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Abstract—Quantum Annealing provides a heuristic method
leveraging quantum mechanics for solving Quadratic Uncon-
strained Binary Optimization problems. Existing Quantum An-
nealing processing units are readily available via cloud platform
access for a wide range of use cases. In particular, a novel device,
the D-Wave Advantage has been recently released. In this paper,
we study the applicability of Maximum Likelihood (ML) Channel
Decoder problems for MIMO scenarios in centralized RAN.
The main challenge for exact optimization of ML decoders with
ever-increasing demand for higher data rates is the exponential
increase of the solution space with problem sizes. Since current
5G solutions can only use approximate methodologies, Kim et
al. [1] leveraged Quantum Annealing for large MIMO problems
with phase shift keying and quadrature amplitude modulation
scenarios. Here, we extend upon their work and present em-
bedding limits for both more complex modulation and higher
receiver / transmitter numbers using the Pegasus P16 topology of
the D-Wave Advantage system.

Index Terms—Quantum Computing, Quantum Annealing,
NP-hard optimization, Graph embedding, Telecommunication,
Massive-MIMO

I. INTRODUCTION

QUANTUM Computers use the unique information pro-
cessing possibilities offered by quantum mechanics to

solve complex problems [2], [3]. At the current level of techno-
logical maturity, universal large-scale Quantum Computers are
still many years away. However, today’s Noisy Intermediate-
Scale Quantum (NISQ) devices already offer experimental
platforms, and Quantum Annealers [4]–[6] play a prominent
role, as they enable running optimization algorithms with few
hundreds or even few thousands of qubits, although with
considerable noise present in the system. In this paper, we
study the embedding problem for topologies of state-of-the-
art Quantum Annealers for the telecommunication problem of
decoding wireless physical channel transmission by Large and
Massive multiple input multiple output (MIMO) [7] antenna
arrays.

Due to the ever-increasing demand for higher data rates,
capacity and throughput, the application of MIMO antenna
arrays is indispensable to support multiple users near a wire-
less access point or base station at the same time [8]. As the
number of antennas in MIMO setups increases, the complexity

of encoding and decoding of signals requires an increasing
computing power. [9]

The maximum likelihood (ML) MIMO decoding technique
is – in theory – capable of high throughput, but is rarely used
in practice as it requires exponential computing complexity in
the number of antennas [10]. Kim et al. [1] examined the idea
of quantum computation leveraged within the data center of
a centralized radio access network (C-RAN) [11] in the hope
of speeding up the computing and maintaining throughput by
solving the decoding problem there. In such a solution, the
ML decoding problem can be first formulated as a Quadratic
Unconstrained Binary Optimization (QUBO) problem [12],
[13], suitable for a QA processing unit. In the end, the results
are mapped back to decoded bits.

Our goal was to extend upon the methodology in [1]
and adapt it to set of modulation schemes most relevant for
advanced telecommunication scenarios. The paper presents our
extension of the known decoding problem to 64-QAM mod-
ulation by the maximum likelihood detection. Furthermore,
we present a comparative analysis focusing on embedding
efficiency using the topologies of both the D-Wave 2000Q
Quantum Processing Unit (QPU) of 2000 qubits and the
recently released D-Wave Advantage platform based on a
5000-qubit QPU [14].

In the next section, we give a brief overview of Quantum
Annealing and the MIMO ML decoding and its formulation
as a QUBO/Ising problem. In Sec. IV, we present our exten-
sion of this problem formulation for a higher-order modula-
tion. Sec. V-A gives a description of the available D-Wave
topologies and embedding methods, while in Sec. V-C the
Theoretical limits of the mapping is explained and the largest
embedded MIMO scenarios are presented. Finally, in Sec. VI
we summarize our results and discuss further possibilities.

II. THEORETICAL BACKGROUND

A. Ising and QUBO models
In order to use the D-Wave Quantum Annealer, one needs

to state the optimization problem as a standard QUBO or its
equivalent Ising model. The Ising model describes physical
systems of discrete spin variables, where each variable is either
−1 or 1, i.e., the configuration space of dimension 2N is:
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∗Ericsson Research, Budapest, Hungary

†Budapest University of Technology and Economics, Budapest, Hungary
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ΩN := {−1,+1}×N = {(s1, ..., sN ) : sk = ±1} . (1)

The Ising spin glass model gives the energy function or
Hamiltonian of a given spin configuration state s ∈ ΩN of
the system as follows:

H(s) = −1

2

N∑
i,j=1

Jijsisj −
N∑
i=1

hisi , (2)

where hi is the ith qubit’s interaction with the external field
(bias), and Jij is the strength of the interaction between qubits
i and j (coupling strength). If the system prefers the pair
of spins to be aligned (si = sj) the interaction is called
ferromagnetic coupling and, if the pair of spins to be anti-
aligned (si = −sj) the interaction is called antiferromagnetic.
To follow the notation of [1], we shall rewrite the optimization
from Eq. 2 to the following form:

ŝ = ŝ1, . . . , ŝN =

= argmin
s∈{(s1,...,sN )}


1

2

N∑
i,j=1

gijsisj +
N∑
i=1

fisi


 ,

(3)

where si ∈ {−1, 1} are the spin variables and fi, gij contain
the Ising model’s coefficients corresponding to the biases and
coupling strengths, respectively and ŝ is a minimum energy
Ising spin configuration vector.

Since the QUBO model has equivalent expressing power to
the Ising model, we can easily convert back-and-forth between
the two. The QUBO description of an optimization problem
is stated as:

q̂ = q̂1, . . . , q̂N = argmin
q∈{(q1,...,qN )}

1

2

N∑
i,j=1

Qijqiqj , (4)

where qi are binary decision variables, Q is an symmetric
matrix of coefficients and q̂ is the resulting bit string of the
optimization.

Since qi is binary, it has the property: q2i = qi, which can
be very useful. With qi = (si+1)/2, one can convert between
the two models effortlessly.

Finding the global minimum of a given Hamiltonian is an
NP-hard task, i.e., for large problems it will take exponentially
long time in the size of the problem to compute the exact
solution on a classical computer.

Therefore, one often employs heuristic algorithms, such as
Simulated Annealing (SA) [15] to produce approximate results
for large problems in polynomial time.

B. Quantum Annealing

QA is a heuristic method for finding a global minimum of
an objective function using quantum mechanical evolution. QA
is similar to Simulated Annealing in a sense that it randomly
searches through the energy landscape of the optimization
problem. However, unlike SA, QA does not use a temperature
parameter to traverse the energy landscape, instead it slowly
tunes the parameters of an Ising model Hamiltonian with
transverse field that governs the quantum mechanical evolution

of the system. The system starts from a superposition of
all possible computational basis states with equal amplitudes,
which is the ground state of the purely transverse field Hamil-
tonian. During the time-evolution the system approximately
continues to be in the lowest energy state of the transverse-
field Ising model with coupling strengths varying in time. As
the coupling strength of the transverse field is approaching
zero, the system evolves into the ground state of the original
problem Ising Hamiltonian [16].

D-Wave’s Quantum Annealer is a superconducting QPU
that realizes the Ising spin system in a transverse field. Its
qubits and couplers are individually controllable via digital-
to-analog converters and have time-dependent control in order
to implement the transverse-field Ising Hamiltonian [17]. The
qubits of a D-Wave QPU are superconducting flux qubits,
where the states are determined by whether the current is
flowing clockwise or counterclockwise, or in the superposition
of these. The interconnection between the qubits are called
couplers and have less control circuits than the qubits. Their
control represent the coupling strength (Jij of Eq. 2). As
the system is susceptible to noise (e.g., cross-talk, environ-
ment), the results produced by the QPU might not always
represent the solution to the original problem. Furthermore,
since the QPU is an analog device with limited precision,
some problems might not be presentable at all. In the D-
Wave QPU, the physical lattice of qubits and couplers has
a limited connectivity and can be described special graph
structures called Chimera and Pegasus. These architectures
will be described in more detail in Sec. V-A.

