesis space 𝐹𝐹, the natural 
expectation is that 𝐹𝐹 is a linear function space in which for any 
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹. 

In addition, the structure of 𝐹𝐹 should be related to the 
regularization term 𝛺𝛺 in some way. This property is defined by 
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings 
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a 
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

the end of the learning that are able to produce output from the 
input samples. However, with only a few data, a much larger 
number of such models can be “fitted” to the input-output pairs 
due to the wide variety of options (fewer constraints). These 
models can be considered as hypothesis, that is, a function that 
produces the output from the input; and the aim is to find the 
best solution in this hypothesis space, as we present in the 
following based on a tutorial [10]. 

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the 
so-called empirical error:  

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1) 

Thus, with the previous notations, we can formalize the 
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D 
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the 
hypothesis space for the functions 

𝑓𝑓 ∶  X →  Y (2) 

and 𝑆𝑆 =  (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on 
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real 
error is minimal: 

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not 

possible to minimize it clearly since we do not know the 
distribution 𝐷𝐷. However, it is possible to find an estimation by 
taking advantage of the fact that in most cases, the real error of 
the hypotheses takes on values significantly similar to the 
empirical error. The difference between the two errors is 
influenced by the flexibility of the used model (i.e., how many 
degrees of freedom it has). The disadvantage of a large number 
of degrees of freedom is that the hypothesis space is 
accompanied by a tendency to overfit the model, as we can fit 
innumerable functions to the desired distribution. Based on this 
idea, the so-called uniform convergence bounds can be defined, 
for all hypotheses f in a given hypothesis space, it is true that 
[10]: 

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error. 

Despite the uniform convergence bounds defined by (4), 
there may be some training sets for which the model produces 
poor results, so the probability of the good results can be written 
with the following inequality for a given distribution D: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5) 

The main difficulty of finding a solution to this problem is 
that in the absence of accurate knowledge of 𝐷𝐷, the above 
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌 
space (i.e., not just for a given distribution of 𝐷𝐷). However, 
inequality (5) should also be satisfied with a probability of     
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function 
f we can write this formula within all possible distributions of 
𝐷𝐷, so that we get the following: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿    ∀𝑓𝑓 ∈ 𝐹𝐹 (6) 

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹, 
except for the 𝛿𝛿 proportion of samples sampled “unlucky”, 
equation (4) will be true. Inequality (6) is easier to accomplish 
because it is easier to achieve the same success rate in the whole 
set than the same rate within each subset. In contrast, the 
inequality (5) has the advantage that we can tell from sampling 
whether a given set of the training set is “lucky” or “unlucky”. 
If it is “lucky”, the inequality will be true for all hypotheses at 
once, i.e., we have achieved our goal. Based on this, it is 
advisable to write equation (5) in the following formula: 

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[ 𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ] ≤ 𝜀𝜀 ] ≥ 1 − 𝛿𝛿 (7) 

The distinction between (7) and (6) is essential for what we 
want to use the bounds in the future; in the case of the FSL 
learning problem, the most important is the error of the 
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which 
depends significantly on the choice of the training set.  

The error of the model is influenced by the number of 
samples in the available training set 𝑆𝑆 and the hypothesis space 
𝐹𝐹. Starting from this statement, error minimization can be 
approached from several sides to reduce estimation inaccuracy 
using prior knowledge [26]. The possible approaches are the 
number of samples (a larger training set could help, but in FSL, 
only very few samples are available), and the algorithm for 
finding optimal parameters. The last method approaches the 
part of the model, which is responsible for defining and 
narrowing the hypothesis space. In this case, the use of a priori 
knowledge is aimed at reducing the complexity of the 
hypothesis space, excluding several potential hypotheses in 
advance. 

B. Hilbert-space methods 
Minimizing only empirical error is not sufficient, as this type 

of approach can lead to overfitting. To avoid this, it is necessary 
to narrow hypothesis F with certain limits. To solve this, 
starting from equation (4), we can introduce a penalty term, 
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and 
minimizes the following error instead of the method presented 
in equation (1) [10]: 

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8) 

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the 
regularized error. The learning problem should therefore focus 
on three components: the loss function 𝐿𝐿, the regularization 
term 𝛺𝛺 and hypothesis space 𝐹𝐹. 

In constructing the hypothesis space 𝐹𝐹, the natural 
expectation is that 𝐹𝐹 is a linear function space in which for any 
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹. 

In addition, the structure of 𝐹𝐹 should be related to the 
regularization term 𝛺𝛺 in some way. This property is defined by 
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings 
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a 
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are 
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the end of the learning that are able to produce output from the 
input samples. However, with only a few data, a much larger 
number of such models can be “fitted” to the input-output pairs 
due to the wide variety of options (fewer constraints). These 
models can be considered as hypothesis, that is, a function that 
produces the output from the input; and the aim is to find the 
best solution in this hypothesis space, as we present in the 
following based on a tutorial [10]. 

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the 
so-called empirical error:  

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1) 

Thus, with the previous notations, we can formalize the 
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D 
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the 
hypothesis space for the functions 

𝑓𝑓 ∶  X →  Y (2) 

and 𝑆𝑆 =  (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on 
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real 
error is minimal: 

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not 

possible to minimize it clearly since we do not know the 
distribution 𝐷𝐷. However, it is possible to find an estimation by 
taking advantage of the fact that in most cases, the real error of 
the hypotheses takes on values significantly similar to the 
empirical error. The difference between the two errors is 
influenced by the flexibility of the used model (i.e., how many 
degrees of freedom it has). The disadvantage of a large number 
of degrees of freedom is that the hypothesis space is 
accompanied by a tendency to overfit the model, as we can fit 
innumerable functions to the desired distribution. Based on this 
idea, the so-called uniform convergence bounds can be defined, 
for all hypotheses f in a given hypothesis space, it is true that 
[10]: 

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error. 

Despite the uniform convergence bounds defined by (4), 
there may be some training sets for which the model produces 
poor results, so the probability of the good results can be written 
with the following inequality for a given distribution D: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5) 

The main difficulty of finding a solution to this problem is 
that in the absence of accurate knowledge of 𝐷𝐷, the above 
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌 
space (i.e., not just for a given distribution of 𝐷𝐷). However, 
inequality (5) should also be satisfied with a probability of     
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function 
f we can write this formula within all possible distributions of 
𝐷𝐷, so that we get the following: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿    ∀𝑓𝑓 ∈ 𝐹𝐹 (6) 

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹, 
except for the 𝛿𝛿 proportion of samples sampled “unlucky”, 
equation (4) will be true. Inequality (6) is easier to accomplish 
because it is easier to achieve the same success rate in the whole 
set than the same rate within each subset. In contrast, the 
inequality (5) has the advantage that we can tell from sampling 
whether a given set of the training set is “lucky” or “unlucky”. 
If it is “lucky”, the inequality will be true for all hypotheses at 
once, i.e., we have achieved our goal. Based on this, it is 
advisable to write equation (5) in the following formula: 

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[ 𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ] ≤ 𝜀𝜀 ] ≥ 1 − 𝛿𝛿 (7) 

The distinction between (7) and (6) is essential for what we 
want to use the bounds in the future; in the case of the FSL 
learning problem, the most important is the error of the 
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which 
depends significantly on the choice of the training set.  

The error of the model is influenced by the number of 
samples in the available training set 𝑆𝑆 and the hypothesis space 
𝐹𝐹. Starting from this statement, error minimization can be 
approached from several sides to reduce estimation inaccuracy 
using prior knowledge [26]. The possible approaches are the 
number of samples (a larger training set could help, but in FSL, 
only very few samples are available), and the algorithm for 
finding optimal parameters. The last method approaches the 
part of the model, which is responsible for defining and 
narrowing the hypothesis space. In this case, the use of a priori 
knowledge is aimed at reducing the complexity of the 
hypothesis space, excluding several potential hypotheses in 
advance. 

B. Hilbert-space methods 
Minimizing only empirical error is not sufficient, as this type 

of approach can lead to overfitting. To avoid this, it is necessary 
to narrow hypothesis F with certain limits. To solve this, 
starting from equation (4), we can introduce a penalty term, 
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and 
minimizes the following error instead of the method presented 
in equation (1) [10]: 

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8) 

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the 
regularized error. The learning problem should therefore focus 
on three components: the loss function 𝐿𝐿, the regularization 
term 𝛺𝛺 and hypothesis space 𝐹𝐹. 

In constructing the hypothesis space 𝐹𝐹, the natural 
expectation is that 𝐹𝐹 is a linear function space in which for any 
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹. 

In addition, the structure of 𝐹𝐹 should be related to the 
regularization term 𝛺𝛺 in some way. This property is defined by 
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings 
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a 
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are 
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called Hibert space, and the great advantage of this is that 
Frigyes Riesz’s theory can be applied to the present problem 
because in Hilbert spaces, the Riesz representation theorem is 
true [6], as a result of which for any x ∈ X there exists a 
representation 𝑘𝑘𝑥𝑥, for which it is true that: 

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉  ∀𝑓𝑓 ∈ 𝐹𝐹 (9) 

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that 
it exists. A key element of the idea is that it creates a connection 
between the abstract structure of F and the elements in it, and 
we can use its representation instead of any x. If we rewrite the 
complete regularized error problem as follows 

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10) 

then it can be seen that f appears only in the form F with scalar 
products of other functions. It follows that if we know the scalar 
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be 
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form 
each vector takes, and leaving the unnecessary elements, it can 
be seen that the quality of the algorithm is determined by the 
internal products called kernels: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11) 

The only condition for kernels is that they should be 
symmetric as well as satisfying the following expression: 

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12) 

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in 
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0. 

Summarizing the above, the learning problem has been 
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘 
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be 
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, 
since the error term depends only on the internal product of 𝑓𝑓 
with different 𝑘𝑘, while the regularization term will affect all its 
dimensions. If 𝑓𝑓 has a component that is orthogonal to the 
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be 
affected, but the regularization term will be. It follows that the 
optimal 𝑓𝑓 will entirely be in the subspace spanned by the 
representatives:  

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13) 

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias). 
Substituting formula (13) into (10), it can be observed that the 
task of the learning algorithm has been simplified to calculating 
the offset and the coefficients (the interpretation of these 
coefficients is the learnt knowledge after the learning). 

III. MATCHING NETWORK ARCHITECTURE 

A. Matching Network for few-shot learning 
Several methods have been developed to solve the FSL 

problem: Prototypical Network [20], Attentive Recurrent 
Comparators [18], Simple Neural AttentIve Learner (SNAIL) 
[13], Memory-Augmented Neural Network (MANN) [2], 
ModelAgnostic Meta-Learning [3], Relation Network [21] and 
Siamese networks [9][16]. Based on the sources in the FSL 
literature, analyzing the results and considering further 
potential improvements, we chose one of the best methods, 
Matching Network [25], as the basis of our research. This 
solution adapts many techniques, including deep parameterized 
networks and metric learning [7] using feature vectors and deep 
neural networks with memory. 

The essential idea of the Matching Network classifiers is to 
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is 
realized in the Hilbert-type spaces detailed in the previous 
section, while the k-NN-type classification takes place in the 
last phase during comparing feature vectors. 

In the first phase, neural networks can be used. The main task 
of this phase is to learn a distance metric, a metric space in 
which the representations of samples from different classes are 
separated from each other as much as possible. Thus, the task 
of the applied neural networks is to parameterize a metric with 
such properties, i.e., an optimal hypothesis function to calculate 
the coefficients based on what is described in the previous 
section. 

 

 
Figure 1. Matching Network architecture 

 
The training set of the few-shot learner is called support set. 

The applied method in Matching Network defines a classifier 
(𝑆𝑆 → 𝐶𝐶𝑆𝑆(∙) mapping) for each support set sampled from the 
training set, and then combines the stored mappings to make the 
best use of the available knowledge. Thus, Matching Network 
type classifiers are able to categorize unknown classes with 
high efficiency without changing the networks.  

In the following, we define the task description in more 
detail. Let 𝑆𝑆 be a support set containing 𝑛𝑛 sample-label pairs: 
𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛     

𝑖𝑖=1. As shown in Figure 1, the operation of the 
model was illustrated by recognizing dog breeds. The sample- 
label pairs (label means class label) of the support set are given 
as input to a classifier 𝐶𝐶𝑆𝑆(�̂�𝑥), which defines a probability 
distribution for a given sample �̂�𝑥 based on the class label �̂�𝑦. This 
mapping can be written as follows: S →  𝐶𝐶𝑆𝑆(�̂�𝑥) = 𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆), 
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the end of the learning that are able to produce output from the 
input samples. However, with only a few data, a much larger 
number of such models can be “fitted” to the input-output pairs 
due to the wide variety of options (fewer constraints). These 
models can be considered as hypothesis, that is, a function that 
produces the output from the input; and the aim is to find the 
best solution in this hypothesis space, as we present in the 
following based on a tutorial [10]. 

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the 
so-called empirical error:  

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1) 

Thus, with the previous notations, we can formalize the 
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D 
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the 
hypothesis space for the functions 

𝑓𝑓 ∶  X →  Y (2) 

and 𝑆𝑆 =  (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on 
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real 
error is minimal: 

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not 

possible to minimize it clearly since we do not know the 
distribution 𝐷𝐷. However, it is possible to find an estimation by 
taking advantage of the fact that in most cases, the real error of 
the hypotheses takes on values significantly similar to the 
empirical error. The difference between the two errors is 
influenced by the flexibility of the used model (i.e., how many 
degrees of freedom it has). The disadvantage of a large number 
of degrees of freedom is that the hypothesis space is 
accompanied by a tendency to overfit the model, as we can fit 
innumerable functions to the desired distribution. Based on this 
idea, the so-called uniform convergence bounds can be defined, 
for all hypotheses f in a given hypothesis space, it is true that 
[10]: 

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error. 

Despite the uniform convergence bounds defined by (4), 
there may be some training sets for which the model produces 
poor results, so the probability of the good results can be written 
with the following inequality for a given distribution D: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5) 

The main difficulty of finding a solution to this problem is 
that in the absence of accurate knowledge of 𝐷𝐷, the above 
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌 
space (i.e., not just for a given distribution of 𝐷𝐷). However, 
inequality (5) should also be satisfied with a probability of     
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function 
f we can write this formula within all possible distributions of 
𝐷𝐷, so that we get the following: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿    ∀𝑓𝑓 ∈ 𝐹𝐹 (6) 

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹, 
except for the 𝛿𝛿 proportion of samples sampled “unlucky”, 
equation (4) will be true. Inequality (6) is easier to accomplish 
because it is easier to achieve the same success rate in the whole 
set than the same rate within each subset. In contrast, the 
inequality (5) has the advantage that we can tell from sampling 
whether a given set of the training set is “lucky” or “unlucky”. 
If it is “lucky”, the inequality will be true for all hypotheses at 
once, i.e., we have achieved our goal. Based on this, it is 
advisable to write equation (5) in the following formula: 

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[ 𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ] ≤ 𝜀𝜀 ] ≥ 1 − 𝛿𝛿 (7) 

The distinction between (7) and (6) is essential for what we 
want to use the bounds in the future; in the case of the FSL 
learning problem, the most important is the error of the 
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which 
depends significantly on the choice of the training set.  

