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Abstract—Advances of machine learning and hardware get-
ting cheaper resulted in smart cameras equipped with facial
recognition becoming unprecedentedly widespread worldwide.
Undeniably, this has a great potential for a wide spectrum of
uses, it also bears novel risks. In our work, we consider a specific
related risk, one related to face embeddings, which are machine
learning created metric values describing the face of a person.
While embeddings seems arbitrary numbers to the naked eye
and are hard to interpret for humans, we argue that some basic
demographic attributes can be estimated from them and these
values can be then used to look up the original person on social
networking sites. We propose an approach for creating synthetic,
life-like datasets consisting of embeddings and demographic data
of several people. We show over these ground truth datasets
that the aforementioned re-identifications attacks do not require
expert skills in machine learning in order to be executed. In
our experiments, we find that even with simple machine learning
models the proportion of successfully re-identified people vary
between 6.04% and 28.90%, depending on the population size of
the simulation.

Index Terms—facial recognition, de-anonymization, machine
learning

I. INTRODUCTION

We live in times when efficient uses of artificial intelligence
and cheap smart technology are exploding. By the spread of
smart cameras, applications on facial recognition had become
almost ubiquitous in some cities around the world. In some
cases we can find the driver reason for this in the security
concerns of the public, but face recognition (or FR in short)
can be applied to a much broader set of use-cases. Beside
identification or authentication of individuals in crowds, it
could benefit the society also in criminal detection, searching
for lost people, customer behavior analysis, etc. [1].

However, FR technology could be abused and therefore it
has the potential to pose risks to individuals, to the society
and even to the governmental and business sectors, as well [2].
This puts related ethical issues into the focus. The French data
protection authority, the CNIL (French National Commission
on Informatics and Liberty) published a recent paper detailing
the technical, legal and ethical challenges regarding these
applications [3]. The biggest concern probably is how FR
is being a part of emerging surveillance technologies [4].
Consequently, several governments made recent attempts in
order to regulate the uses of FR technology.

Despite official guidelines for camera surveillance [5], some
believe that automated FR breaches GDPR because it fails to
meet the requirement for consent by design [6]. The European
Commission even considered imposing a temporary ban on
using FR in public spaces, which was later discarded [7].
In their white paper released on the 19th February [8], the
European Commission rather envisions an approach where
companies evaluate their own data processing practices from

a risk-based point of view. This is backed up by a recent
proposal to conduct an impact assessment analysis when
dealing with FR applications [2].

This debate on the ban is also present in the US. While
Washington DC just passed facial recognition rules that al-
low the use of the technology with some restrictions (e.g.
government agencies can only use FR software if it’s got an
application programming interface, and vendors must reveal
any reports of bias) [9], San Francisco was the first city to
ban FR entirely in public spaces [10]. The unresolved nature
of these issues is further confirmed by the Fundamental Rights
Agency, who released a paper about the fundamental rights
considerations regarding FR [11].

Certain related risks can be associated with the processing
and storing of facial imprints. State-of-the-art face imprints are
coming from the domain of Deep Metric Learning (DML), in
which deep learning techniques are trained to produce descrip-
tive vectors of faces while also considering their similarity
[12]. These vectors, or face embeddings, have high similarity
when taken from the same person, but have a low similarity
score when taken from different people. While these seem
as a list of arbitrary numbers to the naked eye, they may
contain personal information about the person whose photo
was taken. In their recent work, Mai et al. showed that the
photo itself can be reconstructible from the embedding [13].
In [14] authors argue that it should be an accepted fact that
with good accuracy the original sample can be reconstructed
from unprotected embeddings. This means that sensitive data
could be derived from unprotected templates and other attacks
can also be launched based on the reconstruction results. Based
on this, it can also be possible to reverse engineer data from
face embeddings in order to find out the original identity of
the embedding.

In this paper we examine an attack that aims to find out
the original identity of face imprints. As the original faces
can be partially rebuilt from embeddings, we look at the
scenario where the attacker tries to reconstruct demographic
data from the embeddings. First, we measure the level of
accuracy achievable in predicting age, sex and race from
facial embeddings, then we create a synthetic dataset and
run the attack from one end to the other. Our results show
that predicting these characteristics is indeed possible with
alarming accuracy and re-identification attacks can be executed
successfully.

The paper is structured as follows. In Section II we discuss
how facial recognition works, the privacy risks of processing
face embeddings and how re-identification attacks work. Next,
in Section III, we introduce our attacker model. In Section
IV we describe how we used different technologies in our
research, and following in Sections V-VI we elaborate our
results. Finally, Section VII summarizes our work.
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II. RELATED WORK

A. Facial Recognition

The main motivation behind facial recognition is to make it
possible to identify people, e.g. a person from a digital photo
or video frame based on the face’s unique characteristics.
Despite the fact that it has only become widespread in recent
years, the technology has been around for decades, although it
wasn’t as extensively used as today, because it had many open
problems that hindered its performance and accuracy, like the
lack of enough computational power and training data, which
resulted in poor scalability.

However, the first milestone towards automated FR came
in 1988 when Sirovich and Kirby came up with the Eigen-
face approach [15], which applies linear algebra (including
principal component analysis) to recognize faces. Basically,
it works by creating an average face and multiple so called
Eigenfaces based on all faces available in a dataset, and
then representing each new face as a vector made up of the
coefficients of the linear combination of the average face and
the Eigenfaces. Then the similarity between two faces depends
on the distance metric between each face’s vector, with a
small distance corresponding to higher similarity. In 1991,
Turk and Pentland further improved the Eigenface approach to
also detect faces in images [16]. Since then, it was in the 2010s
when FR technology significantly improved due to the usage
of machine learning and deep neural networks. This was made
possible by the large amount of training data and computing
power available.

In our analysis we wanted to work with state-of-the-art
facial recognition techniques that are publicly available in
Python libraries and that could be run efficiently on a typical
smart camera. One of the leading solutions is found in the
dlib library [17], which uses the ResNet-34 structure deep
neural network from [18], trained on the Labeled Faces in
the Wild dataset (LFW) [19]. Another prominent method is
implemented in the OpenCV library. This deep convolutional
network uses the FaceNet structure [20] that directly maps
face images into the Euclidean space using a triplet-based loss
function based on large margin nearest neighbor classification
(LMNN) [21]. This library achieves a 99.63% accuracy score
on the LFW dataset [19].

Both of these techniques produce a 128 long vector of
float values. When comparing the two methods, we found
that the technique offered by dlib provides a better trade-
off regarding less false positives, with a slightly higher rate
of false negatives. Therefore we decided to work with it
throughout our experiments.

B. Risks Related to Embeddings

Face embeddings should be considered biometric data by
definition provided by the General Data Protection Regulation
(Art 4. §14 in [22]): an embedding consists of data points
that were extracted from the photo of a person that allow
or enable the identification of the data subject. Due to their
nature, biometric attributes capture features of the human body
that one cannot be changed. Therefore, significant societal
and privacy risks arise, which urges the need to analyze the

impacts of this technology [2]. As we discussed previously,
modern FR works by extracting templates from photos that
need to be stored in a database or compared previously stored
ones. If we consider the number of people represented in
the images X, and the number of people who are part of
a database Y, then FR can be used for authentication (X:1
Y:1), identification (X:1 Y:n) or tracking (X:1 Y: no need for
a database). Depending on these various use cases, the risks
can be more or less severe, e.g., a big central database means
higher risks against malicious actors than a smaller database.

Further reasons for concern are that FR is not a perfect
technology, risk appear that had been seen previously in
automated decision making systems [23]. For example, FR can
be discriminatory due to biases built into the technology, or
one may find it difficult to explain in details how DML-based
facial recognition works or why it had proposed a specific
embedding in a certain situation.

Authors in [24] mention two potential threats regarding an
attacker’s abilities. One of the hazards is to masquerade the
template owner, which means using the biometric template for
reconstructing a 2D or 3D model of the template owner’s face
and using that model to trick a FR system. The other is the
possibility of the attacker to do cross matching between multi-
ple databases storing biometric templates, because biometrics
are mostly immutable and the same or very similar templates
could be stored in multiple databases for different applications.
These risks motivate the use of biometric template protection
(BTP) schemes that transform biometric templates to make
their usage and storage safe, while also keeping their utility.

III. RISK AND ATTACKER MODEL

In our work, we consider re-identification attacks against a
database of face embeddings. Since face embeddings are based
on the face’s unique characteristics and enable reconstructing
faces, they may contain hints for demographic information as
well. This can contribute to identification attacks.

Re-identification attacks are when an attacker combines
multiple data sources to uncover the identities in the anony-
mous dataset. A common example is a health care provider
who publishes data for research purposes after removing
any PII (personally identifiable information) such as names,
addresses, social security numbers, etc. However, as [25]
showed, it can still be possible to re-identify people in that
database by linking it with an additional database (e.g. publicly
available voter database). Demographic data can be especially
vulnerable against re-identification attacks, as [25] showed that
the zip code, sex and date of birth provides a unique identifier
for 87% of the US population based on census data.

These examples showed that tabular datasets are vulnerable
for re-identification. It has been shown that large datasets,
where the number of attributes is rather proportional to the
number of rows, can also be re-identified. Various examples
include movie ratings [26], social networks [27], and credit
card usage patterns [28]. As explained later, here we consider
rebuilding attributes from embeddings that we consider later
for re-identification.

In our case, let us consider the following FR system setup
that may be deployed at a company, and the corresponding
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possibility of the attacker to do cross matching between multi-
ple databases storing biometric templates, because biometrics
are mostly immutable and the same or very similar templates
could be stored in multiple databases for different applications.
These risks motivate the use of biometric template protection
(BTP) schemes that transform biometric templates to make
their usage and storage safe, while also keeping their utility.

III. RISK AND ATTACKER MODEL

In our work, we consider re-identification attacks against a
database of face embeddings. Since face embeddings are based
on the face’s unique characteristics and enable reconstructing
faces, they may contain hints for demographic information as
well. This can contribute to identification attacks.

Re-identification attacks are when an attacker combines
multiple data sources to uncover the identities in the anony-
mous dataset. A common example is a health care provider
who publishes data for research purposes after removing
any PII (personally identifiable information) such as names,
addresses, social security numbers, etc. However, as [25]
showed, it can still be possible to re-identify people in that
database by linking it with an additional database (e.g. publicly
available voter database). Demographic data can be especially
vulnerable against re-identification attacks, as [25] showed that
the zip code, sex and date of birth provides a unique identifier
for 87% of the US population based on census data.

These examples showed that tabular datasets are vulnerable
for re-identification. It has been shown that large datasets,
where the number of attributes is rather proportional to the
number of rows, can also be re-identified. Various examples
include movie ratings [26], social networks [27], and credit
card usage patterns [28]. As explained later, here we consider
rebuilding attributes from embeddings that we consider later
for re-identification.

In our case, let us consider the following FR system setup
that may be deployed at a company, and the corresponding
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ting cheaper resulted in smart cameras equipped with facial
recognition becoming unprecedentedly widespread worldwide.
Undeniably, this has a great potential for a wide spectrum of
uses, it also bears novel risks. In our work, we consider a specific
related risk, one related to face embeddings, which are machine
learning created metric values describing the face of a person.
While embeddings seems arbitrary numbers to the naked eye
and are hard to interpret for humans, we argue that some basic
demographic attributes can be estimated from them and these
values can be then used to look up the original person on social
networking sites. We propose an approach for creating synthetic,
life-like datasets consisting of embeddings and demographic data
of several people. We show over these ground truth datasets
that the aforementioned re-identifications attacks do not require
expert skills in machine learning in order to be executed. In
our experiments, we find that even with simple machine learning
models the proportion of successfully re-identified people vary
between 6.04% and 28.90%, depending on the population size of
the simulation.
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I. INTRODUCTION

We live in times when efficient uses of artificial intelligence
and cheap smart technology are exploding. By the spread of
smart cameras, applications on facial recognition had become
almost ubiquitous in some cities around the world. In some
cases we can find the driver reason for this in the security
concerns of the public, but face recognition (or FR in short)
can be applied to a much broader set of use-cases. Beside
identification or authentication of individuals in crowds, it
could benefit the society also in criminal detection, searching
for lost people, customer behavior analysis, etc. [1].

However, FR technology could be abused and therefore it
has the potential to pose risks to individuals, to the society
and even to the governmental and business sectors, as well [2].
This puts related ethical issues into the focus. The French data
protection authority, the CNIL (French National Commission
on Informatics and Liberty) published a recent paper detailing
the technical, legal and ethical challenges regarding these
applications [3]. The biggest concern probably is how FR
is being a part of emerging surveillance technologies [4].
Consequently, several governments made recent attempts in
order to regulate the uses of FR technology.

Despite official guidelines for camera surveillance [5], some
believe that automated FR breaches GDPR because it fails to
meet the requirement for consent by design [6]. The European
Commission even considered imposing a temporary ban on
using FR in public spaces, which was later discarded [7].
In their white paper released on the 19th February [8], the
European Commission rather envisions an approach where
companies evaluate their own data processing practices from

a risk-based point of view. This is backed up by a recent
proposal to conduct an impact assessment analysis when
dealing with FR applications [2].

This debate on the ban is also present in the US. While
Washington DC just passed facial recognition rules that al-
low the use of the technology with some restrictions (e.g.
government agencies can only use FR software if it’s got an
application programming interface, and vendors must reveal
any reports of bias) [9], San Francisco was the first city to
ban FR entirely in public spaces [10]. The unresolved nature
of these issues is further confirmed by the Fundamental Rights
Agency, who released a paper about the fundamental rights
considerations regarding FR [11].