III. MIMO DECODING AS A QUBO PROBLEM

A. Maximum Likelihood Detection for MIMO Decoding
In a multiple user MIMO (MU-MIMO) system there are

multiple antennas that can simultaneously transmit to multiple
recipients and vice-versa. The transmission goes through the
channel matrix of Nt × Nr in case of Nt transmit and Nr

receive antennas. The receiver then has to decode the vector of
complex receive symbols (y ∈ CNr ) to restore the originally
transmitted bits. Such a MIMO system can be modelled as:
y = Hx+ n, where the vector of complex transmit symbols
x ∈ CNt is affected by the complex channel matrix H ∈
CNr×Nt and the additive Gaussian white noise n ∈ CNr . In
this text, we refer to such a system as a MIMO setup (or
scenario) of Nt ×Nr.

Other than spatial multiplexing, digital modulation is also
present in these communication scenarios. [18] This means
that each symbol can represent multiple bits (dependent on
the modulation scheme), where the bit-to-symbol mapping is
usually given by the constellation (O).

The MIMO ML decoding [19] is a search in a space of
|O|Nt for some symbol vector v̂ that minimizes the symbol
errors, with variable v representing all the possible vector of
transmitted symbols:

v̂ = argmin
v∈ONt

‖y −Hv‖2 . (5)

The result is the decoded symbol vector v̂, which is mapped
to the decoded bit-string b̂ according to the used constellation.
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matrix of coefficients and q̂ is the resulting bit string of the
optimization.

Since qi is binary, it has the property: q2i = qi, which can
be very useful. With qi = (si+1)/2, one can convert between
the two models effortlessly.

Finding the global minimum of a given Hamiltonian is an
NP-hard task, i.e., for large problems it will take exponentially
long time in the size of the problem to compute the exact
solution on a classical computer.

Therefore, one often employs heuristic algorithms, such as
Simulated Annealing (SA) [15] to produce approximate results
for large problems in polynomial time.

B. Quantum Annealing

QA is a heuristic method for finding a global minimum of
an objective function using quantum mechanical evolution. QA
is similar to Simulated Annealing in a sense that it randomly
searches through the energy landscape of the optimization
problem. However, unlike SA, QA does not use a temperature
parameter to traverse the energy landscape, instead it slowly
tunes the parameters of an Ising model Hamiltonian with
transverse field that governs the quantum mechanical evolution

of the system. The system starts from a superposition of
all possible computational basis states with equal amplitudes,
which is the ground state of the purely transverse field Hamil-
tonian. During the time-evolution the system approximately
continues to be in the lowest energy state of the transverse-
field Ising model with coupling strengths varying in time. As
the coupling strength of the transverse field is approaching
zero, the system evolves into the ground state of the original
problem Ising Hamiltonian [16].

D-Wave’s Quantum Annealer is a superconducting QPU
that realizes the Ising spin system in a transverse field. Its
qubits and couplers are individually controllable via digital-
to-analog converters and have time-dependent control in order
to implement the transverse-field Ising Hamiltonian [17]. The
qubits of a D-Wave QPU are superconducting flux qubits,
where the states are determined by whether the current is
flowing clockwise or counterclockwise, or in the superposition
of these. The interconnection between the qubits are called
couplers and have less control circuits than the qubits. Their
control represent the coupling strength (Jij of Eq. 2). As
the system is susceptible to noise (e.g., cross-talk, environ-
ment), the results produced by the QPU might not always
represent the solution to the original problem. Furthermore,
since the QPU is an analog device with limited precision,
some problems might not be presentable at all. In the D-
Wave QPU, the physical lattice of qubits and couplers has
a limited connectivity and can be described special graph
structures called Chimera and Pegasus. These architectures
will be described in more detail in Sec. V-A.
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A. Maximum Likelihood Detection for MIMO Decoding
In a multiple user MIMO (MU-MIMO) system there are

multiple antennas that can simultaneously transmit to multiple
recipients and vice-versa. The transmission goes through the
channel matrix of Nt × Nr in case of Nt transmit and Nr

receive antennas. The receiver then has to decode the vector of
complex receive symbols (y ∈ CNr ) to restore the originally
transmitted bits. Such a MIMO system can be modelled as:
y = Hx+ n, where the vector of complex transmit symbols
x ∈ CNt is affected by the complex channel matrix H ∈
CNr×Nt and the additive Gaussian white noise n ∈ CNr . In
this text, we refer to such a system as a MIMO setup (or
scenario) of Nt ×Nr.

Other than spatial multiplexing, digital modulation is also
present in these communication scenarios. [18] This means
that each symbol can represent multiple bits (dependent on
the modulation scheme), where the bit-to-symbol mapping is
usually given by the constellation (O).

The MIMO ML decoding [19] is a search in a space of
|O|Nt for some symbol vector v̂ that minimizes the symbol
errors, with variable v representing all the possible vector of
transmitted symbols:

v̂ = argmin
v∈ONt

‖y −Hv‖2 . (5)

The result is the decoded symbol vector v̂, which is mapped
to the decoded bit-string b̂ according to the used constellation.
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= argmin
s∈{(s1,...,sN )}


1

2

N∑
i,j=1

gijsisj +
N∑
i=1

fisi


 ,

(3)

where si ∈ {−1, 1} are the spin variables and fi, gij contain
the Ising model’s coefficients corresponding to the biases and
coupling strengths, respectively and ŝ is a minimum energy
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Ising spin configuration vector.

Since the QUBO model has equivalent expressing power to
the Ising model, we can easily convert back-and-forth between
the two. The QUBO description of an optimization problem
is stated as:

q̂ = q̂1, . . . , q̂N = argmin
q∈{(q1,...,qN )}

1

2

N∑
i,j=1

Qijqiqj , (4)

where qi are binary decision variables, Q is an symmetric
matrix of coefficients and q̂ is the resulting bit string of the
optimization.

Since qi is binary, it has the property: q2i = qi, which can
be very useful. With qi = (si+1)/2, one can convert between
the two models effortlessly.

Finding the global minimum of a given Hamiltonian is an
NP-hard task, i.e., for large problems it will take exponentially
long time in the size of the problem to compute the exact
solution on a classical computer.

Therefore, one often employs heuristic algorithms, such as
Simulated Annealing (SA) [15] to produce approximate results
for large problems in polynomial time.

B. Quantum Annealing

QA is a heuristic method for finding a global minimum of
an objective function using quantum mechanical evolution. QA
is similar to Simulated Annealing in a sense that it randomly
searches through the energy landscape of the optimization
problem. However, unlike SA, QA does not use a temperature
parameter to traverse the energy landscape, instead it slowly
tunes the parameters of an Ising model Hamiltonian with
transverse field that governs the quantum mechanical evolution

of the system. The system starts from a superposition of
all possible computational basis states with equal amplitudes,
which is the ground state of the purely transverse field Hamil-
tonian. During the time-evolution the system approximately
continues to be in the lowest energy state of the transverse-
field Ising model with coupling strengths varying in time. As
the coupling strength of the transverse field is approaching
zero, the system evolves into the ground state of the original
problem Ising Hamiltonian [16].