The error of the model is influenced by the number of 
samples in the available training set 𝑆𝑆 and the hypothesis space 
𝐹𝐹. Starting from this statement, error minimization can be 
approached from several sides to reduce estimation inaccuracy 
using prior knowledge [26]. The possible approaches are the 
number of samples (a larger training set could help, but in FSL, 
only very few samples are available), and the algorithm for 
finding optimal parameters. The last method approaches the 
part of the model, which is responsible for defining and 
narrowing the hypothesis space. In this case, the use of a priori 
knowledge is aimed at reducing the complexity of the 
hypothesis space, excluding several potential hypotheses in 
advance. 

B. Hilbert-space methods 
Minimizing only empirical error is not sufficient, as this type 

of approach can lead to overfitting. To avoid this, it is necessary 
to narrow hypothesis F with certain limits. To solve this, 
starting from equation (4), we can introduce a penalty term, 
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and 
minimizes the following error instead of the method presented 
in equation (1) [10]: 

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8) 

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the 
regularized error. The learning problem should therefore focus 
on three components: the loss function 𝐿𝐿, the regularization 
term 𝛺𝛺 and hypothesis space 𝐹𝐹. 

In constructing the hypothesis space 𝐹𝐹, the natural 
expectation is that 𝐹𝐹 is a linear function space in which for any 
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹. 

In addition, the structure of 𝐹𝐹 should be related to the 
regularization term 𝛺𝛺 in some way. This property is defined by 
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings 
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a 
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are 
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the end of the learning that are able to produce output from the 
input samples. However, with only a few data, a much larger 
number of such models can be “fitted” to the input-output pairs 
due to the wide variety of options (fewer constraints). These 
models can be considered as hypothesis, that is, a function that 
produces the output from the input; and the aim is to find the 
best solution in this hypothesis space, as we present in the 
following based on a tutorial [10]. 

There is a function 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, which can be quantified by the 
so-called empirical error:  

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] = 1
𝑁𝑁 ∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
(1) 

Thus, with the previous notations, we can formalize the 
problem of learning in an 𝑋𝑋 input and 𝑌𝑌 output space, where D 
is an unknown distribution in an 𝑋𝑋 × 𝑌𝑌 space and F is the 
hypothesis space for the functions 

𝑓𝑓 ∶  X →  Y (2) 

and 𝑆𝑆 =  (𝑥𝑥1, 𝑦𝑦1), . . . , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁) samples from 𝐷𝐷. Based on 
these, the goal is to find a hypothesis 𝑓𝑓 ∈ 𝐹𝐹 for which the real 
error is minimal: 

𝑅𝑅[𝑓𝑓] = 𝔼𝔼𝐷𝐷[𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦)] (3)
The main disadvantage of the above relation is that it is not 

possible to minimize it clearly since we do not know the 
distribution 𝐷𝐷. However, it is possible to find an estimation by 
taking advantage of the fact that in most cases, the real error of 
the hypotheses takes on values significantly similar to the 
empirical error. The difference between the two errors is 
influenced by the flexibility of the used model (i.e., how many 
degrees of freedom it has). The disadvantage of a large number 
of degrees of freedom is that the hypothesis space is 
accompanied by a tendency to overfit the model, as we can fit 
innumerable functions to the desired distribution. Based on this 
idea, the so-called uniform convergence bounds can be defined, 
for all hypotheses f in a given hypothesis space, it is true that 
[10]: 

𝑅𝑅[𝑓𝑓] ≤ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝜀𝜀 (4)
where 𝜀𝜀 is the generalization error. 

Despite the uniform convergence bounds defined by (4), 
there may be some training sets for which the model produces 
poor results, so the probability of the good results can be written 
with the following inequality for a given distribution D: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀 | ∀𝑓𝑓 ∈ 𝐹𝐹] ≥ 1 − 𝛿𝛿 (5) 

The main difficulty of finding a solution to this problem is 
that in the absence of accurate knowledge of 𝐷𝐷, the above 
relation must exist for all possible distributions of 𝐷𝐷 in 𝑋𝑋 × 𝑌𝑌 
space (i.e., not just for a given distribution of 𝐷𝐷). However, 
inequality (5) should also be satisfied with a probability of     
1 − 𝛿𝛿 simultaneously for all hypotheses, thus for each function 
f we can write this formula within all possible distributions of 
𝐷𝐷, so that we get the following: 

ℙ[𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ≤ 𝜀𝜀] ≥ 1 − 𝛿𝛿    ∀𝑓𝑓 ∈ 𝐹𝐹 (6) 

The latter inequality expresses that for any given 𝑓𝑓 ∈ 𝐹𝐹, 
except for the 𝛿𝛿 proportion of samples sampled “unlucky”, 
equation (4) will be true. Inequality (6) is easier to accomplish 
because it is easier to achieve the same success rate in the whole 
set than the same rate within each subset. In contrast, the 
inequality (5) has the advantage that we can tell from sampling 
whether a given set of the training set is “lucky” or “unlucky”. 
If it is “lucky”, the inequality will be true for all hypotheses at 
once, i.e., we have achieved our goal. Based on this, it is 
advisable to write equation (5) in the following formula: 

ℙ [𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓

[ 𝑅𝑅[𝑓𝑓] − 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] ] ≤ 𝜀𝜀 ] ≥ 1 − 𝛿𝛿 (7) 

The distinction between (7) and (6) is essential for what we 
want to use the bounds in the future; in the case of the FSL 
learning problem, the most important is the error of the 
hypothesis 𝑓𝑓∗ for which the empirical error is minimal, which 
depends significantly on the choice of the training set.  

The error of the model is influenced by the number of 
samples in the available training set 𝑆𝑆 and the hypothesis space 
𝐹𝐹. Starting from this statement, error minimization can be 
approached from several sides to reduce estimation inaccuracy 
using prior knowledge [26]. The possible approaches are the 
number of samples (a larger training set could help, but in FSL, 
only very few samples are available), and the algorithm for 
finding optimal parameters. The last method approaches the 
part of the model, which is responsible for defining and 
narrowing the hypothesis space. In this case, the use of a priori 
knowledge is aimed at reducing the complexity of the 
hypothesis space, excluding several potential hypotheses in 
advance. 

B. Hilbert-space methods 
Minimizing only empirical error is not sufficient, as this type 

of approach can lead to overfitting. To avoid this, it is necessary 
to narrow hypothesis F with certain limits. To solve this, 
starting from equation (4), we can introduce a penalty term, 
𝛺𝛺[𝑓𝑓], which quantifies the complexity of each hypothesis and 
minimizes the following error instead of the method presented 
in equation (1) [10]: 

𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟[𝑓𝑓] = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒[𝑓𝑓] + 𝛺𝛺[𝑓𝑓] (8) 

where 𝛺𝛺[𝑓𝑓] is the regularization term, and 𝑅𝑅𝑟𝑟𝑒𝑒𝑟𝑟 is the 
regularized error. The learning problem should therefore focus 
on three components: the loss function 𝐿𝐿, the regularization 
term 𝛺𝛺 and hypothesis space 𝐹𝐹. 

In constructing the hypothesis space 𝐹𝐹, the natural 
expectation is that 𝐹𝐹 is a linear function space in which for any 
𝑓𝑓 ∈ 𝐹𝐹 and 𝜆𝜆, the product 𝜆𝜆 ∙ 𝑓𝑓 is also in 𝐹𝐹, and for any 𝑓𝑓1, 𝑓𝑓2 ∈
𝐹𝐹 it is true that 𝑓𝑓1 + 𝑓𝑓2 ∈ 𝐹𝐹. 

In addition, the structure of 𝐹𝐹 should be related to the 
regularization term 𝛺𝛺 in some way. This property is defined by 
an 𝛺𝛺[𝑓𝑓] = ‖𝑓𝑓‖2 norms. For the new norm, the linear mappings 
taken with 𝜆𝜆 should also be satisfied and in order to obtain as a 
scalar product, let ‖𝑓𝑓‖ = 〈𝑓𝑓, 𝑓𝑓〉1/2. These types of spaces are 
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called Hibert space, and the great advantage of this is that 
Frigyes Riesz’s theory can be applied to the present problem 
because in Hilbert spaces, the Riesz representation theorem is 
true [6], as a result of which for any x ∈ X there exists a 
representation 𝑘𝑘𝑥𝑥, for which it is true that: 

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉  ∀𝑓𝑓 ∈ 𝐹𝐹 (9) 

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that 
it exists. A key element of the idea is that it creates a connection 
between the abstract structure of F and the elements in it, and 
we can use its representation instead of any x. If we rewrite the 
complete regularized error problem as follows 

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10) 

then it can be seen that f appears only in the form F with scalar 
products of other functions. It follows that if we know the scalar 
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be 
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form 
each vector takes, and leaving the unnecessary elements, it can 
be seen that the quality of the algorithm is determined by the 
internal products called kernels: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11) 

The only condition for kernels is that they should be 
symmetric as well as satisfying the following expression: 

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12) 

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in 
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0. 

Summarizing the above, the learning problem has been 
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘 
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be 
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, 
since the error term depends only on the internal product of 𝑓𝑓 
with different 𝑘𝑘, while the regularization term will affect all its 
dimensions. If 𝑓𝑓 has a component that is orthogonal to the 
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be 
affected, but the regularization term will be. It follows that the 
optimal 𝑓𝑓 will entirely be in the subspace spanned by the 
representatives:  

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13) 

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias). 
Substituting formula (13) into (10), it can be observed that the 
task of the learning algorithm has been simplified to calculating 
the offset and the coefficients (the interpretation of these 
coefficients is the learnt knowledge after the learning). 

III. MATCHING NETWORK ARCHITECTURE 

A. Matching Network for few-shot learning 
Several methods have been developed to solve the FSL 

problem: Prototypical Network [20], Attentive Recurrent 
Comparators [18], Simple Neural AttentIve Learner (SNAIL) 
[13], Memory-Augmented Neural Network (MANN) [2], 
ModelAgnostic Meta-Learning [3], Relation Network [21] and 
Siamese networks [9][16]. Based on the sources in the FSL 
literature, analyzing the results and considering further 
potential improvements, we chose one of the best methods, 
Matching Network [25], as the basis of our research. This 
solution adapts many techniques, including deep parameterized 
networks and metric learning [7] using feature vectors and deep 
neural networks with memory. 

The essential idea of the Matching Network classifiers is to 
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is 
realized in the Hilbert-type spaces detailed in the previous 
section, while the k-NN-type classification takes place in the 
last phase during comparing feature vectors. 

In the first phase, neural networks can be used. The main task 
of this phase is to learn a distance metric, a metric space in 
which the representations of samples from different classes are 
separated from each other as much as possible. Thus, the task 
of the applied neural networks is to parameterize a metric with 
such properties, i.e., an optimal hypothesis function to calculate 
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called Hibert space, and the great advantage of this is that 
Frigyes Riesz’s theory can be applied to the present problem 
because in Hilbert spaces, the Riesz representation theorem is 
true [6], as a result of which for any x ∈ X there exists a 
representation 𝑘𝑘𝑥𝑥, for which it is true that: 

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉  ∀𝑓𝑓 ∈ 𝐹𝐹 (9) 

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that 
it exists. A key element of the idea is that it creates a connection 
between the abstract structure of F and the elements in it, and 
we can use its representation instead of any x. If we rewrite the 
complete regularized error problem as follows 

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10) 

then it can be seen that f appears only in the form F with scalar 
products of other functions. It follows that if we know the scalar 
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be 
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form 
each vector takes, and leaving the unnecessary elements, it can 
be seen that the quality of the algorithm is determined by the 
internal products called kernels: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11) 

The only condition for kernels is that they should be 
symmetric as well as satisfying the following expression: 

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12) 

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in 
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0. 

Summarizing the above, the learning problem has been 
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘 
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be 
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, 
since the error term depends only on the internal product of 𝑓𝑓 
with different 𝑘𝑘, while the regularization term will affect all its 
dimensions. If 𝑓𝑓 has a component that is orthogonal to the 
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be 
affected, but the regularization term will be. It follows that the 
optimal 𝑓𝑓 will entirely be in the subspace spanned by the 
representatives:  

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13) 

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias). 
Substituting formula (13) into (10), it can be observed that the 
task of the learning algorithm has been simplified to calculating 
the offset and the coefficients (the interpretation of these 
coefficients is the learnt knowledge after the learning). 

III. MATCHING NETWORK ARCHITECTURE 

A. Matching Network for few-shot learning 
Several methods have been developed to solve the FSL 

problem: Prototypical Network [20], Attentive Recurrent 
Comparators [18], Simple Neural AttentIve Learner (SNAIL) 
[13], Memory-Augmented Neural Network (MANN) [2], 
ModelAgnostic Meta-Learning [3], Relation Network [21] and 
Siamese networks [9][16]. Based on the sources in the FSL 
literature, analyzing the results and considering further 
potential improvements, we chose one of the best methods, 
Matching Network [25], as the basis of our research. This 
solution adapts many techniques, including deep parameterized 
networks and metric learning [7] using feature vectors and deep 
neural networks with memory. 

The essential idea of the Matching Network classifiers is to 
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is 
realized in the Hilbert-type spaces detailed in the previous 
section, while the k-NN-type classification takes place in the 
last phase during comparing feature vectors. 

In the first phase, neural networks can be used. The main task 
of this phase is to learn a distance metric, a metric space in 
which the representations of samples from different classes are 
separated from each other as much as possible. Thus, the task 
of the applied neural networks is to parameterize a metric with 
such properties, i.e., an optimal hypothesis function to calculate 
the coefficients based on what is described in the previous 
section. 

 

 
Figure 1. Matching Network architecture 

 
The training set of the few-shot learner is called support set. 

The applied method in Matching Network defines a classifier 
(𝑆𝑆 → 𝐶𝐶𝑆𝑆(∙) mapping) for each support set sampled from the 
training set, and then combines the stored mappings to make the 
best use of the available knowledge. Thus, Matching Network 
type classifiers are able to categorize unknown classes with 
high efficiency without changing the networks.  

