
Location, Proximity, Affinity –
The key factors in FaaS

DECEMBER 2020 • VOLUME XII • NUMBER 414

INFOCOMMUNICATIONS JOURNAL
1

Location, Proximity, Affinity -
The key factors in FaaS

David Haja∗, Zoltan Richard Turanyi†, Laszlo Toka∗‡
∗MTA-BME Network Softwarization Research Group, Budapest University of Technology and Economics

†Ericsson Research, Hungary
‡MTA-BME Information Systems Research Group, Budapest University of Technology and Economics

Email: haja@tmit.bme.hu, zoltan.turanyi@ericsson.com, toka@tmit.bme.hu

Abstract—The Function-as-a-Service paradigm emerged not
only as a pricing technique, but also as a programming model
promising to simplify developing to the cloud. Interestingly, while
placing functions across hosts under the service platform is
believed to be flexible, currently the available platforms pay
little attention to co-locate connected functions, or data with the
respective processing function in order to improve performance.
Even though the local function invocation and data access might
be an order of magnitude faster than their remote intra-cloud
counterparts. In this paper, we therefore propose a Function-as-
a-Service platform design that reaps the performance benefits of
co-location. We build the platform on WebAssembly, a secure
and flexible tool for efficient local function invocations, and
on a distributed in-memory database, which allows arbitrary
data placement. On top we advocate smart placement strategies
for function executions and data, decoupled from the functions.
Hence we envision good horizontal scaling of functions while
keeping the experienced processing latency to that of a single
machine case.

Index Terms—Function as a Service, FaaS, WebAssembly,
platform, runtime, co-location, performance

I. INTRODUCTION

In recent years Function-as-a-Service (FaaS), often referred
to as serverless computing, has become one of the popular
paradigms in cloud computing. Numerous projects managed
by companies and academic institutions offer FaaS services,
such as Amazon’s AWS Lambda [1], Apache OpenWhisk [2]
Google Cloud Functions [3], Microsoft Azure Functions [4].
Using FaaS, developers do not need to care about resource
allocation, scaling or scheduling, since the platform handles
these. Most of these platforms operate with container tech-
nologies; the user’s executable code is packed into a container
that is instantiated when the appropriate function call request
first arrives. With this relatively lightweight technology it is
easy to arrange process isolation and resource provisioning.

FaaS platforms and solutions gain more and more attention
in the Infocom domain, and researchers investigate its usability
for the backend of e.g., tactile Internet applications, and edge
computing-based applications. While its usage for telco ser-
vices requires massive performance as well, the low end-to-end
delay of such platforms is an absolute minimum in general.
For example the deployment of a multi-party Augmented
Reality application in an edge computing infrastructure with
a FaaS platform on top provides excellent context for scaling
ephemeral functions to the need of the users, but this use case

also demonstrates the necessity for low latency in processing
information shared between the users.

Even though communication is significantly faster the closer
the parties are (e.g., in same data center, same rack, same
server machine, same process), currently available FaaS plat-
forms miss to co-locate entities that often communicate with
each other. Furthermore, most of the available FaaS platforms
suffer from cold-start latency when a new virtual machine
(VM) or container has to be launched. The size of the image
to mount, the programming language used, the number of
libraries and dependencies all have an impact on this latency.

WebAssembly [5] (or Wasm) was announced in 2015,
designed by the World Wide Web Consortium (W3C) for
enabling high-performance applications inside browsers [6].
Since then a new industry partnership, the Bytecode Al-
liance [7], has been formed by Mozilla, Fastly, Intel, and
Red Hat. The alliance’s purpose is to implement standards
and to propose new ones that decouple WebAssembly from
JavaScript and make runtimes outside of the browser feasible.
WebAssembly can essentially provide the same security capa-
bilities and language independence as containers, but it allows
for lighter composition in terms of startup and function call.

We argue that the right placement of function executions
and data helps FaaS platforms to reap performance benefits
of co-location. We therefore propose a novel FaaS platform
design based on WebAssembly for isolation and fast local
function calls; a distributed in-memory datastore to allow
data mobility; and smart location selection strategies to co-
locate data and function execution as the main novelty of our
presented platform design. The contribution of this paper is
twofold: i) we suggest to use WebAssembly as an emerging
virtualization technique; ii) we consider advanced strategies
for both determining the location of user functions and data.
Furthermore, we define the role of each system component and
major capabilities that those components need to provide. We
also present the benefits, identify the challenges and missing
capabilities that need to be defined for a complete system.

This paper is organized as follows. In Section II we present
the related state of the art. In Section III we introduce
WebAssembly, present the activity that allows WebAssembly
to operate outside the browsers, highlight the benefits and
the challenges of using WebAssembly in FaaS platforms. In
Section IV we introduce a novel FaaS system design based
on WebAssembly and locality awareness. We conclude the

Location, Proximity, Affinity –
The key factors in FaaS

David Haja1 , Zoltan Richard Turanyi2 and Laszlo Toka3

1 MTA-BME Network Softwarization Research Group, Budapest University
of Technology and Economics (e-mail: haja@tmit.bme.hu)

2 Ericsson Research, Hungary (e-mail: zoltan.turanyi@ericsson.com)
3 MTA-BME Network Softwarization Research Group, MTA-BME Information

Systems Research Group, Budapest University of Technology and Economics
(e-mail: toka@tmit.bme.hu)

1

Location, Proximity, Affinity -
The key factors in FaaS

David Haja∗, Zoltan Richard Turanyi†, Laszlo Toka∗‡
∗MTA-BME Network Softwarization Research Group, Budapest University of Technology and Economics

†Ericsson Research, Hungary
‡MTA-BME Information Systems Research Group, Budapest University of Technology and Economics

Email: haja@tmit.bme.hu, zoltan.turanyi@ericsson.com, toka@tmit.bme.hu

Abstract—The Function-as-a-Service paradigm emerged not
only as a pricing technique, but also as a programming model
promising to simplify developing to the cloud. Interestingly, while
placing functions across hosts under the service platform is
believed to be flexible, currently the available platforms pay
little attention to co-locate connected functions, or data with the
respective processing function in order to improve performance.
Even though the local function invocation and data access might
be an order of magnitude faster than their remote intra-cloud
counterparts. In this paper, we therefore propose a Function-as-
a-Service platform design that reaps the performance benefits of
co-location. We build the platform on WebAssembly, a secure
and flexible tool for efficient local function invocations, and
on a distributed in-memory database, which allows arbitrary
data placement. On top we advocate smart placement strategies
for function executions and data, decoupled from the functions.
Hence we envision good horizontal scaling of functions while
keeping the experienced processing latency to that of a single
machine case.

Index Terms—Function as a Service, FaaS, WebAssembly,
platform, runtime, co-location, performance

I. INTRODUCTION

In recent years Function-as-a-Service (FaaS), often referred
to as serverless computing, has become one of the popular
paradigms in cloud computing. Numerous projects managed
by companies and academic institutions offer FaaS services,
such as Amazon’s AWS Lambda [1], Apache OpenWhisk [2]
Google Cloud Functions [3], Microsoft Azure Functions [4].
Using FaaS, developers do not need to care about resource
allocation, scaling or scheduling, since the platform handles
these. Most of these platforms operate with container tech-
nologies; the user’s executable code is packed into a container
that is instantiated when the appropriate function call request
first arrives. With this relatively lightweight technology it is
easy to arrange process isolation and resource provisioning.

FaaS platforms and solutions gain more and more attention
in the Infocom domain, and researchers investigate its usability
for the backend of e.g., tactile Internet applications, and edge
computing-based applications. While its usage for telco ser-
vices requires massive performance as well, the low end-to-end
delay of such platforms is an absolute minimum in general.
For example the deployment of a multi-party Augmented
Reality application in an edge computing infrastructure with
a FaaS platform on top provides excellent context for scaling
ephemeral functions to the need of the users, but this use case

also demonstrates the necessity for low latency in processing
information shared between the users.

Even though communication is significantly faster the closer
the parties are (e.g., in same data center, same rack, same
server machine, same process), currently available FaaS plat-
forms miss to co-locate entities that often communicate with
each other. Furthermore, most of the available FaaS platforms
suffer from cold-start latency when a new virtual machine
(VM) or container has to be launched. The size of the image
to mount, the programming language used, the number of
libraries and dependencies all have an impact on this latency.