D-Wave’s Quantum Annealer is a superconducting QPU
that realizes the Ising spin system in a transverse field. Its
qubits and couplers are individually controllable via digital-
to-analog converters and have time-dependent control in order
to implement the transverse-field Ising Hamiltonian [17]. The
qubits of a D-Wave QPU are superconducting flux qubits,
where the states are determined by whether the current is
flowing clockwise or counterclockwise, or in the superposition
of these. The interconnection between the qubits are called
couplers and have less control circuits than the qubits. Their
control represent the coupling strength (Jij of Eq. 2). As
the system is susceptible to noise (e.g., cross-talk, environ-
ment), the results produced by the QPU might not always
represent the solution to the original problem. Furthermore,
since the QPU is an analog device with limited precision,
some problems might not be presentable at all. In the D-
Wave QPU, the physical lattice of qubits and couplers has
a limited connectivity and can be described special graph
structures called Chimera and Pegasus. These architectures
will be described in more detail in Sec. V-A.

III. MIMO DECODING AS A QUBO PROBLEM

A. Maximum Likelihood Detection for MIMO Decoding
In a multiple user MIMO (MU-MIMO) system there are

multiple antennas that can simultaneously transmit to multiple
recipients and vice-versa. The transmission goes through the
channel matrix of Nt × Nr in case of Nt transmit and Nr

receive antennas. The receiver then has to decode the vector of
complex receive symbols (y ∈ CNr ) to restore the originally
transmitted bits. Such a MIMO system can be modelled as:
y = Hx+ n, where the vector of complex transmit symbols
x ∈ CNt is affected by the complex channel matrix H ∈
CNr×Nt and the additive Gaussian white noise n ∈ CNr . In
this text, we refer to such a system as a MIMO setup (or
scenario) of Nt ×Nr.

Other than spatial multiplexing, digital modulation is also
present in these communication scenarios. [18] This means
that each symbol can represent multiple bits (dependent on
the modulation scheme), where the bit-to-symbol mapping is
usually given by the constellation (O).

The MIMO ML decoding [19] is a search in a space of
|O|Nt for some symbol vector v̂ that minimizes the symbol
errors, with variable v representing all the possible vector of
transmitted symbols:

v̂ = argmin
v∈ONt

‖y −Hv‖2 . (5)

The result is the decoded symbol vector v̂, which is mapped
to the decoded bit-string b̂ according to the used constellation.

INFOCOMMUNICATION JOURNAL 2

ΩN := {−1,+1}×N = {(s1, ..., sN ) : sk = ±1} . (1)

The Ising spin glass model gives the energy function or
Hamiltonian of a given spin configuration state s ∈ ΩN of
the system as follows:

H(s) = −1

2

N∑
i,j=1

Jijsisj −
N∑
i=1

hisi , (2)

where hi is the ith qubit’s interaction with the external field
(bias), and Jij is the strength of the interaction between qubits
i and j (coupling strength). If the system prefers the pair
of spins to be aligned (si = sj) the interaction is called
ferromagnetic coupling and, if the pair of spins to be anti-
aligned (si = −sj) the interaction is called antiferromagnetic.
To follow the notation of [1], we shall rewrite the optimization
from Eq. 2 to the following form:
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(a) QuAMax transform (b) Intermediate code (c) Gray code

Fig. 1. The process of converting the QuAMax encoded bits to the original Gray-coded transmission with 64-QAM. The QuAMax constellation (1a) encodes
non-Gray-coded bit-strings in order to retain linear QUBO translation, but the transmission is done using the Gray code constellation (1c), causing disparity.
By using the Intermediate code’s (1b) constellation, we can easily convert back to the original sent data on the output of the minimization procedure (the
QuAMax code).

The idea of ML decoding is to maximize throughput via min-
imizing the bit error rate, however, classical algorithms (such
Sphere Decoding [20]) can hit a computational wall quickly
as the complexity grows exponentially with the number of
transmitters [21]. For this reason, practical (polynomial-time)
MIMO decoding algorithms (like Zero Forcing [22]) often
settle for sub-optimal solutions that are easier to obtain.

Kim et al. [1] show in their work how QA can speed up
solution of ML MIMO decoding. We derive the explicit QUBO
formulation for 64-QAM and present a study of embedding
capacity of two currently available D-Wave QPUs of different
size and topology. Through this experimental study, we un-
cover the limiting problem sizes that can be implemented on
real-world Quantum Annealers for Massive-MIMO problems.
In this study we also highlighted the efficiency of the em-
bedding methods via length statistics of chains representing
logical qubits – a crucial factor in annealing performance
in non-fully connected Quantum Annealer topologies. For
this we also use the non-trivial QUBO expansion of Eq. 5.
Furthermore, we implement enhanced embedding algorithms
to further improve the found limiting problem sizes of each
scenarios. In this work we extend on the symmetric problem
statement of [1], where Nt = Nr corresponding to the state-
of-the-art commercially available Massive MIMO equipment
[23].

However, the methodology can easily be applied to Nt �=
Nr scenarios. In these cases, the number of QUBO variables
always equals to Nt, therefore the embedding of any Nt×Nr

MIMO ML decoding corresponds to the structure of Nt×Nt.

B. Overview of Ising Formulation of the ML MIMO Decoding
In order to use a D-Wave QPU for solving MIMO ML

decoding, we should formulate the QUBO formula of the
optimization problem. Some basic modulation techniques are
already investigated by Kim. et al. [1], these will be briefly
described in the following subsections. Following that, we pro-
vide an extension of the ML to QUBO conversion (QuAMax
transform) for the 64-QAM modulation.

In general, the QuAMax has a qubit requirement of
Nt log2 M for a symmetric Nt ×Nr MIMO setup and a con-

stellation of size M . One can arrive at the QUBO coefficients
by substituting the QuAMax-transformed vi symbols to their
respective equations with QUBO variables. The exact formulas
to get the QUBO coefficients are described in [1].

1) BPSK: In the case of Binary Phase Shift Keying modu-
lation, each symbol consists of one bit. There is a 180◦ phase-
shifting between two possible states. The BPSK is the easiest
modulation technique to convert into the QUBO form, since
each symbol vi ∈ {−1, 1} can be mapped to 2qi − 1, where
qi is the ith QUBO variable.

2) QPSK: The Quadrature Phase Shift Keying modulation
transmits two bits as one symbol and the phase shifting
between possible states is 90◦. In case of QPSK, each symbol
is a complex number number: vi = vIi + jvQi , and vi ∈
{±1 ± 1j}, therefore we need 2 qubits to encode a single
symbol: vi = (2q2i−1 − 1) + j(2q2i − 1).

3) 16-QAM: 16-QAM is a Quadrature Amplitude Modu-
lation with |O| = 16, that can transmit 4 bits per symbol.
As both dimensions can have 4 possible values (vIi , v

Q
i ∈

{±1,±3}), we need 2 qubits per dimension to describe each
symbol. Since we want a linear transformation, the mapping:
vi = (4q4i−3 +2q4i−2 − 3)+ j(4q4i−1 +2q4i − 3) seems like
a good choice.

However, since in wireless communication we often use
Gray code 1 as a mean to avoid bit errors, we need to consider
a mapping that takes this into account.

Nevertheless, as pointed out by Kim et al. [1], the mapping
of a Gray-coded constellation to the QUBO form will always
incorporate higher-order terms, that are not allowed in our
Ising model. For this, following [1], we can retain a linear
QuAMax transform with a non-Gray-coded bit encoding and
use a post-processing technique to regain the original bits. We
will elaborate on this technique in Sec. IV.

IV. EXTENSION TO THE 64-QAM MODULATION

Here we present the method for extension of the QUBO
formulation of [1] to the 64-QAM case. 64-QAM is an

1Gray code is an encoding technique where each subsequent symbol is
encoded by a bit pattern that only differs in one bit in order to make error
correction more robust.
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symbol: vi = (2q2i−1 − 1) + j(2q2i − 1).