In the following, we define the task description in more 
detail. Let 𝑆𝑆 be a support set containing 𝑛𝑛 sample-label pairs: 
𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛     

𝑖𝑖=1. As shown in Figure 1, the operation of the 
model was illustrated by recognizing dog breeds. The sample- 
label pairs (label means class label) of the support set are given 
as input to a classifier 𝐶𝐶𝑆𝑆(�̂�𝑥), which defines a probability 
distribution for a given sample �̂�𝑥 based on the class label �̂�𝑦. This 
mapping can be written as follows: S →  𝐶𝐶𝑆𝑆(�̂�𝑥) = 𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆), 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

called Hibert space, and the great advantage of this is that 
Frigyes Riesz’s theory can be applied to the present problem 
because in Hilbert spaces, the Riesz representation theorem is 
true [6], as a result of which for any x ∈ X there exists a 
representation 𝑘𝑘𝑥𝑥, for which it is true that: 

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉  ∀𝑓𝑓 ∈ 𝐹𝐹 (9) 

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that 
it exists. A key element of the idea is that it creates a connection 
between the abstract structure of F and the elements in it, and 
we can use its representation instead of any x. If we rewrite the 
complete regularized error problem as follows 

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹
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𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉
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] (10) 

then it can be seen that f appears only in the form F with scalar 
products of other functions. It follows that if we know the scalar 
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be 
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form 
each vector takes, and leaving the unnecessary elements, it can 
be seen that the quality of the algorithm is determined by the 
internal products called kernels: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11) 

The only condition for kernels is that they should be 
symmetric as well as satisfying the following expression: 
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Summarizing the above, the learning problem has been 
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kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be 
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where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias). 
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section, while the k-NN-type classification takes place in the 
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which the representations of samples from different classes are 
separated from each other as much as possible. Thus, the task 
of the applied neural networks is to parameterize a metric with 
such properties, i.e., an optimal hypothesis function to calculate 
the coefficients based on what is described in the previous 
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called Hibert space, and the great advantage of this is that 
Frigyes Riesz’s theory can be applied to the present problem 
because in Hilbert spaces, the Riesz representation theorem is 
true [6], as a result of which for any x ∈ X there exists a 
representation 𝑘𝑘𝑥𝑥, for which it is true that: 

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉  ∀𝑓𝑓 ∈ 𝐹𝐹 (9) 

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that 
it exists. A key element of the idea is that it creates a connection 
between the abstract structure of F and the elements in it, and 
we can use its representation instead of any x. If we rewrite the 
complete regularized error problem as follows 

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹
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𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10) 

then it can be seen that f appears only in the form F with scalar 
products of other functions. It follows that if we know the scalar 
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be 
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form 
each vector takes, and leaving the unnecessary elements, it can 
be seen that the quality of the algorithm is determined by the 
internal products called kernels: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11) 

The only condition for kernels is that they should be 
symmetric as well as satisfying the following expression: 
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Summarizing the above, the learning problem has been 
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘 
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be 
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where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias). 
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the offset and the coefficients (the interpretation of these 
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where the function P is parameterized by neural networks. This 
construction allows us to use the model parameterized during 
learning to classify all elements of an 𝑆𝑆′ support set containing 
unseen patterns. The class prediction of each sample can be 
described as follows: 

𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆) = ∑ 𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (14) 

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖   are the samples, and their associated labels from 
the 𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛     

𝑖𝑖=1 support set, and 𝑎𝑎(∙,∙) is the kernel (also 
known as attention kernel or attention mechanism). It is worth 
noting that the above relation produces the output (label) of the 
samples of the new classes as a linear combination of the 
sample labels in the support set. 

Appropriate selection of the model components that make up 
the attention kernel is key to the effectiveness of the model. In 
its most basic form, the kernel can be written using the softmax 
function applied to cosine distances as follows: 

𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑐𝑐(𝑓𝑓(�̂�𝑥),𝑔𝑔(𝑥𝑥𝑖𝑖))

∑ 𝑒𝑒𝑐𝑐(𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥𝑗𝑗))𝑛𝑛
𝑗𝑗=1

 (15) 

where function c describes the cosine similarity, functions 𝑓𝑓 
and 𝑔𝑔 are the neural networks responsible for constructing the 
feature vector formed from 𝑥𝑥𝑖𝑖 and 𝑥𝑥 (𝑓𝑓 and 𝑔𝑔 preferably have 
the same architecture).  

B. Multiple views challenge in images 
In the first phase of the Matching Network, the appropriate 

feature vectors are essential. In our task, images of pathological 
chest X-rays were available; and we used a deep neural network 
(Convolutional Neural Network – CNN) detailed later to 
generate the characteristic vectors of the X-rays. The largest 
challenge in the image data set was that two types of recording 
perspectives - frontal and profile (side) recording - were stored 
for each disease type in the data set, but only one of them 
(frontal or profile) was available at each patient. In order to 
handle more views in the method, we developed an extended 
(improvement) version of the Matching Network, the so-called 
Double-View Matching Network. The next section presents this 
proposed method.  

IV. DOUBLE-VIEW MATCHING NETWORK 

A. Convolutional Neural Network for Feature Extraction 
At image recognition topic, there is a frequent case that 

samples come from different perspectives. In the investigated 
dataset of medical images (in our case chest X-ray images), this 
was also true, the dataset contained two views. Our research 
focused on how recordings from the same class but from 
different perspectives can be used effectively. Our proposed 
method, the so-called Double-View Matching Network 
(DVMN for short) answers the question. In this section, we 
present the DVMN in two parts; firstly, the architecture and the 
details of the Convolutional Neural Network for feature 
extraction, then the solution of the combination of more views. 

Proper selection of neural networks generating mappings 
from image into a common feature space (i.e., the feature 
extraction), is a key component of the accuracy. The publication 

of Matching Network [25], which is considered as the basic 
paper of our research, shared only small information about the 
neural network architecture for feature extraction that VGG 
[19] and Inception [22] networks can be used. However, these 
network architectures are not dedicated to medical images. 
Thus, we deviated from this approach and used our own 
structure, which is shown in Table 1, where each Convolution 
row consists of a convolution layer, then a batch normalization, 
and ReLu.  

Images sampled from the set of training data serve as input 
to the convolutional network that produces the mapping. During 
the learning, an extra FC (fully connected) layer was added after 
the last layers of the CNN network to generate the output 
vectors. The CNN was used to the two networks, f and g having 
the same architecture (Figure 1.).  

 
Operation 

layer 
# 

filters 
Size of 
filter 

Stride 
value 

Padding 
value 

Size of 
output  

Convolution 64 3x3x64 1x1 1x1 460x460x64 
MaxPooling  1 2x2 2x2 0 230x230x64 
Convolution  64 3x3x64 1x1 1x1 230x230x64 
MaxPooling 1 2x2 2x2 0 115x115x64 
Convolution  64 3x3x64 1x1 1x1 115x115x64 
MaxPooling  1 2x2 2x2 0 57x57x64 
Convolution  64 3x3x64 1x1 1x1 57x57x64 
MaxPooling  1 2x2 2x2 0 28x28x64 

Table 1. CNN network architecture 

It is important to note that the mapping of each 𝑥𝑥𝑖𝑖 per support 
set is independent of other samples. If the mapping of a sample 
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is close to each other in the parameter space, it is 
worthwhile to change the parameters of the model in order to 
refine the feature vectors, taking into account the mappings of 
other samples. Based on this idea, a component containing 
memory, the context embedding layer, was added to the 
network, similar to the original paper of Matching Network 
[25]. A bidirectional LSTM layer was used to embed each 𝑥𝑥𝑖𝑖 
sample, which stores the other feature mappings of the 𝑥𝑥𝑖𝑖 
sample support set: 

𝑓𝑓(�̂�𝑥, 𝑆𝑆) = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), 𝑔𝑔(𝑆𝑆), 𝐾𝐾) (17) 

where 𝑓𝑓′(�̂�𝑥) denotes the characteristics generated by CNN that 
serve as input to the LSTM, 𝑔𝑔(𝑆𝑆) is the mapping of the given 
support set by 𝑔𝑔, and 𝐾𝐾 is the number of “time steps” of the 
LSTM. This allows the attention mechanism to utilize only 
certain elements of the support set that add meaningful value to 
the mappings. 

Context embedding of the classifier's 𝑓𝑓 network based on 
equation (17) assuming a previous step 𝑘𝑘: 

ℎ̂𝑘𝑘, 𝑐𝑐𝑘𝑘 = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), [ℎ𝑘𝑘−1, 𝑟𝑟𝑘𝑘−1], 𝑐𝑐𝑘𝑘−1) (18) 

ℎ𝑘𝑘 = ℎ̂𝑘𝑘 + 𝑓𝑓′(�̂�𝑥) (19) 

𝑟𝑟𝑘𝑘 = ∑ 𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) 𝑔𝑔(𝑥𝑥𝑗𝑗)
|𝑆𝑆|

𝑗𝑗=1
 (20) 

𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) = 𝑒𝑒ℎ 𝑇𝑇
𝑘𝑘−1𝑔𝑔(𝑥𝑥𝑗𝑗)

∑ ℎ 𝑇𝑇
𝑘𝑘−1 𝑔𝑔(𝑥𝑥𝑗𝑗)|𝑆𝑆|

𝑗𝑗=1
 , (21) 
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called Hibert space, and the great advantage of this is that 
Frigyes Riesz’s theory can be applied to the present problem 
because in Hilbert spaces, the Riesz representation theorem is 
true [6], as a result of which for any x ∈ X there exists a 
representation 𝑘𝑘𝑥𝑥, for which it is true that: 

𝑓𝑓(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑓𝑓〉  ∀𝑓𝑓 ∈ 𝐹𝐹 (9) 

We do not know 𝑘𝑘𝑥𝑥 in equation (9), but we know for sure that 
it exists. A key element of the idea is that it creates a connection 
between the abstract structure of F and the elements in it, and 
we can use its representation instead of any x. If we rewrite the 
complete regularized error problem as follows 

�̂�𝑓 = arg min
𝑓𝑓∈𝐹𝐹

[1
𝑁𝑁 ∑ 𝐿𝐿(〈𝑘𝑘𝑥𝑥𝑖𝑖, 𝑓𝑓〉, 𝑦𝑦𝑖𝑖) + 〈𝑓𝑓, 𝑓𝑓〉

𝑁𝑁

𝑖𝑖=1
] (10) 

then it can be seen that f appears only in the form F with scalar 
products of other functions. It follows that if we know the scalar 
product and 𝑘𝑘𝑥𝑥, we will apply equation (9) with 𝑘𝑘𝑥𝑥 to some 𝑥𝑥′ ∈
𝑋𝑋: 𝑘𝑘𝑥𝑥′(𝑥𝑥) = 〈𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥′〉 = 𝑘𝑘𝑥𝑥(𝑥𝑥′). From the context, it can be 
seen that the inner products of the different 𝑘𝑘𝑥𝑥′ tell us what form 
each vector takes, and leaving the unnecessary elements, it can 
be seen that the quality of the algorithm is determined by the 
internal products called kernels: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 〈𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥′〉 (11) 

The only condition for kernels is that they should be 
symmetric as well as satisfying the following expression: 

∑ ∑ 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0
𝑛𝑛

𝑗𝑗=1
,

𝑛𝑛

𝑖𝑖=1
 (12) 

where 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗 are real coefficients, and they should result in 
〈∑ 𝑐𝑐𝑖𝑖𝑘𝑘𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , ∑ 𝑐𝑐𝑗𝑗𝑘𝑘𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗=1 〉 ≥ 0. 

Summarizing the above, the learning problem has been 
traced back to the proper definition of an 𝐿𝐿 loss function and 𝑘𝑘 
kernels. Looking at equation (10), it can be seen that �̂�𝑓 will be 
derived from the representatives of the training data 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, 
since the error term depends only on the internal product of 𝑓𝑓 
with different 𝑘𝑘, while the regularization term will affect all its 
dimensions. If 𝑓𝑓 has a component that is orthogonal to the 
subspace spanned by 𝑘𝑘𝑥𝑥1 … 𝑘𝑘𝑥𝑥𝑁𝑁, then the error term will not be 
affected, but the regularization term will be. It follows that the 
optimal 𝑓𝑓 will entirely be in the subspace spanned by the 
representatives:  

�̂�𝑓(𝑥𝑥) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)
𝑁𝑁

𝑖𝑖=1
 (13) 

where 𝛼𝛼1 … 𝛼𝛼𝑁𝑁 are real coefficients and 𝑏𝑏 is the offset (bias). 
Substituting formula (13) into (10), it can be observed that the 
task of the learning algorithm has been simplified to calculating 
the offset and the coefficients (the interpretation of these 
coefficients is the learnt knowledge after the learning). 

III. MATCHING NETWORK ARCHITECTURE 

A. Matching Network for few-shot learning 
Several methods have been developed to solve the FSL 

problem: Prototypical Network [20], Attentive Recurrent 
Comparators [18], Simple Neural AttentIve Learner (SNAIL) 
[13], Memory-Augmented Neural Network (MANN) [2], 
ModelAgnostic Meta-Learning [3], Relation Network [21] and 
Siamese networks [9][16]. Based on the sources in the FSL 
literature, analyzing the results and considering further 
potential improvements, we chose one of the best methods, 
Matching Network [25], as the basis of our research. This 
solution adapts many techniques, including deep parameterized 
networks and metric learning [7] using feature vectors and deep 
neural networks with memory. 

The essential idea of the Matching Network classifiers is to 
combine two learning phases: metric learning and the “lazy-
learner” k-NN (k Nearest Neighbor) method. Metric learning is 
realized in the Hilbert-type spaces detailed in the previous 
section, while the k-NN-type classification takes place in the 
last phase during comparing feature vectors. 

In the first phase, neural networks can be used. The main task 
of this phase is to learn a distance metric, a metric space in 
which the representations of samples from different classes are 
separated from each other as much as possible. Thus, the task 
of the applied neural networks is to parameterize a metric with 
such properties, i.e., an optimal hypothesis function to calculate 
the coefficients based on what is described in the previous 
section. 

 

 
Figure 1. Matching Network architecture 

 
The training set of the few-shot learner is called support set. 

The applied method in Matching Network defines a classifier 
(𝑆𝑆 → 𝐶𝐶𝑆𝑆(∙) mapping) for each support set sampled from the 
training set, and then combines the stored mappings to make the 
best use of the available knowledge. Thus, Matching Network 
type classifiers are able to categorize unknown classes with 
high efficiency without changing the networks.  

In the following, we define the task description in more 
detail. Let 𝑆𝑆 be a support set containing 𝑛𝑛 sample-label pairs: 
𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛     

𝑖𝑖=1. As shown in Figure 1, the operation of the 
model was illustrated by recognizing dog breeds. The sample- 
label pairs (label means class label) of the support set are given 
as input to a classifier 𝐶𝐶𝑆𝑆(�̂�𝑥), which defines a probability 
distribution for a given sample �̂�𝑥 based on the class label �̂�𝑦. This 
mapping can be written as follows: S →  𝐶𝐶𝑆𝑆(�̂�𝑥) = 𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆), 
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where the function P is parameterized by neural networks. This 
construction allows us to use the model parameterized during 
learning to classify all elements of an 𝑆𝑆′ support set containing 
unseen patterns. The class prediction of each sample can be 
described as follows: 

𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆) = ∑ 𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (14) 

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖   are the samples, and their associated labels from 
the 𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛     

𝑖𝑖=1 support set, and 𝑎𝑎(∙,∙) is the kernel (also 
known as attention kernel or attention mechanism). It is worth 
noting that the above relation produces the output (label) of the 
samples of the new classes as a linear combination of the 
sample labels in the support set. 

Appropriate selection of the model components that make up 
the attention kernel is key to the effectiveness of the model. In 
its most basic form, the kernel can be written using the softmax 
function applied to cosine distances as follows: 

𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑐𝑐(𝑓𝑓(�̂�𝑥),𝑔𝑔(𝑥𝑥𝑖𝑖))

∑ 𝑒𝑒𝑐𝑐(𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥𝑗𝑗))𝑛𝑛
𝑗𝑗=1

 (15) 

where function c describes the cosine similarity, functions 𝑓𝑓 
and 𝑔𝑔 are the neural networks responsible for constructing the 
feature vector formed from 𝑥𝑥𝑖𝑖 and 𝑥𝑥 (𝑓𝑓 and 𝑔𝑔 preferably have 
the same architecture).  