WebAssembly [5] (or Wasm) was announced in 2015,
designed by the World Wide Web Consortium (W3C) for
enabling high-performance applications inside browsers [6].
Since then a new industry partnership, the Bytecode Al-
liance [7], has been formed by Mozilla, Fastly, Intel, and
Red Hat. The alliance’s purpose is to implement standards
and to propose new ones that decouple WebAssembly from
JavaScript and make runtimes outside of the browser feasible.
WebAssembly can essentially provide the same security capa-
bilities and language independence as containers, but it allows
for lighter composition in terms of startup and function call.

We argue that the right placement of function executions
and data helps FaaS platforms to reap performance benefits
of co-location. We therefore propose a novel FaaS platform
design based on WebAssembly for isolation and fast local
function calls; a distributed in-memory datastore to allow
data mobility; and smart location selection strategies to co-
locate data and function execution as the main novelty of our
presented platform design. The contribution of this paper is
twofold: i) we suggest to use WebAssembly as an emerging
virtualization technique; ii) we consider advanced strategies
for both determining the location of user functions and data.
Furthermore, we define the role of each system component and
major capabilities that those components need to provide. We
also present the benefits, identify the challenges and missing
capabilities that need to be defined for a complete system.

This paper is organized as follows. In Section II we present
the related state of the art. In Section III we introduce
WebAssembly, present the activity that allows WebAssembly
to operate outside the browsers, highlight the benefits and
the challenges of using WebAssembly in FaaS platforms. In
Section IV we introduce a novel FaaS system design based
on WebAssembly and locality awareness. We conclude the

1

Location, Proximity, Affinity -
The key factors in FaaS

David Haja∗, Zoltan Richard Turanyi†, Laszlo Toka∗‡
∗MTA-BME Network Softwarization Research Group, Budapest University of Technology and Economics

†Ericsson Research, Hungary
‡MTA-BME Information Systems Research Group, Budapest University of Technology and Economics

Email: haja@tmit.bme.hu, zoltan.turanyi@ericsson.com, toka@tmit.bme.hu

Abstract—The Function-as-a-Service paradigm emerged not
only as a pricing technique, but also as a programming model
promising to simplify developing to the cloud. Interestingly, while
placing functions across hosts under the service platform is
believed to be flexible, currently the available platforms pay
little attention to co-locate connected functions, or data with the
respective processing function in order to improve performance.
Even though the local function invocation and data access might
be an order of magnitude faster than their remote intra-cloud
counterparts. In this paper, we therefore propose a Function-as-
a-Service platform design that reaps the performance benefits of
co-location. We build the platform on WebAssembly, a secure
and flexible tool for efficient local function invocations, and
on a distributed in-memory database, which allows arbitrary
data placement. On top we advocate smart placement strategies
for function executions and data, decoupled from the functions.
Hence we envision good horizontal scaling of functions while
keeping the experienced processing latency to that of a single
machine case.

Index Terms—Function as a Service, FaaS, WebAssembly,
platform, runtime, co-location, performance

I. INTRODUCTION

In recent years Function-as-a-Service (FaaS), often referred
to as serverless computing, has become one of the popular
paradigms in cloud computing. Numerous projects managed
by companies and academic institutions offer FaaS services,
such as Amazon’s AWS Lambda [1], Apache OpenWhisk [2]
Google Cloud Functions [3], Microsoft Azure Functions [4].
Using FaaS, developers do not need to care about resource
allocation, scaling or scheduling, since the platform handles
these. Most of these platforms operate with container tech-
nologies; the user’s executable code is packed into a container
that is instantiated when the appropriate function call request
first arrives. With this relatively lightweight technology it is
easy to arrange process isolation and resource provisioning.

FaaS platforms and solutions gain more and more attention
in the Infocom domain, and researchers investigate its usability
for the backend of e.g., tactile Internet applications, and edge
computing-based applications. While its usage for telco ser-
vices requires massive performance as well, the low end-to-end
delay of such platforms is an absolute minimum in general.
For example the deployment of a multi-party Augmented
Reality application in an edge computing infrastructure with
a FaaS platform on top provides excellent context for scaling
ephemeral functions to the need of the users, but this use case

also demonstrates the necessity for low latency in processing
information shared between the users.

Even though communication is significantly faster the closer
the parties are (e.g., in same data center, same rack, same
server machine, same process), currently available FaaS plat-
forms miss to co-locate entities that often communicate with
each other. Furthermore, most of the available FaaS platforms
suffer from cold-start latency when a new virtual machine
(VM) or container has to be launched. The size of the image
to mount, the programming language used, the number of
libraries and dependencies all have an impact on this latency.

WebAssembly [5] (or Wasm) was announced in 2015,
designed by the World Wide Web Consortium (W3C) for
enabling high-performance applications inside browsers [6].
Since then a new industry partnership, the Bytecode Al-
liance [7], has been formed by Mozilla, Fastly, Intel, and
Red Hat. The alliance’s purpose is to implement standards
and to propose new ones that decouple WebAssembly from
JavaScript and make runtimes outside of the browser feasible.
WebAssembly can essentially provide the same security capa-
bilities and language independence as containers, but it allows
for lighter composition in terms of startup and function call.

We argue that the right placement of function executions
and data helps FaaS platforms to reap performance benefits
of co-location. We therefore propose a novel FaaS platform
design based on WebAssembly for isolation and fast local
function calls; a distributed in-memory datastore to allow
data mobility; and smart location selection strategies to co-
locate data and function execution as the main novelty of our
presented platform design. The contribution of this paper is
twofold: i) we suggest to use WebAssembly as an emerging
virtualization technique; ii) we consider advanced strategies
for both determining the location of user functions and data.
Furthermore, we define the role of each system component and
major capabilities that those components need to provide. We
also present the benefits, identify the challenges and missing
capabilities that need to be defined for a complete system.

This paper is organized as follows. In Section II we present
the related state of the art. In Section III we introduce
WebAssembly, present the activity that allows WebAssembly
to operate outside the browsers, highlight the benefits and
the challenges of using WebAssembly in FaaS platforms. In
Section IV we introduce a novel FaaS system design based
on WebAssembly and locality awareness. We conclude the

DOI: 10.36244/ICJ.2020.4.3

https://doi.org/10.36244/ICJ.2020.4.3

Location, Proximity, Affinity –
The key factors in FaaS

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2020 • VOLUME XII • NUMBER 4 15

2

paper in Section V. All existing and missing features of
WebAssembly mentioned throughout the paper reflect the
status at the time of writing this paper.

II. RELATED WORK

One of the most popular FaaS computing platforms is Ama-
zon’s AWS Lambda [1]. Since the appearance of Amazon’s
AWS Lambda, numerous research initiatives [8]–[11] have
improved their FaaS platform performance, with advanced
dependency loading and caching, grouping functions related to
the same application within the same container, or co-locating
functions with their data. None of these works consider co-
locating functions that communicate with each other and they
all consider VMs or containers as virtualization technology.

Faasm [12] is a novel serverless runtime that executes dis-
tributed stateful serverless applications across a cluster. Faasm
uses Faaslets, which extend the traditional WebAssembly
modules with custom code that provide a minimal serverless-
specific POSIX environment to support a host interface. The
authors propose a two-tier state architecture: i) the local
tier provides in-memory sharing; ii) the global tier supports
distributed access to state across hosts. In contrast to our
proposal, Faasm is a runtime implementation, it is designed to
integrate with existing serverless platforms and it relies on the
underlying platform’s scheduler, e.g., Knative’s [13] scheduler.
Therefore their function scheduling strategy does not take into
account the functions’ behavioral patterns. Furthermore, the
authors do not consider moving the data.

Cloudflare’s Workers [14] service has recently started to
support creating and hosting FaaS functions compiled to Wasm
binaries. A novel FaaS platform is presented in [15] that uses
WebAssembly and operates on an edge computing environ-
ment. AccTEE [16] is a sandbox solution that offers remote
computation service with resource accounting, leveraging on
two technologies: hardware-protected trusted execution envi-
ronments, and WebAssembly. All of the platforms [14]–[16]
are limited in the sense that they use JavaScript runtime with
a wrapper JavaScript program that calls the binary instances,
and returns their results. aWsm [17] is a native Wasm compiler
and runtime that can operate under a serverless system. It
enables Wasm shared-objects and multiple functions and their
invocations within a single process.