3) 16-QAM: 16-QAM is a Quadrature Amplitude Modu-
lation with |O| = 16, that can transmit 4 bits per symbol.
As both dimensions can have 4 possible values (vIi , v

Q
i ∈

{±1,±3}), we need 2 qubits per dimension to describe each
symbol. Since we want a linear transformation, the mapping:
vi = (4q4i−3 +2q4i−2 − 3)+ j(4q4i−1 +2q4i − 3) seems like
a good choice.

However, since in wireless communication we often use
Gray code 1 as a mean to avoid bit errors, we need to consider
a mapping that takes this into account.

Nevertheless, as pointed out by Kim et al. [1], the mapping
of a Gray-coded constellation to the QUBO form will always
incorporate higher-order terms, that are not allowed in our
Ising model. For this, following [1], we can retain a linear
QuAMax transform with a non-Gray-coded bit encoding and
use a post-processing technique to regain the original bits. We
will elaborate on this technique in Sec. IV.

IV. EXTENSION TO THE 64-QAM MODULATION

Here we present the method for extension of the QUBO
formulation of [1] to the 64-QAM case. 64-QAM is an

1Gray code is an encoding technique where each subsequent symbol is
encoded by a bit pattern that only differs in one bit in order to make error
correction more robust.
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Fig. 1. The process of converting the QuAMax encoded bits to the original Gray-coded transmission with 64-QAM. The QuAMax constellation (1a) encodes
non-Gray-coded bit-strings in order to retain linear QUBO translation, but the transmission is done using the Gray code constellation (1c), causing disparity.
By using the Intermediate code’s (1b) constellation, we can easily convert back to the original sent data on the output of the minimization procedure (the
QuAMax code).

The idea of ML decoding is to maximize throughput via min-
imizing the bit error rate, however, classical algorithms (such
Sphere Decoding [20]) can hit a computational wall quickly
as the complexity grows exponentially with the number of
transmitters [21]. For this reason, practical (polynomial-time)
MIMO decoding algorithms (like Zero Forcing [22]) often
settle for sub-optimal solutions that are easier to obtain.

Kim et al. [1] show in their work how QA can speed up
solution of ML MIMO decoding. We derive the explicit QUBO
formulation for 64-QAM and present a study of embedding
capacity of two currently available D-Wave QPUs of different
size and topology. Through this experimental study, we un-
cover the limiting problem sizes that can be implemented on
real-world Quantum Annealers for Massive-MIMO problems.
In this study we also highlighted the efficiency of the em-
bedding methods via length statistics of chains representing
logical qubits – a crucial factor in annealing performance
in non-fully connected Quantum Annealer topologies. For
this we also use the non-trivial QUBO expansion of Eq. 5.
Furthermore, we implement enhanced embedding algorithms
to further improve the found limiting problem sizes of each
scenarios. In this work we extend on the symmetric problem
statement of [1], where Nt = Nr corresponding to the state-
of-the-art commercially available Massive MIMO equipment
[23].

However, the methodology can easily be applied to Nt �=
Nr scenarios. In these cases, the number of QUBO variables
always equals to Nt, therefore the embedding of any Nt×Nr

MIMO ML decoding corresponds to the structure of Nt×Nt.

B. Overview of Ising Formulation of the ML MIMO Decoding
In order to use a D-Wave QPU for solving MIMO ML

decoding, we should formulate the QUBO formula of the
optimization problem. Some basic modulation techniques are
already investigated by Kim. et al. [1], these will be briefly
described in the following subsections. Following that, we pro-
vide an extension of the ML to QUBO conversion (QuAMax
transform) for the 64-QAM modulation.

In general, the QuAMax has a qubit requirement of
Nt log2 M for a symmetric Nt ×Nr MIMO setup and a con-

stellation of size M . One can arrive at the QUBO coefficients
by substituting the QuAMax-transformed vi symbols to their
respective equations with QUBO variables. The exact formulas
to get the QUBO coefficients are described in [1].

1) BPSK: In the case of Binary Phase Shift Keying modu-
lation, each symbol consists of one bit. There is a 180◦ phase-
shifting between two possible states. The BPSK is the easiest
modulation technique to convert into the QUBO form, since
each symbol vi ∈ {−1, 1} can be mapped to 2qi − 1, where
qi is the ith QUBO variable.

2) QPSK: The Quadrature Phase Shift Keying modulation
transmits two bits as one symbol and the phase shifting
between possible states is 90◦. In case of QPSK, each symbol
is a complex number number: vi = vIi + jvQi , and vi ∈
{±1 ± 1j}, therefore we need 2 qubits to encode a single
symbol: vi = (2q2i−1 − 1) + j(2q2i − 1).

3) 16-QAM: 16-QAM is a Quadrature Amplitude Modu-
lation with |O| = 16, that can transmit 4 bits per symbol.
As both dimensions can have 4 possible values (vIi , v
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{±1,±3}), we need 2 qubits per dimension to describe each
symbol. Since we want a linear transformation, the mapping:
vi = (4q4i−3 +2q4i−2 − 3)+ j(4q4i−1 +2q4i − 3) seems like
a good choice.

However, since in wireless communication we often use
Gray code 1 as a mean to avoid bit errors, we need to consider
a mapping that takes this into account.

Nevertheless, as pointed out by Kim et al. [1], the mapping
of a Gray-coded constellation to the QUBO form will always
incorporate higher-order terms, that are not allowed in our
Ising model. For this, following [1], we can retain a linear
QuAMax transform with a non-Gray-coded bit encoding and
use a post-processing technique to regain the original bits. We
will elaborate on this technique in Sec. IV.

IV. EXTENSION TO THE 64-QAM MODULATION

Here we present the method for extension of the QUBO
formulation of [1] to the 64-QAM case. 64-QAM is an

1Gray code is an encoding technique where each subsequent symbol is
encoded by a bit pattern that only differs in one bit in order to make error
correction more robust.
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Fig. 1. The process of converting the QuAMax encoded bits to the original Gray-coded transmission with 64-QAM. The QuAMax constellation (1a) encodes
non-Gray-coded bit-strings in order to retain linear QUBO translation, but the transmission is done using the Gray code constellation (1c), causing disparity.
By using the Intermediate code’s (1b) constellation, we can easily convert back to the original sent data on the output of the minimization procedure (the
QuAMax code).

The idea of ML decoding is to maximize throughput via min-
imizing the bit error rate, however, classical algorithms (such
Sphere Decoding [20]) can hit a computational wall quickly
as the complexity grows exponentially with the number of
transmitters [21]. For this reason, practical (polynomial-time)
MIMO decoding algorithms (like Zero Forcing [22]) often
settle for sub-optimal solutions that are easier to obtain.

Kim et al. [1] show in their work how QA can speed up
solution of ML MIMO decoding. We derive the explicit QUBO
formulation for 64-QAM and present a study of embedding
capacity of two currently available D-Wave QPUs of different
size and topology. Through this experimental study, we un-
cover the limiting problem sizes that can be implemented on
real-world Quantum Annealers for Massive-MIMO problems.
In this study we also highlighted the efficiency of the em-
bedding methods via length statistics of chains representing
logical qubits – a crucial factor in annealing performance
in non-fully connected Quantum Annealer topologies. For
this we also use the non-trivial QUBO expansion of Eq. 5.
Furthermore, we implement enhanced embedding algorithms
to further improve the found limiting problem sizes of each
scenarios. In this work we extend on the symmetric problem
statement of [1], where Nt = Nr corresponding to the state-
of-the-art commercially available Massive MIMO equipment
[23].

However, the methodology can easily be applied to Nt �=
Nr scenarios. In these cases, the number of QUBO variables
always equals to Nt, therefore the embedding of any Nt×Nr

MIMO ML decoding corresponds to the structure of Nt×Nt.