B. Multiple views challenge in images 
In the first phase of the Matching Network, the appropriate 

feature vectors are essential. In our task, images of pathological 
chest X-rays were available; and we used a deep neural network 
(Convolutional Neural Network – CNN) detailed later to 
generate the characteristic vectors of the X-rays. The largest 
challenge in the image data set was that two types of recording 
perspectives - frontal and profile (side) recording - were stored 
for each disease type in the data set, but only one of them 
(frontal or profile) was available at each patient. In order to 
handle more views in the method, we developed an extended 
(improvement) version of the Matching Network, the so-called 
Double-View Matching Network. The next section presents this 
proposed method.  

IV. DOUBLE-VIEW MATCHING NETWORK 

A. Convolutional Neural Network for Feature Extraction 
At image recognition topic, there is a frequent case that 

samples come from different perspectives. In the investigated 
dataset of medical images (in our case chest X-ray images), this 
was also true, the dataset contained two views. Our research 
focused on how recordings from the same class but from 
different perspectives can be used effectively. Our proposed 
method, the so-called Double-View Matching Network 
(DVMN for short) answers the question. In this section, we 
present the DVMN in two parts; firstly, the architecture and the 
details of the Convolutional Neural Network for feature 
extraction, then the solution of the combination of more views. 

Proper selection of neural networks generating mappings 
from image into a common feature space (i.e., the feature 
extraction), is a key component of the accuracy. The publication 

of Matching Network [25], which is considered as the basic 
paper of our research, shared only small information about the 
neural network architecture for feature extraction that VGG 
[19] and Inception [22] networks can be used. However, these 
network architectures are not dedicated to medical images. 
Thus, we deviated from this approach and used our own 
structure, which is shown in Table 1, where each Convolution 
row consists of a convolution layer, then a batch normalization, 
and ReLu.  

Images sampled from the set of training data serve as input 
to the convolutional network that produces the mapping. During 
the learning, an extra FC (fully connected) layer was added after 
the last layers of the CNN network to generate the output 
vectors. The CNN was used to the two networks, f and g having 
the same architecture (Figure 1.).  

 
Operation 

layer 
# 

filters 
Size of 
filter 

Stride 
value 

Padding 
value 

Size of 
output  

Convolution 64 3x3x64 1x1 1x1 460x460x64 
MaxPooling  1 2x2 2x2 0 230x230x64 
Convolution  64 3x3x64 1x1 1x1 230x230x64 
MaxPooling 1 2x2 2x2 0 115x115x64 
Convolution  64 3x3x64 1x1 1x1 115x115x64 
MaxPooling  1 2x2 2x2 0 57x57x64 
Convolution  64 3x3x64 1x1 1x1 57x57x64 
MaxPooling  1 2x2 2x2 0 28x28x64 

Table 1. CNN network architecture 

It is important to note that the mapping of each 𝑥𝑥𝑖𝑖 per support 
set is independent of other samples. If the mapping of a sample 
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is close to each other in the parameter space, it is 
worthwhile to change the parameters of the model in order to 
refine the feature vectors, taking into account the mappings of 
other samples. Based on this idea, a component containing 
memory, the context embedding layer, was added to the 
network, similar to the original paper of Matching Network 
[25]. A bidirectional LSTM layer was used to embed each 𝑥𝑥𝑖𝑖 
sample, which stores the other feature mappings of the 𝑥𝑥𝑖𝑖 
sample support set: 

𝑓𝑓(�̂�𝑥, 𝑆𝑆) = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), 𝑔𝑔(𝑆𝑆), 𝐾𝐾) (17) 

where 𝑓𝑓′(�̂�𝑥) denotes the characteristics generated by CNN that 
serve as input to the LSTM, 𝑔𝑔(𝑆𝑆) is the mapping of the given 
support set by 𝑔𝑔, and 𝐾𝐾 is the number of “time steps” of the 
LSTM. This allows the attention mechanism to utilize only 
certain elements of the support set that add meaningful value to 
the mappings. 

Context embedding of the classifier's 𝑓𝑓 network based on 
equation (17) assuming a previous step 𝑘𝑘: 

ℎ̂𝑘𝑘, 𝑐𝑐𝑘𝑘 = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), [ℎ𝑘𝑘−1, 𝑟𝑟𝑘𝑘−1], 𝑐𝑐𝑘𝑘−1) (18) 

ℎ𝑘𝑘 = ℎ̂𝑘𝑘 + 𝑓𝑓′(�̂�𝑥) (19) 

𝑟𝑟𝑘𝑘 = ∑ 𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) 𝑔𝑔(𝑥𝑥𝑗𝑗)
|𝑆𝑆|

𝑗𝑗=1
 (20) 

𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) = 𝑒𝑒ℎ 𝑇𝑇
𝑘𝑘−1𝑔𝑔(𝑥𝑥𝑗𝑗)

∑ ℎ 𝑇𝑇
𝑘𝑘−1 𝑔𝑔(𝑥𝑥𝑗𝑗)|𝑆𝑆|

𝑗𝑗=1
 , (21) 
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where the function P is parameterized by neural networks. This 
construction allows us to use the model parameterized during 
learning to classify all elements of an 𝑆𝑆′ support set containing 
unseen patterns. The class prediction of each sample can be 
described as follows: 

𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆) = ∑ 𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (14) 

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖   are the samples, and their associated labels from 
the 𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛     

𝑖𝑖=1 support set, and 𝑎𝑎(∙,∙) is the kernel (also 
known as attention kernel or attention mechanism). It is worth 
noting that the above relation produces the output (label) of the 
samples of the new classes as a linear combination of the 
sample labels in the support set. 

Appropriate selection of the model components that make up 
the attention kernel is key to the effectiveness of the model. In 
its most basic form, the kernel can be written using the softmax 
function applied to cosine distances as follows: 

𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑐𝑐(𝑓𝑓(�̂�𝑥),𝑔𝑔(𝑥𝑥𝑖𝑖))

∑ 𝑒𝑒𝑐𝑐(𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥𝑗𝑗))𝑛𝑛
𝑗𝑗=1

 (15) 

where function c describes the cosine similarity, functions 𝑓𝑓 
and 𝑔𝑔 are the neural networks responsible for constructing the 
feature vector formed from 𝑥𝑥𝑖𝑖 and 𝑥𝑥 (𝑓𝑓 and 𝑔𝑔 preferably have 
the same architecture).  

B. Multiple views challenge in images 
In the first phase of the Matching Network, the appropriate 

feature vectors are essential. In our task, images of pathological 
chest X-rays were available; and we used a deep neural network 
(Convolutional Neural Network – CNN) detailed later to 
generate the characteristic vectors of the X-rays. The largest 
challenge in the image data set was that two types of recording 
perspectives - frontal and profile (side) recording - were stored 
for each disease type in the data set, but only one of them 
(frontal or profile) was available at each patient. In order to 
handle more views in the method, we developed an extended 
(improvement) version of the Matching Network, the so-called 
Double-View Matching Network. The next section presents this 
proposed method.  

IV. DOUBLE-VIEW MATCHING NETWORK 

A. Convolutional Neural Network for Feature Extraction 
At image recognition topic, there is a frequent case that 

samples come from different perspectives. In the investigated 
dataset of medical images (in our case chest X-ray images), this 
was also true, the dataset contained two views. Our research 
focused on how recordings from the same class but from 
different perspectives can be used effectively. Our proposed 
method, the so-called Double-View Matching Network 
(DVMN for short) answers the question. In this section, we 
present the DVMN in two parts; firstly, the architecture and the 
details of the Convolutional Neural Network for feature 
extraction, then the solution of the combination of more views. 

Proper selection of neural networks generating mappings 
from image into a common feature space (i.e., the feature 
extraction), is a key component of the accuracy. The publication 

of Matching Network [25], which is considered as the basic 
paper of our research, shared only small information about the 
neural network architecture for feature extraction that VGG 
[19] and Inception [22] networks can be used. However, these 
network architectures are not dedicated to medical images. 
Thus, we deviated from this approach and used our own 
structure, which is shown in Table 1, where each Convolution 
row consists of a convolution layer, then a batch normalization, 
and ReLu.  

Images sampled from the set of training data serve as input 
to the convolutional network that produces the mapping. During 
the learning, an extra FC (fully connected) layer was added after 
the last layers of the CNN network to generate the output 
vectors. The CNN was used to the two networks, f and g having 
the same architecture (Figure 1.).  

 
Operation 

layer 
# 

filters 
Size of 
filter 

Stride 
value 

Padding 
value 

Size of 
output  

Convolution 64 3x3x64 1x1 1x1 460x460x64 
MaxPooling  1 2x2 2x2 0 230x230x64 
Convolution  64 3x3x64 1x1 1x1 230x230x64 
MaxPooling 1 2x2 2x2 0 115x115x64 
Convolution  64 3x3x64 1x1 1x1 115x115x64 
MaxPooling  1 2x2 2x2 0 57x57x64 
Convolution  64 3x3x64 1x1 1x1 57x57x64 
MaxPooling  1 2x2 2x2 0 28x28x64 

Table 1. CNN network architecture 

It is important to note that the mapping of each 𝑥𝑥𝑖𝑖 per support 
set is independent of other samples. If the mapping of a sample 
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is close to each other in the parameter space, it is 
worthwhile to change the parameters of the model in order to 
refine the feature vectors, taking into account the mappings of 
other samples. Based on this idea, a component containing 
memory, the context embedding layer, was added to the 
network, similar to the original paper of Matching Network 
[25]. A bidirectional LSTM layer was used to embed each 𝑥𝑥𝑖𝑖 
sample, which stores the other feature mappings of the 𝑥𝑥𝑖𝑖 
sample support set: 

𝑓𝑓(�̂�𝑥, 𝑆𝑆) = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), 𝑔𝑔(𝑆𝑆), 𝐾𝐾) (17) 

where 𝑓𝑓′(�̂�𝑥) denotes the characteristics generated by CNN that 
serve as input to the LSTM, 𝑔𝑔(𝑆𝑆) is the mapping of the given 
support set by 𝑔𝑔, and 𝐾𝐾 is the number of “time steps” of the 
LSTM. This allows the attention mechanism to utilize only 
certain elements of the support set that add meaningful value to 
the mappings. 

Context embedding of the classifier's 𝑓𝑓 network based on 
equation (17) assuming a previous step 𝑘𝑘: 

ℎ̂𝑘𝑘, 𝑐𝑐𝑘𝑘 = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), [ℎ𝑘𝑘−1, 𝑟𝑟𝑘𝑘−1], 𝑐𝑐𝑘𝑘−1) (18) 

ℎ𝑘𝑘 = ℎ̂𝑘𝑘 + 𝑓𝑓′(�̂�𝑥) (19) 

𝑟𝑟𝑘𝑘 = ∑ 𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) 𝑔𝑔(𝑥𝑥𝑗𝑗)
|𝑆𝑆|

𝑗𝑗=1
 (20) 

𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) = 𝑒𝑒ℎ 𝑇𝑇
𝑘𝑘−1𝑔𝑔(𝑥𝑥𝑗𝑗)

∑ ℎ 𝑇𝑇
𝑘𝑘−1 𝑔𝑔(𝑥𝑥𝑗𝑗)|𝑆𝑆|

𝑗𝑗=1
 , (21) 
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where the function P is parameterized by neural networks. This 
construction allows us to use the model parameterized during 
learning to classify all elements of an 𝑆𝑆′ support set containing 
unseen patterns. The class prediction of each sample can be 
described as follows: 

𝑃𝑃(ŷ |�̂�𝑥, 𝑆𝑆) = ∑ 𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (14) 

where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖   are the samples, and their associated labels from 
the 𝑆𝑆 = {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)} 𝑛𝑛     

𝑖𝑖=1 support set, and 𝑎𝑎(∙,∙) is the kernel (also 
known as attention kernel or attention mechanism). It is worth 
noting that the above relation produces the output (label) of the 
samples of the new classes as a linear combination of the 
sample labels in the support set. 

Appropriate selection of the model components that make up 
the attention kernel is key to the effectiveness of the model. In 
its most basic form, the kernel can be written using the softmax 
function applied to cosine distances as follows: 

𝑎𝑎(�̂�𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑐𝑐(𝑓𝑓(�̂�𝑥),𝑔𝑔(𝑥𝑥𝑖𝑖))

∑ 𝑒𝑒𝑐𝑐(𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥𝑗𝑗))𝑛𝑛
𝑗𝑗=1

 (15) 

where function c describes the cosine similarity, functions 𝑓𝑓 
and 𝑔𝑔 are the neural networks responsible for constructing the 
feature vector formed from 𝑥𝑥𝑖𝑖 and 𝑥𝑥 (𝑓𝑓 and 𝑔𝑔 preferably have 
the same architecture).  

B. Multiple views challenge in images 
In the first phase of the Matching Network, the appropriate 

feature vectors are essential. In our task, images of pathological 
chest X-rays were available; and we used a deep neural network 
(Convolutional Neural Network – CNN) detailed later to 
generate the characteristic vectors of the X-rays. The largest 
challenge in the image data set was that two types of recording 
perspectives - frontal and profile (side) recording - were stored 
for each disease type in the data set, but only one of them 
(frontal or profile) was available at each patient. In order to 
handle more views in the method, we developed an extended 
(improvement) version of the Matching Network, the so-called 
Double-View Matching Network. The next section presents this 
proposed method.  

IV. DOUBLE-VIEW MATCHING NETWORK 

A. Convolutional Neural Network for Feature Extraction 
At image recognition topic, there is a frequent case that 

samples come from different perspectives. In the investigated 
dataset of medical images (in our case chest X-ray images), this 
was also true, the dataset contained two views. Our research 
focused on how recordings from the same class but from 
different perspectives can be used effectively. Our proposed 
method, the so-called Double-View Matching Network 
(DVMN for short) answers the question. In this section, we 
present the DVMN in two parts; firstly, the architecture and the 
details of the Convolutional Neural Network for feature 
extraction, then the solution of the combination of more views. 

Proper selection of neural networks generating mappings 
from image into a common feature space (i.e., the feature 
extraction), is a key component of the accuracy. The publication 

of Matching Network [25], which is considered as the basic 
paper of our research, shared only small information about the 
neural network architecture for feature extraction that VGG 
[19] and Inception [22] networks can be used. However, these 
network architectures are not dedicated to medical images. 
Thus, we deviated from this approach and used our own 
structure, which is shown in Table 1, where each Convolution 
row consists of a convolution layer, then a batch normalization, 
and ReLu.  

Images sampled from the set of training data serve as input 
to the convolutional network that produces the mapping. During 
the learning, an extra FC (fully connected) layer was added after 
the last layers of the CNN network to generate the output 
vectors. The CNN was used to the two networks, f and g having 
the same architecture (Figure 1.).  