Certain related risks can be associated with the processing
and storing of facial imprints. State-of-the-art face imprints are
coming from the domain of Deep Metric Learning (DML), in
which deep learning techniques are trained to produce descrip-
tive vectors of faces while also considering their similarity
[12]. These vectors, or face embeddings, have high similarity
when taken from the same person, but have a low similarity
score when taken from different people. While these seem
as a list of arbitrary numbers to the naked eye, they may
contain personal information about the person whose photo
was taken. In their recent work, Mai et al. showed that the
photo itself can be reconstructible from the embedding [13].
In [14] authors argue that it should be an accepted fact that
with good accuracy the original sample can be reconstructed
from unprotected embeddings. This means that sensitive data
could be derived from unprotected templates and other attacks
can also be launched based on the reconstruction results. Based
on this, it can also be possible to reverse engineer data from
face embeddings in order to find out the original identity of
the embedding.

In this paper we examine an attack that aims to find out
the original identity of face imprints. As the original faces
can be partially rebuilt from embeddings, we look at the
scenario where the attacker tries to reconstruct demographic
data from the embeddings. First, we measure the level of
accuracy achievable in predicting age, sex and race from
facial embeddings, then we create a synthetic dataset and
run the attack from one end to the other. Our results show
that predicting these characteristics is indeed possible with
alarming accuracy and re-identification attacks can be executed
successfully.

The paper is structured as follows. In Section II we discuss
how facial recognition works, the privacy risks of processing
face embeddings and how re-identification attacks work. Next,
in Section III, we introduce our attacker model. In Section
IV we describe how we used different technologies in our
research, and following in Sections V-VI we elaborate our
results. Finally, Section VII summarizes our work.
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II. RELATED WORK

A. Facial Recognition

The main motivation behind facial recognition is to make it
possible to identify people, e.g. a person from a digital photo
or video frame based on the face’s unique characteristics.
Despite the fact that it has only become widespread in recent
years, the technology has been around for decades, although it
wasn’t as extensively used as today, because it had many open
problems that hindered its performance and accuracy, like the
lack of enough computational power and training data, which
resulted in poor scalability.

However, the first milestone towards automated FR came
in 1988 when Sirovich and Kirby came up with the Eigen-
face approach [15], which applies linear algebra (including
principal component analysis) to recognize faces. Basically,
it works by creating an average face and multiple so called
Eigenfaces based on all faces available in a dataset, and
then representing each new face as a vector made up of the
coefficients of the linear combination of the average face and
the Eigenfaces. Then the similarity between two faces depends
on the distance metric between each face’s vector, with a
small distance corresponding to higher similarity. In 1991,
Turk and Pentland further improved the Eigenface approach to
also detect faces in images [16]. Since then, it was in the 2010s
when FR technology significantly improved due to the usage
of machine learning and deep neural networks. This was made
possible by the large amount of training data and computing
power available.

In our analysis we wanted to work with state-of-the-art
facial recognition techniques that are publicly available in
Python libraries and that could be run efficiently on a typical
smart camera. One of the leading solutions is found in the
dlib library [17], which uses the ResNet-34 structure deep
neural network from [18], trained on the Labeled Faces in
the Wild dataset (LFW) [19]. Another prominent method is
implemented in the OpenCV library. This deep convolutional
network uses the FaceNet structure [20] that directly maps
face images into the Euclidean space using a triplet-based loss
function based on large margin nearest neighbor classification
(LMNN) [21]. This library achieves a 99.63% accuracy score
on the LFW dataset [19].

Both of these techniques produce a 128 long vector of
float values. When comparing the two methods, we found
that the technique offered by dlib provides a better trade-
off regarding less false positives, with a slightly higher rate
of false negatives. Therefore we decided to work with it
throughout our experiments.

B. Risks Related to Embeddings

Face embeddings should be considered biometric data by
definition provided by the General Data Protection Regulation
(Art 4. §14 in [22]): an embedding consists of data points
that were extracted from the photo of a person that allow
or enable the identification of the data subject. Due to their
nature, biometric attributes capture features of the human body
that one cannot be changed. Therefore, significant societal
and privacy risks arise, which urges the need to analyze the

impacts of this technology [2]. As we discussed previously,
modern FR works by extracting templates from photos that
need to be stored in a database or compared previously stored
ones. If we consider the number of people represented in
the images X, and the number of people who are part of
a database Y, then FR can be used for authentication (X:1
Y:1), identification (X:1 Y:n) or tracking (X:1 Y: no need for
a database). Depending on these various use cases, the risks
can be more or less severe, e.g., a big central database means
higher risks against malicious actors than a smaller database.

Further reasons for concern are that FR is not a perfect
technology, risk appear that had been seen previously in
automated decision making systems [23]. For example, FR can
be discriminatory due to biases built into the technology, or
one may find it difficult to explain in details how DML-based
facial recognition works or why it had proposed a specific
embedding in a certain situation.

Authors in [24] mention two potential threats regarding an
attacker’s abilities. One of the hazards is to masquerade the
template owner, which means using the biometric template for
reconstructing a 2D or 3D model of the template owner’s face
and using that model to trick a FR system. The other is the
possibility of the attacker to do cross matching between multi-
ple databases storing biometric templates, because biometrics
are mostly immutable and the same or very similar templates
could be stored in multiple databases for different applications.
These risks motivate the use of biometric template protection
(BTP) schemes that transform biometric templates to make
their usage and storage safe, while also keeping their utility.

III. RISK AND ATTACKER MODEL

In our work, we consider re-identification attacks against a
database of face embeddings. Since face embeddings are based
on the face’s unique characteristics and enable reconstructing
faces, they may contain hints for demographic information as
well. This can contribute to identification attacks.

Re-identification attacks are when an attacker combines
multiple data sources to uncover the identities in the anony-
mous dataset. A common example is a health care provider
who publishes data for research purposes after removing
any PII (personally identifiable information) such as names,
addresses, social security numbers, etc. However, as [25]
showed, it can still be possible to re-identify people in that
database by linking it with an additional database (e.g. publicly
available voter database). Demographic data can be especially
vulnerable against re-identification attacks, as [25] showed that
the zip code, sex and date of birth provides a unique identifier
for 87% of the US population based on census data.

These examples showed that tabular datasets are vulnerable
for re-identification. It has been shown that large datasets,
where the number of attributes is rather proportional to the
number of rows, can also be re-identified. Various examples
include movie ratings [26], social networks [27], and credit
card usage patterns [28]. As explained later, here we consider
rebuilding attributes from embeddings that we consider later
for re-identification.

In our case, let us consider the following FR system setup
that may be deployed at a company, and the corresponding

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. Y, APRIL 2020 2

II. RELATED WORK

A. Facial Recognition

The main motivation behind facial recognition is to make it
possible to identify people, e.g. a person from a digital photo
or video frame based on the face’s unique characteristics.
Despite the fact that it has only become widespread in recent
years, the technology has been around for decades, although it
wasn’t as extensively used as today, because it had many open
problems that hindered its performance and accuracy, like the
lack of enough computational power and training data, which
resulted in poor scalability.

However, the first milestone towards automated FR came
in 1988 when Sirovich and Kirby came up with the Eigen-
face approach [15], which applies linear algebra (including
principal component analysis) to recognize faces. Basically,
it works by creating an average face and multiple so called
Eigenfaces based on all faces available in a dataset, and
then representing each new face as a vector made up of the
coefficients of the linear combination of the average face and
the Eigenfaces. Then the similarity between two faces depends
on the distance metric between each face’s vector, with a
small distance corresponding to higher similarity. In 1991,
Turk and Pentland further improved the Eigenface approach to
also detect faces in images [16]. Since then, it was in the 2010s
when FR technology significantly improved due to the usage
of machine learning and deep neural networks. This was made
possible by the large amount of training data and computing
power available.

In our analysis we wanted to work with state-of-the-art
facial recognition techniques that are publicly available in
Python libraries and that could be run efficiently on a typical
smart camera. One of the leading solutions is found in the
dlib library [17], which uses the ResNet-34 structure deep
neural network from [18], trained on the Labeled Faces in
the Wild dataset (LFW) [19]. Another prominent method is
implemented in the OpenCV library. This deep convolutional
network uses the FaceNet structure [20] that directly maps
face images into the Euclidean space using a triplet-based loss
function based on large margin nearest neighbor classification
(LMNN) [21]. This library achieves a 99.63% accuracy score
on the LFW dataset [19].

Both of these techniques produce a 128 long vector of
float values. When comparing the two methods, we found
that the technique offered by dlib provides a better trade-
off regarding less false positives, with a slightly higher rate
of false negatives. Therefore we decided to work with it
throughout our experiments.

B. Risks Related to Embeddings

Face embeddings should be considered biometric data by
definition provided by the General Data Protection Regulation
(Art 4. §14 in [22]): an embedding consists of data points
that were extracted from the photo of a person that allow
or enable the identification of the data subject. Due to their
nature, biometric attributes capture features of the human body
that one cannot be changed. Therefore, significant societal
and privacy risks arise, which urges the need to analyze the

impacts of this technology [2]. As we discussed previously,
modern FR works by extracting templates from photos that
need to be stored in a database or compared previously stored
ones. If we consider the number of people represented in
the images X, and the number of people who are part of
a database Y, then FR can be used for authentication (X:1
Y:1), identification (X:1 Y:n) or tracking (X:1 Y: no need for
a database). Depending on these various use cases, the risks
can be more or less severe, e.g., a big central database means
higher risks against malicious actors than a smaller database.

Further reasons for concern are that FR is not a perfect
technology, risk appear that had been seen previously in
automated decision making systems [23]. For example, FR can
be discriminatory due to biases built into the technology, or
one may find it difficult to explain in details how DML-based
facial recognition works or why it had proposed a specific
embedding in a certain situation.

Authors in [24] mention two potential threats regarding an
attacker’s abilities. One of the hazards is to masquerade the
template owner, which means using the biometric template for
reconstructing a 2D or 3D model of the template owner’s face
and using that model to trick a FR system. The other is the
possibility of the attacker to do cross matching between multi-
ple databases storing biometric templates, because biometrics
are mostly immutable and the same or very similar templates
could be stored in multiple databases for different applications.
These risks motivate the use of biometric template protection
(BTP) schemes that transform biometric templates to make
their usage and storage safe, while also keeping their utility.

III. RISK AND ATTACKER MODEL

In our work, we consider re-identification attacks against a
database of face embeddings. Since face embeddings are based
on the face’s unique characteristics and enable reconstructing
faces, they may contain hints for demographic information as
well. This can contribute to identification attacks.

Re-identification attacks are when an attacker combines
multiple data sources to uncover the identities in the anony-
mous dataset. A common example is a health care provider
who publishes data for research purposes after removing
any PII (personally identifiable information) such as names,
addresses, social security numbers, etc. However, as [25]
showed, it can still be possible to re-identify people in that
database by linking it with an additional database (e.g. publicly
available voter database). Demographic data can be especially
vulnerable against re-identification attacks, as [25] showed that
the zip code, sex and date of birth provides a unique identifier
for 87% of the US population based on census data.

These examples showed that tabular datasets are vulnerable
for re-identification. It has been shown that large datasets,
where the number of attributes is rather proportional to the
number of rows, can also be re-identified. Various examples
include movie ratings [26], social networks [27], and credit
card usage patterns [28]. As explained later, here we consider
rebuilding attributes from embeddings that we consider later
for re-identification.

In our case, let us consider the following FR system setup
that may be deployed at a company, and the corresponding

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. Y, APRIL 2020 2

II. RELATED WORK

A. Facial Recognition

The main motivation behind facial recognition is to make it
possible to identify people, e.g. a person from a digital photo
or video frame based on the face’s unique characteristics.
Despite the fact that it has only become widespread in recent
years, the technology has been around for decades, although it
wasn’t as extensively used as today, because it had many open
problems that hindered its performance and accuracy, like the
lack of enough computational power and training data, which
resulted in poor scalability.

However, the first milestone towards automated FR came
in 1988 when Sirovich and Kirby came up with the Eigen-
face approach [15], which applies linear algebra (including
principal component analysis) to recognize faces. Basically,
it works by creating an average face and multiple so called
Eigenfaces based on all faces available in a dataset, and
then representing each new face as a vector made up of the
coefficients of the linear combination of the average face and
the Eigenfaces. Then the similarity between two faces depends
on the distance metric between each face’s vector, with a
small distance corresponding to higher similarity. In 1991,
Turk and Pentland further improved the Eigenface approach to
also detect faces in images [16]. Since then, it was in the 2010s
when FR technology significantly improved due to the usage
of machine learning and deep neural networks. This was made
possible by the large amount of training data and computing
power available.

In our analysis we wanted to work with state-of-the-art
facial recognition techniques that are publicly available in
Python libraries and that could be run efficiently on a typical
smart camera. One of the leading solutions is found in the
dlib library [17], which uses the ResNet-34 structure deep
neural network from [18], trained on the Labeled Faces in
the Wild dataset (LFW) [19]. Another prominent method is
implemented in the OpenCV library. This deep convolutional
network uses the FaceNet structure [20] that directly maps
face images into the Euclidean space using a triplet-based loss
function based on large margin nearest neighbor classification
(LMNN) [21]. This library achieves a 99.63% accuracy score
on the LFW dataset [19].

Both of these techniques produce a 128 long vector of
float values. When comparing the two methods, we found
that the technique offered by dlib provides a better trade-
off regarding less false positives, with a slightly higher rate
of false negatives. Therefore we decided to work with it
throughout our experiments.