B. Overview of Ising Formulation of the ML MIMO Decoding
In order to use a D-Wave QPU for solving MIMO ML

decoding, we should formulate the QUBO formula of the
optimization problem. Some basic modulation techniques are
already investigated by Kim. et al. [1], these will be briefly
described in the following subsections. Following that, we pro-
vide an extension of the ML to QUBO conversion (QuAMax
transform) for the 64-QAM modulation.

In general, the QuAMax has a qubit requirement of
Nt log2 M for a symmetric Nt ×Nr MIMO setup and a con-

stellation of size M . One can arrive at the QUBO coefficients
by substituting the QuAMax-transformed vi symbols to their
respective equations with QUBO variables. The exact formulas
to get the QUBO coefficients are described in [1].

1) BPSK: In the case of Binary Phase Shift Keying modu-
lation, each symbol consists of one bit. There is a 180◦ phase-
shifting between two possible states. The BPSK is the easiest
modulation technique to convert into the QUBO form, since
each symbol vi ∈ {−1, 1} can be mapped to 2qi − 1, where
qi is the ith QUBO variable.

2) QPSK: The Quadrature Phase Shift Keying modulation
transmits two bits as one symbol and the phase shifting
between possible states is 90◦. In case of QPSK, each symbol
is a complex number number: vi = vIi + jvQi , and vi ∈
{±1 ± 1j}, therefore we need 2 qubits to encode a single
symbol: vi = (2q2i−1 − 1) + j(2q2i − 1).

3) 16-QAM: 16-QAM is a Quadrature Amplitude Modu-
lation with |O| = 16, that can transmit 4 bits per symbol.
As both dimensions can have 4 possible values (vIi , v
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{±1,±3}), we need 2 qubits per dimension to describe each
symbol. Since we want a linear transformation, the mapping:
vi = (4q4i−3 +2q4i−2 − 3)+ j(4q4i−1 +2q4i − 3) seems like
a good choice.

However, since in wireless communication we often use
Gray code 1 as a mean to avoid bit errors, we need to consider
a mapping that takes this into account.

Nevertheless, as pointed out by Kim et al. [1], the mapping
of a Gray-coded constellation to the QUBO form will always
incorporate higher-order terms, that are not allowed in our
Ising model. For this, following [1], we can retain a linear
QuAMax transform with a non-Gray-coded bit encoding and
use a post-processing technique to regain the original bits. We
will elaborate on this technique in Sec. IV.

IV. EXTENSION TO THE 64-QAM MODULATION

Here we present the method for extension of the QUBO
formulation of [1] to the 64-QAM case. 64-QAM is an

1Gray code is an encoding technique where each subsequent symbol is
encoded by a bit pattern that only differs in one bit in order to make error
correction more robust.
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TABLE I
QUBIT REQUIREMENTS OF DIFFERENT ML ENCODED MIMO

CONFIGURATIONS.

Config. BPKS QPSK 16-QAM 64-QAM

10× 10 10 20 40 60

20× 20 20 40 80 120

30× 30 30 60 120 180

40× 40 40 80 160 240

60× 60 60 120 240 360

80× 80 80 160 320 480

100× 100 100 200 400 600

120× 120 120 240 480 720

140× 140 140 280 560 840

160× 160 160 320 640 960

180× 180 180 360 720 1080

amplitude modulation that can transmit 6 bits per symbol
(Fig. 1a).

Following [1], in order for the QUBO form to remain linear,
we use Gray coding for the transmitted symbols and interpret
the result according the QuAMax transform constellation. The
QA process solves for the QuAMax constellation which then
needs to be mapped back to the Gray code to recover the
original message.

In our extended formula, to accommodate both dimensions
(vIi , v

Q
i ∈ {±1,±3,±5,±7}), we need 6 qubits (3 per

dimension) and so we chose the suitable linear transformation:

vi = (8q6i−5 + 4q6i−4 + 2q6i−3 − 7) +

j(8q6i−2 + 4q6i−1 + 2q6i − 7) .
(6)

From this, we get the conversion formulae to the Ising energy
function values by expanding Eq. 5. The complete description
is given in Ref. [24]. The constellations used to map of
symbols from QuAMax to the Intermediate code and finally
to Gray code is illustrated in Fig. 1.

V. PROBLEM EMBEDDING ONTO D-WAVE QPUS

A. D-Wave architectures

D-Wave currently has two types of publicly available QPUs.
The older model is the D-Wave 2000Q, with up to 2048
physical qubits in a Chimera topology. The newer model is
the D-Wave Advantage, with up to 5640 physical qubits in a
Pegasus topology. The Chimera C16 topology has K4,4 graphs
in a 16×16 lattice for which the sub-graph is shown in Fig. 2a.
The recently released D-Wave Advantage QPU has a Pegasus
P16 topology, which is more connected than the C16 since it
has degree 15 (each qubit is connected to 15 other qubits via
couplers), while the older model has degree 6.

B. Embedding methods

In the D-Wave programming model the linear and quadratic
coefficients of the QUBO problem can be mapped to qubits
and the connections of qubits, respectively. The direct mapping
is rarely possible, since the QPU has a sparse graph topology,

(a) Chimera topology (b) Pegasus topology

Fig. 2. Unit cells and their connections of currently available D-Wave
hardware topology. The older QPU (D-Wave 2000Q) uses a less connected
Chimera C16 architecture (2a) with degree 6, while the new Advantage
System uses the denser Pegasus P16 architecture with degree of 15 (2b).
Here, only C2 and a P2 graphs are depicted; the complete working graphs
have around 2000 and 5000 qubits, respectively (some qubits are disabled due
to manufacturing imperfection).

therefore we need to use embedding methods transforming
logical qubits to a chain of connected physical qubits [25]. The
standard D-Wave MinorMiner (MM) embedding algorithm
[26] works by searching loops in a set of logical qubits and
interactions and mapping these qubits to the physical topology
creating physical qubit chains (see Fig. 3).

Fig. 3. The MinorMiner embedding method, source: [27]. A heuristic process
which tries to find the best way to map source graph to the structure of the
target graph. In case of D-Wave Quantum Annealers, we need to map QUBO
problems (with up Kn structure) to either a Chimera graph or a Pegasus
graph, both of which have limited connectivity.

The D-Wave open-source SDK [28] implements this al-
gorithm for both Chimera and Pegasus architectures. Since
embedding can have a direct effect on the quality of the
solution of the annealing, finding close to optimal embedding
is a crucial part of the problem solving. One measure of
embedding quality is the chain lengths of physical qubits
that represent a single logical QUBO variable. The shorter
the chains, the closer the solution of the embedded problem
to the original one, since current architectures are noisy and
have imperfect qubits. Hence, in our experiments, we used
improved embedding methods.

The Clique-Based MinorMiner (CLMM) and the Spring-
Based MinorMiner (SPMM) embeddings, presented in [29],
improve upon embeddings by providing heuristic initial chains
to start the search from. We have experimented with these
techniques to extend the maximal problem sizes that could be
embedded into the hardware graph. SPMM uses a standard
graph layout of the QUBO variables matched to the physical
qubits on the same plane as initial chains, while CLMM
constructs a native clique embedding with uniform chains as a
starting point. Both algorithms pass the resulting initial chains
to MM to find the final embedding.
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(a) QuAMax transform (b) Intermediate code (c) Gray code

Fig. 1. The process of converting the QuAMax encoded bits to the original Gray-coded transmission with 64-QAM. The QuAMax constellation (1a) encodes
non-Gray-coded bit-strings in order to retain linear QUBO translation, but the transmission is done using the Gray code constellation (1c), causing disparity.
By using the Intermediate code’s (1b) constellation, we can easily convert back to the original sent data on the output of the minimization procedure (the
QuAMax code).

The idea of ML decoding is to maximize throughput via min-
imizing the bit error rate, however, classical algorithms (such
Sphere Decoding [20]) can hit a computational wall quickly
as the complexity grows exponentially with the number of
transmitters [21]. For this reason, practical (polynomial-time)
MIMO decoding algorithms (like Zero Forcing [22]) often
settle for sub-optimal solutions that are easier to obtain.