 
Operation 

layer 
# 

filters 
Size of 
filter 

Stride 
value 

Padding 
value 

Size of 
output  

Convolution 64 3x3x64 1x1 1x1 460x460x64 
MaxPooling  1 2x2 2x2 0 230x230x64 
Convolution  64 3x3x64 1x1 1x1 230x230x64 
MaxPooling 1 2x2 2x2 0 115x115x64 
Convolution  64 3x3x64 1x1 1x1 115x115x64 
MaxPooling  1 2x2 2x2 0 57x57x64 
Convolution  64 3x3x64 1x1 1x1 57x57x64 
MaxPooling  1 2x2 2x2 0 28x28x64 

Table 1. CNN network architecture 

It is important to note that the mapping of each 𝑥𝑥𝑖𝑖 per support 
set is independent of other samples. If the mapping of a sample 
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is close to each other in the parameter space, it is 
worthwhile to change the parameters of the model in order to 
refine the feature vectors, taking into account the mappings of 
other samples. Based on this idea, a component containing 
memory, the context embedding layer, was added to the 
network, similar to the original paper of Matching Network 
[25]. A bidirectional LSTM layer was used to embed each 𝑥𝑥𝑖𝑖 
sample, which stores the other feature mappings of the 𝑥𝑥𝑖𝑖 
sample support set: 

𝑓𝑓(�̂�𝑥, 𝑆𝑆) = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), 𝑔𝑔(𝑆𝑆), 𝐾𝐾) (17) 

where 𝑓𝑓′(�̂�𝑥) denotes the characteristics generated by CNN that 
serve as input to the LSTM, 𝑔𝑔(𝑆𝑆) is the mapping of the given 
support set by 𝑔𝑔, and 𝐾𝐾 is the number of “time steps” of the 
LSTM. This allows the attention mechanism to utilize only 
certain elements of the support set that add meaningful value to 
the mappings. 

Context embedding of the classifier's 𝑓𝑓 network based on 
equation (17) assuming a previous step 𝑘𝑘: 

ℎ̂𝑘𝑘, 𝑐𝑐𝑘𝑘 = 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿(𝑓𝑓′(�̂�𝑥), [ℎ𝑘𝑘−1, 𝑟𝑟𝑘𝑘−1], 𝑐𝑐𝑘𝑘−1) (18) 

ℎ𝑘𝑘 = ℎ̂𝑘𝑘 + 𝑓𝑓′(�̂�𝑥) (19) 

𝑟𝑟𝑘𝑘 = ∑ 𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) 𝑔𝑔(𝑥𝑥𝑗𝑗)
|𝑆𝑆|

𝑗𝑗=1
 (20) 

𝑎𝑎 (ℎ𝑘𝑘−1, 𝑔𝑔(𝑥𝑥𝑗𝑗)) = 𝑒𝑒ℎ 𝑇𝑇
𝑘𝑘−1𝑔𝑔(𝑥𝑥𝑗𝑗)

∑ ℎ 𝑇𝑇
𝑘𝑘−1 𝑔𝑔(𝑥𝑥𝑗𝑗)|𝑆𝑆|

𝑗𝑗=1
 , (21) 
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where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate) 
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the 
attention mechanism with softmax activation. Context 
embedding of the classifier's 𝑔𝑔 (target image) network: 

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗  ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22) 
B. Handling the views 

Our idea was to separate the different perspectives in some 
way in order to find a better model. In designing our solution 
with more views, the most important task was the optimal use 
of the feature vectors (hereafter vectors) of the images taken 
from each view. In DVMN, we suggested that the vectors of 
each perspective should be constructed by different CNN 
networks with separate parameters instead of a common one 
[5][27]. Behind this idea was that during training iterations, due 
to the small number of samples, tuning the model parameters to 
the appropriate “direction” is key, and recordings from different 
perspectives can easily miscalibrate weight settings. In 
addition, the mappings generated by the two separate networks 
need to be aggregated before classification [8], as the Matching 
Network would learn the difference between views instead of 
similarities among images from the same class, so our solution 
was based on the basic idea of working with a union of views.  

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image 
set that contains only the images in the first view and whose 
images we want to use to teach a metric space. To generate 
feature vectors from the images, we used a self-made CNN, 
because it is more flexible to learn new types of images than a 
pretrained deep neural network. By separating the last FC layers 
of CNN, the remained network generates a feature vector of n 
elements for each input image, denoting this feature extraction 
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the 
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this 
way is denoted by 𝑉𝑉𝐿𝐿1: 

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23) 
The Matching Network generates a new vector from each 

entered feature vector that already describes the image in the 
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we 
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿1: 

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24) 

For an unknown class set (by unknown, we mean the set of 
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of 
classes of the unknown set are disjoint sets, i.e., their 
intersection is an empty set, but the new set has some class 
labeled images) we want to use the learned new vector space, 
where the image set also consists only of images from the first 
view. With the previously learned CNN and MN models, 
vectors can be generated for all images (without the labels of 
the unknown image set), so we denote the set of new vectors 
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be: 

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25) 
If we select the vectors with the class label from the elements 

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other 

vectors with unknown class labels by predicting the class label 
whose the support vector is closest to the vector to be classified. 

Using the notations used in the previous paragraphs in an 
analogous way to the second view: 

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26) 
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27) 
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28) 
This mathematical framework of handling multi-view data is 

our contribution in this paper. In B-shot learning the images of 
each view are fed to the two CNNs, they will output two 𝑚𝑚 long 
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and 
in the second view, respectively in a given class. If the image 
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will 
have a dimension 𝑛𝑛 ×  2𝑚𝑚 at the case of the concatenation of 
vectors belonging to two views. In a real environment, 
expecting an ideal dataset would be an unrealistic requirement, 
so the following options are available at this point: 

• If at least one image is available from both views, but 
the number of images in a view is larger, the images 
already used can be re-input as the replacement for the 
missing images (in order to get the same number in each 
view). This method can easily lead to overfitting due to 
the repetition of samples. 

• In order to get the same number in each view the other 
solution is the selection the minimum number among 
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is 
used from both views, so the size of the input data table 
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation. 
The negative result of this solution is the artificial 
reduction of the number and the expected decrease in 
accuracy based on the measurements. 

• Instead of the concatenation of the vectors, we can get 
the union of the set of vectors. There is a requirement for 
the number of samples per view, the only condition is 
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with 
the union of views eliminates the imbalanced problem, 
thus our method works with this, and the dimension of 
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚. 

C. DVMN on multiple views 
During the DVMN method, we trained two CNNs based on 

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2  be sets of 
characteristic vectors analogous to equation (23) and (26). The 
solution presented below builds the model to take advantage of 
the union of views. Consider the union of feature vectors: 

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29) 
This complete set is given to the Matching Network (MN) to 

perform the vector space teaching required for a few-shot 
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿: 

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30) 
For using the learned new vector space for an unknown 

image set, the previously learned CNN1 and CNN2 (depending 
on whether the unknown image is in the first or second view) 
and MN can be applied to generate vectors for all images, so we 
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where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate) 
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the 
attention mechanism with softmax activation. Context 
embedding of the classifier's 𝑔𝑔 (target image) network: 

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗  ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22) 
B. Handling the views 

Our idea was to separate the different perspectives in some 
way in order to find a better model. In designing our solution 
with more views, the most important task was the optimal use 
of the feature vectors (hereafter vectors) of the images taken 
from each view. In DVMN, we suggested that the vectors of 
each perspective should be constructed by different CNN 
networks with separate parameters instead of a common one 
[5][27]. Behind this idea was that during training iterations, due 
to the small number of samples, tuning the model parameters to 
the appropriate “direction” is key, and recordings from different 
perspectives can easily miscalibrate weight settings. In 
addition, the mappings generated by the two separate networks 
need to be aggregated before classification [8], as the Matching 
Network would learn the difference between views instead of 
similarities among images from the same class, so our solution 
was based on the basic idea of working with a union of views.  

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image 
set that contains only the images in the first view and whose 
images we want to use to teach a metric space. To generate 
feature vectors from the images, we used a self-made CNN, 
because it is more flexible to learn new types of images than a 
pretrained deep neural network. By separating the last FC layers 
of CNN, the remained network generates a feature vector of n 
elements for each input image, denoting this feature extraction 
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the 
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this 
way is denoted by 𝑉𝑉𝐿𝐿1: 

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23) 
The Matching Network generates a new vector from each 

entered feature vector that already describes the image in the 
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we 
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿1: 

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24) 

For an unknown class set (by unknown, we mean the set of 
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of 
classes of the unknown set are disjoint sets, i.e., their 
intersection is an empty set, but the new set has some class 
labeled images) we want to use the learned new vector space, 
where the image set also consists only of images from the first 
view. With the previously learned CNN and MN models, 
vectors can be generated for all images (without the labels of 
the unknown image set), so we denote the set of new vectors 
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be: 

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25) 
If we select the vectors with the class label from the elements 

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other 

vectors with unknown class labels by predicting the class label 
whose the support vector is closest to the vector to be classified. 

Using the notations used in the previous paragraphs in an 
analogous way to the second view: 

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26) 
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27) 
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28) 
This mathematical framework of handling multi-view data is 

our contribution in this paper. In B-shot learning the images of 
each view are fed to the two CNNs, they will output two 𝑚𝑚 long 
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and 
in the second view, respectively in a given class. If the image 
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will 
have a dimension 𝑛𝑛 ×  2𝑚𝑚 at the case of the concatenation of 
vectors belonging to two views. In a real environment, 
expecting an ideal dataset would be an unrealistic requirement, 
so the following options are available at this point: 

• If at least one image is available from both views, but 
the number of images in a view is larger, the images 
already used can be re-input as the replacement for the 
missing images (in order to get the same number in each 
view). This method can easily lead to overfitting due to 
the repetition of samples. 

• In order to get the same number in each view the other 
solution is the selection the minimum number among 
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is 
used from both views, so the size of the input data table 
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation. 
The negative result of this solution is the artificial 
reduction of the number and the expected decrease in 
accuracy based on the measurements. 

• Instead of the concatenation of the vectors, we can get 
the union of the set of vectors. There is a requirement for 
the number of samples per view, the only condition is 
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with 
the union of views eliminates the imbalanced problem, 
thus our method works with this, and the dimension of 
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚. 

C. DVMN on multiple views 
During the DVMN method, we trained two CNNs based on 

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2  be sets of 
characteristic vectors analogous to equation (23) and (26). The 
solution presented below builds the model to take advantage of 
the union of views. Consider the union of feature vectors: 

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29) 
This complete set is given to the Matching Network (MN) to 

perform the vector space teaching required for a few-shot 
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿: 

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30) 
For using the learned new vector space for an unknown 

image set, the previously learned CNN1 and CNN2 (depending 
on whether the unknown image is in the first or second view) 
and MN can be applied to generate vectors for all images, so we 
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where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate) 
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the 
attention mechanism with softmax activation. Context 
embedding of the classifier's 𝑔𝑔 (target image) network: 

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗  ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22) 
B. Handling the views 

Our idea was to separate the different perspectives in some 
way in order to find a better model. In designing our solution 
with more views, the most important task was the optimal use 
of the feature vectors (hereafter vectors) of the images taken 
from each view. In DVMN, we suggested that the vectors of 
each perspective should be constructed by different CNN 
networks with separate parameters instead of a common one 
[5][27]. Behind this idea was that during training iterations, due 
to the small number of samples, tuning the model parameters to 
the appropriate “direction” is key, and recordings from different 
perspectives can easily miscalibrate weight settings. In 
addition, the mappings generated by the two separate networks 
need to be aggregated before classification [8], as the Matching 
Network would learn the difference between views instead of 
similarities among images from the same class, so our solution 
was based on the basic idea of working with a union of views.  

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image 
set that contains only the images in the first view and whose 
images we want to use to teach a metric space. To generate 
feature vectors from the images, we used a self-made CNN, 
because it is more flexible to learn new types of images than a 
pretrained deep neural network. By separating the last FC layers 
of CNN, the remained network generates a feature vector of n 
elements for each input image, denoting this feature extraction 
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the 
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this 
way is denoted by 𝑉𝑉𝐿𝐿1: 

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23) 
The Matching Network generates a new vector from each 

entered feature vector that already describes the image in the 
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we 
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿1: 

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24) 

For an unknown class set (by unknown, we mean the set of 
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of 
classes of the unknown set are disjoint sets, i.e., their 
intersection is an empty set, but the new set has some class 
labeled images) we want to use the learned new vector space, 
where the image set also consists only of images from the first 
view. With the previously learned CNN and MN models, 
vectors can be generated for all images (without the labels of 
the unknown image set), so we denote the set of new vectors 
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be: 

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25) 
If we select the vectors with the class label from the elements 

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other 

vectors with unknown class labels by predicting the class label 
whose the support vector is closest to the vector to be classified. 

Using the notations used in the previous paragraphs in an 
analogous way to the second view: 

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26) 
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27) 
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28) 
This mathematical framework of handling multi-view data is 

our contribution in this paper. In B-shot learning the images of 
each view are fed to the two CNNs, they will output two 𝑚𝑚 long 
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and 
in the second view, respectively in a given class. If the image 
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will 
have a dimension 𝑛𝑛 ×  2𝑚𝑚 at the case of the concatenation of 
vectors belonging to two views. In a real environment, 
expecting an ideal dataset would be an unrealistic requirement, 
so the following options are available at this point: 

• If at least one image is available from both views, but 
the number of images in a view is larger, the images 
already used can be re-input as the replacement for the 
missing images (in order to get the same number in each 
view). This method can easily lead to overfitting due to 
the repetition of samples. 

• In order to get the same number in each view the other 
solution is the selection the minimum number among 
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is 
used from both views, so the size of the input data table 
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation. 
The negative result of this solution is the artificial 
reduction of the number and the expected decrease in 
accuracy based on the measurements. 

• Instead of the concatenation of the vectors, we can get 
the union of the set of vectors. There is a requirement for 
the number of samples per view, the only condition is 
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with 
the union of views eliminates the imbalanced problem, 
thus our method works with this, and the dimension of 
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚. 

C. DVMN on multiple views 
During the DVMN method, we trained two CNNs based on 

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2  be sets of 
characteristic vectors analogous to equation (23) and (26). The 
solution presented below builds the model to take advantage of 
the union of views. Consider the union of feature vectors: 

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29) 
This complete set is given to the Matching Network (MN) to 

perform the vector space teaching required for a few-shot 
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿: 

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30) 
For using the learned new vector space for an unknown 

image set, the previously learned CNN1 and CNN2 (depending 
on whether the unknown image is in the first or second view) 
and MN can be applied to generate vectors for all images, so we 
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where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate) 
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the 
attention mechanism with softmax activation. Context 
embedding of the classifier's 𝑔𝑔 (target image) network: 

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗  ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22) 
B. Handling the views 

Our idea was to separate the different perspectives in some 
way in order to find a better model. In designing our solution 
with more views, the most important task was the optimal use 
of the feature vectors (hereafter vectors) of the images taken 
from each view. In DVMN, we suggested that the vectors of 
each perspective should be constructed by different CNN 
networks with separate parameters instead of a common one 
[5][27]. Behind this idea was that during training iterations, due 
to the small number of samples, tuning the model parameters to 
the appropriate “direction” is key, and recordings from different 
perspectives can easily miscalibrate weight settings. In 
addition, the mappings generated by the two separate networks 
need to be aggregated before classification [8], as the Matching 
Network would learn the difference between views instead of 
similarities among images from the same class, so our solution 
was based on the basic idea of working with a union of views.  

