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Abstract— In this paper, we investigate synchronization and
equalization of 2 x 2 MIMO signals. We make a step further than
that is described in our patent. In the patent, 3 PLLs and a four-
channel adaptive filter was needed. Here we decrease the number
of PLLs to two and use an adaptive filter of only two channels.
In addition to that, we shortly introduce the filter method and
the FFT method as well, for synchronization. False detection
cancellation is also mentioned. The so-called 1-bit technique
has been compared to our method. After briefly introducing the
ideas, detailed Matlab or AWR analyses follow. Input data are
real measurements, so the analyses serve also as experimental
verifications. We take a glimpse on higher order MIMO and
higher order modulations as well.

Index Terms—MIMO, synchronization, equalization, false de-
tection cancellation

1. INTRODUCTION

The 2 x 2 MIMO (Multiple Input Multiple Output)
concept is shown in Fig. 1. The core of the idea is that 2-2
transmitter and receiver antennas can provide better system
properties than two transmitter-receiver antenna pairs
separately.

Fig. 1. The 2 x 2 MIMO concept. From d and the operation
frequency, h is determined

For achieving this, a 90° difference in electrical length
is needed between each transmitter antenna to the two
receiver antennas.

Both receiver antennas receive two signals shifted in
time. If the modulation is 4QAM, then based on the
properties of the signal, the two transmitted information can
be separated. For separation, estimated receiver frequencies
should be known. Finding the exact receiver frequencies
(synchronization) and the reconstruction of the constellation
diagrams (channel equalization) can be realized by three
PLLs and a four-channel adaptive filter [2].
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In this paper, our more recent solution will be described
that requires only two PLLs and a two-channel adaptive
filter. The best overview about MIMO is found in [1]. In [2],
our patent about MIMO is described. In [3], use of more than
4 antennas are investigated. Higher order modulations than
4QAM are discussed in [4]. DSc dissertation of the author,
including a thesis about MIMO, is obtained in [5].

II. THE MODEL
The model of a 2 x 2 MIMO communication system is
shown in Fig. 2.
Y
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Fig. 2. Model of a 2 x 2 MIMO communication system. x,7
denotes the column matrices of transmitted and received
signals, respectively

According to Fig. 2, an equalizer is applied for the receiver
signal to reconstruct the transmitted signal.

r=[¢ Px (1)
Eq. (1) describes the antenna system. In ideal case,
a=1 2)
b=e /™ =—j 3)
And the reconstruction:
g=[C Py @)
2=y ool T
Our goal is
|2 - £| = min. 4)

And the minimum in Eq. (5) is zero if
a'=a (6)

b=b @

The problem is that Eq. (6,7) are not fulfilled in practice. The
following secondary effects may occur:

propagation loss,

wind,

mechanical tolerances,

rain,

aging,

deviation of transmitter and receiver frequencies,

time dependence of frequencies,

noise, etc.
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For that reason, both the frequency recovery and the
equalizer should be adaptive. In the following, we discuss
solutions for these problems.

1II. EXAMPLE

Our work is based on a set of measured data in a file. The
received signals on both antennas are measured and stored
in a file. First, we try to reconstruct the frequencies. For a
good start, the measurement set contains a pilot. Later, the
pilot will be removed.

power spectrum of the MIMO signal

z L i i
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frequency(Hz) « 10

Fig. 3. FFT of the measured data with a pilot

power spectrum of the MIMO signal
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Fig. 4. The previous Figure, magnified

From Fig. 4, the pilot frequency is 164.75 MHz. But we
observed that small deviations in frequency may cause a
rotation of the received constellation diagram, and that may
lead to false detection. For this reason, the frequencies
should be determined with a high accuracy. That can be
realized by a Costas loop. Matlab subsystems for the Costas
loop will be described now.
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Fig. 5. The overall system

Fig. 6. The core: Costas loop. In Fig. 5, this is the block freq mult
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Fig. 8. The VCO in Fig. 6
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First we show how the pilot frequency is found.

Fig. 9. Initial transient in instantaneous frequency

Settling time is about 0.2 msec. Now the detected I and Q
signals are filtered.