Kim et al. [1] show in their work how QA can speed up
solution of ML MIMO decoding. We derive the explicit QUBO
formulation for 64-QAM and present a study of embedding
capacity of two currently available D-Wave QPUs of different
size and topology. Through this experimental study, we un-
cover the limiting problem sizes that can be implemented on
real-world Quantum Annealers for Massive-MIMO problems.
In this study we also highlighted the efficiency of the em-
bedding methods via length statistics of chains representing
logical qubits – a crucial factor in annealing performance
in non-fully connected Quantum Annealer topologies. For
this we also use the non-trivial QUBO expansion of Eq. 5.
Furthermore, we implement enhanced embedding algorithms
to further improve the found limiting problem sizes of each
scenarios. In this work we extend on the symmetric problem
statement of [1], where Nt = Nr corresponding to the state-
of-the-art commercially available Massive MIMO equipment
[23].

However, the methodology can easily be applied to Nt �=
Nr scenarios. In these cases, the number of QUBO variables
always equals to Nt, therefore the embedding of any Nt×Nr

MIMO ML decoding corresponds to the structure of Nt×Nt.

B. Overview of Ising Formulation of the ML MIMO Decoding
In order to use a D-Wave QPU for solving MIMO ML

decoding, we should formulate the QUBO formula of the
optimization problem. Some basic modulation techniques are
already investigated by Kim. et al. [1], these will be briefly
described in the following subsections. Following that, we pro-
vide an extension of the ML to QUBO conversion (QuAMax
transform) for the 64-QAM modulation.

In general, the QuAMax has a qubit requirement of
Nt log2 M for a symmetric Nt ×Nr MIMO setup and a con-

stellation of size M . One can arrive at the QUBO coefficients
by substituting the QuAMax-transformed vi symbols to their
respective equations with QUBO variables. The exact formulas
to get the QUBO coefficients are described in [1].

1) BPSK: In the case of Binary Phase Shift Keying modu-
lation, each symbol consists of one bit. There is a 180◦ phase-
shifting between two possible states. The BPSK is the easiest
modulation technique to convert into the QUBO form, since
each symbol vi ∈ {−1, 1} can be mapped to 2qi − 1, where
qi is the ith QUBO variable.

2) QPSK: The Quadrature Phase Shift Keying modulation
transmits two bits as one symbol and the phase shifting
between possible states is 90◦. In case of QPSK, each symbol
is a complex number number: vi = vIi + jvQi , and vi ∈
{±1 ± 1j}, therefore we need 2 qubits to encode a single
symbol: vi = (2q2i−1 − 1) + j(2q2i − 1).

3) 16-QAM: 16-QAM is a Quadrature Amplitude Modu-
lation with |O| = 16, that can transmit 4 bits per symbol.
As both dimensions can have 4 possible values (vIi , v

Q
i ∈

{±1,±3}), we need 2 qubits per dimension to describe each
symbol. Since we want a linear transformation, the mapping:
vi = (4q4i−3 +2q4i−2 − 3)+ j(4q4i−1 +2q4i − 3) seems like
a good choice.

However, since in wireless communication we often use
Gray code 1 as a mean to avoid bit errors, we need to consider
a mapping that takes this into account.

Nevertheless, as pointed out by Kim et al. [1], the mapping
of a Gray-coded constellation to the QUBO form will always
incorporate higher-order terms, that are not allowed in our
Ising model. For this, following [1], we can retain a linear
QuAMax transform with a non-Gray-coded bit encoding and
use a post-processing technique to regain the original bits. We
will elaborate on this technique in Sec. IV.

IV. EXTENSION TO THE 64-QAM MODULATION

Here we present the method for extension of the QUBO
formulation of [1] to the 64-QAM case. 64-QAM is an

1Gray code is an encoding technique where each subsequent symbol is
encoded by a bit pattern that only differs in one bit in order to make error
correction more robust.
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TABLE I
QUBIT REQUIREMENTS OF DIFFERENT ML ENCODED MIMO

CONFIGURATIONS.

Config. BPKS QPSK 16-QAM 64-QAM

10× 10 10 20 40 60

20× 20 20 40 80 120

30× 30 30 60 120 180

40× 40 40 80 160 240

60× 60 60 120 240 360

80× 80 80 160 320 480

100× 100 100 200 400 600

120× 120 120 240 480 720

140× 140 140 280 560 840

160× 160 160 320 640 960

180× 180 180 360 720 1080

amplitude modulation that can transmit 6 bits per symbol
(Fig. 1a).

Following [1], in order for the QUBO form to remain linear,
we use Gray coding for the transmitted symbols and interpret
the result according the QuAMax transform constellation. The
QA process solves for the QuAMax constellation which then
needs to be mapped back to the Gray code to recover the
original message.

In our extended formula, to accommodate both dimensions
(vIi , v

Q
i ∈ {±1,±3,±5,±7}), we need 6 qubits (3 per

dimension) and so we chose the suitable linear transformation:

vi = (8q6i−5 + 4q6i−4 + 2q6i−3 − 7) +

j(8q6i−2 + 4q6i−1 + 2q6i − 7) .
(6)

From this, we get the conversion formulae to the Ising energy
function values by expanding Eq. 5. The complete description
is given in Ref. [24]. The constellations used to map of
symbols from QuAMax to the Intermediate code and finally
to Gray code is illustrated in Fig. 1.

V. PROBLEM EMBEDDING ONTO D-WAVE QPUS

A. D-Wave architectures

D-Wave currently has two types of publicly available QPUs.
The older model is the D-Wave 2000Q, with up to 2048
physical qubits in a Chimera topology. The newer model is
the D-Wave Advantage, with up to 5640 physical qubits in a
Pegasus topology. The Chimera C16 topology has K4,4 graphs
in a 16×16 lattice for which the sub-graph is shown in Fig. 2a.
The recently released D-Wave Advantage QPU has a Pegasus
P16 topology, which is more connected than the C16 since it
has degree 15 (each qubit is connected to 15 other qubits via
couplers), while the older model has degree 6.

B. Embedding methods

In the D-Wave programming model the linear and quadratic
coefficients of the QUBO problem can be mapped to qubits
and the connections of qubits, respectively. The direct mapping
is rarely possible, since the QPU has a sparse graph topology,

(a) Chimera topology (b) Pegasus topology

Fig. 2. Unit cells and their connections of currently available D-Wave
hardware topology. The older QPU (D-Wave 2000Q) uses a less connected
Chimera C16 architecture (2a) with degree 6, while the new Advantage
System uses the denser Pegasus P16 architecture with degree of 15 (2b).
Here, only C2 and a P2 graphs are depicted; the complete working graphs
have around 2000 and 5000 qubits, respectively (some qubits are disabled due
to manufacturing imperfection).

therefore we need to use embedding methods transforming
logical qubits to a chain of connected physical qubits [25]. The
standard D-Wave MinorMiner (MM) embedding algorithm
[26] works by searching loops in a set of logical qubits and
interactions and mapping these qubits to the physical topology
creating physical qubit chains (see Fig. 3).

Fig. 3. The MinorMiner embedding method, source: [27]. A heuristic process
which tries to find the best way to map source graph to the structure of the
target graph. In case of D-Wave Quantum Annealers, we need to map QUBO
problems (with up Kn structure) to either a Chimera graph or a Pegasus
graph, both of which have limited connectivity.