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image 
set that contains only the images in the first view and whose 
images we want to use to teach a metric space. To generate 
feature vectors from the images, we used a self-made CNN, 
because it is more flexible to learn new types of images than a 
pretrained deep neural network. By separating the last FC layers 
of CNN, the remained network generates a feature vector of n 
elements for each input image, denoting this feature extraction 
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the 
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this 
way is denoted by 𝑉𝑉𝐿𝐿1: 

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23) 
The Matching Network generates a new vector from each 

entered feature vector that already describes the image in the 
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we 
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿1: 

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24) 

For an unknown class set (by unknown, we mean the set of 
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of 
classes of the unknown set are disjoint sets, i.e., their 
intersection is an empty set, but the new set has some class 
labeled images) we want to use the learned new vector space, 
where the image set also consists only of images from the first 
view. With the previously learned CNN and MN models, 
vectors can be generated for all images (without the labels of 
the unknown image set), so we denote the set of new vectors 
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be: 

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25) 
If we select the vectors with the class label from the elements 

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other 

vectors with unknown class labels by predicting the class label 
whose the support vector is closest to the vector to be classified. 

Using the notations used in the previous paragraphs in an 
analogous way to the second view: 

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26) 
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27) 
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28) 
This mathematical framework of handling multi-view data is 

our contribution in this paper. In B-shot learning the images of 
each view are fed to the two CNNs, they will output two 𝑚𝑚 long 
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and 
in the second view, respectively in a given class. If the image 
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will 
have a dimension 𝑛𝑛 ×  2𝑚𝑚 at the case of the concatenation of 
vectors belonging to two views. In a real environment, 
expecting an ideal dataset would be an unrealistic requirement, 
so the following options are available at this point: 

• If at least one image is available from both views, but 
the number of images in a view is larger, the images 
already used can be re-input as the replacement for the 
missing images (in order to get the same number in each 
view). This method can easily lead to overfitting due to 
the repetition of samples. 

• In order to get the same number in each view the other 
solution is the selection the minimum number among 
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is 
used from both views, so the size of the input data table 
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation. 
The negative result of this solution is the artificial 
reduction of the number and the expected decrease in 
accuracy based on the measurements. 

• Instead of the concatenation of the vectors, we can get 
the union of the set of vectors. There is a requirement for 
the number of samples per view, the only condition is 
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with 
the union of views eliminates the imbalanced problem, 
thus our method works with this, and the dimension of 
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚. 

C. DVMN on multiple views 
During the DVMN method, we trained two CNNs based on 

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2  be sets of 
characteristic vectors analogous to equation (23) and (26). The 
solution presented below builds the model to take advantage of 
the union of views. Consider the union of feature vectors: 

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29) 
This complete set is given to the Matching Network (MN) to 

perform the vector space teaching required for a few-shot 
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿: 

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30) 
For using the learned new vector space for an unknown 

image set, the previously learned CNN1 and CNN2 (depending 
on whether the unknown image is in the first or second view) 
and MN can be applied to generate vectors for all images, so we 
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where 𝑥𝑥 is the input, ℎ is the output (cell after the output gate) 
and 𝑐𝑐 is the memory cell. Furthermore, it is a function of the 
attention mechanism with softmax activation. Context 
embedding of the classifier's 𝑔𝑔 (target image) network: 

𝑔𝑔(𝑥𝑥𝑙𝑙, 𝑆𝑆) = ℎ𝑙𝑙⃗⃗  ⃗ + ℎ𝑙𝑙⃖⃗⃗⃗ + 𝑔𝑔′(𝑥𝑥𝑙𝑙) (22) 
B. Handling the views 

Our idea was to separate the different perspectives in some 
way in order to find a better model. In designing our solution 
with more views, the most important task was the optimal use 
of the feature vectors (hereafter vectors) of the images taken 
from each view. In DVMN, we suggested that the vectors of 
each perspective should be constructed by different CNN 
networks with separate parameters instead of a common one 
[5][27]. Behind this idea was that during training iterations, due 
to the small number of samples, tuning the model parameters to 
the appropriate “direction” is key, and recordings from different 
perspectives can easily miscalibrate weight settings. In 
addition, the mappings generated by the two separate networks 
need to be aggregated before classification [8], as the Matching 
Network would learn the difference between views instead of 
similarities among images from the same class, so our solution 
was based on the basic idea of working with a union of views.  

Continuing the previous thoughts, let 𝑆𝑆𝐿𝐿1 be a labeled image 
set that contains only the images in the first view and whose 
images we want to use to teach a metric space. To generate 
feature vectors from the images, we used a self-made CNN, 
because it is more flexible to learn new types of images than a 
pretrained deep neural network. By separating the last FC layers 
of CNN, the remained network generates a feature vector of n 
elements for each input image, denoting this feature extraction 
mesh as a function of 𝑓𝑓: 𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥). For all images in the 
tagged image set 𝑆𝑆𝐿𝐿1, the set of feature vectors generated in this 
way is denoted by 𝑉𝑉𝐿𝐿1: 

𝑉𝑉𝐿𝐿1 = {𝑣𝑣𝐿𝐿1|𝑣𝑣𝐿𝐿1 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿1} (23) 
The Matching Network generates a new vector from each 

entered feature vector that already describes the image in the 
new vector space, denoting this new vector by 𝑣𝑣′𝐿𝐿1, so that we 
can write that 𝑣𝑣′𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1). The set of new vectors thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿1: 

𝑉𝑉′
𝐿𝐿1 = {𝑣𝑣′

𝐿𝐿1|𝑣𝑣′
𝐿𝐿1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑣𝑣𝐿𝐿1)} (24) 

For an unknown class set (by unknown, we mean the set of 
classes belonging to the previous image set 𝑆𝑆𝐿𝐿1 and the set of 
classes of the unknown set are disjoint sets, i.e., their 
intersection is an empty set, but the new set has some class 
labeled images) we want to use the learned new vector space, 
where the image set also consists only of images from the first 
view. With the previously learned CNN and MN models, 
vectors can be generated for all images (without the labels of 
the unknown image set), so we denote the set of new vectors 
obtained for the unknown image set by 𝑉𝑉′𝑈𝑈1, which will be: 

𝑉𝑉′𝑈𝑈1 = {𝑣𝑣′𝑈𝑈1|𝑣𝑣′𝑈𝑈1 = 𝑓𝑓𝑀𝑀𝐶𝐶1(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1 } (25) 
If we select the vectors with the class label from the elements 

of 𝑉𝑉′𝑈𝑈1 into the support set (this is the training set of the few-
shot learner), we will be able to classify each of the other 

vectors with unknown class labels by predicting the class label 
whose the support vector is closest to the vector to be classified. 

Using the notations used in the previous paragraphs in an 
analogous way to the second view: 

𝑉𝑉𝐿𝐿2 = {𝑣𝑣𝐿𝐿2|𝑣𝑣𝐿𝐿2 = 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥), 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿2} (26) 
𝑉𝑉′

𝐿𝐿2 = {𝑣𝑣′
𝐿𝐿2|𝑣𝑣′

𝐿𝐿2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑣𝑣𝐿𝐿2)} (27) 
𝑉𝑉′

𝑈𝑈2 = {𝑣𝑣′
𝑈𝑈2|𝑣𝑣′

𝑈𝑈2 = 𝑓𝑓𝑀𝑀𝐶𝐶2(𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2 } (28) 
This mathematical framework of handling multi-view data is 

our contribution in this paper. In B-shot learning the images of 
each view are fed to the two CNNs, they will output two 𝑚𝑚 long 
vectors. Let 𝑛𝑛1 and 𝑛𝑛2 be the number of samples in the first and 
in the second view, respectively in a given class. If the image 
dataset is ideal (that is 𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛), the input data table will 
have a dimension 𝑛𝑛 ×  2𝑚𝑚 at the case of the concatenation of 
vectors belonging to two views. In a real environment, 
expecting an ideal dataset would be an unrealistic requirement, 
so the following options are available at this point: 

• If at least one image is available from both views, but 
the number of images in a view is larger, the images 
already used can be re-input as the replacement for the 
missing images (in order to get the same number in each 
view). This method can easily lead to overfitting due to 
the repetition of samples. 

• In order to get the same number in each view the other 
solution is the selection the minimum number among 
different views. In this case, a sample 𝑚𝑚𝑚𝑚𝑛𝑛 (𝑛𝑛1, 𝑛𝑛2) is 
used from both views, so the size of the input data table 
will be 𝑚𝑚𝑚𝑚𝑛𝑛(𝑛𝑛1, 𝑛𝑛2) × 2𝑚𝑚 at the case of concatenation. 
The negative result of this solution is the artificial 
reduction of the number and the expected decrease in 
accuracy based on the measurements. 

• Instead of the concatenation of the vectors, we can get 
the union of the set of vectors. There is a requirement for 
the number of samples per view, the only condition is 
that 𝑘𝑘1 + 𝑘𝑘2 ≥ 𝐵𝐵 (in B-shot learning). This solution with 
the union of views eliminates the imbalanced problem, 
thus our method works with this, and the dimension of 
the data table will be (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚. 

C. DVMN on multiple views 
During the DVMN method, we trained two CNNs based on 

the idea of a union of sets of vectors. Let 𝑉𝑉𝐿𝐿1 and 𝑉𝑉𝐿𝐿2  be sets of 
characteristic vectors analogous to equation (23) and (26). The 
solution presented below builds the model to take advantage of 
the union of views. Consider the union of feature vectors: 

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿1 ∪ 𝑉𝑉𝐿𝐿2 (29) 
This complete set is given to the Matching Network (MN) to 

perform the vector space teaching required for a few-shot 
classification. The set of new vectors of (𝑛𝑛1 + 𝑛𝑛2) × 𝑚𝑚 thus 
obtained is denoted by 𝑉𝑉′𝐿𝐿: 

𝑉𝑉′𝐿𝐿 = {𝑣𝑣′𝐿𝐿|𝑣𝑣′𝐿𝐿 = 𝑓𝑓𝑀𝑀𝐶𝐶(𝑣𝑣𝐿𝐿),𝑣𝑣𝐿𝐿 ∈ 𝑉𝑉𝐿𝐿} (30) 
For using the learned new vector space for an unknown 

image set, the previously learned CNN1 and CNN2 (depending 
on whether the unknown image is in the first or second view) 
and MN can be applied to generate vectors for all images, so we 
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denote the set of new vectors obtained for the unknown image 
set by 𝑉𝑉′𝑈𝑈, which will be: 

𝑉𝑉′
𝑈𝑈 = {𝑣𝑣′

𝑈𝑈| 𝑣𝑣
′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1

𝑣𝑣′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2

} (31) 

The depicting part of the support set of the Double-View 
Matching Network architecture, which makes efficient use of 
multiple views and can handle the problem of unbalanced 
classes, is shown in Figure 2. 

As a concluding point of the section, although the present 
implementation (described above) uses only two types of views 
due to the characteristics of the data set (and the architecture of 
the model), it would be able to take advantage of more different 
perspectives instead of two. 

 

 
Figure 2. Mapping the Double-View Matching Network 

support vector 
 

D. Training setup 
So far, the operation of the Matching Network has been 

presented, which uses a set of support as an input of an 𝑆𝑆 →
𝐶𝐶(𝑥𝑥) classifier. In the method, using set-by-set sampling, a 
mapping in the form 𝑃𝑃𝜃𝜃(𝑦𝑦|�̂�𝑥, 𝑆𝑆)  is obtained, in which θ denotes 
the parameters of the model. 

In learning, in each iteration/epoch in which the gradients are 
calculated, and the model parameters are updated, we first 
sample a class set 𝐶𝐶 from a set 𝐹𝐹 (all classes) that contains a 
subset of all classes. Next, using 𝐶𝐶, we select the elements of 
the support set 𝑆𝑆, along with a 𝑆𝑆𝐵𝐵  batch that contains some 
instances of the classes of the 𝐶𝐶 set. 

The model parameters are then parameterized in such a way 
that the error of the class predictions given to the samples in 𝑆𝑆𝐵𝐵  
is minimized when trained on 𝑆𝑆: 

𝜃𝜃 = 𝑎𝑎𝑟𝑟𝑔𝑔 max
𝜃𝜃

𝐸𝐸𝐶𝐶~𝐹𝐹 [𝐸𝐸𝑆𝑆~𝐶𝐶,𝑆𝑆𝐵𝐵~𝐶𝐶 [ ∑ log 𝑃𝑃𝜃𝜃(𝑦𝑦|𝑥𝑥, 𝑆𝑆)
(𝑥𝑥,𝑦𝑦)∈𝑆𝑆𝐵𝐵

]] (32) 

Sampling batches through different iterations helps to avoid 
overfitting by providing the model with inputs of combinations 
of available images that it has not yet encountered in a given 
order of occurrence. This type of approach is particularly 
advantageous in context embedding, as identical sequences of 
repetitive images may in themselves lead to overfitting due to 
their repetitive (non-random) order through iterations. On the 
other hand, if we vary not only the images but also the order of 
their context learning, then the context embedding layer can 
perform different parameter tunings due to the changing 
environment. 

V. EXPERIMENTAL RESULTS 

A. Dataset 
We investigated a real problem for testing the Double-View 

Matching Network method in the recognition and classification 
of viral diseases using pathological chest X-rays, for which only 
a very limited number of training samples are available. It is 
easy to imagine the potential of such a solution, which can 
detect new, almost unknown diseases without the use of 
extensive data collection and expertise (oracle), even at the 
beginning of an outbreak like COVID-19. 

A publicly available COVID-19 data set [1] was used to 
design the experimental environment, which was expanded 
with chest X-rays of other diseases. It is important to note that 
the recordings are not assignable to humans, are completely 
anonymized, and do not contain any patient-specific 
information in their metadata. As we mentioned before, two 
types of recording perspectives for each disease in the data set 
are available - frontal and profile (side) recording. The well-
known multi-view solutions [11] cannot be used because only 
one view was recorded at each patient.   

The complete data set contains 758 records of a total of 19 
disease classes. After data cleaning (removal of erroneous, 
watermarked, etc. recordings), 680 recordings from 15 classes 
were added to the final data set. Another special circumstance 
is that image collections from different sources have different 
resolutions, with the smallest reaching only 150x150 and the 
largest reaching up to 2500x2500 pixels. Regarding the classes 
of the data set, it shows an unequal number of samples for each 
perspective: 

• Completely unbalanced (only images from one 
perspective can be found in the samples) classes include 
the following diseases: ecoli, ards, sars. 

• Balanced (same number of images from both views): 
influenza, mycoplasma, bacterial, chlamydophila, 
COVID-19. 

• For the other classes, there are recordings from both 
perspectives, but not in equal numbers: klebsiella, 
legionella, lipoid, pneumocystis, pneumonia, 
streptococcus, varicella. 

The abnormalities of the lung caused by the COVID-19 virus 
are well recognized in the images in Figure 3 as a good 
example. Left side: symptoms are recognizable from “denser” 
lung areas, right side: “denser” areas are depicted on a heat map. 
 

 
Figure 3. Chest X-ray showing COVID-19 symptoms. 
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denote the set of new vectors obtained for the unknown image 
set by 𝑉𝑉′𝑈𝑈, which will be: 

𝑉𝑉′
𝑈𝑈 = {𝑣𝑣′

𝑈𝑈| 𝑣𝑣
′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1

𝑣𝑣′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2

} (31) 

The depicting part of the support set of the Double-View 
Matching Network architecture, which makes efficient use of 
multiple views and can handle the problem of unbalanced 
classes, is shown in Figure 2. 

As a concluding point of the section, although the present 
implementation (described above) uses only two types of views 
due to the characteristics of the data set (and the architecture of 
the model), it would be able to take advantage of more different 
perspectives instead of two. 