B. Risks Related to Embeddings

Face embeddings should be considered biometric data by
definition provided by the General Data Protection Regulation
(Art 4. §14 in [22]): an embedding consists of data points
that were extracted from the photo of a person that allow
or enable the identification of the data subject. Due to their
nature, biometric attributes capture features of the human body
that one cannot be changed. Therefore, significant societal
and privacy risks arise, which urges the need to analyze the

impacts of this technology [2]. As we discussed previously,
modern FR works by extracting templates from photos that
need to be stored in a database or compared previously stored
ones. If we consider the number of people represented in
the images X, and the number of people who are part of
a database Y, then FR can be used for authentication (X:1
Y:1), identification (X:1 Y:n) or tracking (X:1 Y: no need for
a database). Depending on these various use cases, the risks
can be more or less severe, e.g., a big central database means
higher risks against malicious actors than a smaller database.

Further reasons for concern are that FR is not a perfect
technology, risk appear that had been seen previously in
automated decision making systems [23]. For example, FR can
be discriminatory due to biases built into the technology, or
one may find it difficult to explain in details how DML-based
facial recognition works or why it had proposed a specific
embedding in a certain situation.

Authors in [24] mention two potential threats regarding an
attacker’s abilities. One of the hazards is to masquerade the
template owner, which means using the biometric template for
reconstructing a 2D or 3D model of the template owner’s face
and using that model to trick a FR system. The other is the
possibility of the attacker to do cross matching between multi-
ple databases storing biometric templates, because biometrics
are mostly immutable and the same or very similar templates
could be stored in multiple databases for different applications.
These risks motivate the use of biometric template protection
(BTP) schemes that transform biometric templates to make
their usage and storage safe, while also keeping their utility.

III. RISK AND ATTACKER MODEL

In our work, we consider re-identification attacks against a
database of face embeddings. Since face embeddings are based
on the face’s unique characteristics and enable reconstructing
faces, they may contain hints for demographic information as
well. This can contribute to identification attacks.

Re-identification attacks are when an attacker combines
multiple data sources to uncover the identities in the anony-
mous dataset. A common example is a health care provider
who publishes data for research purposes after removing
any PII (personally identifiable information) such as names,
addresses, social security numbers, etc. However, as [25]
showed, it can still be possible to re-identify people in that
database by linking it with an additional database (e.g. publicly
available voter database). Demographic data can be especially
vulnerable against re-identification attacks, as [25] showed that
the zip code, sex and date of birth provides a unique identifier
for 87% of the US population based on census data.

These examples showed that tabular datasets are vulnerable
for re-identification. It has been shown that large datasets,
where the number of attributes is rather proportional to the
number of rows, can also be re-identified. Various examples
include movie ratings [26], social networks [27], and credit
card usage patterns [28]. As explained later, here we consider
rebuilding attributes from embeddings that we consider later
for re-identification.

In our case, let us consider the following FR system setup
that may be deployed at a company, and the corresponding



De-anonymizing Facial Recognition Embeddings

AUGUST 2020 • VOLUME XII • NUMBER 252

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. Y, APRIL 2020 3

<emb/>

1

<embi/>2

3

4

[age, sex, ethn.]6

Person Smart CCTV Database Attacker Social network

7

5

Fig. 1. The considered attack when a malicious third party reconstructs demographic data from embeddings and re-identifies data subjects by linking with
another public database.

attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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II. RELATED WORK

A. Facial Recognition

The main motivation behind facial recognition is to make it
possible to identify people, e.g. a person from a digital photo
or video frame based on the face’s unique characteristics.
Despite the fact that it has only become widespread in recent
years, the technology has been around for decades, although it
wasn’t as extensively used as today, because it had many open
problems that hindered its performance and accuracy, like the
lack of enough computational power and training data, which
resulted in poor scalability.

However, the first milestone towards automated FR came
in 1988 when Sirovich and Kirby came up with the Eigen-
face approach [15], which applies linear algebra (including
principal component analysis) to recognize faces. Basically,
it works by creating an average face and multiple so called
Eigenfaces based on all faces available in a dataset, and
then representing each new face as a vector made up of the
coefficients of the linear combination of the average face and
the Eigenfaces. Then the similarity between two faces depends
on the distance metric between each face’s vector, with a
small distance corresponding to higher similarity. In 1991,
Turk and Pentland further improved the Eigenface approach to
also detect faces in images [16]. Since then, it was in the 2010s
when FR technology significantly improved due to the usage
of machine learning and deep neural networks. This was made
possible by the large amount of training data and computing
power available.

In our analysis we wanted to work with state-of-the-art
facial recognition techniques that are publicly available in
Python libraries and that could be run efficiently on a typical
smart camera. One of the leading solutions is found in the
dlib library [17], which uses the ResNet-34 structure deep
neural network from [18], trained on the Labeled Faces in
the Wild dataset (LFW) [19]. Another prominent method is
implemented in the OpenCV library. This deep convolutional
network uses the FaceNet structure [20] that directly maps
face images into the Euclidean space using a triplet-based loss
function based on large margin nearest neighbor classification
(LMNN) [21]. This library achieves a 99.63% accuracy score
on the LFW dataset [19].

Both of these techniques produce a 128 long vector of
float values. When comparing the two methods, we found
that the technique offered by dlib provides a better trade-
off regarding less false positives, with a slightly higher rate
of false negatives. Therefore we decided to work with it
throughout our experiments.

B. Risks Related to Embeddings

Face embeddings should be considered biometric data by
definition provided by the General Data Protection Regulation
(Art 4. §14 in [22]): an embedding consists of data points
that were extracted from the photo of a person that allow
or enable the identification of the data subject. Due to their
nature, biometric attributes capture features of the human body
that one cannot be changed. Therefore, significant societal
and privacy risks arise, which urges the need to analyze the

impacts of this technology [2]. As we discussed previously,
modern FR works by extracting templates from photos that
need to be stored in a database or compared previously stored
ones. If we consider the number of people represented in
the images X, and the number of people who are part of
a database Y, then FR can be used for authentication (X:1
Y:1), identification (X:1 Y:n) or tracking (X:1 Y: no need for
a database). Depending on these various use cases, the risks
can be more or less severe, e.g., a big central database means
higher risks against malicious actors than a smaller database.

Further reasons for concern are that FR is not a perfect
technology, risk appear that had been seen previously in
automated decision making systems [23]. For example, FR can
be discriminatory due to biases built into the technology, or
one may find it difficult to explain in details how DML-based
facial recognition works or why it had proposed a specific
embedding in a certain situation.

Authors in [24] mention two potential threats regarding an
attacker’s abilities. One of the hazards is to masquerade the
template owner, which means using the biometric template for
reconstructing a 2D or 3D model of the template owner’s face
and using that model to trick a FR system. The other is the
possibility of the attacker to do cross matching between multi-
ple databases storing biometric templates, because biometrics
are mostly immutable and the same or very similar templates
could be stored in multiple databases for different applications.
These risks motivate the use of biometric template protection
(BTP) schemes that transform biometric templates to make
their usage and storage safe, while also keeping their utility.

III. RISK AND ATTACKER MODEL

In our work, we consider re-identification attacks against a
database of face embeddings. Since face embeddings are based
on the face’s unique characteristics and enable reconstructing
faces, they may contain hints for demographic information as
well. This can contribute to identification attacks.

Re-identification attacks are when an attacker combines
multiple data sources to uncover the identities in the anony-
mous dataset. A common example is a health care provider
who publishes data for research purposes after removing
any PII (personally identifiable information) such as names,
addresses, social security numbers, etc. However, as [25]
showed, it can still be possible to re-identify people in that
database by linking it with an additional database (e.g. publicly
available voter database). Demographic data can be especially
vulnerable against re-identification attacks, as [25] showed that
the zip code, sex and date of birth provides a unique identifier
for 87% of the US population based on census data.

These examples showed that tabular datasets are vulnerable
for re-identification. It has been shown that large datasets,
where the number of attributes is rather proportional to the
number of rows, can also be re-identified. Various examples
include movie ratings [26], social networks [27], and credit
card usage patterns [28]. As explained later, here we consider
rebuilding attributes from embeddings that we consider later
for re-identification.

In our case, let us consider the following FR system setup
that may be deployed at a company, and the corresponding
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Fig. 1. The considered attack when a malicious third party reconstructs demographic data from embeddings and re-identifies data subjects by linking with
another public database.

attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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aged between 1 to over 100, from white, black, asian, indian
and other races, where one image per person is included. Due
to the fact that the various age, sex and race classes were not
balanced, we sampled this data source to gain a more balanced
dataset for training and testing (see the following subsection).

B. Our Methodology

Since the biggest majority of the people in UTKFace
database are under the age of 80 and are either white,
black, asian or indian, we only considered people fitting these
constraints. There was a very low number of examples in
dropped classes which would have led to poor training and
prediction results. However, not all of the remaining classes
were balanced. For example there were 2043 photos of white
males aged between 20 and 40 years, while only 677 Asian
males in the same age range.

So to achieve a relatively balanced training and testing
data set, we had to apply data down sampling until we were
left with 12192 photos, 1524 photos for each of the 8 race-
sex pairs. Yet, the age distribution still was not completely
balanced, as there were 2893 people (23.73%) aged between
1 and 20 years, 5515 (45.23%) aged between 21 and 40 years,
2452 (20.11%) aged between 41 and 60 years, while only 1332
people (10.93%) were aged between 61 and 80 years. While
we accept this as it is rather life-like, this could hinder model
performance. Furthermore, achieving a completely balanced
dataset would have resulted in too few examples to train and
test with.

The following step is to run the face recognition library’s
face encodings function on all the 12192 images, and stor-
ing the face embedding found for each. Since the image
file names contain the necessary information about a per-
son’s demographics (as all the image file names follow the
[age] [gender] [race] [date&time].jpg pattern), the file names
were used to create the training labels for each image.
Equipped with this labeled data set, it is now possible to
use Scikit-learn’s RandomForestClassifier class to train a Ran-
dom Forest Classifier for predicting the age, sex and race
from face embeddings. In all models, we found that using
a Random Forest of 100 trees can achieve the job (i.e. setting
the n estimators parameter to 100). Also, using Scikit-learn
train test split function to split the data set into 80% training
and 20% testing data made it possible to validate our models.

The simplest Random Forest Classifier to train was the one
predicting the sex of people based on their face embeddings
as this required only binary classification, while predicting
the age and race required multi-class classification. Regarding
age prediction, expecting the prediction of precise age values
resulted in poor performance. First this may sound surprising,
but it is impossible even for humans to predict a person’s age
with such precision. Thus some intervals needed to be defined
for age prediction. Choosing narrow age ranges (1-10 years)
also resulted in poor prediction accuracy. On the other hand,
choosing a too wide age range (25 years and over) would have
resulted in very poor utility regarding inference. As a viable
trade-off, we divided people into 4 age groups: 1-20, 21-40,
41-60 and 61-80 years.

The results of our experiment are detailed in the following
section.

V. MEASUREMENTS

As seen in Table I, which represents the sex prediction
model’s confusion matrix on the test data, the model achieved
an accuracy score of 91.8%, and an F1 score of 91.8%.
Looking at the confusion matrix it can be concluded that even
such a simple model can correctly recognize with closely the
same accuracy both males and females. Figure 2 shows the
receiver operating characteristic (ROC) curve which achieved
an area under curve (AUC) value of 97.6%.

Table II shows the confusion matrix of the age prediction
model’s performance on the test data. It can be seen that the
age prediction model achieved an overall accuracy score of
77% and a weighted F1 score of 76.3%. As expected, this
model’s scores are moderately lower, because predicting a
class that can be anywhere from 1 to 80 is a more complex
problem than predicting sex, which is a simple binary classi-
fication. Also, the confusion matrix itself explains the lower
scores as compared to the sex prediction: as discussed in the
previous chapter, the data set was not completely balanced
through all classes, so the ratio of people aged between 21-
40 years was disproportionately high compared to other age
groups. Summing up the values across the Truth rows, 23.65%
of the people in the test data were aged between 1-20, 44.9%
were between 21-40, 20.49% were between 41-60 and only
10.96% were between 61-80 year old. As a result, the model
is better at predicting younger people’s age, and it fails more
often at predicting older ages. Moreover, possibly due to the
fact that almost half the people in the dataset were between
21-40 years of age, the model often makes the mistake of
predicting this age group even for 1-21 and 41-60 year age
ranges, too.

Finally, Table III shows the confusion matrix regarding the
race prediction model’s performance on the test data.

The model achieved an accuracy score of 83.4%, and a
weighted F1 score of 88.9%). Based on this, we can conclude
that all the models achieve a considerable accuracy in the
predictions. An interesting pattern to note is that the model
makes more errors with people in the white race: the most
common mistake the model makes is predicting indian, asian
and black people to be white.

Summing up the results we can see that sex prediction works
the best with 91.8% accuracy, better than the race prediction
model’s 83.4% accuracy which outperforms the age prediction
model’s 77% accuracy. While the age prediction model is not
as good as the other two models, it still reaches an accuracy
that can be dangerous from a privacy standpoint. However, the
main takeaway is that the three demographics attributes can
be used to re-identify people from face embeddings.

VI. EMBEDDING RE-IDENTIFICATION BY PREDICTING
DEMOGRAPHICS

With the three Random Forest Classifier models trained, we
were equipped to simulate a re-identification attack using face
embeddings against a synthetic database. We carried out attack
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aged between 1 to over 100, from white, black, asian, indian
and other races, where one image per person is included. Due
to the fact that the various age, sex and race classes were not
balanced, we sampled this data source to gain a more balanced
dataset for training and testing (see the following subsection).