The D-Wave open-source SDK [28] implements this al-
gorithm for both Chimera and Pegasus architectures. Since
embedding can have a direct effect on the quality of the
solution of the annealing, finding close to optimal embedding
is a crucial part of the problem solving. One measure of
embedding quality is the chain lengths of physical qubits
that represent a single logical QUBO variable. The shorter
the chains, the closer the solution of the embedded problem
to the original one, since current architectures are noisy and
have imperfect qubits. Hence, in our experiments, we used
improved embedding methods.

The Clique-Based MinorMiner (CLMM) and the Spring-
Based MinorMiner (SPMM) embeddings, presented in [29],
improve upon embeddings by providing heuristic initial chains
to start the search from. We have experimented with these
techniques to extend the maximal problem sizes that could be
embedded into the hardware graph. SPMM uses a standard
graph layout of the QUBO variables matched to the physical
qubits on the same plane as initial chains, while CLMM
constructs a native clique embedding with uniform chains as a
starting point. Both algorithms pass the resulting initial chains
to MM to find the final embedding.
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amplitude modulation that can transmit 6 bits per symbol
(Fig. 1a).

Following [1], in order for the QUBO form to remain linear,
we use Gray coding for the transmitted symbols and interpret
the result according the QuAMax transform constellation. The
QA process solves for the QuAMax constellation which then
needs to be mapped back to the Gray code to recover the
original message.

In our extended formula, to accommodate both dimensions
(vIi , v

Q
i ∈ {±1,±3,±5,±7}), we need 6 qubits (3 per

dimension) and so we chose the suitable linear transformation:

vi = (8q6i−5 + 4q6i−4 + 2q6i−3 − 7) +

j(8q6i−2 + 4q6i−1 + 2q6i − 7) .
(6)

From this, we get the conversion formulae to the Ising energy
function values by expanding Eq. 5. The complete description
is given in Ref. [24]. The constellations used to map of
symbols from QuAMax to the Intermediate code and finally
to Gray code is illustrated in Fig. 1.

V. PROBLEM EMBEDDING ONTO D-WAVE QPUS

A. D-Wave architectures

D-Wave currently has two types of publicly available QPUs.
The older model is the D-Wave 2000Q, with up to 2048
physical qubits in a Chimera topology. The newer model is
the D-Wave Advantage, with up to 5640 physical qubits in a
Pegasus topology. The Chimera C16 topology has K4,4 graphs
in a 16×16 lattice for which the sub-graph is shown in Fig. 2a.
The recently released D-Wave Advantage QPU has a Pegasus
P16 topology, which is more connected than the C16 since it
has degree 15 (each qubit is connected to 15 other qubits via
couplers), while the older model has degree 6.

B. Embedding methods

In the D-Wave programming model the linear and quadratic
coefficients of the QUBO problem can be mapped to qubits
and the connections of qubits, respectively. The direct mapping
is rarely possible, since the QPU has a sparse graph topology,

(a) Chimera topology (b) Pegasus topology

Fig. 2. Unit cells and their connections of currently available D-Wave
hardware topology. The older QPU (D-Wave 2000Q) uses a less connected
Chimera C16 architecture (2a) with degree 6, while the new Advantage
System uses the denser Pegasus P16 architecture with degree of 15 (2b).
Here, only C2 and a P2 graphs are depicted; the complete working graphs
have around 2000 and 5000 qubits, respectively (some qubits are disabled due
to manufacturing imperfection).

therefore we need to use embedding methods transforming
logical qubits to a chain of connected physical qubits [25]. The
standard D-Wave MinorMiner (MM) embedding algorithm
[26] works by searching loops in a set of logical qubits and
interactions and mapping these qubits to the physical topology
creating physical qubit chains (see Fig. 3).

Fig. 3. The MinorMiner embedding method, source: [27]. A heuristic process
which tries to find the best way to map source graph to the structure of the
target graph. In case of D-Wave Quantum Annealers, we need to map QUBO
problems (with up Kn structure) to either a Chimera graph or a Pegasus
graph, both of which have limited connectivity.

The D-Wave open-source SDK [28] implements this al-
gorithm for both Chimera and Pegasus architectures. Since
embedding can have a direct effect on the quality of the
solution of the annealing, finding close to optimal embedding
is a crucial part of the problem solving. One measure of
embedding quality is the chain lengths of physical qubits
that represent a single logical QUBO variable. The shorter
the chains, the closer the solution of the embedded problem
to the original one, since current architectures are noisy and
have imperfect qubits. Hence, in our experiments, we used
improved embedding methods.

The Clique-Based MinorMiner (CLMM) and the Spring-
Based MinorMiner (SPMM) embeddings, presented in [29],
improve upon embeddings by providing heuristic initial chains
to start the search from. We have experimented with these
techniques to extend the maximal problem sizes that could be
embedded into the hardware graph. SPMM uses a standard
graph layout of the QUBO variables matched to the physical
qubits on the same plane as initial chains, while CLMM
constructs a native clique embedding with uniform chains as a
starting point. Both algorithms pass the resulting initial chains
to MM to find the final embedding.
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Following [1], in order for the QUBO form to remain linear,
we use Gray coding for the transmitted symbols and interpret
the result according the QuAMax transform constellation. The
QA process solves for the QuAMax constellation which then
needs to be mapped back to the Gray code to recover the
original message.

In our extended formula, to accommodate both dimensions
(vIi , v

Q
i ∈ {±1,±3,±5,±7}), we need 6 qubits (3 per

dimension) and so we chose the suitable linear transformation:

vi = (8q6i−5 + 4q6i−4 + 2q6i−3 − 7) +

j(8q6i−2 + 4q6i−1 + 2q6i − 7) .
(6)

From this, we get the conversion formulae to the Ising energy
function values by expanding Eq. 5. The complete description
is given in Ref. [24]. The constellations used to map of
symbols from QuAMax to the Intermediate code and finally
to Gray code is illustrated in Fig. 1.

V. PROBLEM EMBEDDING ONTO D-WAVE QPUS

A. D-Wave architectures

D-Wave currently has two types of publicly available QPUs.
The older model is the D-Wave 2000Q, with up to 2048
physical qubits in a Chimera topology. The newer model is
the D-Wave Advantage, with up to 5640 physical qubits in a
Pegasus topology. The Chimera C16 topology has K4,4 graphs
in a 16×16 lattice for which the sub-graph is shown in Fig. 2a.
The recently released D-Wave Advantage QPU has a Pegasus
P16 topology, which is more connected than the C16 since it
has degree 15 (each qubit is connected to 15 other qubits via
couplers), while the older model has degree 6.

B. Embedding methods

In the D-Wave programming model the linear and quadratic
coefficients of the QUBO problem can be mapped to qubits
and the connections of qubits, respectively. The direct mapping
is rarely possible, since the QPU has a sparse graph topology,
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Fig. 2. Unit cells and their connections of currently available D-Wave
hardware topology. The older QPU (D-Wave 2000Q) uses a less connected
Chimera C16 architecture (2a) with degree 6, while the new Advantage
System uses the denser Pegasus P16 architecture with degree of 15 (2b).
Here, only C2 and a P2 graphs are depicted; the complete working graphs
have around 2000 and 5000 qubits, respectively (some qubits are disabled due
to manufacturing imperfection).

therefore we need to use embedding methods transforming
logical qubits to a chain of connected physical qubits [25]. The
standard D-Wave MinorMiner (MM) embedding algorithm
[26] works by searching loops in a set of logical qubits and
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Fig. 3. The MinorMiner embedding method, source: [27]. A heuristic process
which tries to find the best way to map source graph to the structure of the
target graph. In case of D-Wave Quantum Annealers, we need to map QUBO
problems (with up Kn structure) to either a Chimera graph or a Pegasus
graph, both of which have limited connectivity.