 

 
Figure 2. Mapping the Double-View Matching Network 

support vector 
 

D. Training setup 
So far, the operation of the Matching Network has been 

presented, which uses a set of support as an input of an 𝑆𝑆 →
𝐶𝐶(𝑥𝑥) classifier. In the method, using set-by-set sampling, a 
mapping in the form 𝑃𝑃𝜃𝜃(𝑦𝑦|�̂�𝑥, 𝑆𝑆)  is obtained, in which θ denotes 
the parameters of the model. 

In learning, in each iteration/epoch in which the gradients are 
calculated, and the model parameters are updated, we first 
sample a class set 𝐶𝐶 from a set 𝐹𝐹 (all classes) that contains a 
subset of all classes. Next, using 𝐶𝐶, we select the elements of 
the support set 𝑆𝑆, along with a 𝑆𝑆𝐵𝐵  batch that contains some 
instances of the classes of the 𝐶𝐶 set. 

The model parameters are then parameterized in such a way 
that the error of the class predictions given to the samples in 𝑆𝑆𝐵𝐵  
is minimized when trained on 𝑆𝑆: 

𝜃𝜃 = 𝑎𝑎𝑟𝑟𝑔𝑔 max
𝜃𝜃

𝐸𝐸𝐶𝐶~𝐹𝐹 [𝐸𝐸𝑆𝑆~𝐶𝐶,𝑆𝑆𝐵𝐵~𝐶𝐶 [ ∑ log 𝑃𝑃𝜃𝜃(𝑦𝑦|𝑥𝑥, 𝑆𝑆)
(𝑥𝑥,𝑦𝑦)∈𝑆𝑆𝐵𝐵

]] (32) 

Sampling batches through different iterations helps to avoid 
overfitting by providing the model with inputs of combinations 
of available images that it has not yet encountered in a given 
order of occurrence. This type of approach is particularly 
advantageous in context embedding, as identical sequences of 
repetitive images may in themselves lead to overfitting due to 
their repetitive (non-random) order through iterations. On the 
other hand, if we vary not only the images but also the order of 
their context learning, then the context embedding layer can 
perform different parameter tunings due to the changing 
environment. 

V. EXPERIMENTAL RESULTS 

A. Dataset 
We investigated a real problem for testing the Double-View 

Matching Network method in the recognition and classification 
of viral diseases using pathological chest X-rays, for which only 
a very limited number of training samples are available. It is 
easy to imagine the potential of such a solution, which can 
detect new, almost unknown diseases without the use of 
extensive data collection and expertise (oracle), even at the 
beginning of an outbreak like COVID-19. 

A publicly available COVID-19 data set [1] was used to 
design the experimental environment, which was expanded 
with chest X-rays of other diseases. It is important to note that 
the recordings are not assignable to humans, are completely 
anonymized, and do not contain any patient-specific 
information in their metadata. As we mentioned before, two 
types of recording perspectives for each disease in the data set 
are available - frontal and profile (side) recording. The well-
known multi-view solutions [11] cannot be used because only 
one view was recorded at each patient.   

The complete data set contains 758 records of a total of 19 
disease classes. After data cleaning (removal of erroneous, 
watermarked, etc. recordings), 680 recordings from 15 classes 
were added to the final data set. Another special circumstance 
is that image collections from different sources have different 
resolutions, with the smallest reaching only 150x150 and the 
largest reaching up to 2500x2500 pixels. Regarding the classes 
of the data set, it shows an unequal number of samples for each 
perspective: 

• Completely unbalanced (only images from one 
perspective can be found in the samples) classes include 
the following diseases: ecoli, ards, sars. 

• Balanced (same number of images from both views): 
influenza, mycoplasma, bacterial, chlamydophila, 
COVID-19. 

• For the other classes, there are recordings from both 
perspectives, but not in equal numbers: klebsiella, 
legionella, lipoid, pneumocystis, pneumonia, 
streptococcus, varicella. 

The abnormalities of the lung caused by the COVID-19 virus 
are well recognized in the images in Figure 3 as a good 
example. Left side: symptoms are recognizable from “denser” 
lung areas, right side: “denser” areas are depicted on a heat map. 
 

 
Figure 3. Chest X-ray showing COVID-19 symptoms. 
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} (31) 

The depicting part of the support set of the Double-View 
Matching Network architecture, which makes efficient use of 
multiple views and can handle the problem of unbalanced 
classes, is shown in Figure 2. 

As a concluding point of the section, although the present 
implementation (described above) uses only two types of views 
due to the characteristics of the data set (and the architecture of 
the model), it would be able to take advantage of more different 
perspectives instead of two. 
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The model parameters are then parameterized in such a way 
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The depicting part of the support set of the Double-View 
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due to the characteristics of the data set (and the architecture of 
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perspectives instead of two. 
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their context learning, then the context embedding layer can 
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with chest X-rays of other diseases. It is important to note that 
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information in their metadata. As we mentioned before, two 
types of recording perspectives for each disease in the data set 
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one view was recorded at each patient.   

The complete data set contains 758 records of a total of 19 
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are well recognized in the images in Figure 3 as a good 
example. Left side: symptoms are recognizable from “denser” 
lung areas, right side: “denser” areas are depicted on a heat map. 
 

 
Figure 3. Chest X-ray showing COVID-19 symptoms. 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

denote the set of new vectors obtained for the unknown image 
set by 𝑉𝑉′𝑈𝑈, which will be: 

𝑉𝑉′
𝑈𝑈 = {𝑣𝑣′

𝑈𝑈| 𝑣𝑣
′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀1(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈1

𝑣𝑣′
𝑈𝑈 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑓𝑓𝐶𝐶𝑀𝑀𝑀𝑀2(𝑥𝑥)), 𝑥𝑥 ∈ 𝑆𝑆𝑈𝑈2

} (31) 

The depicting part of the support set of the Double-View 
Matching Network architecture, which makes efficient use of 
multiple views and can handle the problem of unbalanced 
classes, is shown in Figure 2. 

As a concluding point of the section, although the present 
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due to the characteristics of the data set (and the architecture of 
the model), it would be able to take advantage of more different 
perspectives instead of two. 
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B. Baseline classifier 
Before measuring the performance of the proposed method, 

a baseline solution with k-NN (k-Nearest Neighbor) classifier 
was developed as a baseline. Measurement results were 
obtained by comparing and classifying 1-NN (nearest neighbor) 
characteristic vectors for averaging over 5 random test sets, as 
shown in the Table 2. 

 
Number of train and test 

classes 
accuracy 

4 train – 2 test 0.6980 
4 train – 4 test 0.6499 
6 train – 2 test 0.6563 
6 train – 4 test 0.6499 
8 train – 2 test 0.6199 
8 train – 4 test 0.5567 

Average 0.6384 
Table 2. Results of the k-NN classifier 

 
The data in the table show the following trends: as the 

number of known classes increases, the accuracy decreases, and 
the accuracy of the model also decreases by estimating more 
and more classes within the same class number group. 

C. Test scenarios 
After the implementation of DVMN classifier, it was 

necessary to create a comprehensive plan. Three testing 
scenarios have been developed that are suitable for testing 
different types of tasks: 
i. New world scenario: it measures the ability to classify 

new classes after learning (e. g., the recognition of new 
diseases). 
1. phase: learning distance metrics based on set 𝑆𝑆𝐵𝐵 , 

where there are 𝑁𝑁𝐶𝐶  classes in set 𝑆𝑆𝐵𝐵 . 
2. phase: selection of a support set (disjoint from set 

𝑆𝑆𝐵𝐵) by selecting one (or a few) images per class 
from 𝑀𝑀 new classes for the classifier. 

3. phase: prediction for unknown images belonging to 
one of the 𝑀𝑀 new classes. 

ii. Standard scenario: after learning, measures the ability to 
classify in learned classes on new samples (i.e., on a 
disjoint test set). 
1. phase is the same as in the first scenario (i/1). 
2. phase: select support set from set 𝑆𝑆𝐵𝐵 . 
3. phase: prediction for unknown images belonging to 

one of the 𝑁𝑁𝐶𝐶  known classes. 
iii. Hybrid scenario: after learning, measures the ability to 

classify in learned and new classes (i.e., the test set 
includes both known and unknown classes). 
1. phase is the same as in the first scenario (i/1). 
2. phase: selection of support set by selecting one (or 

a few) images from class 𝐾𝐾 (known and unknown) 
for each class. 

3. phase: prediction for unknown images belonging to 
one of the 𝐾𝐾 classes. 

 
The results of each test plan are presented below, where the 

tables show the accuracy values (i.e., the ratio of the correct 
decision to the total classification decision). 1/2/5-shot learning 
was tested using 1/2/5 samples per class, and the notation in the 

header of the rows is as follows: C <training classes> / C <test 
classes> / S <samples per class> / E <number of the epochs>. 

The results in Table 3 were measured on the data set 
described earlier with the baseline classifier (i.e., there was no 
double-view feature as with DVMN), where the images include 
recordings from multiple perspectives. As a baseline, we were 
interested in the results of three scenarios simulating different 
test circumstances. The measured values in the table clearly 
show that even the baseline classifier is able to classify with 
relatively good accuracy in the “Standard” scenario; the results 
of the “New World” scenario provided an encouraging starting 
point for recognizing unknown diseases as the main goal of the 
research, using already known diseases. 

 
Number of train, 
test classes, shots 

and epochs 

New World 
scenario 

Standard 
scenario 

Hybrid 
scenario 

C4/C2/S2/E1 0.920 0.939 0.766 
C4/C2/S2/E5 0.924 0.896 0.846 

C4/C2/S2/E10 0.898 0.904 0.825 
C4/C4/S2/E1 0.620 0.759 0.800 
C4/C4/S2/E5 0.760 0.892 0.823 

C4/C4/S2/E10 0.742 0.890 0.805 
C6/C2/S2/E1 0.779 0.939 0.750 
C6/C2/S2/E5 0.800 0.888 0.776 

C6/C2/S2/E10 0.793 0.898 0.770 
C6/C4/S2/E1 0.759 0.779 0.699 
C6/C4/S2/E5 0.648 0.836 0.693 

C6/C4/S2/E10 0.708 0.858 0.673 
C8/C2/S2/E1 0.960 0.940 0.600 
C8/C2/S2/E5 0.884 0.868 0.726 

C8/C2/S2/E10 0.872 0.870 0.713 
C8/C4/S2/E1 0.680 0.800 0.766 
C8/C4/S2/E5 0.720 0.880 0.746 

C8/C4/S2/E10 0.690 0.818 0.726 
Average 0.7808 0.8696 0.7501 

Table 3. Accuracy results of test scenarios 
 
In the Table 3, the three numerical values below each other 

belong to a common measurement in such a way that the 
accuracy values after 1, 5, and 10 epochs were measured. In 
most cases, after the 5th epoch, the training reached the accuracy 
value after that the system could no longer learn. In order to 
avoid overfitting, we used the results after the 5th epoch; and the 
test results presented in the rest of the paper also include 
learnings up to the first 5 epochs. 

D. Classification of unknown diseases, like COVID-19 
In the following, the measurements of the “New World” 

scenario, which simulates the recognition of new diseases, is 
the topic that gives the main objective of our research. The 
tables compare the classifiers:  

• MN (Matching Network) for only first, and for only 
second view (and average accuracy of them),  

• k-NN classifier for only first, and for only second view 
(and average accuracy of them), 

• DVMN as our proposed method  
• k-NN classifier for two views 
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B. Baseline classifier 
Before measuring the performance of the proposed method, 

a baseline solution with k-NN (k-Nearest Neighbor) classifier 
was developed as a baseline. Measurement results were 
obtained by comparing and classifying 1-NN (nearest neighbor) 
characteristic vectors for averaging over 5 random test sets, as 
shown in the Table 2. 

 
Number of train and test 

classes 
accuracy 

4 train – 2 test 0.6980 
4 train – 4 test 0.6499 
6 train – 2 test 0.6563 
6 train – 4 test 0.6499 
8 train – 2 test 0.6199 
8 train – 4 test 0.5567 

Average 0.6384 
Table 2. Results of the k-NN classifier 

 
The data in the table show the following trends: as the 

number of known classes increases, the accuracy decreases, and 
the accuracy of the model also decreases by estimating more 
and more classes within the same class number group. 

C. Test scenarios 
After the implementation of DVMN classifier, it was 

necessary to create a comprehensive plan. Three testing 
scenarios have been developed that are suitable for testing 
different types of tasks: 
i. New world scenario: it measures the ability to classify 

new classes after learning (e. g., the recognition of new 
diseases). 
1. phase: learning distance metrics based on set 𝑆𝑆𝐵𝐵 , 

where there are 𝑁𝑁𝐶𝐶  classes in set 𝑆𝑆𝐵𝐵 . 
2. phase: selection of a support set (disjoint from set 

𝑆𝑆𝐵𝐵) by selecting one (or a few) images per class 
from 𝑀𝑀 new classes for the classifier. 

3. phase: prediction for unknown images belonging to 
one of the 𝑀𝑀 new classes. 

ii. Standard scenario: after learning, measures the ability to 
classify in learned classes on new samples (i.e., on a 
disjoint test set). 
1. phase is the same as in the first scenario (i/1). 
2. phase: select support set from set 𝑆𝑆𝐵𝐵 . 
3. phase: prediction for unknown images belonging to 

one of the 𝑁𝑁𝐶𝐶  known classes. 
iii. Hybrid scenario: after learning, measures the ability to 

classify in learned and new classes (i.e., the test set 
includes both known and unknown classes). 
1. phase is the same as in the first scenario (i/1). 
2. phase: selection of support set by selecting one (or 

a few) images from class 𝐾𝐾 (known and unknown) 
for each class. 

3. phase: prediction for unknown images belonging to 
one of the 𝐾𝐾 classes. 

 
The results of each test plan are presented below, where the 

tables show the accuracy values (i.e., the ratio of the correct 
decision to the total classification decision). 1/2/5-shot learning 
was tested using 1/2/5 samples per class, and the notation in the 

header of the rows is as follows: C <training classes> / C <test 
classes> / S <samples per class> / E <number of the epochs>. 

The results in Table 3 were measured on the data set 
described earlier with the baseline classifier (i.e., there was no 
double-view feature as with DVMN), where the images include 
recordings from multiple perspectives. As a baseline, we were 
interested in the results of three scenarios simulating different 
test circumstances. The measured values in the table clearly 
show that even the baseline classifier is able to classify with 
relatively good accuracy in the “Standard” scenario; the results 
of the “New World” scenario provided an encouraging starting 
point for recognizing unknown diseases as the main goal of the 
research, using already known diseases. 