B. Our Methodology

Since the biggest majority of the people in UTKFace
database are under the age of 80 and are either white,
black, asian or indian, we only considered people fitting these
constraints. There was a very low number of examples in
dropped classes which would have led to poor training and
prediction results. However, not all of the remaining classes
were balanced. For example there were 2043 photos of white
males aged between 20 and 40 years, while only 677 Asian
males in the same age range.

So to achieve a relatively balanced training and testing
data set, we had to apply data down sampling until we were
left with 12192 photos, 1524 photos for each of the 8 race-
sex pairs. Yet, the age distribution still was not completely
balanced, as there were 2893 people (23.73%) aged between
1 and 20 years, 5515 (45.23%) aged between 21 and 40 years,
2452 (20.11%) aged between 41 and 60 years, while only 1332
people (10.93%) were aged between 61 and 80 years. While
we accept this as it is rather life-like, this could hinder model
performance. Furthermore, achieving a completely balanced
dataset would have resulted in too few examples to train and
test with.

The following step is to run the face recognition library’s
face encodings function on all the 12192 images, and stor-
ing the face embedding found for each. Since the image
file names contain the necessary information about a per-
son’s demographics (as all the image file names follow the
[age] [gender] [race] [date&time].jpg pattern), the file names
were used to create the training labels for each image.
Equipped with this labeled data set, it is now possible to
use Scikit-learn’s RandomForestClassifier class to train a Ran-
dom Forest Classifier for predicting the age, sex and race
from face embeddings. In all models, we found that using
a Random Forest of 100 trees can achieve the job (i.e. setting
the n estimators parameter to 100). Also, using Scikit-learn
train test split function to split the data set into 80% training
and 20% testing data made it possible to validate our models.

The simplest Random Forest Classifier to train was the one
predicting the sex of people based on their face embeddings
as this required only binary classification, while predicting
the age and race required multi-class classification. Regarding
age prediction, expecting the prediction of precise age values
resulted in poor performance. First this may sound surprising,
but it is impossible even for humans to predict a person’s age
with such precision. Thus some intervals needed to be defined
for age prediction. Choosing narrow age ranges (1-10 years)
also resulted in poor prediction accuracy. On the other hand,
choosing a too wide age range (25 years and over) would have
resulted in very poor utility regarding inference. As a viable
trade-off, we divided people into 4 age groups: 1-20, 21-40,
41-60 and 61-80 years.

The results of our experiment are detailed in the following
section.

V. MEASUREMENTS

As seen in Table I, which represents the sex prediction
model’s confusion matrix on the test data, the model achieved
an accuracy score of 91.8%, and an F1 score of 91.8%.
Looking at the confusion matrix it can be concluded that even
such a simple model can correctly recognize with closely the
same accuracy both males and females. Figure 2 shows the
receiver operating characteristic (ROC) curve which achieved
an area under curve (AUC) value of 97.6%.

Table II shows the confusion matrix of the age prediction
model’s performance on the test data. It can be seen that the
age prediction model achieved an overall accuracy score of
77% and a weighted F1 score of 76.3%. As expected, this
model’s scores are moderately lower, because predicting a
class that can be anywhere from 1 to 80 is a more complex
problem than predicting sex, which is a simple binary classi-
fication. Also, the confusion matrix itself explains the lower
scores as compared to the sex prediction: as discussed in the
previous chapter, the data set was not completely balanced
through all classes, so the ratio of people aged between 21-
40 years was disproportionately high compared to other age
groups. Summing up the values across the Truth rows, 23.65%
of the people in the test data were aged between 1-20, 44.9%
were between 21-40, 20.49% were between 41-60 and only
10.96% were between 61-80 year old. As a result, the model
is better at predicting younger people’s age, and it fails more
often at predicting older ages. Moreover, possibly due to the
fact that almost half the people in the dataset were between
21-40 years of age, the model often makes the mistake of
predicting this age group even for 1-21 and 41-60 year age
ranges, too.

Finally, Table III shows the confusion matrix regarding the
race prediction model’s performance on the test data.

The model achieved an accuracy score of 83.4%, and a
weighted F1 score of 88.9%). Based on this, we can conclude
that all the models achieve a considerable accuracy in the
predictions. An interesting pattern to note is that the model
makes more errors with people in the white race: the most
common mistake the model makes is predicting indian, asian
and black people to be white.

Summing up the results we can see that sex prediction works
the best with 91.8% accuracy, better than the race prediction
model’s 83.4% accuracy which outperforms the age prediction
model’s 77% accuracy. While the age prediction model is not
as good as the other two models, it still reaches an accuracy
that can be dangerous from a privacy standpoint. However, the
main takeaway is that the three demographics attributes can
be used to re-identify people from face embeddings.

VI. EMBEDDING RE-IDENTIFICATION BY PREDICTING
DEMOGRAPHICS

With the three Random Forest Classifier models trained, we
were equipped to simulate a re-identification attack using face
embeddings against a synthetic database. We carried out attack
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aged between 1 to over 100, from white, black, asian, indian
and other races, where one image per person is included. Due
to the fact that the various age, sex and race classes were not
balanced, we sampled this data source to gain a more balanced
dataset for training and testing (see the following subsection).

B. Our Methodology

Since the biggest majority of the people in UTKFace
database are under the age of 80 and are either white,
black, asian or indian, we only considered people fitting these
constraints. There was a very low number of examples in
dropped classes which would have led to poor training and
prediction results. However, not all of the remaining classes
were balanced. For example there were 2043 photos of white
males aged between 20 and 40 years, while only 677 Asian
males in the same age range.

So to achieve a relatively balanced training and testing
data set, we had to apply data down sampling until we were
left with 12192 photos, 1524 photos for each of the 8 race-
sex pairs. Yet, the age distribution still was not completely
balanced, as there were 2893 people (23.73%) aged between
1 and 20 years, 5515 (45.23%) aged between 21 and 40 years,
2452 (20.11%) aged between 41 and 60 years, while only 1332
people (10.93%) were aged between 61 and 80 years. While
we accept this as it is rather life-like, this could hinder model
performance. Furthermore, achieving a completely balanced
dataset would have resulted in too few examples to train and
test with.

The following step is to run the face recognition library’s
face encodings function on all the 12192 images, and stor-
ing the face embedding found for each. Since the image
file names contain the necessary information about a per-
son’s demographics (as all the image file names follow the
[age] [gender] [race] [date&time].jpg pattern), the file names
were used to create the training labels for each image.
Equipped with this labeled data set, it is now possible to
use Scikit-learn’s RandomForestClassifier class to train a Ran-
dom Forest Classifier for predicting the age, sex and race
from face embeddings. In all models, we found that using
a Random Forest of 100 trees can achieve the job (i.e. setting
the n estimators parameter to 100). Also, using Scikit-learn
train test split function to split the data set into 80% training
and 20% testing data made it possible to validate our models.

The simplest Random Forest Classifier to train was the one
predicting the sex of people based on their face embeddings
as this required only binary classification, while predicting
the age and race required multi-class classification. Regarding
age prediction, expecting the prediction of precise age values
resulted in poor performance. First this may sound surprising,
but it is impossible even for humans to predict a person’s age
with such precision. Thus some intervals needed to be defined
for age prediction. Choosing narrow age ranges (1-10 years)
also resulted in poor prediction accuracy. On the other hand,
choosing a too wide age range (25 years and over) would have
resulted in very poor utility regarding inference. As a viable
trade-off, we divided people into 4 age groups: 1-20, 21-40,
41-60 and 61-80 years.

The results of our experiment are detailed in the following
section.

V. MEASUREMENTS

As seen in Table I, which represents the sex prediction
model’s confusion matrix on the test data, the model achieved
an accuracy score of 91.8%, and an F1 score of 91.8%.
Looking at the confusion matrix it can be concluded that even
such a simple model can correctly recognize with closely the
same accuracy both males and females. Figure 2 shows the
receiver operating characteristic (ROC) curve which achieved
an area under curve (AUC) value of 97.6%.

Table II shows the confusion matrix of the age prediction
model’s performance on the test data. It can be seen that the
age prediction model achieved an overall accuracy score of
77% and a weighted F1 score of 76.3%. As expected, this
model’s scores are moderately lower, because predicting a
class that can be anywhere from 1 to 80 is a more complex
problem than predicting sex, which is a simple binary classi-
fication. Also, the confusion matrix itself explains the lower
scores as compared to the sex prediction: as discussed in the
previous chapter, the data set was not completely balanced
through all classes, so the ratio of people aged between 21-
40 years was disproportionately high compared to other age
groups. Summing up the values across the Truth rows, 23.65%
of the people in the test data were aged between 1-20, 44.9%
were between 21-40, 20.49% were between 41-60 and only
10.96% were between 61-80 year old. As a result, the model
is better at predicting younger people’s age, and it fails more
often at predicting older ages. Moreover, possibly due to the
fact that almost half the people in the dataset were between
21-40 years of age, the model often makes the mistake of
predicting this age group even for 1-21 and 41-60 year age
ranges, too.

Finally, Table III shows the confusion matrix regarding the
race prediction model’s performance on the test data.

The model achieved an accuracy score of 83.4%, and a
weighted F1 score of 88.9%). Based on this, we can conclude
that all the models achieve a considerable accuracy in the
predictions. An interesting pattern to note is that the model
makes more errors with people in the white race: the most
common mistake the model makes is predicting indian, asian
and black people to be white.

Summing up the results we can see that sex prediction works
the best with 91.8% accuracy, better than the race prediction
model’s 83.4% accuracy which outperforms the age prediction
model’s 77% accuracy. While the age prediction model is not
as good as the other two models, it still reaches an accuracy
that can be dangerous from a privacy standpoint. However, the
main takeaway is that the three demographics attributes can
be used to re-identify people from face embeddings.

VI. EMBEDDING RE-IDENTIFICATION BY PREDICTING
DEMOGRAPHICS

With the three Random Forest Classifier models trained, we
were equipped to simulate a re-identification attack using face
embeddings against a synthetic database. We carried out attack
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aged between 1 to over 100, from white, black, asian, indian
and other races, where one image per person is included. Due
to the fact that the various age, sex and race classes were not
balanced, we sampled this data source to gain a more balanced
dataset for training and testing (see the following subsection).

B. Our Methodology

Since the biggest majority of the people in UTKFace
database are under the age of 80 and are either white,
black, asian or indian, we only considered people fitting these
constraints. There was a very low number of examples in
dropped classes which would have led to poor training and
prediction results. However, not all of the remaining classes
were balanced. For example there were 2043 photos of white
males aged between 20 and 40 years, while only 677 Asian
males in the same age range.

So to achieve a relatively balanced training and testing
data set, we had to apply data down sampling until we were
left with 12192 photos, 1524 photos for each of the 8 race-
sex pairs. Yet, the age distribution still was not completely
balanced, as there were 2893 people (23.73%) aged between
1 and 20 years, 5515 (45.23%) aged between 21 and 40 years,
2452 (20.11%) aged between 41 and 60 years, while only 1332
people (10.93%) were aged between 61 and 80 years. While
we accept this as it is rather life-like, this could hinder model
performance. Furthermore, achieving a completely balanced
dataset would have resulted in too few examples to train and
test with.

The following step is to run the face recognition library’s
face encodings function on all the 12192 images, and stor-
ing the face embedding found for each. Since the image
file names contain the necessary information about a per-
son’s demographics (as all the image file names follow the
[age] [gender] [race] [date&time].jpg pattern), the file names
were used to create the training labels for each image.
Equipped with this labeled data set, it is now possible to
use Scikit-learn’s RandomForestClassifier class to train a Ran-
dom Forest Classifier for predicting the age, sex and race
from face embeddings. In all models, we found that using
a Random Forest of 100 trees can achieve the job (i.e. setting
the n estimators parameter to 100). Also, using Scikit-learn
train test split function to split the data set into 80% training
and 20% testing data made it possible to validate our models.

The simplest Random Forest Classifier to train was the one
predicting the sex of people based on their face embeddings
as this required only binary classification, while predicting
the age and race required multi-class classification. Regarding
age prediction, expecting the prediction of precise age values
resulted in poor performance. First this may sound surprising,
but it is impossible even for humans to predict a person’s age
with such precision. Thus some intervals needed to be defined
for age prediction. Choosing narrow age ranges (1-10 years)
also resulted in poor prediction accuracy. On the other hand,
choosing a too wide age range (25 years and over) would have
resulted in very poor utility regarding inference. As a viable
trade-off, we divided people into 4 age groups: 1-20, 21-40,
41-60 and 61-80 years.

The results of our experiment are detailed in the following
section.

V. MEASUREMENTS

As seen in Table I, which represents the sex prediction
model’s confusion matrix on the test data, the model achieved
an accuracy score of 91.8%, and an F1 score of 91.8%.
Looking at the confusion matrix it can be concluded that even
such a simple model can correctly recognize with closely the
same accuracy both males and females. Figure 2 shows the
receiver operating characteristic (ROC) curve which achieved
an area under curve (AUC) value of 97.6%.

Table II shows the confusion matrix of the age prediction
model’s performance on the test data. It can be seen that the
age prediction model achieved an overall accuracy score of
77% and a weighted F1 score of 76.3%. As expected, this
model’s scores are moderately lower, because predicting a
class that can be anywhere from 1 to 80 is a more complex
problem than predicting sex, which is a simple binary classi-
fication. Also, the confusion matrix itself explains the lower
scores as compared to the sex prediction: as discussed in the
previous chapter, the data set was not completely balanced
through all classes, so the ratio of people aged between 21-
40 years was disproportionately high compared to other age
groups. Summing up the values across the Truth rows, 23.65%
of the people in the test data were aged between 1-20, 44.9%
were between 21-40, 20.49% were between 41-60 and only
10.96% were between 61-80 year old. As a result, the model
is better at predicting younger people’s age, and it fails more
often at predicting older ages. Moreover, possibly due to the
fact that almost half the people in the dataset were between
21-40 years of age, the model often makes the mistake of
predicting this age group even for 1-21 and 41-60 year age
ranges, too.