The significant difference between all the aforementioned
platforms and our design is that our design takes into account
the frequency of the communication between functions and
data, and strive to provide co-location for them.

III. WEBASSEMBLY FOR FAAS RUNTIME

WebAssembly defines a binary code format that is portable
and efficient in size and execution speed on modern CPUs.
It was originally created for executing programs in web
browsers, written in languages other than JavaScript, e.g., C,
C++, Rust.

A. Background

A module in WebAssembly [18] is the distributable, load-
able and executable unit of code. WebAssembly modules are

language-agnostic, which means a software developer may
write its source code in any optional high-level language, such
as C++, Rust, or Go, which then can be compiled, with the
appropriate toolchain, to a portable binary that runs on a stack-
based virtual machine.

The first technology for compiling C or C++ codes to
WebAssembly binaries was Emscripten [19]. Emscripten’s
toolchain relies on LLVM [20] for the following key fea-
tures: translating high-level code from languages (like C++)
to an intermediate representation (IR), optimization and also
dead code elimination. Beside Emscripten, numerous other
toolchains have been developed and published for compiling
other language source codes beside C and C++ to WebAssem-
bly binaries. An example view of the compilation process is
presented in Fig. 1.

Fig. 1. Compilation to Webassembly with LLVM toolchain

One of the key features of WebAssembly is its secure
execution environment. Unlike a native binary component,
WebAssembly modules have access only to a part of the
process memory, allowing secure isolation within a process.
WebAssembly provides a sandboxed environment for the
functions of a module, which by default do not have access
to external APIs and system calls. To allow the interaction
with anything outside the module, one has to explicitly au-
thorize the module for the function or syscall. Taking all
together, the pattern of the usage of these features is called
WebAssembly “nanoprocess”, which makes it possible to have
similar isolation to that of a process, but with lower overhead.
Another key feature is that the Wasm engine can copy directly
between a caller and a callee’s memories, even if they are
separated in two modules and/or not compiled from the same
language. This means that serialization and deserialization of
communicated data may be avoided.

B. Outside the browser

WebAssembly was created as a browser runtime environ-
ment faster than JavaScript. During the compilation process
Emscripten [19] created the Wasm binary and JavaScript glue
code, which communicated with the browser and consequently
with the API provided by the OS. This JavaScript glue code
was not meant to be a standard or even a public interface.
As WebAssembly became more popular and more power-
ful, the community realized its potential for use outside the
browser. Consequently, standardization started to propose an

Location, Proximity, Affinity –
The key factors in FaaS

DECEMBER 2020 • VOLUME XII • NUMBER 416

INFOCOMMUNICATIONS JOURNAL

3

interface, the WebAssembly System Interface (WASI) that
would connect Wasm binaries to regular operating systems.
WASI allows runtimes to be independent of browsers, Web
APIs and JavaScript. The execution of a WebAssembly mod-
ule requires a runtime that supports the standardized WASI;
multiple open-source implementations of such toolchains exist,
such as Wasmtime [21], Lucet [22], Wasmer [23], WAVM
[24], Wasm3 [25]. These various toolchains, proposed by the
community and listed in Table I, differ in their source code
language, compiler framework, or compilation process.

The two most common compilation techniques are Ahead-
of-time (AOT) and Just-in-time (JIT) compilation. Most of the
toolchains in Table I use Cranelift [26] and LLVM as their
compiler framework. Cranelift is a low-level code generator
that translates a target-independent intermediate representation
into various executable machine code. LLVM is a collection
of modular and reusable compiler and toolchain technologies.
The goal of LLVM is to provide a modern compilation strategy
that is capable to support both static and dynamic compilation
of arbitrary programming languages.

TABLE I
WASI COMPATIBLE TOOLCHAINS

Source
languages

Compiler
framework Compilation

Wasmtime [21] Rust,
C++

Cranelift,
Lightbeam JIT

Lucet [22] Rust Cranelift AOT

Wasmer [23] Rust,
C++

Cranelift,
Dynasm.rs,

LLVM
JIT

Wavm [24] C++,
Python LLVM JIT

Wasm3 [25] C Custom Interpreted

WASI is in the middle of a standardization process, but its
two key design goals are already set: portability and security.
In the current proposal [27], WASI consists of a modular
set of standard interfaces, one of which is called wasi-core.
Wasi-core has a similar feature set as POSIX, so it contains
the very basic interfaces that functions need, like random
numbers, files, network connections, etc. Although wasi-core
will not implement all features of POSIX, those missing can
be handled by other modules inside WASI. This way the
platforms can decide, which functionality they want to use.

C. Interface types

The Minimum Viable Product (MVP) of WebAssembly [28]
defines only numbers as data types. Interface types define a
set of types that describe abstract, high-level types. It gives
the possibility of describing complex values, e.g., strings,
sequences, records, and variants, without committing to a
single memory representation or sharing scheme. The complex
value descriptions are mappings between multiple sets of basic
types to the abstract types, where these mappings are not
hardcoded in the engine, instead, a module comes with its
booklet of mappings. Most of the time the compiler takes
care of this information, by adding a custom section that
holds the interface types, to WebAssembly modules. In cases
when two Wasm modules communicate, they both give their

booklets, which define how they map their functions’ types to
the abstract types. This allows to automatically generate code
to convert between value representations of the same type in
an extensible and efficient manner.

D. Benefits for FaaS platforms

Portability: Since WebAssembly is machine agnostic, the
underlying operating system and processor architecture, e.g.,
x86, ARM, is irrelevant from the users’ perspective and only
one compiled binary is needed even in case of a heterogeneous
server park. This portability extends even to the clients via
integration of WebAssembly into the browser. This opens up
the possibility of extending a FaaS system to the client.

Language agnosticism: There are numerous open-source
projects [29] that make several programming languages com-
pilable to Wasm binary. The service provider needs only one
runtime implementation for all compatible source code lan-
guages, and above all, developers can enjoy the programming
language of their choice. Furthermore, with WebAssembly,
users can easily make function calls across languages.

Security: WebAssembly provides function invocation in a
secure way by default, as the design of modules contains
isolated memory and system call sandboxing, which prevents
buffer overflow type of security exploits or sensitive data leaks.
This, coupled with access control of the databases, makes it
easier to rely on third party, untrusted code.

Low execution overhead: WebAssembly uses nanoprocesses
as a virtualization technique, to provide isolation and safety
during the execution of Wasm modules. This results in less
computational overhead provisioned for function execution
than any other technique [30].

Reduced and reliable cold-start latency: Cold-start latency
is not negligible in FaaS type services. It has been shown that
using Wasm modules for function invocation reduces the cold-
start latency [15], so it also reduces job completion times.

Fast communication between functions: Since WebAssem-
bly will support shared memory [31], the communication
between functions on the same host can be fast and efficient,
reducing serialization, value transformations to the minimum.

E. Gaps and challenges

As all technologies, WebAssembly also has its tradeoffs.
Here we present the general gaps that stem from its use.

The execution of Wasm functions is slower than executing
the same function natively [32]. Although the cold-start latency
can be reduced significantly compared to container-based
systems, the slower execution may erode that gain.

For letting Wasm modules reach host resources, like the
file system, one must provide the necessary capabilities to
the executor explicitly, i.e., users should provide all the
capabilities and access rights that their applications require.
In addition, users have to provide bindings to other Wasm
modules manually.

Interface types allow modules to use more complex types
than numbers. This concept is under construction, so it can
change as the community moves forward. Furthermore, at the

w
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2020 • VOLUME XII • NUMBER 4 17

4

time of writing, interface types are only available for Rust
programming language.

One of the biggest promises of WebAssembly is its stan-
dardized form that gives compilation target for many pro-
gramming languages, although some of the source languages
are not yet supported with WASI, e.g., Go [33]. Furthermore,
the interpreted languages like Python, cannot be compiled to
Wasm binary directly. The workaround that currently allows
compiling programs written in such languages is to compile
both the interpreter VM with the user’s functions together in
one Wasm binary. When one has many functions, this may be
a significant overhead.

Currently features, like threads, exception handling, Single
Instruction Multiple Data, shared memory [31], are only
planned for WebAssembly [34]; their status varies between the
proposal and the feature standardization phases. Some of these
capabilities are indispensable features for users’ functions.
They are still changing and uncertain when and how they will
be supported by standards.