 
Number of train, 
test classes, shots 

and epochs 

New World 
scenario 

Standard 
scenario 

Hybrid 
scenario 

C4/C2/S2/E1 0.920 0.939 0.766 
C4/C2/S2/E5 0.924 0.896 0.846 

C4/C2/S2/E10 0.898 0.904 0.825 
C4/C4/S2/E1 0.620 0.759 0.800 
C4/C4/S2/E5 0.760 0.892 0.823 

C4/C4/S2/E10 0.742 0.890 0.805 
C6/C2/S2/E1 0.779 0.939 0.750 
C6/C2/S2/E5 0.800 0.888 0.776 

C6/C2/S2/E10 0.793 0.898 0.770 
C6/C4/S2/E1 0.759 0.779 0.699 
C6/C4/S2/E5 0.648 0.836 0.693 

C6/C4/S2/E10 0.708 0.858 0.673 
C8/C2/S2/E1 0.960 0.940 0.600 
C8/C2/S2/E5 0.884 0.868 0.726 

C8/C2/S2/E10 0.872 0.870 0.713 
C8/C4/S2/E1 0.680 0.800 0.766 
C8/C4/S2/E5 0.720 0.880 0.746 

C8/C4/S2/E10 0.690 0.818 0.726 
Average 0.7808 0.8696 0.7501 

Table 3. Accuracy results of test scenarios 
 
In the Table 3, the three numerical values below each other 

belong to a common measurement in such a way that the 
accuracy values after 1, 5, and 10 epochs were measured. In 
most cases, after the 5th epoch, the training reached the accuracy 
value after that the system could no longer learn. In order to 
avoid overfitting, we used the results after the 5th epoch; and the 
test results presented in the rest of the paper also include 
learnings up to the first 5 epochs. 

D. Classification of unknown diseases, like COVID-19 
In the following, the measurements of the “New World” 

scenario, which simulates the recognition of new diseases, is 
the topic that gives the main objective of our research. The 
tables compare the classifiers:  

• MN (Matching Network) for only first, and for only 
second view (and average accuracy of them),  

• k-NN classifier for only first, and for only second view 
(and average accuracy of them), 

• DVMN as our proposed method  
• k-NN classifier for two views 
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learnings up to the first 5 epochs. 
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In the following, the measurements of the “New World” 

scenario, which simulates the recognition of new diseases, is 
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B. Baseline classifier 
Before measuring the performance of the proposed method, 

a baseline solution with k-NN (k-Nearest Neighbor) classifier 
was developed as a baseline. Measurement results were 
obtained by comparing and classifying 1-NN (nearest neighbor) 
characteristic vectors for averaging over 5 random test sets, as 
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one of the 𝑁𝑁𝐶𝐶  known classes. 
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1. phase is the same as in the first scenario (i/1). 
2. phase: selection of support set by selecting one (or 

a few) images from class 𝐾𝐾 (known and unknown) 
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was tested using 1/2/5 samples per class, and the notation in the 
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classes> / S <samples per class> / E <number of the epochs>. 

The results in Table 3 were measured on the data set 
described earlier with the baseline classifier (i.e., there was no 
double-view feature as with DVMN), where the images include 
recordings from multiple perspectives. As a baseline, we were 
interested in the results of three scenarios simulating different 
test circumstances. The measured values in the table clearly 
show that even the baseline classifier is able to classify with 
relatively good accuracy in the “Standard” scenario; the results 
of the “New World” scenario provided an encouraging starting 
point for recognizing unknown diseases as the main goal of the 
research, using already known diseases. 
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Table 3. Accuracy results of test scenarios 
 
In the Table 3, the three numerical values below each other 

belong to a common measurement in such a way that the 
accuracy values after 1, 5, and 10 epochs were measured. In 
most cases, after the 5th epoch, the training reached the accuracy 
value after that the system could no longer learn. In order to 
avoid overfitting, we used the results after the 5th epoch; and the 
test results presented in the rest of the paper also include 
learnings up to the first 5 epochs. 

D. Classification of unknown diseases, like COVID-19 
In the following, the measurements of the “New World” 

scenario, which simulates the recognition of new diseases, is 
the topic that gives the main objective of our research. The 
tables compare the classifiers:  

• MN (Matching Network) for only first, and for only 
second view (and average accuracy of them),  

• k-NN classifier for only first, and for only second view 
(and average accuracy of them), 

• DVMN as our proposed method  
• k-NN classifier for two views 
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• MN (Matching Network) for all data (without 
distinguishing views) 

• k-NN classifier for all data (without distinguishing 
views) 

Looking at the results in Table 4, it can be seen that the 
DVMN method performs best with an average accuracy of 
81.2%, even when using a single sample for the one-shot-
learning task.  
 

# train, 
test class, 

shots 

Average of 
2 different views Double view 

Without 
distinguishing 

views 

accuracies Ave. of 
2 MN  

Ave. of  
2 k-NN  DVMN 2-view 

k-NN MN k-NN 

C4/C2/S1 0.8566 0.6560 0.7766 0.6200 0.8380 0.5833 
C4/C4/S1 0.8683 0.6333 0.8333 0.6366 0.7640 0.6500 
C6/C2/S1 0.8149 0.5933 0.8200 0.6600 0.7940 0.6499 
C6/C4/S1 0.7599 0.5426 0.7600 0.5666 0.7240 0.5400 
C8/C2/S1 0.7450 0.6205 0.8333 0.6000 0.8740 0.5600 
C8/C4/S1 0.7900 0.6220 0.8466 0.5200 0.7700 0.6199 
Average 0.8057 0.6112 0.8116 0.6005 0.7940 0.6005 

F1 scores Ave. of 
2 MN  

Ave. of  
2 k-NN  DVMN 2-view 

k-NN MN k-NN 

C4/C2/S1 0.795 0.574 0.762 0.510 0.751 0.480 
C4/C4/S1 0.743 0.570 0.795 0.593 0.746 0.546 
C6/C2/S1 0.704 0.524 0.776 0.604 0.717 0.587 
C6/C4/S1 0.701 0.492 0.724 0.530 0.709 0.519 
C8/C2/S1 0.725 0.586 0.797 0.549 0.800 0.556 
C8/C4/S1 0.745 0.577 0.810 0.507 0.766 0.532 
Average 0.736 0.554 0.777 0.549 0.748 0.537 

Table 4. Accuracies and F1 scores of 1-shot learning at New 
World scenario 

 
# train, 

test class, 
shots 

Average of 
2 different views Double view 

Without 
distinguishing 

views 

accuracies Ave. of 
2 MN  

Ave. of  
2 k-NN  DVMN 2-view 

k-NN MN k-NN 

C4/C2/S2 0.9000 0.6828 0.8633 0.6300 0.924 0.6980 
C4/C4/S2 0.9000 0.6616 0.8434 0.5833 0.760 0.6499 
C6/C2/S2 0.8459 0.6425 0.8566 0.6166 0.800 0.6563 
C6/C4/S2 0.7680 0.6649 0.7966 0.6500 0.678 0.6499 
C8/C2/S2 0.7739 0.6636 0.9133 0.5333 0.884 0.6199 
C8/C4/S2 0.7340 0.6499 0.8666 0.5833 0.720 0.5567 
Average 0.8203 0.6608 0.8566 0.5994 0.7943 0.6384 

F1 scores Ave. of 
2 MN  

Ave. of  
2 k-NN  DVMN 2-view 

k-NN MN k-NN 

C4/C2/S2 0.836 0.561 0.810 0.547 0.826 0.570 
C4/C4/S2 0.792 0.526 0.772 0.515 0.731 0.535 
C6/C2/S2 0.771 0.576 0.791 0.536 0.754 0.514 
C6/C4/S2 0.707 0.511 0.745 0.510 0.667 0.556 
C8/C2/S2 0.735 0.595 0.843 0.479 0.814 0.547 
C8/C4/S2 0.684 0.540 0.786 0.524 0.659 0.486 
Average 0.754 0.552 0.791 0.519 0.742 0.535 

Table 5. Accuracies and F1 scores of 2-shot learning at New 
World scenario 

 
It can be read from Table 5 that in the case of increasing the 

number of samples, in the vast majority of test cases, the 

DVMN method achieves the best classification performance 
with an average accuracy of 85.7% in 2-shot learning.  

At 5-shot learning, significantly fewer samples are available 
from the second view than from the first, so a comparison of the 
results would not have been statistically possible. Although 
fewer test cases were available compared to the previous two 
measurements (Tables 4 and 5), the results of Table 6 showed 
that the performance of the DVMN classifier is the best in this 
case as well, with an average accuracy of 85.4%. 

 
# train, 

test class, 
shots 

First view Double view 
Without 

distinguishing 
views 

accuracies 
first 
view 

of MN  

first 
view of  
k-NN  

DVMN 2-view 
k-NN MN k-NN 

C4/C2/S5 0.8180 0.6333 0.8433 0.6400 0.7780 0.6100 
C4/C4/S5 0.7580 0.5800 0.7960 0.5200 0.8159 0.6400 
C6/C2/S5 0.8320 0.6599 0.924 0.4400 0.8539 0.6333 

Average 0.8026 0.6244 0.8544 0.533 0.8159 0.6277 

F1 scores 
first 
view 

of MN  

first 
view of  
k-NN  

DVMN 2-view 
k-NN MN k-NN 

C4/C2/S5 0.746 0.529 0.770 0.568 0.710 0.535 
C4/C4/S5 0.697 0.520 0.706 0.475 0.764 0.510 
C6/C2/S5 0.763 0.547 0.836 0.437 0.776 0.493 
Average 0.735 0.532 0.771 0.493 0.750 0.513 

Table 6. Accuracies and F1 scores of 5-shot learning at New 
World scenario 

VI. CONCLUSION 
The few-shot learning problem presented in this paper 

intends to help the work of those working in medicine by 
analyzing pathological X-ray recordings, using only very few 
images. Although there are solutions, if the images come from 
different views, they will not handle these views well. We 
proposed an improved method, the so-called Double-View 
Matching Network (DVMN based on the deep neural network), 
which solves the few-shot learning problem as well as the 
different views of the pathological recordings in the images. 
The main contribution of this paper is the convolutional neural 
network for feature extraction and handling the multi-view in 
image representation. Our method was tested in the 
classification of images showing unknown COVID-19 
symptoms in an environment designed for learning a few 
samples, with prior meta-learning on images of other diseases 
only. We compared the results with k-NN classifiers, with 
different variants of the Matching Network method (one variant 
for only one view and another without distinguishing views). 
The results show that DVMN reaches the best accuracy on 
multi-view dataset (better than Matching Network as well) at 1-
shot, 2-shot, and 5-shot learning. 
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• MN (Matching Network) for all data (without 
distinguishing views) 

• k-NN classifier for all data (without distinguishing 
views) 

Looking at the results in Table 4, it can be seen that the 
DVMN method performs best with an average accuracy of 
81.2%, even when using a single sample for the one-shot-
learning task.  
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k-NN MN k-NN 

C4/C2/S1 0.795 0.574 0.762 0.510 0.751 0.480 
C4/C4/S1 0.743 0.570 0.795 0.593 0.746 0.546 
C6/C2/S1 0.704 0.524 0.776 0.604 0.717 0.587 
C6/C4/S1 0.701 0.492 0.724 0.530 0.709 0.519 
C8/C2/S1 0.725 0.586 0.797 0.549 0.800 0.556 
C8/C4/S1 0.745 0.577 0.810 0.507 0.766 0.532 
Average 0.736 0.554 0.777 0.549 0.748 0.537 

Table 4. Accuracies and F1 scores of 1-shot learning at New 
World scenario 

 
# train, 

test class, 
shots 

Average of 
2 different views Double view 

Without 
distinguishing 

views 

accuracies Ave. of 
2 MN  

Ave. of  
2 k-NN  DVMN 2-view 

k-NN MN k-NN 

C4/C2/S2 0.9000 0.6828 0.8633 0.6300 0.924 0.6980 
C4/C4/S2 0.9000 0.6616 0.8434 0.5833 0.760 0.6499 
C6/C2/S2 0.8459 0.6425 0.8566 0.6166 0.800 0.6563 
C6/C4/S2 0.7680 0.6649 0.7966 0.6500 0.678 0.6499 
C8/C2/S2 0.7739 0.6636 0.9133 0.5333 0.884 0.6199 
C8/C4/S2 0.7340 0.6499 0.8666 0.5833 0.720 0.5567 
Average 0.8203 0.6608 0.8566 0.5994 0.7943 0.6384 

F1 scores Ave. of 
2 MN  

Ave. of  
2 k-NN  DVMN 2-view 

k-NN MN k-NN 

C4/C2/S2 0.836 0.561 0.810 0.547 0.826 0.570 
C4/C4/S2 0.792 0.526 0.772 0.515 0.731 0.535 
C6/C2/S2 0.771 0.576 0.791 0.536 0.754 0.514 
C6/C4/S2 0.707 0.511 0.745 0.510 0.667 0.556 
C8/C2/S2 0.735 0.595 0.843 0.479 0.814 0.547 
C8/C4/S2 0.684 0.540 0.786 0.524 0.659 0.486 
Average 0.754 0.552 0.791 0.519 0.742 0.535 

Table 5. Accuracies and F1 scores of 2-shot learning at New 
World scenario 

 
It can be read from Table 5 that in the case of increasing the 

number of samples, in the vast majority of test cases, the 

DVMN method achieves the best classification performance 
with an average accuracy of 85.7% in 2-shot learning.  

At 5-shot learning, significantly fewer samples are available 
from the second view than from the first, so a comparison of the 
results would not have been statistically possible. Although 
fewer test cases were available compared to the previous two 
measurements (Tables 4 and 5), the results of Table 6 showed 
that the performance of the DVMN classifier is the best in this 
case as well, with an average accuracy of 85.4%. 

 
# train, 

test class, 
shots 

First view Double view 
Without 

distinguishing 
views 

accuracies 
first 
view 

of MN  

first 
view of  
k-NN  

DVMN 2-view 
k-NN MN k-NN 

C4/C2/S5 0.8180 0.6333 0.8433 0.6400 0.7780 0.6100 
C4/C4/S5 0.7580 0.5800 0.7960 0.5200 0.8159 0.6400 
C6/C2/S5 0.8320 0.6599 0.924 0.4400 0.8539 0.6333 

Average 0.8026 0.6244 0.8544 0.533 0.8159 0.6277 

F1 scores 
first 
view 

of MN  

first 
view of  
k-NN  

DVMN 2-view 
k-NN MN k-NN 

C4/C2/S5 0.746 0.529 0.770 0.568 0.710 0.535 
C4/C4/S5 0.697 0.520 0.706 0.475 0.764 0.510 
C6/C2/S5 0.763 0.547 0.836 0.437 0.776 0.493 
Average 0.735 0.532 0.771 0.493 0.750 0.513 

Table 6. Accuracies and F1 scores of 5-shot learning at New 
World scenario 

VI. CONCLUSION 
The few-shot learning problem presented in this paper 

intends to help the work of those working in medicine by 
analyzing pathological X-ray recordings, using only very few 
images. Although there are solutions, if the images come from 
different views, they will not handle these views well. We 
proposed an improved method, the so-called Double-View 
Matching Network (DVMN based on the deep neural network), 
which solves the few-shot learning problem as well as the 
different views of the pathological recordings in the images. 
The main contribution of this paper is the convolutional neural 
network for feature extraction and handling the multi-view in 
image representation. Our method was tested in the 
classification of images showing unknown COVID-19 
symptoms in an environment designed for learning a few 
samples, with prior meta-learning on images of other diseases 
only. We compared the results with k-NN classifiers, with 
different variants of the Matching Network method (one variant 
for only one view and another without distinguishing views). 
The results show that DVMN reaches the best accuracy on 
multi-view dataset (better than Matching Network as well) at 1-
shot, 2-shot, and 5-shot learning. 
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