Finally, Table III shows the confusion matrix regarding the
race prediction model’s performance on the test data.

The model achieved an accuracy score of 83.4%, and a
weighted F1 score of 88.9%). Based on this, we can conclude
that all the models achieve a considerable accuracy in the
predictions. An interesting pattern to note is that the model
makes more errors with people in the white race: the most
common mistake the model makes is predicting indian, asian
and black people to be white.

Summing up the results we can see that sex prediction works
the best with 91.8% accuracy, better than the race prediction
model’s 83.4% accuracy which outperforms the age prediction
model’s 77% accuracy. While the age prediction model is not
as good as the other two models, it still reaches an accuracy
that can be dangerous from a privacy standpoint. However, the
main takeaway is that the three demographics attributes can
be used to re-identify people from face embeddings.

VI. EMBEDDING RE-IDENTIFICATION BY PREDICTING
DEMOGRAPHICS

With the three Random Forest Classifier models trained, we
were equipped to simulate a re-identification attack using face
embeddings against a synthetic database. We carried out attack
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Fig. 1. The considered attack when a malicious third party reconstructs demographic data from embeddings and re-identifies data subjects by linking with
another public database.

attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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attacker model (see Figure 1). Smart cameras observe the
company’s various areas and extract the face embedding of
employees appearing in the video footage (Step 1). These em-
beddings are then transferred and stored in a central database
for later use either for tracking, automation, identification
or other purposes (Step 2). The attacker then accesses these
embeddings (Steps 3-4, e.g. en employee by stealing or an
external person via hacking) and infers the data subjects’
demographic information (age, sex and race) from them using
a computer algorithm created for this task (Step 5). With
this new information the attacker may now be able to do a
successful re-identification attack by comparing the original
data with another public data source, for example by looking
up people on a social networking site (Steps 6-7).

The success of such an attack largely depends on Step 4
and Step 5 from Figure 1: how many embeddings the attacker
can get, and how accurately they can predict demographic
information from those embeddings. Thus, it is necessary to
assess the potential attacker strength first. In our work, we
assume a strong attacker who has access to all the embeddings
stored in the database, and our main goal is to discover the
level of prediction accuracy achievable regarding demographic
data.

IV. METHODOLOGY

In order to estimate the potential success of attackers,
on a real life dataset we considered the equivalence class
distribution of demographic details. An equivalence class is a
subset of elements that are equivalent to each other based on
the demographic characteristics that we are trying to predict.
In a database, the more people that are either unique or fall in
small equivalence classes (e.g. at most 5 members), the higher
the risk of re-identification is.

A. Technical Details

We carried out our analysis in the Python programming
language, using open source libraries created for working on
data science and machine learning (ML) applications (NumPy
[29], pandas [30], Scikit-learn [31]). The face recognition
library we used was face recognition [32], which is a wrapper
built around dlib [17] and uses dlib’s state-of-the-art FR
technology based on deep learning to detect faces in images
and/or video frames and extract the face embeddings from
them. While embeddings are hard for a human to interpret,
a computer can compare two embeddings and calculate the
mathematical distance between them, such as Euclidean or
Manhattan distance, with the Euclidean distance being the
most popular ”best practice” choice for face recognition ap-
plications. These metrics can be used to determine whether
the two embeddings belong to the same person or not. The
lower the distance between two embeddings, the more likely
it is that they belong to the same person. Usually, there is a
distance threshold below which we consider embeddings to
belong to the same person.

We used Random Forest Classifiers from the Scikit-learn
library to build three ML models for predicting the age, sex
and race from the embeddings. We chose a Random Forest
Classifier as it is an easy to use ML model that doesn’t require
hyper parameter tuning and can be used easily even by non ML
experts. It is an ensemble-tree based learning algorithm used
to predict the class of test objects. Instead of training a single
decision tree on the entire training data, the random forest
works by training multiple decision trees on randomly sampled
subsets of the training set (while also having the attributes
randomly distributed), and then aggregating the votes of the
decision trees to conclude the final predicted class by majority
voting.

For the data to train and test on, we used UTKFace [33], a
public database containing over 23,000 photos from both sexes
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aged between 1 to over 100, from white, black, asian, indian
and other races, where one image per person is included. Due
to the fact that the various age, sex and race classes were not
balanced, we sampled this data source to gain a more balanced
dataset for training and testing (see the following subsection).

B. Our Methodology

Since the biggest majority of the people in UTKFace
database are under the age of 80 and are either white,
black, asian or indian, we only considered people fitting these
constraints. There was a very low number of examples in
dropped classes which would have led to poor training and
prediction results. However, not all of the remaining classes
were balanced. For example there were 2043 photos of white
males aged between 20 and 40 years, while only 677 Asian
males in the same age range.

So to achieve a relatively balanced training and testing
data set, we had to apply data down sampling until we were
left with 12192 photos, 1524 photos for each of the 8 race-
sex pairs. Yet, the age distribution still was not completely
balanced, as there were 2893 people (23.73%) aged between
1 and 20 years, 5515 (45.23%) aged between 21 and 40 years,
2452 (20.11%) aged between 41 and 60 years, while only 1332
people (10.93%) were aged between 61 and 80 years. While
we accept this as it is rather life-like, this could hinder model
performance. Furthermore, achieving a completely balanced
dataset would have resulted in too few examples to train and
test with.

The following step is to run the face recognition library’s
face encodings function on all the 12192 images, and stor-
ing the face embedding found for each. Since the image
file names contain the necessary information about a per-
son’s demographics (as all the image file names follow the
[age] [gender] [race] [date&time].jpg pattern), the file names
were used to create the training labels for each image.
Equipped with this labeled data set, it is now possible to
use Scikit-learn’s RandomForestClassifier class to train a Ran-
dom Forest Classifier for predicting the age, sex and race
from face embeddings. In all models, we found that using
a Random Forest of 100 trees can achieve the job (i.e. setting
the n estimators parameter to 100). Also, using Scikit-learn
train test split function to split the data set into 80% training
and 20% testing data made it possible to validate our models.

The simplest Random Forest Classifier to train was the one
predicting the sex of people based on their face embeddings
as this required only binary classification, while predicting
the age and race required multi-class classification. Regarding
age prediction, expecting the prediction of precise age values
resulted in poor performance. First this may sound surprising,
but it is impossible even for humans to predict a person’s age
with such precision. Thus some intervals needed to be defined
for age prediction. Choosing narrow age ranges (1-10 years)
also resulted in poor prediction accuracy. On the other hand,
choosing a too wide age range (25 years and over) would have
resulted in very poor utility regarding inference. As a viable
trade-off, we divided people into 4 age groups: 1-20, 21-40,
41-60 and 61-80 years.

The results of our experiment are detailed in the following
section.

V. MEASUREMENTS

As seen in Table I, which represents the sex prediction
model’s confusion matrix on the test data, the model achieved
an accuracy score of 91.8%, and an F1 score of 91.8%.
Looking at the confusion matrix it can be concluded that even
such a simple model can correctly recognize with closely the
same accuracy both males and females. Figure 2 shows the
receiver operating characteristic (ROC) curve which achieved
an area under curve (AUC) value of 97.6%.

Table II shows the confusion matrix of the age prediction
model’s performance on the test data. It can be seen that the
age prediction model achieved an overall accuracy score of
77% and a weighted F1 score of 76.3%. As expected, this
model’s scores are moderately lower, because predicting a
class that can be anywhere from 1 to 80 is a more complex
problem than predicting sex, which is a simple binary classi-
fication. Also, the confusion matrix itself explains the lower
scores as compared to the sex prediction: as discussed in the
previous chapter, the data set was not completely balanced
through all classes, so the ratio of people aged between 21-
40 years was disproportionately high compared to other age
groups. Summing up the values across the Truth rows, 23.65%
of the people in the test data were aged between 1-20, 44.9%
were between 21-40, 20.49% were between 41-60 and only
10.96% were between 61-80 year old. As a result, the model
is better at predicting younger people’s age, and it fails more
often at predicting older ages. Moreover, possibly due to the
fact that almost half the people in the dataset were between
21-40 years of age, the model often makes the mistake of
predicting this age group even for 1-21 and 41-60 year age
ranges, too.

Finally, Table III shows the confusion matrix regarding the
race prediction model’s performance on the test data.

The model achieved an accuracy score of 83.4%, and a
weighted F1 score of 88.9%). Based on this, we can conclude
that all the models achieve a considerable accuracy in the
predictions. An interesting pattern to note is that the model
makes more errors with people in the white race: the most
common mistake the model makes is predicting indian, asian
and black people to be white.

Summing up the results we can see that sex prediction works
the best with 91.8% accuracy, better than the race prediction
model’s 83.4% accuracy which outperforms the age prediction
model’s 77% accuracy. While the age prediction model is not
as good as the other two models, it still reaches an accuracy
that can be dangerous from a privacy standpoint. However, the
main takeaway is that the three demographics attributes can
be used to re-identify people from face embeddings.

VI. EMBEDDING RE-IDENTIFICATION BY PREDICTING
DEMOGRAPHICS

With the three Random Forest Classifier models trained, we
were equipped to simulate a re-identification attack using face
embeddings against a synthetic database. We carried out attack
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we accept this as it is rather life-like, this could hinder model
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son’s demographics (as all the image file names follow the
[age] [gender] [race] [date&time].jpg pattern), the file names
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the n estimators parameter to 100). Also, using Scikit-learn
train test split function to split the data set into 80% training
and 20% testing data made it possible to validate our models.

The simplest Random Forest Classifier to train was the one
predicting the sex of people based on their face embeddings
as this required only binary classification, while predicting
the age and race required multi-class classification. Regarding
age prediction, expecting the prediction of precise age values
resulted in poor performance. First this may sound surprising,
but it is impossible even for humans to predict a person’s age
with such precision. Thus some intervals needed to be defined
for age prediction. Choosing narrow age ranges (1-10 years)
also resulted in poor prediction accuracy. On the other hand,
choosing a too wide age range (25 years and over) would have
resulted in very poor utility regarding inference. As a viable
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41-60 and 61-80 years.

The results of our experiment are detailed in the following
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As seen in Table I, which represents the sex prediction
model’s confusion matrix on the test data, the model achieved
an accuracy score of 91.8%, and an F1 score of 91.8%.
Looking at the confusion matrix it can be concluded that even
such a simple model can correctly recognize with closely the
same accuracy both males and females. Figure 2 shows the
receiver operating characteristic (ROC) curve which achieved
an area under curve (AUC) value of 97.6%.

Table II shows the confusion matrix of the age prediction
model’s performance on the test data. It can be seen that the
age prediction model achieved an overall accuracy score of
77% and a weighted F1 score of 76.3%. As expected, this
model’s scores are moderately lower, because predicting a
class that can be anywhere from 1 to 80 is a more complex
problem than predicting sex, which is a simple binary classi-
fication. Also, the confusion matrix itself explains the lower
scores as compared to the sex prediction: as discussed in the
previous chapter, the data set was not completely balanced
through all classes, so the ratio of people aged between 21-
40 years was disproportionately high compared to other age
groups. Summing up the values across the Truth rows, 23.65%
of the people in the test data were aged between 1-20, 44.9%
were between 21-40, 20.49% were between 41-60 and only
10.96% were between 61-80 year old. As a result, the model
is better at predicting younger people’s age, and it fails more
often at predicting older ages. Moreover, possibly due to the
fact that almost half the people in the dataset were between
21-40 years of age, the model often makes the mistake of
predicting this age group even for 1-21 and 41-60 year age
ranges, too.

Finally, Table III shows the confusion matrix regarding the
race prediction model’s performance on the test data.

The model achieved an accuracy score of 83.4%, and a
weighted F1 score of 88.9%). Based on this, we can conclude
that all the models achieve a considerable accuracy in the
predictions. An interesting pattern to note is that the model
makes more errors with people in the white race: the most
common mistake the model makes is predicting indian, asian
and black people to be white.

Summing up the results we can see that sex prediction works
the best with 91.8% accuracy, better than the race prediction
model’s 83.4% accuracy which outperforms the age prediction
model’s 77% accuracy. While the age prediction model is not
as good as the other two models, it still reaches an accuracy
that can be dangerous from a privacy standpoint. However, the
main takeaway is that the three demographics attributes can
be used to re-identify people from face embeddings.

VI. EMBEDDING RE-IDENTIFICATION BY PREDICTING
DEMOGRAPHICS

With the three Random Forest Classifier models trained, we
were equipped to simulate a re-identification attack using face
embeddings against a synthetic database. We carried out attack
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to the fact that the various age, sex and race classes were not
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were balanced. For example there were 2043 photos of white
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we accept this as it is rather life-like, this could hinder model
performance. Furthermore, achieving a completely balanced
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ing the face embedding found for each. Since the image
file names contain the necessary information about a per-
son’s demographics (as all the image file names follow the
[age] [gender] [race] [date&time].jpg pattern), the file names
were used to create the training labels for each image.
Equipped with this labeled data set, it is now possible to
use Scikit-learn’s RandomForestClassifier class to train a Ran-
dom Forest Classifier for predicting the age, sex and race
from face embeddings. In all models, we found that using
a Random Forest of 100 trees can achieve the job (i.e. setting
the n estimators parameter to 100). Also, using Scikit-learn
train test split function to split the data set into 80% training
and 20% testing data made it possible to validate our models.