The D-Wave open-source SDK [28] implements this al-
gorithm for both Chimera and Pegasus architectures. Since
embedding can have a direct effect on the quality of the
solution of the annealing, finding close to optimal embedding
is a crucial part of the problem solving. One measure of
embedding quality is the chain lengths of physical qubits
that represent a single logical QUBO variable. The shorter
the chains, the closer the solution of the embedded problem
to the original one, since current architectures are noisy and
have imperfect qubits. Hence, in our experiments, we used
improved embedding methods.

The Clique-Based MinorMiner (CLMM) and the Spring-
Based MinorMiner (SPMM) embeddings, presented in [29],
improve upon embeddings by providing heuristic initial chains
to start the search from. We have experimented with these
techniques to extend the maximal problem sizes that could be
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The D-Wave open-source SDK [28] implements this al-
gorithm for both Chimera and Pegasus architectures. Since
embedding can have a direct effect on the quality of the
solution of the annealing, finding close to optimal embedding
is a crucial part of the problem solving. One measure of
embedding quality is the chain lengths of physical qubits
that represent a single logical QUBO variable. The shorter
the chains, the closer the solution of the embedded problem
to the original one, since current architectures are noisy and
have imperfect qubits. Hence, in our experiments, we used
improved embedding methods.

The Clique-Based MinorMiner (CLMM) and the Spring-
Based MinorMiner (SPMM) embeddings, presented in [29],
improve upon embeddings by providing heuristic initial chains
to start the search from. We have experimented with these
techniques to extend the maximal problem sizes that could be
embedded into the hardware graph. SPMM uses a standard
graph layout of the QUBO variables matched to the physical
qubits on the same plane as initial chains, while CLMM
constructs a native clique embedding with uniform chains as a
starting point. Both algorithms pass the resulting initial chains
to MM to find the final embedding.
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C. MIMO ML decoding embedding onto the Chimera C-16
and Pegasus P-16 Architectures

To establish a baseline on what problem sizes map easily to
the QPU, we used the native clique embedding for Chimera
and Pegasus topologies [30] implemented in the D-Wave
Ocean SDK. For the Chimera C16, the largest native clique is
K64, while for the Pegasus P16, that is K180.

The QUBO equation of an N -QAM Nt × Nr MIMO ML
setup is (almost) equivalent to a KNt log2 N clique [1]. We
summarize our results of the exact embedding requirements
of the extended set of MIMO optimization problems showing
the level of superiority of the P16 topology in Table I.
For different ML encoded MIMO configurations (with native
clique embedding) the green cells indicate feasible mapping to
both QPU architectures, yellow cells are infeasible on C16 and
red cells indicate non-feasibility on both the 2000Q and the
Advantage system. Using the new, more connected architec-
ture, the physical qubit requirement decreases significantly for
each problem size, making possible the embedding of larger
scenarios.

D. Enhanced embedding via heuristic algorithms

To extend the baseline limits, we now discuss the possibili-
ties using D-Wave’s heuristic algorithm and its extensions. We
were able to supersede the native clique embedding by using
the CLMM algorithm. According to our results for extension
of base MM for complete graphs, CLMM yields embeddings
of larger MIMO setups with fewer physical qubit requirements
in most of the problem sizes. We find SPMM method to be
inferior in case of the clique embeddings. These limits exceed
the ones published in [1] on the Chimera C16 architecture.

TABLE II
UPPER LIMITS OF QUBO-FORM ML MIMO DECODING PROBLEMS

MAPPING ONTO THE CHIMERA C16 AND PEGASUS P16 ARCHITECTURES.

Arch Method BPSK QPSK 16-QAM 64-QAM

C16
CLIQUE 64× 64 32× 32 16× 16 10× 10

CLMM 65× 65 33× 33 16× 16 11× 11

P16
CLIQUE 180× 180 90× 90 45× 45 30× 30

CLMM 182× 182 91× 91 45× 45 30× 30

Furthermore, using the new Pegasus P16 topology, we could
more than double the number of users for each modulation and
still embed the problem. This is of course, due to the new QPU
architecture being larger (in qubit count) and more connected.

We highlighted the performance comparison of all embed-
ding methods in case of the 64-QAM modulation in Fig. 4,
testing all embeddable 2n×2n MIMO scenarios. As mentioned
earlier the CLMM algorithm had the best performance, with
less number of physical qubit requirement for each problem
size.

Table II summarizes the found theoretical and heuristic
limits for the largest MIMO scenarios for each modulation
comparing the baseline (native clique embedding) to the best-
performing heuristic algorithm (CLMM).

(a) Chimera

(b) Pegasus

Fig. 4. Logical and physical qubits requirements of the embedding of the
QUBO-formulated 64-QAM ML MIMO decoding problem with clique based
minor miner for Chimera C16 (4a) and Pegasus P16 (4b) architectures. The
number of logical qubits correspond to 6N, 2 ≤ N ≤ Nmax, where N is
number of transmitters (and receivers) in the MIMO setup and Nmax is the
largest MIMO scenario that the given QPU can handle (11 and 30 for C16

and P16, respectively).

VI. CONCLUSIONS AND OUTLOOK

In this paper, we presented the extension of the MIMO
ML decoding as QUBO problem to the 64-QAM modulation
scheme. By creating the required constellation diagrams, we
showed that one can use a linear QuAMax formulation and
still employ Gray code to reduce the number of bit errors
during transmission.

Furthermore, we extended the range of embedding of
MIMO ML decoding problems in both the dimension of modu-
lation complexity and transmitter number. We used the Pegasus
P16 architecture of the new D-Wave Advantage system to show
the limits of each modulation scheme on a state-of-the-art
QPU. Additionally, we explored heuristic embedding methods
(such as MM, SPMM, CLMM) to further improve the range
of MIMO setups that could benefit from quantum speedup.
As a result, we were able to double the embeddable problem
sizes compared to the earlier work.
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ML decoding as QUBO problem to the 64-QAM modulation
scheme. By creating the required constellation diagrams, we
showed that one can use a linear QuAMax formulation and
still employ Gray code to reduce the number of bit errors
during transmission.

Furthermore, we extended the range of embedding of
MIMO ML decoding problems in both the dimension of modu-
lation complexity and transmitter number. We used the Pegasus
P16 architecture of the new D-Wave Advantage system to show
the limits of each modulation scheme on a state-of-the-art
QPU. Additionally, we explored heuristic embedding methods
(such as MM, SPMM, CLMM) to further improve the range
of MIMO setups that could benefit from quantum speedup.
As a result, we were able to double the embeddable problem
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The currently available commercial Massive-MIMO solu-
tions [23] have already reached the point of being able to
decode transmissions beyond 64-QAM modulation in 64×64-
MIMO setups. However, the potential advantage of QA lies
in the problem sizes that are prohibitive for classical com-
puters. Since the new Pegasus architecture shows promising
scalability improvements regarding maximal problem size, we
believe that future QPUs will stand as viable alternative to
these classical solutions.

We believe that these result could further be improved by
using manual embedding. We leave the study of this possibility
to future work.

For next steps, we would like to study the performance of
the D-Wave Advantage system on the ML decoding problems.
Furthermore, since the 64-QAM case has never been tested
before on any QPU, we see potential in testing it on both the
D-Wave 2000Q and Advantage systems.
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Press, 2016, pp. 547–573. ISBN 978-0-12-804575-6

[8] G. Fodor, L. Pap, and M. Telek, “Recent advances in acquiring
channel state information in cellular mimo systems,” Infocommuni-
cations Journal, vol. XI, no. 3, pp. 2–12, September 2019. doi:
10.36244/ICJ.2019.3.2

[9] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta,
“Massive MIMO for next generation wireless systems,” IEEE com-
munications magazine, vol. 52, no. 2, pp. 186–195, 2014. doi:
10.1109/MCOM.2014.6736761

[10] B. Trotobas, A. Nafkha, and Y. Louët, “A review to massive MIMO
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