Often one wants to execute numerous function instances in
a distributed fashion, therefore the modules demand a method
that provides the safe communication ability between each
other. A major conceptual challenge is to provide a secure and
efficient way for WebAssembly modules on different hosts to
communicate through the network.

IV. ADVANCED WEBASSEMBLY-BASED FAAS DESIGN

In this section we present our envisioned FaaS system
architecture: we define each component’s functionality, and
we emphasize the importance of the location of user func-
tions’ execution within a cluster. Throughout this paper the
user denotes the application/function developer and provider
that realizes the application and wishes to execute it in the
platform.

A. Motivation for co-location

The main goal of our proposed system design is to enable
FaaS functionality for users, with both horizontal scaling, and
with small function composition and data access overhead,
while retaining the flexibility and security of the currently
available platforms. Our key observation is that local data
access and function invocations within the same server are
typically an order of magnitude faster than remote ones
[35], [36]. Some illustrative overhead values can be found
in Table II. Naturally the overhead depends heavily on the
underlying system and network characteristics, although it is
visible that they are not negligible compared to a function
initialisation time. In the table we list data access times
measured in DAL [35] and in S6 [37], two distributed in-
memory key value stores. Also, we depict the range of function
invocation latencies with Faasm [12], [17] and with gRPC
[38], [39], which is a high-performance, open source universal
RPC framework.

One can see that the overhead of remote operations can be
heavy, especially if they have to be repeated several times.
Since the novel applications and services usually require mul-
tiple instances of the same function, and numerous different

TABLE II
FUNCTION CALL AND DATA ACCESS OVERHEAD WITHIN A DATA CENTER

Overhead
Wasm function initialisation 185µs− 5ms
Local data access (DAL) 1µs
Remote data access (DAL) 20µs
Local data access (Redis) 70− 90µs
Remote data access (Redis) 70− 90µs
Local data access (S6) 0.16µs
Remote data access (S6) 18µs
Wasm - Wasm call locally (Faasm) 235µs− 2.9ms
gRPC call (between GCE VMs) 74− 629µs
gRPC call (over Ethernet 40G) 80µs− 6ms

functions that constitute a long pipeline, we cannot ignore
the extra overhead that these operations incur. Therefore, to
accomplish our performance goals, we maximize the locality
effect by co-locating functions with their data, and co-locating
caller and called functions.

B. Architecture

We want to hide the distributed nature of the platform
infrastructure from the application developer, and make the
assumption on the cost of data access and function invocation
to be in the order of what is typical in a single-machine
application. WebAssembly helps this endeavor by offering
low-overhead function calls between sandboxes. Our main
architectural choices are: i) functions are compiled to Wasm
binaries, uploaded and reachable from every worker host;
ii) functions are stateless and store their data in a separate,
distributed in-memory database accessible from anywhere in
the system; iii) data in the database is automatically moved
around to minimize access latency; iv) a function may invoke
another functions locally or remotely, the choice is based on
performance considerations.

We present the components of our FaaS system architecture,
and a high-level overview is depicted in Figure 2.

Fig. 2. Architecture of our envisioned FaaS system design

User functions: They realize the application that users wish
to execute. The user can develop functions in any source
language that can be compiled to Wasm binary, then the
system stores only the compiled modules and executes them
upon request. User functions can be invoked externally via a
HTTP API, by another functions’ direct calls (synchronously,

Location, Proximity, Affinity –
The key factors in FaaS

DECEMBER 2020 • VOLUME XII • NUMBER 418

INFOCOMMUNICATIONS JOURNAL

5

asynchronously or as co-routines) or by assigning functions to
trigger events, such as a change of a database item, an error
(e.g., function failing) or another system event, like scaling.

Worker: Contains and manages the system components
used for user functions’ execution and communication. The
workers can be either physical or virtual machines. We can
use Kubernetes [40], as the underlying cluster infrastructure
manager, where the pods represent our worker nodes.

Runtime: The WASI-compatible runtime is responsible for
the execution of the User functions, memory management,
sandbox creation and job scheduling. It handles code signature
validation, other Wasm module dependencies and function
invocations, either locally, or across different workers. It is also
responsible for authorizing the sandboxes appropriately, e.g.,
whether functions may access certain parts of the database,
files, network or some static data in a shared filesystem. We
assume that all uploaded functions (and all their dependencies)
are available (eventually) at every worker. This means that
every worker can execute any function, allowing for execu-
tion locality for each invocation independently. For example,
function F working on data D1 and D2 may be invoked
at different workers depending on the location of D1 and
D2. Consequently, there are no resources allocated on a per
function basis - most prominently functions do not get their
own containers. This removes the need to manage per-function
resources (e.g., scaling them) and makes it lightweight to trade
resources between functions (just by making workers execute
different ones). Instead, resources are managed on a per tenant
(or per application) basis.

Distributed in-memory database: Since User functions are
stateless, a distributed database, e.g., a key-value store, pro-
vides state sharing between function invocations. Functions
may have restricted access to (parts) of the database for
security and modularization purposes. The realization of this
feature is crucial, as due to the stateless nature of the functions,
access to the database can be a bottleneck. Databases [35],
[37] that allow controlling the location of items and offer
optimized local access are best suited to our architecture, as
they help exploit the benefits of locality. Note that there may
be more than one kind of database integrated into the system
offering different semantics. Besides simple key-value stores,
strongly transactional databases, conflict-free replicated data
types, graph databases or any kind of distributed database can
be integrated.

Database connector library: Provides connection between
the User functions and the Distributed in-memory database. It
offers an API directly accessible from the User functions.

Tenants: They represent the users of the system. We provide
tenant isolation that prohibits users accessing binaries and data
of other tenants. It also involves careful management of CPU
and memory resource usage, both of the Runtime and of the
Distributed in-memory database. The database slices, in terms
of resource usage, are depicted with dashed line contoured
database icons in Figure 2.

Function orchestrator: This manages User function execu-
tion and data locality. Since at function execution there is very
little time to make a decision, a set of easy to evaluate rules
must be applied to decide on the place of executions. The task

of the Function orchestrator is to observe system behaviour,
i.e., cross-function invocations and data access patterns, i.e.,
which function executions invoke what other functions, and
access what data, respectively, and evolve the rules.

Webserver: Responsible for handling external requests
through an HTTP API. It authorizes incoming requests, pro-
cesses and invokes the appropriate User functions through
the Runtime component. After the invocation, the Webserver
is responsible for sending the results back to the client.
The tenants may also expose (parts of) the database through
this component. A general HTTP API implementation, like
Node.js, is applicable for the functionality our platform re-
quires. The performance improvement of our platform stems
from the reduced communication overhead on the frequent
calls between functions and between function and data. Since
the Webserver does not take an active part in these commu-
nications, only in the rare user interaction, it may run on a
dedicated node or on the Workers as well.

Function store: Tenants can upload and manage functions,
modules, versions and aliases via this component. It is also
responsible to distribute the uploaded functions to the Workers.

Monitoring: This component extends Kubernetes’ cluster
manager functionality with log collection, trace and alarming
indicated by the User functions of a Tenant or application. It
allows a unified view of the system and helps troubleshooting;
it also collects performance metrics and counters.

C. Workflow

We present in Figure 3 the workflow of i) function devel-
opment, upload; ii) invocation; iii) our Function orchestrator
component in our envisioned FaaS platform.

Fig. 3. Workflows of our platform

The workflow begins with the development of the user’s
function. As we stated before, a wider range of programming
languages can be used than in the currently available FaaS
platforms thanks to the WebAssembly ecosystem. After the
development, either the system or the user compiles the source
code to WebAssembly binary.

The binary and its dependencies will be uploaded and
stored in the Function Store and distributed to all workers.
Distribution may simply mean the publishing in a networked

Location, Proximity, Affinity –
The key factors in FaaS

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2020 • VOLUME XII • NUMBER 4 19

6

file system. When a WebAssembly module is uploaded, a URL
is assigned to it to make the function externally accessible.

The users can invoke their functions via HTTP requests
through the assigned endpoints; authorization is managed
by the webserver. The process of a function invocation is
presented with the solid lines in Figure 3.