Fig. 10. The previous Figure, magnified. After settling, the
frequency is kept within 1 kHz
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Fig. 12. Filter characteristics

As a conclusion of this example, a faster method is needed
that is more accurate. Costas loop is too time-consuming.

Now we remove the pilot. The result is that the constellation
diagram cannot be reconstructed in this way.

power spectrum of the MIMO signal, pilot removed
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Fig. 13. FFT of the received signal without a pilot

power spectrum of the MIMO signal, pilot removed
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Fig. 14. The previous Figure, with increased frequency resolution
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Fig. 15. The problem: The constellation diagram cannot be
reconstructed in this way

IV. THE MCMA EQUALIZER AND PLLS

Basically, we have two problems. Deviation of the
transmitted and received frequencies, and separation of the
two transmitted signals at receiver side. Deviation is solved
by PLLs, separation and signal equalization are solved by
adaptive filters. Deviation can be modelled in the following
way.

The baseband receiver signal X for perfect separation,
can be formulated as follows:

2=A"H 1B lr =

[ R R
(8)

where w4, w, are the two LO frequencies at transmitter side
and ws, w, are the two LO frequencies at receiver side. In
ideal case, w; = —w; and W, = —wy,.

From our experiments we know that the equalizer can stop a
slow rotation. For this reason, instead of Eq. (8), we may use

2=—A H 1B r =

0 /2 Jj/2] [e—i(wstwi)t 0
o cse-and] [z 13l

©)

where ¢ = e7/®1t, Consequently, three PLLs may solve the
problem. One at the output of the equalizer with frequency
w, — w,, and two before the equalizer with frequencies
w3 + w, and w3 + w;.

According to our previous experience, the equalizer can
compensate small frequency differences. It follows the three
PLLs can be decreased to two. In ideal case, w; = —w;.
W, = wy, and w, = —w,. Thus, with two PLLs that are
locked to the input carrier frequencies, the synchronization
can be solved. Details are found on Fig. 16.
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Fig. 16. Finding the proper LO frequencies at receiver side by
use of two Costas loops. We use here our Costas loop
version that is suggested for large noise [6]

The synchronizer consists of two Costas loops, and the VCO
drive signal is formulated from both complex inputs.
Realization of Fig. 16 in Matlab is presented in the next
Figures that are found at the end of the paper. The detected
I and Q signals are shown in Fig. 20.

Then the details of the equalizer follow. The equalizer is a
four-channel adaptive filter. Inputs of the equalizer are the
complex signals from the synchronizer as shown in Fig. 16.

The system diagram of the equalizer are also found at the
end of the paper.

Now the I and Q signals at both channels must be
reconstructed. We use the MCMA (Modified constant
modulus algorithm) [1]. Its essence is the following. The
equalized signal is, according to Eq. (8):
X, =wir +wyry (10)
56\2 = W3T1 + W4_T'2 (11)
where w;-s are the weight factors of the adaptive filter

. 1
channels. Initial values are wy ; = wy; = 7 W21 =Wz =

% j,according to Eq. (9). A possible choice would be w; =
w, and w, = ws. This would require an ideal placement of
the antennas at vertices of a rectangle. But this rectangle may
be distorted by several reasons resulting in hurting condition
WZ = W3.
Change of the equalized signals is
ARy = Awyry + wiAry + Aw,r+wyAr, (12)
AJ’C\Z = AW3T1 + W3A7”1 + AW47"2+W4AT2 (13)
where Aw;, = w;, —Wy,—¢ in the kth iteration, and
similarly for the other weight factors. The signals in the next

iteration are X; + AX; and X, + AX,. The error signals are
defined as

& = {9?1,1}(|3?1,1| - Rl) +]'{3?1,2}(|9?1,2| - Rz) (14)
& = {£2,1}(|9?2,1| - R1) +j{3?2,2}(|9?1,2| - Rz) (15)

where the complex radius of the constellation diagram is
R =R, +jR, = |R|(1 + j)/+/2, braces denote signum, and
1 =X, +jX,. The goal is & =min.and &, = min.
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Changes of the equalized signals are
A% =~ & (16)
A% = —pp€; (17)
where A denotes the change during the last sampling period.