The simplest Random Forest Classifier to train was the one
predicting the sex of people based on their face embeddings
as this required only binary classification, while predicting
the age and race required multi-class classification. Regarding
age prediction, expecting the prediction of precise age values
resulted in poor performance. First this may sound surprising,
but it is impossible even for humans to predict a person’s age
with such precision. Thus some intervals needed to be defined
for age prediction. Choosing narrow age ranges (1-10 years)
also resulted in poor prediction accuracy. On the other hand,
choosing a too wide age range (25 years and over) would have
resulted in very poor utility regarding inference. As a viable
trade-off, we divided people into 4 age groups: 1-20, 21-40,
41-60 and 61-80 years.

The results of our experiment are detailed in the following
section.

V. MEASUREMENTS

As seen in Table I, which represents the sex prediction
model’s confusion matrix on the test data, the model achieved
an accuracy score of 91.8%, and an F1 score of 91.8%.
Looking at the confusion matrix it can be concluded that even
such a simple model can correctly recognize with closely the
same accuracy both males and females. Figure 2 shows the
receiver operating characteristic (ROC) curve which achieved
an area under curve (AUC) value of 97.6%.

Table II shows the confusion matrix of the age prediction
model’s performance on the test data. It can be seen that the
age prediction model achieved an overall accuracy score of
77% and a weighted F1 score of 76.3%. As expected, this
model’s scores are moderately lower, because predicting a
class that can be anywhere from 1 to 80 is a more complex
problem than predicting sex, which is a simple binary classi-
fication. Also, the confusion matrix itself explains the lower
scores as compared to the sex prediction: as discussed in the
previous chapter, the data set was not completely balanced
through all classes, so the ratio of people aged between 21-
40 years was disproportionately high compared to other age
groups. Summing up the values across the Truth rows, 23.65%
of the people in the test data were aged between 1-20, 44.9%
were between 21-40, 20.49% were between 41-60 and only
10.96% were between 61-80 year old. As a result, the model
is better at predicting younger people’s age, and it fails more
often at predicting older ages. Moreover, possibly due to the
fact that almost half the people in the dataset were between
21-40 years of age, the model often makes the mistake of
predicting this age group even for 1-21 and 41-60 year age
ranges, too.

Finally, Table III shows the confusion matrix regarding the
race prediction model’s performance on the test data.

The model achieved an accuracy score of 83.4%, and a
weighted F1 score of 88.9%). Based on this, we can conclude
that all the models achieve a considerable accuracy in the
predictions. An interesting pattern to note is that the model
makes more errors with people in the white race: the most
common mistake the model makes is predicting indian, asian
and black people to be white.

Summing up the results we can see that sex prediction works
the best with 91.8% accuracy, better than the race prediction
model’s 83.4% accuracy which outperforms the age prediction
model’s 77% accuracy. While the age prediction model is not
as good as the other two models, it still reaches an accuracy
that can be dangerous from a privacy standpoint. However, the
main takeaway is that the three demographics attributes can
be used to re-identify people from face embeddings.

VI. EMBEDDING RE-IDENTIFICATION BY PREDICTING
DEMOGRAPHICS

With the three Random Forest Classifier models trained, we
were equipped to simulate a re-identification attack using face
embeddings against a synthetic database. We carried out attack
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TABLE I
CONFUSION MATRIX OF THE SEX PREDICTION MODEL

(ACCURACY=91.8%, RECALL=92.8%, PRECISION=90.9%)
Tr

ut
h Male 45.54% 4.65%

Female 3.59% 46.22%

Male Female

Predicted Sex

TABLE II
CONFUSION MATRIX OF THE AGE PREDICTION MODEL (ACCURACY=77%,

RECALL=77%, PRECISION=77.8%)

Tr
ut

h

1-20 17.63% 5.89% 0.04% 0.09%

21-40 0.30% 42.17% 2.26% 0.17%

41-60 0.04% 6.96% 11.44% 2.05%

61-80 0.04% 1.02% 4.18% 5.72%

1-20 21-40 41-60 61-80

Predicted Age

simulations against databases sizes of 10, 50 and 100 people,
which are plausible database sizes for small or medium sized
companies.

To construct the synthetic databases with realistic demo-
graphics data, we relied on census data from the University
of California’s Adult Data Set for Machine Learning [34].
This dataset contains over 30,000 records of different types of
people including their demographic data (age, sex and race)
and the ratio of people believed to be represented by every
record. We used the latter weights to sample this dataset to
build the smaller databases of 10, 50 and 100. For every
person in each database, we then associated photos from the
UTKFace dataset [33] that matched their age, race and sex,
and used [32] to extract the corresponding facial embeddings
from these photos, while taking care not to ever re-use photos
that were part of the training data set. In order to suppress any
potential bias coming from the randomness, we repeated each
experiment with a new synthesized dataset 50 times.

Next, we used our models to predict the sex, age (in 20 year
ranges) and race from each embedding, and tried to match
the prediction results to people in the original database. By
comparing matched records to their corresponding ones in
the original database (the ground truth), we could find out
how many people’s demographic information were correctly
predicted. Also, as explained in Section IV, the smaller the
size of a person’s equivalence class is, the higher their risk of

TABLE III
CONFUSION MATRIX OF THE RACE PREDICTION MODEL

(ACCURACY=83.4%, RECALL=83.4%, PRECISION=95.2%)

Tr
ut

h

White 24.46% 0.47% 0.13% 0.60%

Black 3.03% 21.55% 0.04% 0.55%

Asian 2.60% 0.17% 22.28% 0.17%

Indian 4.61% 0.43% 0.38% 18.52%

White Black Asian Indian

Predicted Race

Fig. 2. The ROC curve for the sex prediction model (AUC=97.6%)

re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.

VII. CONCLUSION

In this paper we discussed potential privacy and security
risks associated with the widespread usage of facial recogni-
tion technologies, in particular the risks associated with pro-
cessing the concerned biometric identifiers. More specifically,
we focused on attack that aim to re-identify facial embeddings
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simulations against databases sizes of 10, 50 and 100 people,
which are plausible database sizes for small or medium sized
companies.

To construct the synthetic databases with realistic demo-
graphics data, we relied on census data from the University
of California’s Adult Data Set for Machine Learning [34].
This dataset contains over 30,000 records of different types of
people including their demographic data (age, sex and race)
and the ratio of people believed to be represented by every
record. We used the latter weights to sample this dataset to
build the smaller databases of 10, 50 and 100. For every
person in each database, we then associated photos from the
UTKFace dataset [33] that matched their age, race and sex,
and used [32] to extract the corresponding facial embeddings
from these photos, while taking care not to ever re-use photos
that were part of the training data set. In order to suppress any
potential bias coming from the randomness, we repeated each
experiment with a new synthesized dataset 50 times.

Next, we used our models to predict the sex, age (in 20 year
ranges) and race from each embedding, and tried to match
the prediction results to people in the original database. By
comparing matched records to their corresponding ones in
the original database (the ground truth), we could find out
how many people’s demographic information were correctly
predicted. Also, as explained in Section IV, the smaller the
size of a person’s equivalence class is, the higher their risk of
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re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.

VII. CONCLUSION

In this paper we discussed potential privacy and security
risks associated with the widespread usage of facial recogni-
tion technologies, in particular the risks associated with pro-
cessing the concerned biometric identifiers. More specifically,
we focused on attack that aim to re-identify facial embeddings
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stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.
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In this paper we discussed potential privacy and security
risks associated with the widespread usage of facial recogni-
tion technologies, in particular the risks associated with pro-
cessing the concerned biometric identifiers. More specifically,
we focused on attack that aim to re-identify facial embeddings
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aged between 1 to over 100, from white, black, asian, indian
and other races, where one image per person is included. Due
to the fact that the various age, sex and race classes were not
balanced, we sampled this data source to gain a more balanced
dataset for training and testing (see the following subsection).

B. Our Methodology

Since the biggest majority of the people in UTKFace
database are under the age of 80 and are either white,
black, asian or indian, we only considered people fitting these
constraints. There was a very low number of examples in
dropped classes which would have led to poor training and
prediction results. However, not all of the remaining classes
were balanced. For example there were 2043 photos of white
males aged between 20 and 40 years, while only 677 Asian
males in the same age range.

So to achieve a relatively balanced training and testing
data set, we had to apply data down sampling until we were
left with 12192 photos, 1524 photos for each of the 8 race-
sex pairs. Yet, the age distribution still was not completely
balanced, as there were 2893 people (23.73%) aged between
1 and 20 years, 5515 (45.23%) aged between 21 and 40 years,
2452 (20.11%) aged between 41 and 60 years, while only 1332
people (10.93%) were aged between 61 and 80 years. While
we accept this as it is rather life-like, this could hinder model
performance. Furthermore, achieving a completely balanced
dataset would have resulted in too few examples to train and
test with.

The following step is to run the face recognition library’s
face encodings function on all the 12192 images, and stor-
ing the face embedding found for each. Since the image
file names contain the necessary information about a per-
son’s demographics (as all the image file names follow the
[age] [gender] [race] [date&time].jpg pattern), the file names
were used to create the training labels for each image.
Equipped with this labeled data set, it is now possible to
use Scikit-learn’s RandomForestClassifier class to train a Ran-
dom Forest Classifier for predicting the age, sex and race
from face embeddings. In all models, we found that using
a Random Forest of 100 trees can achieve the job (i.e. setting
the n estimators parameter to 100). Also, using Scikit-learn
train test split function to split the data set into 80% training
and 20% testing data made it possible to validate our models.

The simplest Random Forest Classifier to train was the one
predicting the sex of people based on their face embeddings
as this required only binary classification, while predicting
the age and race required multi-class classification. Regarding
age prediction, expecting the prediction of precise age values
resulted in poor performance. First this may sound surprising,
but it is impossible even for humans to predict a person’s age
with such precision. Thus some intervals needed to be defined
for age prediction. Choosing narrow age ranges (1-10 years)
also resulted in poor prediction accuracy. On the other hand,
choosing a too wide age range (25 years and over) would have
resulted in very poor utility regarding inference. As a viable
trade-off, we divided people into 4 age groups: 1-20, 21-40,
41-60 and 61-80 years.

The results of our experiment are detailed in the following
section.

V. MEASUREMENTS

As seen in Table I, which represents the sex prediction
model’s confusion matrix on the test data, the model achieved
an accuracy score of 91.8%, and an F1 score of 91.8%.
Looking at the confusion matrix it can be concluded that even
such a simple model can correctly recognize with closely the
same accuracy both males and females. Figure 2 shows the
receiver operating characteristic (ROC) curve which achieved
an area under curve (AUC) value of 97.6%.

Table II shows the confusion matrix of the age prediction
model’s performance on the test data. It can be seen that the
age prediction model achieved an overall accuracy score of
77% and a weighted F1 score of 76.3%. As expected, this
model’s scores are moderately lower, because predicting a
class that can be anywhere from 1 to 80 is a more complex
problem than predicting sex, which is a simple binary classi-
fication. Also, the confusion matrix itself explains the lower
scores as compared to the sex prediction: as discussed in the
previous chapter, the data set was not completely balanced
through all classes, so the ratio of people aged between 21-
40 years was disproportionately high compared to other age
groups. Summing up the values across the Truth rows, 23.65%
of the people in the test data were aged between 1-20, 44.9%
were between 21-40, 20.49% were between 41-60 and only
10.96% were between 61-80 year old. As a result, the model
is better at predicting younger people’s age, and it fails more
often at predicting older ages. Moreover, possibly due to the
fact that almost half the people in the dataset were between
21-40 years of age, the model often makes the mistake of
predicting this age group even for 1-21 and 41-60 year age
ranges, too.

Finally, Table III shows the confusion matrix regarding the
race prediction model’s performance on the test data.

The model achieved an accuracy score of 83.4%, and a
weighted F1 score of 88.9%). Based on this, we can conclude
that all the models achieve a considerable accuracy in the
predictions. An interesting pattern to note is that the model
makes more errors with people in the white race: the most
common mistake the model makes is predicting indian, asian
and black people to be white.

Summing up the results we can see that sex prediction works
the best with 91.8% accuracy, better than the race prediction
model’s 83.4% accuracy which outperforms the age prediction
model’s 77% accuracy. While the age prediction model is not
as good as the other two models, it still reaches an accuracy
that can be dangerous from a privacy standpoint. However, the
main takeaway is that the three demographics attributes can
be used to re-identify people from face embeddings.

VI. EMBEDDING RE-IDENTIFICATION BY PREDICTING
DEMOGRAPHICS

With the three Random Forest Classifier models trained, we
were equipped to simulate a re-identification attack using face
embeddings against a synthetic database. We carried out attack

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. Y, APRIL 2020 5

TABLE I
CONFUSION MATRIX OF THE SEX PREDICTION MODEL

(ACCURACY=91.8%, RECALL=92.8%, PRECISION=90.9%)
Tr

ut
h Male 45.54% 4.65%

Female 3.59% 46.22%

Male Female

Predicted Sex

TABLE II
CONFUSION MATRIX OF THE AGE PREDICTION MODEL (ACCURACY=77%,

RECALL=77%, PRECISION=77.8%)

Tr
ut

h

1-20 17.63% 5.89% 0.04% 0.09%

21-40 0.30% 42.17% 2.26% 0.17%

41-60 0.04% 6.96% 11.44% 2.05%

61-80 0.04% 1.02% 4.18% 5.72%

1-20 21-40 41-60 61-80

Predicted Age

simulations against databases sizes of 10, 50 and 100 people,
which are plausible database sizes for small or medium sized
companies.