A function running may access the database through the
connector library, reading and writing data. Such writes con-
stitute the side effect of the function and may trigger other
functions if they were assigned to the change of that key. The
functions themselves may also trigger other functions directly.
They may also fail (or throw an unhandled exception), which
may also serve as function startup trigger. In any case the
runtime makes a decision on whether the new function shall
be locally or remotely executed. This decision is based on a
few simple rules set by the Function Orchestrator. In case of
remote execution, a network message is sent to the selected
worker containing the name of the function to execute and its
arguments. In case of local execution a WebAssembly sandbox
may be created (if isolation requires it) for the function,
the arguments are moved into the sandbox and execution is
passed to it. The runtime may maintain a set of pre-allocated
sandboxes, for performance reasons. After local or remote
function execution, if the result of the function is relevant
it is transported back to the caller, either as a syncronous
return value or as a promise/future, or a callback argument
or a co-routine yield, depending on what construct the source
programming language supports.

The Function Orchestration needs to specify the rules for
execution location by observing data access and function
invocation patterns. E.g., for functions that typically execute
quickly and do not access the database at all, it is beneficial
to always run them at the node of trigger. Similarly, functions
having modest compute requirements, little database access,
but large input/output data sizes are best executed locally. In
contrast, functions accessing a lot of data that is remote may
perform better at the remote location.

Naturally, every invocation of a function may have a differ-
ent access and compute pattern, thus a single rule per function
will result in many bad decisions. Not only the arguments to
the function, or that of its caller can be taken into account,
but metadata supplied by the caller. For example, in a telecom
system, which handles a lot of users concurrently, the identity
of the user can be supplied for every function execution.
This allows the system to observe data access and function
invocation patterns per user and group all functions working
on the same user.

D. Co-location aware function scheduling
In general, function scheduling is a hard problem with

multiple constraints [41]. In our platform we consider the
joint orchestration of user functions and the used data. The
goal is to minimize the cost that comes from data movement,
remote data access and remote function calls, as all the
communication through the network and data serialization-
deserialization put additional overhead on the execution of user
applications. Nowadays, the most widely used distributed, in-
memory databases, like Riak [42], can store multiple replicas

for each data (or function state), but do not allow to define
the host of the state or its replica. To control data locality we
need a distributed, in-memory database that provides an API,
which lets the service provider define the host of each replica.

For functions that typically execute quickly, invoke each
other and do not access the database at all, the best strategy
is to run them at the node of the trigger (locally). Similarly,
functions having modest compute requirements, rare database
access, but large input/output data are best placed locally. In
contrast, functions intensively accessing remote data (hosted
at a node different from the node of the trigger) may perform
better at the remote location, in order to access data locally
there, with minimum cost.

In our envisioned system the Function Orchestrator defines
rule sets that summarize its knowledge about how functions
behave. To construct an adequate placement strategies, we
have to identify the functions’ behavioral patterns. In addition
to the trivial cases there are numerous more complicated ones
that need more advanced strategies. For example, we want to
place a pipeline on the same host with the data that it accesses,
if its functions work on the same data. To accomplish this, the
pipeline needs to be decoupled and the relations between its
components must be identified.

In addition, every invocation of a function may have a
different access and compute pattern, thus a single rule per
function will result in bad decisions. On the other hand, quite
many things may influence how a function executes (such as
its input parameters and the state of the context it works on)
and it is not realistic to consider the state of the entire database
in rules. As a compromise, we could allow the caller of the
function to provide hints (such as a hash of some ID relevant to
the function) that can be made part of the rules. For example,
in a telco system, which handles many users concurrently, (the
hash of) the identity of the user can be supplied for every
function execution. This allows the system to observe data
access and function invocation patterns per user and group all
functions working on the same user.

Scheduling functions and data jointly implies countless open
questions that we do not cover in this paper, but it is already
clear that identifying the appropriate patterns is crucial for
effective scheduling. Finding the right mix of programmer
input and machine learning is another area of open research.

When a function is invoked, the runtime can build a
directed graph that present the communications relationship
between functions and data. An illustrative graph is presented
on Figure 4, where G = (F,D,E); F = {Functions};
D = {Data}; E = {fi− > fj ; fi− > dk; dk− >
fj ; |∀fi, fj ∈ F ; ∀dk ∈ D}. A node in the graph can be a
data or a function instance and the directed edges present a
function invocation or data access from the caller/event to the
called/data. The runtime can use postorder traversal to define
each entity location by applying the actual set of rules on all
nodes. This constructed graph is similar to an extended service
call graph [43].

Evaluating the rules, the runtime makes a decision on
whether the new function shall be locally or remotely exe-
cuted. In case of remote execution, a network message is sent
to the selected worker containing the name of the function

Location, Proximity, Affinity –
The key factors in FaaS

DECEMBER 2020 • VOLUME XII • NUMBER 420

INFOCOMMUNICATIONS JOURNAL

7

Fig. 4. Communications relationship

to execute and its arguments. In case of local execution, a
WebAssembly sandbox may be created (if isolation requires
it) for the function, the arguments are moved into the sandbox
and execution is passed to it.

Previously, we have considered placing function executions,
although data can be moved around in our system, as well. One
simple strategy would be to move the data (and its replicas) to
the locations with most accesses. This decouples function and
data placement and considers cases in which data movement
is cheaper than moving functions.

V. CONCLUSION

Although the appearance of WebAssembly outside the
browser and of its system interface is recent, the community
has already started to work on solutions that extends its
usage to serve as a rapidly emerging virtualization technology
under novel services. While exploiting its features of very
light virtualization, available FaaS platforms do not take into
account the co-location of functions, hence they neglect this
potential source of performance increase. (Note that most
microservice or service mesh tools also disregard locality:
usually no effort is made to co-locate microservices often
invoking one another.)

In this paper, we proposed a FaaS system design that
offers horizontal scaling at the performance promise of host
internal operation. The platform offers scaling to several server
machines, when more compute power is needed. At the same
time, through intelligent placement of data and function execu-
tions it minimizes the need for remote data access and remote
function invocation. Not all application setups permit the
reduction of remote operations under high-load, e.g., there are
computing problems with mesh-like interaction of functions
and data, in which case it is not possible to systematically
reduce the fraction of remote operations. On the other hand,
most of the computing problems exhibit clusters of often
communicating functions and their data. These applications
run faster in a FaaS platform considering locality.

The use of WebAssembly is instrumental in reducing the
overhead of local function invocations. In addition, it offers
security and portability benefits and is programmable in a wide
range of languages. Although WebAssembly lacks some of the
necessary features that are not implemented or defined yet,
we presented how WebAssembly and its new extension WASI
could fit in a FaaS system architecture. Beside the benefits, we
also demonstrated the tradeoffs that will be encountered when
we build the platform: the current challenges and gaps that
need to be implemented before our vision becomes reality.

In our future work, we want to identify the function in-
vocation and data access patterns based on the state-of-the-
art. After the identification, we will compose and implement
the Function orchestrator component that is able to construct
those rule sets, and thus to improve the co-location of the
functions, achieving better application performance than the
available FaaS platforms.

ACKNOWLEDGMENTS

Project no. 2018-2.1.17-TÉT-KR-2018-00012 and 135074
have been implemented with the support provided from the
National Research, Development and Innovation Fund of
Hungary under the 2018-2.1.17-TÉT-KR and FK 20 funding
schemes.

REFERENCES

[1] AWS Lambda, https : / / aws . amazon . com / lambda/,
Accessed on October 25, 2020.

[2] Apache OpenWhisk, https : / / openwhisk . apache . org/,
Accessed on October 25, 2020.

[3] Google Cloud Functions, https : / / cloud . google . com /
functions, Accessed on October 25, 2020.

[4] Microsoft Azure Functions, https://azure.microsoft.com/
services/functions/, Accessed on October 25, 2020.

[5] A. Haas et al., “Bringing the web up to speed with
WebAssembly,” in ACM SIGPLAN, 2017. DOI: 10.1145/
3062341.3062363.

[6] WebAssembly Working Group, https : / / www. w3 . org /
wasm/, Accessed on October 25, 2020.

[7] Bytecode Alliance, https : / / bytecodealliance . org/, Ac-
cessed on October 25, 2020.

[8] S. Hendrickson et al., “Serverless computation with
openlambda,” in USENIX HotCloud, 2016.

[9] I. E. Akkus et al., “SAND: Towards High-Performance
Serverless Computing,” in USENIX Annual Technical
Conference, 2018.