From Eq. (12, 13) changes of the weight factors during the
last sampling period are

ﬁwl = [7"1 T2]+ (AJ,C\l — wyAry — WzArz) (18)

W,

A

AWS] =[1 72]* (A%, — waAry —w,Any)  (19)
Wy

in the kth iteration, where + denotes Moore-Penrose
generalized inverse. Here we exploit the fact that the
generalized inverse gives the minimum norm solution of an
under-determined system [10].

The algorithm starts with wy, w,, w3, w,, 17 and r, . Then
Eq. (10, 11, 14-19) are executed. Then w-s and r-s are
delayed. Similarly, for the other channel. The given
algorithm significantly differs from known algorithms [1].
Robustness of the algorithm has been observed during all
runs.

V. RELATED QUESTIONS

Here we summarize some other important ideas related
to 2 x 2 MIMO detection.

Filter method

Essence of the filter method is that instead of a PLL, a
filter is applied for synchronization. Advantage with respect
to the previous Chapter is, that the random changes on LO
frequencies are much smaller, and locking problems are
eliminated. Hardware requirements are of the same amount.

FFT method

The filter function can be realized by applying FFT of
the input signal. FFT is computation consuming, so it is a
hard decision how often the FFT is made. Advantages are
the same as for the filter method.

False detection cancellation

False detection occurs when the received constellation
diagram suddenly rotates by 90°. Originally, we made a
great effort on false detection cancellation. However, in our
previous publication [8], we pointed out that the most
efficient solution of this problem is application of
differential coding. Thus, we omit here the list of other
methods for false detection cancellation.

The 1-bit method [9]

The main difference between this and our method is
that in this method, the signal after synchronization is
digitized. This is a limiting case, in the literature few bits
A/D conversion can also be found. The author’s opinion is
that the possible advantage of decreasing the noise effects is
virtual, because it remains at the random variation of zero
crossings. Moreover, strong learning algorithms may be
needed for equalization that are time consuming.

28

More than 4 antennas

In case of more than 4 antennas, differences in
distances between a transmitter antenna and neighboring
receiver antennas cannot be kept constant. Even
synchronization is more difficult, because there are many
transmitter frequencies that can be different all. Equalization
is to invert the matrix describing the relation between
separate transmitter and receiver signals. But these are
possible [3], however, the extra advantage of more than 4
antennas decrease.

Higher order modulation

Essentially arbitrary order (power of 2) can be used [4].
In our opinion, its significance is not too high because for
higher order modulation, noise sensitivity rapidly increases,
and it is a better solution to apply lower order modulation at
higher speed.

VI. CONCLUSIONS

The synchronization by two Costas loops and the
equalization using an adaptive filter have been detailed. The
algorithms are robust. The system can follow the random
variations of any kind that are included in the measured data.
We call the attention to the fact that for synchronization we
used our best version of Costas loop, but without differential
coding, and for equalization, we corrected the errors found
in the literature. As a result, the standing constellation
diagrams appear soon at the output, and remain almost
constant for the rest of the measurement interval. Other
Hungarian efforts concerning MIMO technique are found in
[11]. A possible use of MIMO is presented in [12].

In answering to the reviewer openly, this is not a
summary paper. Material in Section 4 is brand new,
especially Eq. (18,19). As its previous version is patented
[2], it is used worldwide.
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Fig. 18. The Synchronizer in Fig. 17
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Fig. 19. The equalizer system diagram in Matlab. Input files containing
data after synchronization, are IQ1c.mat and IQ2c.mat. Outputs are scatter
plots of the equalized constellation diagrams
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Fig. 20. Output I and Q signals in Fig. 19, Scope 1, with high time resolution
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Fig. 21. Output scatter plots in Fig. 19. At the lower right corner of each scatter plot, it can be observed that these constellation diagrams were
reconstructed at the very beginning of the simulation time
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