To construct the synthetic databases with realistic demo-
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and the ratio of people believed to be represented by every
record. We used the latter weights to sample this dataset to
build the smaller databases of 10, 50 and 100. For every
person in each database, we then associated photos from the
UTKFace dataset [33] that matched their age, race and sex,
and used [32] to extract the corresponding facial embeddings
from these photos, while taking care not to ever re-use photos
that were part of the training data set. In order to suppress any
potential bias coming from the randomness, we repeated each
experiment with a new synthesized dataset 50 times.

Next, we used our models to predict the sex, age (in 20 year
ranges) and race from each embedding, and tried to match
the prediction results to people in the original database. By
comparing matched records to their corresponding ones in
the original database (the ground truth), we could find out
how many people’s demographic information were correctly
predicted. Also, as explained in Section IV, the smaller the
size of a person’s equivalence class is, the higher their risk of
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re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.

VII. CONCLUSION

In this paper we discussed potential privacy and security
risks associated with the widespread usage of facial recogni-
tion technologies, in particular the risks associated with pro-
cessing the concerned biometric identifiers. More specifically,
we focused on attack that aim to re-identify facial embeddings
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record. We used the latter weights to sample this dataset to
build the smaller databases of 10, 50 and 100. For every
person in each database, we then associated photos from the
UTKFace dataset [33] that matched their age, race and sex,
and used [32] to extract the corresponding facial embeddings
from these photos, while taking care not to ever re-use photos
that were part of the training data set. In order to suppress any
potential bias coming from the randomness, we repeated each
experiment with a new synthesized dataset 50 times.

Next, we used our models to predict the sex, age (in 20 year
ranges) and race from each embedding, and tried to match
the prediction results to people in the original database. By
comparing matched records to their corresponding ones in
the original database (the ground truth), we could find out
how many people’s demographic information were correctly
predicted. Also, as explained in Section IV, the smaller the
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re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.

VII. CONCLUSION

In this paper we discussed potential privacy and security
risks associated with the widespread usage of facial recogni-
tion technologies, in particular the risks associated with pro-
cessing the concerned biometric identifiers. More specifically,
we focused on attack that aim to re-identify facial embeddings
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re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.
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that were part of the training data set. In order to suppress any
potential bias coming from the randomness, we repeated each
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Next, we used our models to predict the sex, age (in 20 year
ranges) and race from each embedding, and tried to match
the prediction results to people in the original database. By
comparing matched records to their corresponding ones in
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stated above, we repeated this process 50 times for each
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Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.
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sizes. The most successful attacks can be carried out against
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fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
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expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
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never negligible.
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re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.
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and used [32] to extract the corresponding facial embeddings
from these photos, while taking care not to ever re-use photos
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potential bias coming from the randomness, we repeated each
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re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.
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and used [32] to extract the corresponding facial embeddings
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that were part of the training data set. In order to suppress any
potential bias coming from the randomness, we repeated each
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the prediction results to people in the original database. By
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re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.
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re-identification. So to consider the risks involved with these
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classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
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Fig. 3. The ratio of equivalence classes (EC) in the predicted databases (D)
for various database sizes. Values in parentheses show the expected proportion
of re-identified users.

based on using face embeddings to find out three key pieces
of demographics data about the data subjects.

Our goal was to examine the level of accuracy achievable in
predicting the sex, age and race from a face embedding. We
used a publicly available facial database labeled with these
demographic attributes to build a labeled training and testing
dataset, and we trained a Random Forest Classifier to predict
the sex, age and race from the embeddings.

Based on our findings, it is indeed possible to correctly
predict someone’s sex, age (within a 20 year range) and race
from a face embedding with high accuracies: our models
achieved a 90.9% accuracy score on sex prediction, a 83.4%
accuracy score on race prediction and a 77% accuracy score
on age prediction. As a result, we can consider our theory
proven and state that the storing and processing of unprotected
face embeddings pose considerable privacy risks as far as re-
identification attacks and sensitive data leakage are concerned.

As the final conclusion, we state that further research is
necessary to come up with privacy preserving ways to protect
embeddings. One idea is to modify the face embeddings in
such a way as to keep their utility (e.g. embeddings of the
same person should remain close to each other in the vector
space after the modification) while protecting them against
reverse engineering attacks to make inference more difficult.
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Based on our findings, it is indeed possible to correctly
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on age prediction. As a result, we can consider our theory
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based on using face embeddings to find out three key pieces
of demographics data about the data subjects.

Our goal was to examine the level of accuracy achievable in
predicting the sex, age and race from a face embedding. We
used a publicly available facial database labeled with these
demographic attributes to build a labeled training and testing
dataset, and we trained a Random Forest Classifier to predict
the sex, age and race from the embeddings.

Based on our findings, it is indeed possible to correctly
predict someone’s sex, age (within a 20 year range) and race
from a face embedding with high accuracies: our models
achieved a 90.9% accuracy score on sex prediction, a 83.4%
accuracy score on race prediction and a 77% accuracy score
on age prediction. As a result, we can consider our theory
proven and state that the storing and processing of unprotected
face embeddings pose considerable privacy risks as far as re-
identification attacks and sensitive data leakage are concerned.

As the final conclusion, we state that further research is
necessary to come up with privacy preserving ways to protect
embeddings. One idea is to modify the face embeddings in
such a way as to keep their utility (e.g. embeddings of the
same person should remain close to each other in the vector
space after the modification) while protecting them against
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Fig. 3. The ratio of equivalence classes (EC) in the predicted databases (D)
for various database sizes. Values in parentheses show the expected proportion
of re-identified users.

based on using face embeddings to find out three key pieces
of demographics data about the data subjects.

Our goal was to examine the level of accuracy achievable in
predicting the sex, age and race from a face embedding. We
used a publicly available facial database labeled with these
demographic attributes to build a labeled training and testing
dataset, and we trained a Random Forest Classifier to predict
the sex, age and race from the embeddings.

Based on our findings, it is indeed possible to correctly
predict someone’s sex, age (within a 20 year range) and race
from a face embedding with high accuracies: our models
achieved a 90.9% accuracy score on sex prediction, a 83.4%
accuracy score on race prediction and a 77% accuracy score
on age prediction. As a result, we can consider our theory
proven and state that the storing and processing of unprotected
face embeddings pose considerable privacy risks as far as re-
identification attacks and sensitive data leakage are concerned.

As the final conclusion, we state that further research is
necessary to come up with privacy preserving ways to protect
embeddings. One idea is to modify the face embeddings in
such a way as to keep their utility (e.g. embeddings of the
same person should remain close to each other in the vector
space after the modification) while protecting them against
reverse engineering attacks to make inference more difficult.
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TABLE I
CONFUSION MATRIX OF THE SEX PREDICTION MODEL

(ACCURACY=91.8%, RECALL=92.8%, PRECISION=90.9%)

Tr
ut

h Male 45.54% 4.65%

Female 3.59% 46.22%

Male Female

Predicted Sex

TABLE II
CONFUSION MATRIX OF THE AGE PREDICTION MODEL (ACCURACY=77%,

RECALL=77%, PRECISION=77.8%)

Tr
ut

h

1-20 17.63% 5.89% 0.04% 0.09%

21-40 0.30% 42.17% 2.26% 0.17%

41-60 0.04% 6.96% 11.44% 2.05%

61-80 0.04% 1.02% 4.18% 5.72%

1-20 21-40 41-60 61-80

Predicted Age

simulations against databases sizes of 10, 50 and 100 people,
which are plausible database sizes for small or medium sized
companies.

To construct the synthetic databases with realistic demo-
graphics data, we relied on census data from the University
of California’s Adult Data Set for Machine Learning [34].
This dataset contains over 30,000 records of different types of
people including their demographic data (age, sex and race)
and the ratio of people believed to be represented by every
record. We used the latter weights to sample this dataset to
build the smaller databases of 10, 50 and 100. For every
person in each database, we then associated photos from the
UTKFace dataset [33] that matched their age, race and sex,
and used [32] to extract the corresponding facial embeddings
from these photos, while taking care not to ever re-use photos
that were part of the training data set. In order to suppress any
potential bias coming from the randomness, we repeated each
experiment with a new synthesized dataset 50 times.

Next, we used our models to predict the sex, age (in 20 year
ranges) and race from each embedding, and tried to match
the prediction results to people in the original database. By
comparing matched records to their corresponding ones in
the original database (the ground truth), we could find out
how many people’s demographic information were correctly
predicted. Also, as explained in Section IV, the smaller the
size of a person’s equivalence class is, the higher their risk of

TABLE III
CONFUSION MATRIX OF THE RACE PREDICTION MODEL

(ACCURACY=83.4%, RECALL=83.4%, PRECISION=95.2%)

Tr
ut

h

White 24.46% 0.47% 0.13% 0.60%

Black 3.03% 21.55% 0.04% 0.55%

Asian 2.60% 0.17% 22.28% 0.17%

Indian 4.61% 0.43% 0.38% 18.52%

White Black Asian Indian

Predicted Race

Fig. 2. The ROC curve for the sex prediction model (AUC=97.6%)

re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.

VII. CONCLUSION

In this paper we discussed potential privacy and security
risks associated with the widespread usage of facial recogni-
tion technologies, in particular the risks associated with pro-
cessing the concerned biometric identifiers. More specifically,
we focused on attack that aim to re-identify facial embeddings
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50 and 100, where the ratio of people falling in a unique
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ratio of people falling in an equivalence class of size 2-5 is
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There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
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never negligible.
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re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.
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re-identification. So to consider the risks involved with these
attacks, we measured the ratio of people falling in equivalence
classes of different sizes (1, 2-5, 6-10, 11-20 and 20+). As
stated above, we repeated this process 50 times for each
smaller database to get an averaged out result.

Figure 3 shows our findings regarding equivalence class
sizes. The most successful attacks can be carried out against
the smallest database of 10 people, where 16% of all records
fall in a unique equivalence class and are thus re-identified,
and an additional 33.4% of records fall in an equivalence class
of size 2-5, which still means considerable privacy risks. The
risks are present even in the case of the databases of size
50 and 100, where the ratio of people falling in a unique
equivalence class is 2.36% and 0.98% respectively, and the
ratio of people falling in an equivalence class of size 2-5 is
12.72% and 7.18% respectively.

There is a considerable risk of re-identification for many
people in all three database sizes simulated. If someone
was unique, then we considered that as a successful re-
identification. For the rest, the success of re-identification is
proportional to the equivalence class size. We used the follow-
ing metric to determine the overall risk of re-identification in
each database size. If we consider the size of an equivalence
class to be k, and the percentage of people that fall in that
equivalence class based on the prediction is P, then the re-
identification risk of that equivalence class is P/k. To get the
expected proportion of people re-identified, one has to sum
these values for all equivalence classes. In our experiments,
these values were 28.90% for the database of 10, 10.38% for
the database of 50, and 6.04% for the database of 100 people.

In conclusion, these results show that carrying out re-
identification attacks by using face embeddings is indeed
possible. Although as there are more people in the database,
success of the attack degrades, chances of re-identification are
never negligible.
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we focused on attack that aim to re-identify facial embeddings

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. Y, APRIL 2020 6

Fig. 3. The ratio of equivalence classes (EC) in the predicted databases (D)
for various database sizes. Values in parentheses show the expected proportion
of re-identified users.

based on using face embeddings to find out three key pieces
of demographics data about the data subjects.

Our goal was to examine the level of accuracy achievable in
predicting the sex, age and race from a face embedding. We
used a publicly available facial database labeled with these
demographic attributes to build a labeled training and testing
dataset, and we trained a Random Forest Classifier to predict
the sex, age and race from the embeddings.

Based on our findings, it is indeed possible to correctly
predict someone’s sex, age (within a 20 year range) and race
from a face embedding with high accuracies: our models
achieved a 90.9% accuracy score on sex prediction, a 83.4%
accuracy score on race prediction and a 77% accuracy score
on age prediction. As a result, we can consider our theory
proven and state that the storing and processing of unprotected
face embeddings pose considerable privacy risks as far as re-
identification attacks and sensitive data leakage are concerned.

As the final conclusion, we state that further research is
necessary to come up with privacy preserving ways to protect
embeddings. One idea is to modify the face embeddings in
such a way as to keep their utility (e.g. embeddings of the
same person should remain close to each other in the vector
space after the modification) while protecting them against
reverse engineering attacks to make inference more difficult.
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based on using face embeddings to find out three key pieces
of demographics data about the data subjects.

Our goal was to examine the level of accuracy achievable in
predicting the sex, age and race from a face embedding. We
used a publicly available facial database labeled with these
demographic attributes to build a labeled training and testing
dataset, and we trained a Random Forest Classifier to predict
the sex, age and race from the embeddings.

Based on our findings, it is indeed possible to correctly
predict someone’s sex, age (within a 20 year range) and race
from a face embedding with high accuracies: our models
achieved a 90.9% accuracy score on sex prediction, a 83.4%
accuracy score on race prediction and a 77% accuracy score
on age prediction. As a result, we can consider our theory
proven and state that the storing and processing of unprotected
face embeddings pose considerable privacy risks as far as re-
identification attacks and sensitive data leakage are concerned.

As the final conclusion, we state that further research is
necessary to come up with privacy preserving ways to protect
embeddings. One idea is to modify the face embeddings in
such a way as to keep their utility (e.g. embeddings of the
same person should remain close to each other in the vector
space after the modification) while protecting them against
reverse engineering attacks to make inference more difficult.
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predict someone’s sex, age (within a 20 year range) and race
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As the final conclusion, we state that further research is
necessary to come up with privacy preserving ways to protect
embeddings. One idea is to modify the face embeddings in
such a way as to keep their utility (e.g. embeddings of the
same person should remain close to each other in the vector
space after the modification) while protecting them against
reverse engineering attacks to make inference more difficult.