[10] E. Oakes et al., “SOCK: Rapid task provisioning with
serverless-optimized containers,” in USENIX Annual
Technical Conference, 2018.

[11] V. Sreekanti et al., “Cloudburst: Stateful Functions-as-
a-Service,” arXiv preprint arXiv:2001.04592, 2020.

[12] S. Shillaker and P. Pietzuch, Faasm: Lightweight Isola-
tion for Efficient Stateful Serverless Computing, 2020.
arXiv: 2002.09344 [cs.DC].

[13] Knative: Kubernetes-based platform to deploy and man-
age modern serverless workloads, https://knative.dev/,
Accessed on October 25, 2020.

[14] Cloudflare’s Workers service, https://workers.cloudflare.
com/, Accessed on October 25, 2020.

[15] A. Hall and U. Ramachandran, “An execution model for
serverless functions at the edge,” in Proceedings of the
International Conference on Internet of Things Design
and Implementation, 2019. DOI: 10 . 1145 / 3302505 .
3310084.

[16] D. Goltzsche et al., “AccTEE: A WebAssembly-based
Two-way Sandbox for Trusted Resource Accounting,”
in Proceedings of the 20th International Middleware
Conference, 2019. DOI: 10.1145/3361525.3361541.

 [1] AWS Lambda, https://aws.amazon.com/lambda/, Accessed on October
25, 2020.

 [2] Apache OpenWhisk, https://openwhisk.apache.org/, Accessed on
October 25, 2020.

 [3] Google Cloud Functions, https://cloud.google.com/functions,
Accessed on October 25, 2020.

 [4] Microsoft Azure Functions, https://azure.microsoft.com/services/
functions/, Accessed on October 25, 2020.

 [5] A. Haas et al., “Bringing the web up to speed with WebAssembly,” in
ACM SIGPLAN, 2017. doi: 10.1145/3062341.3062363.

 [6] WebAssembly Working Group, https://www.w3.org/wasm/, Accessed
on October 25, 2020.

 [7] Bytecode Alliance, https://bytecodealliance.org/, Accessed on October
25, 2020.

 [8] S. Hendrickson et al., “Serverless computation with openlambda,” in
USENIX HotCloud, 2016.

 [9] I. E. Akkus et al., “SAND: Towards High-Performance Serverless
Computing,” in USENIX Annual Technical Conference, 2018.

 [10] E. Oakes et al., “SOCK: Rapid task provisioning with serverless-
optimized containers,” in USENIX Annual Technical Conference,
2018.

[11] V. Sreekanti et al., “Cloudburst: Stateful Functions-asa-Service,”
arXiv preprint arXiv:2001.04592, 2020.

 [12] S. Shillaker and P. Pietzuch, Faasm: Lightweight Isolation for Efficient
Stateful Serverless Computing, 2020. arXiv: 2002.09344 [cs.DC].

[13] Knative: Kubernetes-based platform to deploy and manage modern
serverless workloads, https://knative.dev/, Accessed on October 25,
2020.

 [14] Cloudflare’s Workers service, https://workers.cloudflare.com/,
Accessed on October 25, 2020.

 [15] A. Hall and U. Ramachandran, “An execution model for serverless
functions at the edge,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, 2019.

 doi: 10.1145/3302505.3310084
 [16] D. Goltzsche et al., “AccTEE: A WebAssembly-based Two-way

Sandbox for Trusted Resource Accounting,” in Proceedings of the
20th International Middleware Conference, 2019.

 doi: 10.1145/3361525.3361541.
[17] P. K. Gadepalli et al., “Challenges and Opportunities for Efficient

Serverless Computing at the Edge,” in SRDS, 2019.
 doi: 10.1109/SRDS47363.2019.00036.
[18] WebAssembly Specification, https://webassembly.github.io/spec/core/

index.html, Accessed on October 25, 2020.
[19] Emscripten toolchain, https://emscripten.org/, Accessed on October

25, 2020.
[20] C. Lattner, “Introduction to the llvm compiler system,” in Proceedings

of International Workshop on Advanced Computing and Analysis
Techniques in Physics Research, Erice, Sicily, Italy, 2008.

7

Fig. 4. Communications relationship

to execute and its arguments. In case of local execution, a
WebAssembly sandbox may be created (if isolation requires
it) for the function, the arguments are moved into the sandbox
and execution is passed to it.

Previously, we have considered placing function executions,
although data can be moved around in our system, as well. One
simple strategy would be to move the data (and its replicas) to
the locations with most accesses. This decouples function and
data placement and considers cases in which data movement
is cheaper than moving functions.

V. CONCLUSION

Although the appearance of WebAssembly outside the
browser and of its system interface is recent, the community
has already started to work on solutions that extends its
usage to serve as a rapidly emerging virtualization technology
under novel services. While exploiting its features of very
light virtualization, available FaaS platforms do not take into
account the co-location of functions, hence they neglect this
potential source of performance increase. (Note that most
microservice or service mesh tools also disregard locality:
usually no effort is made to co-locate microservices often
invoking one another.)

In this paper, we proposed a FaaS system design that
offers horizontal scaling at the performance promise of host
internal operation. The platform offers scaling to several server
machines, when more compute power is needed. At the same
time, through intelligent placement of data and function execu-
tions it minimizes the need for remote data access and remote
function invocation. Not all application setups permit the
reduction of remote operations under high-load, e.g., there are
computing problems with mesh-like interaction of functions
and data, in which case it is not possible to systematically
reduce the fraction of remote operations. On the other hand,
most of the computing problems exhibit clusters of often
communicating functions and their data. These applications
run faster in a FaaS platform considering locality.

The use of WebAssembly is instrumental in reducing the
overhead of local function invocations. In addition, it offers
security and portability benefits and is programmable in a wide
range of languages. Although WebAssembly lacks some of the
necessary features that are not implemented or defined yet,
we presented how WebAssembly and its new extension WASI
could fit in a FaaS system architecture. Beside the benefits, we
also demonstrated the tradeoffs that will be encountered when
we build the platform: the current challenges and gaps that
need to be implemented before our vision becomes reality.

In our future work, we want to identify the function in-
vocation and data access patterns based on the state-of-the-
art. After the identification, we will compose and implement
the Function orchestrator component that is able to construct
those rule sets, and thus to improve the co-location of the
functions, achieving better application performance than the
available FaaS platforms.

ACKNOWLEDGMENTS

Project no. 2018-2.1.17-TÉT-KR-2018-00012 and 135074
have been implemented with the support provided from the
National Research, Development and Innovation Fund of
Hungary under the 2018-2.1.17-TÉT-KR and FK 20 funding
schemes.

REFERENCES

[1] AWS Lambda, https : / / aws . amazon . com / lambda/,
Accessed on October 25, 2020.

[2] Apache OpenWhisk, https : / / openwhisk . apache . org/,
Accessed on October 25, 2020.

[3] Google Cloud Functions, https : / / cloud . google . com /
functions, Accessed on October 25, 2020.

[4] Microsoft Azure Functions, https://azure.microsoft.com/
services/functions/, Accessed on October 25, 2020.

[5] A. Haas et al., “Bringing the web up to speed with
WebAssembly,” in ACM SIGPLAN, 2017. DOI: 10.1145/
3062341.3062363.

[6] WebAssembly Working Group, https : / / www. w3 . org /
wasm/, Accessed on October 25, 2020.

[7] Bytecode Alliance, https : / / bytecodealliance . org/, Ac-
cessed on October 25, 2020.

[8] S. Hendrickson et al., “Serverless computation with
openlambda,” in USENIX HotCloud, 2016.

[9] I. E. Akkus et al., “SAND: Towards High-Performance
Serverless Computing,” in USENIX Annual Technical
Conference, 2018.

[10] E. Oakes et al., “SOCK: Rapid task provisioning with
serverless-optimized containers,” in USENIX Annual
Technical Conference, 2018.

[11] V. Sreekanti et al., “Cloudburst: Stateful Functions-as-
a-Service,” arXiv preprint arXiv:2001.04592, 2020.

[12] S. Shillaker and P. Pietzuch, Faasm: Lightweight Isola-
tion for Efficient Stateful Serverless Computing, 2020.
arXiv: 2002.09344 [cs.DC].

[13] Knative: Kubernetes-based platform to deploy and man-
age modern serverless workloads, https://knative.dev/,
Accessed on October 25, 2020.

[14] Cloudflare’s Workers service, https://workers.cloudflare.
com/, Accessed on October 25, 2020.

[15] A. Hall and U. Ramachandran, “An execution model for
serverless functions at the edge,” in Proceedings of the
International Conference on Internet of Things Design
and Implementation, 2019. DOI: 10 . 1145 / 3302505 .
3310084.

[16] D. Goltzsche et al., “AccTEE: A WebAssembly-based
Two-way Sandbox for Trusted Resource Accounting,”
in Proceedings of the 20th International Middleware
Conference, 2019. DOI: 10.1145/3361525.3361541.

7

Fig. 4. Communications relationship

to execute and its arguments. In case of local execution, a
WebAssembly sandbox may be created (if isolation requires
it) for the function, the arguments are moved into the sandbox
and execution is passed to it.

Previously, we have considered placing function executions,
although data can be moved around in our system, as well. One
simple strategy would be to move the data (and its replicas) to
the locations with most accesses. This decouples function and
data placement and considers cases in which data movement
is cheaper than moving functions.

V. CONCLUSION

Although the appearance of WebAssembly outside the
browser and of its system interface is recent, the community
has already started to work on solutions that extends its
usage to serve as a rapidly emerging virtualization technology
under novel services. While exploiting its features of very
light virtualization, available FaaS platforms do not take into
account the co-location of functions, hence they neglect this
potential source of performance increase. (Note that most
microservice or service mesh tools also disregard locality:
usually no effort is made to co-locate microservices often
invoking one another.)

In this paper, we proposed a FaaS system design that
offers horizontal scaling at the performance promise of host
internal operation. The platform offers scaling to several server
machines, when more compute power is needed. At the same
time, through intelligent placement of data and function execu-
tions it minimizes the need for remote data access and remote
function invocation. Not all application setups permit the
reduction of remote operations under high-load, e.g., there are
computing problems with mesh-like interaction of functions
and data, in which case it is not possible to systematically
reduce the fraction of remote operations. On the other hand,
most of the computing problems exhibit clusters of often
communicating functions and their data. These applications
run faster in a FaaS platform considering locality.

The use of WebAssembly is instrumental in reducing the
overhead of local function invocations. In addition, it offers
security and portability benefits and is programmable in a wide
range of languages. Although WebAssembly lacks some of the
necessary features that are not implemented or defined yet,
we presented how WebAssembly and its new extension WASI
could fit in a FaaS system architecture. Beside the benefits, we
also demonstrated the tradeoffs that will be encountered when
we build the platform: the current challenges and gaps that
need to be implemented before our vision becomes reality.

In our future work, we want to identify the function in-
vocation and data access patterns based on the state-of-the-
art. After the identification, we will compose and implement
the Function orchestrator component that is able to construct
those rule sets, and thus to improve the co-location of the
functions, achieving better application performance than the
available FaaS platforms.

ACKNOWLEDGMENTS

Project no. 2018-2.1.17-TÉT-KR-2018-00012 and 135074
have been implemented with the support provided from the
National Research, Development and Innovation Fund of
Hungary under the 2018-2.1.17-TÉT-KR and FK 20 funding
schemes.

REFERENCES

[1] AWS Lambda, https : / / aws . amazon . com / lambda/,
Accessed on October 25, 2020.

[2] Apache OpenWhisk, https : / / openwhisk . apache . org/,
Accessed on October 25, 2020.

[3] Google Cloud Functions, https : / / cloud . google . com /
functions, Accessed on October 25, 2020.

[4] Microsoft Azure Functions, https://azure.microsoft.com/
services/functions/, Accessed on October 25, 2020.

[5] A. Haas et al., “Bringing the web up to speed with
WebAssembly,” in ACM SIGPLAN, 2017. DOI: 10.1145/
3062341.3062363.

[6] WebAssembly Working Group, https : / / www. w3 . org /
wasm/, Accessed on October 25, 2020.

[7] Bytecode Alliance, https : / / bytecodealliance . org/, Ac-
cessed on October 25, 2020.

[8] S. Hendrickson et al., “Serverless computation with
openlambda,” in USENIX HotCloud, 2016.

[9] I. E. Akkus et al., “SAND: Towards High-Performance
Serverless Computing,” in USENIX Annual Technical
Conference, 2018.

[10] E. Oakes et al., “SOCK: Rapid task provisioning with
serverless-optimized containers,” in USENIX Annual
Technical Conference, 2018.

[11] V. Sreekanti et al., “Cloudburst: Stateful Functions-as-
a-Service,” arXiv preprint arXiv:2001.04592, 2020.

[12] S. Shillaker and P. Pietzuch, Faasm: Lightweight Isola-
tion for Efficient Stateful Serverless Computing, 2020.
arXiv: 2002.09344 [cs.DC].

[13] Knative: Kubernetes-based platform to deploy and man-
age modern serverless workloads, https://knative.dev/,
Accessed on October 25, 2020.

[14] Cloudflare’s Workers service, https://workers.cloudflare.
com/, Accessed on October 25, 2020.

[15] A. Hall and U. Ramachandran, “An execution model for
serverless functions at the edge,” in Proceedings of the
International Conference on Internet of Things Design
and Implementation, 2019. DOI: 10 . 1145 / 3302505 .
3310084.

[16] D. Goltzsche et al., “AccTEE: A WebAssembly-based
Two-way Sandbox for Trusted Resource Accounting,”
in Proceedings of the 20th International Middleware
Conference, 2019. DOI: 10.1145/3361525.3361541.

7

Fig. 4. Communications relationship

to execute and its arguments. In case of local execution, a
WebAssembly sandbox may be created (if isolation requires
it) for the function, the arguments are moved into the sandbox
and execution is passed to it.

Previously, we have considered placing function executions,
although data can be moved around in our system, as well. One
simple strategy would be to move the data (and its replicas) to
the locations with most accesses. This decouples function and
data placement and considers cases in which data movement
is cheaper than moving functions.

V. CONCLUSION

Although the appearance of WebAssembly outside the
browser and of its system interface is recent, the community
has already started to work on solutions that extends its
usage to serve as a rapidly emerging virtualization technology
under novel services. While exploiting its features of very
light virtualization, available FaaS platforms do not take into
account the co-location of functions, hence they neglect this
potential source of performance increase. (Note that most
microservice or service mesh tools also disregard locality:
usually no effort is made to co-locate microservices often
invoking one another.)

In this paper, we proposed a FaaS system design that
offers horizontal scaling at the performance promise of host
internal operation. The platform offers scaling to several server
machines, when more compute power is needed. At the same
time, through intelligent placement of data and function execu-
tions it minimizes the need for remote data access and remote
function invocation. Not all application setups permit the
reduction of remote operations under high-load, e.g., there are
computing problems with mesh-like interaction of functions
and data, in which case it is not possible to systematically
reduce the fraction of remote operations. On the other hand,
most of the computing problems exhibit clusters of often
communicating functions and their data. These applications
run faster in a FaaS platform considering locality.

The use of WebAssembly is instrumental in reducing the
overhead of local function invocations. In addition, it offers
security and portability benefits and is programmable in a wide
range of languages. Although WebAssembly lacks some of the
necessary features that are not implemented or defined yet,
we presented how WebAssembly and its new extension WASI
could fit in a FaaS system architecture. Beside the benefits, we
also demonstrated the tradeoffs that will be encountered when
we build the platform: the current challenges and gaps that
need to be implemented before our vision becomes reality.

In our future work, we want to identify the function in-
vocation and data access patterns based on the state-of-the-
art. After the identification, we will compose and implement
the Function orchestrator component that is able to construct
those rule sets, and thus to improve the co-location of the
functions, achieving better application performance than the
available FaaS platforms.

ACKNOWLEDGMENTS

Project no. 2018-2.1.17-TÉT-KR-2018-00012 and 135074
have been implemented with the support provided from the
National Research, Development and Innovation Fund of
Hungary under the 2018-2.1.17-TÉT-KR and FK 20 funding
schemes.

REFERENCES

[1] AWS Lambda, https : / / aws . amazon . com / lambda/,
Accessed on October 25, 2020.

[2] Apache OpenWhisk, https : / / openwhisk . apache . org/,
Accessed on October 25, 2020.

[3] Google Cloud Functions, https : / / cloud . google . com /
functions, Accessed on October 25, 2020.

[4] Microsoft Azure Functions, https://azure.microsoft.com/
services/functions/, Accessed on October 25, 2020.

[5] A. Haas et al., “Bringing the web up to speed with
WebAssembly,” in ACM SIGPLAN, 2017. DOI: 10.1145/
3062341.3062363.

[6] WebAssembly Working Group, https : / / www. w3 . org /
wasm/, Accessed on October 25, 2020.

[7] Bytecode Alliance, https : / / bytecodealliance . org/, Ac-
cessed on October 25, 2020.

[8] S. Hendrickson et al., “Serverless computation with
openlambda,” in USENIX HotCloud, 2016.

[9] I. E. Akkus et al., “SAND: Towards High-Performance
Serverless Computing,” in USENIX Annual Technical
Conference, 2018.

[10] E. Oakes et al., “SOCK: Rapid task provisioning with
serverless-optimized containers,” in USENIX Annual
Technical Conference, 2018.

[11] V. Sreekanti et al., “Cloudburst: Stateful Functions-as-
a-Service,” arXiv preprint arXiv:2001.04592, 2020.

[12] S. Shillaker and P. Pietzuch, Faasm: Lightweight Isola-
tion for Efficient Stateful Serverless Computing, 2020.
arXiv: 2002.09344 [cs.DC].

[13] Knative: Kubernetes-based platform to deploy and man-
age modern serverless workloads, https://knative.dev/,
Accessed on October 25, 2020.

[14] Cloudflare’s Workers service, https://workers.cloudflare.
com/, Accessed on October 25, 2020.

[15] A. Hall and U. Ramachandran, “An execution model for
serverless functions at the edge,” in Proceedings of the
International Conference on Internet of Things Design
and Implementation, 2019. DOI: 10 . 1145 / 3302505 .
3310084.

[16] D. Goltzsche et al., “AccTEE: A WebAssembly-based
Two-way Sandbox for Trusted Resource Accounting,”
in Proceedings of the 20th International Middleware
Conference, 2019. DOI: 10.1145/3361525.3361541.

https://aws.amazon.com/lambda/
https://openwhisk.apache.org/
https://cloud.google.com/functions
https://azure.microsoft.com/services/functions/
https://azure.microsoft.com/services/functions/
http://doi.org/10.1145/3062341.3062363
https://www.w3.org/wasm/
https://bytecodealliance.org/
https://knative.dev/
https://workers.cloudflare.com/
http://doi.org/10.1145/3302505.3310084
http://doi.org/10.1145/3361525.3361541
http://doi.org/10.1109/SRDS47363.2019.00036
https://webassembly.github.io/spec/core/index.html
https://webassembly.github.io/spec/core/index.html
https://emscripten.org/

Location, Proximity, Affinity –
The key factors in FaaS

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2020 • VOLUME XII • NUMBER 4 21

[21] Wasmtime: A small and efficient runtime for WebAssembly and WASI,
https://wasmtime.dev/, Accessed on October 25, 2020.

[22] Lucet: Fastly’s native WebAssembly compiler and runtime,
https://github.com/bytecodealliance/lucet, Accessed on October 25,
2020.

[23] Wasmer: The Universal WebAssembly Runtime supporting WASI
and Emscripten, https://github.com/wasmerio/wasmer, Accessed on
October 25, 2020.

[24] WAVM: WebAssembly virtual machine, https://github.com/WAVM/
WAVM, Accessed on October 25, 2020.

[25] Wasm3: A high performance WebAssembly interpreter written in C,
https://github.com/wasm3/wasm3, Accessed on October 25, 2020.

[26] Cranelift Code Generator, https://github.com/bytecodealliance/cranelift,
Accessed on October 25, 2020.

[27] WASI: WebAssembly System Interface, https://github.com/
bytecodealliance/wasmtime/blob/master/docs/WASI-overview.md,
Accessed on October 25, 2020.

[28] WebAssembly Minimum Viable Product, https://webassembly.org/
docs/mvp/, Accessed on October 25, 2020.

[29] Awesome WebAssembly Languages,
 https://github.com/appcypher/awesome-wasm-langs, Accessed on

October 25, 2020.
[30] Building a secure by default, composable future for WebAssembly,

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/,
Accessed on October 25, 2020.

[31] Multi Memory Proposal for WebAssembly, https://github.com/
WebAssembly/multi-memory, Accessed on October 25, 2020.

[32] A. Jangda et al., “Not so fast: analyzing the performance of webassembly
vs. native code,” in USENIX Annual Technical Conference, 2019.

[33] wasm: support new WASI interface, https://github.com/golang/go/
issues/31105, Accessed on October 25, 2020.

[34] WebAssembly Features to add after the MVP, https://webassembly.org/
docs/future-features/, Accessed on October 25, 2020.

[35] G. Németh et al., “DAL: A Locality-Optimizing Distributed Shared
Memory System,” in USENIX Hot-Cloud, 2017.

[36] M. Szalay et al., “Industrial-Scale Stateless Network Functions,” in
IEEE CLOUD, 2019. doi: 10.1109/CLOUD.2019.00068.

[37] S. Woo et al., “Elastic scaling of stateful network functions,” in
USENIX NSDI, 2018.

[38] gRPC Benchmarking, https://grpc.io/docs/guides/benchmarking/,
Accessed on October 25, 2020.

[39] R. Biswas et al., “Designing a micro-benchmark suite to evaluate gRPC
for TensorFlow: Early experiences,” arXiv preprint arXiv:1804.01138,
2018.

[40] Kubernetes: Production-Grade Container Orchestration,
https://kubernetes.io, Accessed on October 25, 2020.

[41] E. Van Eyk et al., “A SPEC RG cloud group’s vision on the performance
challenges of FaaS cloud architectures,” in Companion of the ACM/
SPEC International Conference on Performance Engineering, 2018.
doi: 10.1145/3185768.3186308.

[42] Riak: Enterprise NoSQL Database, https://riak.com/, Accessed on
October 25, 2020.

[43] M. Obetz et al., “Static Call Graph Construction in AWS Lambda
Serverless Applications,” in USENIX HotCloud, 2019.

Dávid Haja is a Ph.D. student at Budapest University
of Technology and Economics. He is a member of the
High Speed Networks Laboratory (http://hsnlab.hu)
at the Department of Telecommunications and Media
Informatics. His main research interests include Edge
Computing, Software-Defined Networking (SDN),
Network Function Virtualization (NFV) and Resource
Orchestration.

Zoltán Richárd Turányi received his M.Sc. degree
in Computer Science from Budapest University of
Technology and Economics in 1996. In 1997 he joined
Ericsson’s Traffic Analysis and Network Performance
Laboratory (Traffic Lab). Since then he worked with
various Mobile Core Network, Software Defined
Networking and Network Function Virtualization
projects within Ericsson research. Since 2014 he fills
the role of 5G Network Architectures Expert within
Ericsson Research.

László Toka is assistant professor at Budapest
University of Technology and Economics, vice-head of
HSNLab (http://hsnlab.hu), and member of both the
MTA-BME Network Softwarization and the MTABME
Information Systems Research Groups. He obtained
his Ph.D. degree from Telecom ParisTech in 2011, he
worked at Ericsson Research between 2011 and 2014.
His research focuses on cloud computing and artificial
intelligence.

https://wasmtime.dev/
https://github.com/bytecodealliance/lucet
https://github.com/wasmerio/wasmer
https://github.com/WAVM/WAVM
https://github.com/WAVM/WAVM
https://github.com/wasm3/wasm3
https://github.com/bytecodealliance/cranelift
https://github.com/bytecodealliance/wasmtime/blob/master/docs/WASI-overview.md
https://github.com/bytecodealliance/wasmtime/blob/master/docs/WASI-overview.md
https://webassembly.org/docs/mvp/
https://webassembly.org/docs/mvp/
https://github.com/appcypher/awesome-wasm-langs
https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/
https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/multi-memory
https://github.com/golang/go/issues/31105
https://github.com/golang/go/issues/31105
https://webassembly.org/docs/future-features/
https://webassembly.org/docs/future-features/
http://doi.org/10.1109/CLOUD.2019.00068
https://grpc.io/docs/guides/benchmarking/
https://kubernetes.io
http://doi.org/10.1145/3185768.3186308
http://hsnlab.hu
http://hsnlab.hu