ACKNOWLEDGMENT

The research has been supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-
2017-00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and Infocommunica-
tions).

Project no. FIEK 16-1-2016-0007 has been implemented
with the support provided from the National Research, De-
velopment and Innovation Fund of Hungary, financed under
the Centre for Higher Education and Industrial Cooperation
- Research infrastructure development (FIEK 16) funding
scheme.

Icons made by Pixel perfect, fjstudio, Freepik, Pause08,
surang, Smashicons from www.flaticon.com.

REFERENCES

[1] L. Introna and H. Nissenbaum, “Facial recognition technology: a survey
of policy and implementation issues,” 2010.

[2] C. Castelluccia and D. Le Métayer Inria, “Impact analysis of facial
recognition,” Feb. 2020, working paper or preprint.

[3] “Facial recognition: for a debate living up to the challenges,” 2019.
[4] J. Goldenfein, “Facial recognition is only the beginning,” 2020.
[5] E. . E. D. P. Board, “Guidelines 3/2019 on processing of personal data

through video devices,” 2019.
[6] T. Macaulay, “Automated facial recognition breaches gdpr, says eu

digital chief,” 2020.
[7] S. Stolton, “Leak: Commission considers facial recognition ban in ai

‘white paper’,” 2020.
[8] E. Commission, “White paper on artificial intelligence: a european

approach to excellence and trust,” Tech. Rep., 02 2020.
[9] T. Macaulay, “Washington state passes microsoft-approved facial recog-

nition laws,” 2020.
[10] D. Lee, “San francisco is first us city to ban facial recognition,” 2019.
[11] FRA, “Facial recognition technology: fundamental rights considerations

in the context of law enforcement,” 2019.
[12] M. Kaya and H. Bilge, “Deep metric learning: A survey,”

Symmetry, vol. 11, p. 1066, 08 2019. [Online]. Available:
https://www.doi.org/10.3390/sym11091066

[13] G. Mai, K. Cao, P. C. Yuen, and A. K. Jain, “On the reconstruction
of face images from deep face templates,” p. 1188–1202, May 2019.
[Online]. Available: https://doi.org/10.1109/TPAMI.2018.2827389

[14] M. Gomez-Barrero and J. Galbally, “Reversing the irreversible: A survey
on inverse biometrics,” Computers & Security, vol. 90, p. 101700,
2020. [Online]. Available: https://doi.org/10.1016/j.cose.2019.101700

[15] L. Sirovich and M. Kirby, “Low-dimensional procedure for the
characterization of human faces,” Josa a, vol. 4, no. 3, pp. 519–524,
1987. [Online]. Available: https://www.doi.org/10.1364/josaa.4.000519

[16] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of
cognitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[17] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine
Learning Research, vol. 10, pp. 1755–1758, 2009.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778. [Online]. Available:
https://www.doi.org/10.1109/cvpr.2016.90

[19] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, Tech.
Rep. 07-49, October 2007.

[20] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jun 2015.
[Online]. Available: https://doi.org/10.1109/CVPR.2015.7298682

[21] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” in In NIPS. MIT
Press, 2006.

[22] E. Parliament and of the Council, “Regulation (eu) 2016/679 of the
european parliament and of the council of 27 april 2016 on the protection
of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing directive 95/46/ec
(general data protection regulation),” 2016.

[23] E. . E. P. R. Service, “Understanding algorithmic decision-making:
Opportunities and challenges,” 2019.

[24] X. Dong, K. Wong, Z. Jin, and J.-L. Dugelay, “A cancellable
face template scheme based on nonlinear multi-dimension spectral
hashing,” Cancun, MEXICO, 05 2019. [Online]. Available:
https://www.doi.org/10.1109/iwbf.2019.8739179

[25] L. Sweeney, “Simple demographics often identify people uniquely,”
2000, Working paper.

[26] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in Proc. of the 29th IEEE Symposium on Security and
Privacy. IEEE Computer Society, May 2008, pp. 111–125. [Online].
Available: https://www.doi.org/10.1109/SP.2008.33

[27] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,”
in 2009 30th IEEE Symposium on Security and Privacy, 2009, pp.
173–187. [Online]. Available: https://doi.org/10.1109/sp.2009.22

[28] Y.-A. de Montjoye, L. Radaelli, V. K. Singh, and A. “. Pentland,
“Unique in the shopping mall: On the reidentifiability of credit card
metadata,” Science, vol. 347, no. 6221, pp. 536–539, 2015. [Online].
Available: https://doi.org/10.1126/science.1256297

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. Y, APRIL 2020 6

Fig. 3. The ratio of equivalence classes (EC) in the predicted databases (D)
for various database sizes. Values in parentheses show the expected proportion
of re-identified users.

based on using face embeddings to find out three key pieces
of demographics data about the data subjects.

Our goal was to examine the level of accuracy achievable in
predicting the sex, age and race from a face embedding. We
used a publicly available facial database labeled with these
demographic attributes to build a labeled training and testing
dataset, and we trained a Random Forest Classifier to predict
the sex, age and race from the embeddings.

Based on our findings, it is indeed possible to correctly
predict someone’s sex, age (within a 20 year range) and race
from a face embedding with high accuracies: our models
achieved a 90.9% accuracy score on sex prediction, a 83.4%
accuracy score on race prediction and a 77% accuracy score
on age prediction. As a result, we can consider our theory
proven and state that the storing and processing of unprotected
face embeddings pose considerable privacy risks as far as re-
identification attacks and sensitive data leakage are concerned.

As the final conclusion, we state that further research is
necessary to come up with privacy preserving ways to protect
embeddings. One idea is to modify the face embeddings in
such a way as to keep their utility (e.g. embeddings of the
same person should remain close to each other in the vector
space after the modification) while protecting them against
reverse engineering attacks to make inference more difficult.

ACKNOWLEDGMENT

The research has been supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-
2017-00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and Infocommunica-
tions).

Project no. FIEK 16-1-2016-0007 has been implemented
with the support provided from the National Research, De-
velopment and Innovation Fund of Hungary, financed under
the Centre for Higher Education and Industrial Cooperation
- Research infrastructure development (FIEK 16) funding
scheme.

Icons made by Pixel perfect, fjstudio, Freepik, Pause08,
surang, Smashicons from www.flaticon.com.

REFERENCES

[1] L. Introna and H. Nissenbaum, “Facial recognition technology: a survey
of policy and implementation issues,” 2010.

[2] C. Castelluccia and D. Le Métayer Inria, “Impact analysis of facial
recognition,” Feb. 2020, working paper or preprint.

[3] “Facial recognition: for a debate living up to the challenges,” 2019.
[4] J. Goldenfein, “Facial recognition is only the beginning,” 2020.
[5] E. . E. D. P. Board, “Guidelines 3/2019 on processing of personal data

through video devices,” 2019.
[6] T. Macaulay, “Automated facial recognition breaches gdpr, says eu

digital chief,” 2020.
[7] S. Stolton, “Leak: Commission considers facial recognition ban in ai

‘white paper’,” 2020.
[8] E. Commission, “White paper on artificial intelligence: a european

approach to excellence and trust,” Tech. Rep., 02 2020.
[9] T. Macaulay, “Washington state passes microsoft-approved facial recog-

nition laws,” 2020.
[10] D. Lee, “San francisco is first us city to ban facial recognition,” 2019.
[11] FRA, “Facial recognition technology: fundamental rights considerations

in the context of law enforcement,” 2019.
[12] M. Kaya and H. Bilge, “Deep metric learning: A survey,”

Symmetry, vol. 11, p. 1066, 08 2019. [Online]. Available:
https://www.doi.org/10.3390/sym11091066

[13] G. Mai, K. Cao, P. C. Yuen, and A. K. Jain, “On the reconstruction
of face images from deep face templates,” p. 1188–1202, May 2019.
[Online]. Available: https://doi.org/10.1109/TPAMI.2018.2827389

[14] M. Gomez-Barrero and J. Galbally, “Reversing the irreversible: A survey
on inverse biometrics,” Computers & Security, vol. 90, p. 101700,
2020. [Online]. Available: https://doi.org/10.1016/j.cose.2019.101700

[15] L. Sirovich and M. Kirby, “Low-dimensional procedure for the
characterization of human faces,” Josa a, vol. 4, no. 3, pp. 519–524,
1987. [Online]. Available: https://www.doi.org/10.1364/josaa.4.000519

[16] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of
cognitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[17] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine
Learning Research, vol. 10, pp. 1755–1758, 2009.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778. [Online]. Available:
https://www.doi.org/10.1109/cvpr.2016.90

[19] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, Tech.
Rep. 07-49, October 2007.

[20] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jun 2015.
[Online]. Available: https://doi.org/10.1109/CVPR.2015.7298682

[21] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” in In NIPS. MIT
Press, 2006.

[22] E. Parliament and of the Council, “Regulation (eu) 2016/679 of the
european parliament and of the council of 27 april 2016 on the protection
of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing directive 95/46/ec
(general data protection regulation),” 2016.

[23] E. . E. P. R. Service, “Understanding algorithmic decision-making:
Opportunities and challenges,” 2019.

[24] X. Dong, K. Wong, Z. Jin, and J.-L. Dugelay, “A cancellable
face template scheme based on nonlinear multi-dimension spectral
hashing,” Cancun, MEXICO, 05 2019. [Online]. Available:
https://www.doi.org/10.1109/iwbf.2019.8739179

[25] L. Sweeney, “Simple demographics often identify people uniquely,”
2000, Working paper.

[26] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in Proc. of the 29th IEEE Symposium on Security and
Privacy. IEEE Computer Society, May 2008, pp. 111–125. [Online].
Available: https://www.doi.org/10.1109/SP.2008.33

[27] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,”
in 2009 30th IEEE Symposium on Security and Privacy, 2009, pp.
173–187. [Online]. Available: https://doi.org/10.1109/sp.2009.22

[28] Y.-A. de Montjoye, L. Radaelli, V. K. Singh, and A. “. Pentland,
“Unique in the shopping mall: On the reidentifiability of credit card
metadata,” Science, vol. 347, no. 6221, pp. 536–539, 2015. [Online].
Available: https://doi.org/10.1126/science.1256297

references

 [1] L. Introna and H. Nissenbaum, “Facial recognition technology: a 
survey of policy and implementation issues,” 2010.

 [2] C. Castelluccia and D. Le Métayer Inria, “Impact analysis of facial 
recognition,” Feb. 2020, working paper or preprint.

 [3] “Facial recognition: for a debate living up to the challenges,” 2019.
 [4] J. Goldenfein, “Facial recognition is only the beginning,” 2020.
 [5] E. . E. D. P. Board, “Guidelines 3/2019 on processing of personal data 

through video devices,” 2019.
 [6] T. Macaulay, “Automated facial recognition breaches gdpr, says eu 

digital chief,” 2020.
 [7] S. Stolton, “Leak: Commission considers facial recognition ban in ai 

‘white paper’,” 2020.
 [8] E. Commission, “White paper on artificial intelligence: a european 

approach to excellence and trust,” Tech. Rep., 02 2020.
 [9] T. Macaulay, “Washington state passes microsoft-approved facial 

recognition laws,” 2020.
 [10] D. Lee, “San francisco is first us city to ban facial recognition,” 2019.
 [11] FRA, “Facial recognition technology: fundamental rights 

considerations in the context of law enforcement,” 2019.
[12] M. Kaya and H. Bilge, “Deep metric learning: A survey,” Symmetry, 

vol. 11, p. 1066, 08 2019. [Online]. Available:
  doi: 10.3390/sym11091066
[13] G. Mai, K. Cao, P. C. Yuen, and A. K. Jain, “On the reconstruction of 

face images from deep face templates,” p. 1188–1202, May 2019.
  [Online]. Available: doi: 10.1109/TPAMI.2018.2827389
[14] M. Gomez-Barrero and J. Galbally, “Reversing the irreversible: A 

survey on inverse biometrics,” Computers & Security, vol. 90, p. 
101700, 2020. [Online]. Available: doi: 10.1016/j.cose.2019.101700

[15] L. Sirovich and M. Kirby, “Low-dimensional procedure for the 
characterization of human faces,” Josa a, vol. 4, no. 3, pp. 519–524, 
1987. [Online]. Available: doi: 10.1364/josaa.4.000519

[16] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of 
cognitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[17] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of 
Machine Learning Research, vol. 10, pp. 1755–1758, 2009.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning 
for image recognition,” in Proceedings of the IEEE conference 
on computer vision and pattern recognition, 2016, pp. 770–778. 
[Online]. Available: doi: 10.1109/cvpr.2016.90

[19] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled 
faces in the wild: A database for studying face recognition in 
unconstrained environments,” University of Massachusetts, Amherst, 
Tech. Rep. 07-49, October 2007.

[20] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified 
embedding for face recognition and clustering,” 2015 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 
Jun 2015. [Online]. Available: doi: 10.1109/CVPR.2015.7298682

[21] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning 
for large margin nearest neighbor classification,” in In NIPS. MIT 
Press, 2006.

[22] E. Parliament and of the Council, “Regulation (eu) 2016/679 of 
the european parliament and of the council of 27 april 2016 on the 
protection of natural persons with regard to the processing of personal 
data and on the free movement of such data, and repealing directive 
95/46/ec (general data protection regulation),” 2016.

[23] E. . E. P. R. Service, “Understanding algorithmic decision-making: 
Opportunities and challenges,” 2019.

[24] X. Dong, K. Wong, Z. Jin, and J.-L. Dugelay, “A cancellable face 
template scheme based on nonlinear multi-dimension spectral 
hashing,” Cancun, MEXICO, 05 2019. [Online]. Available:   
doi: 10.1109/iwbf.2019.8739179

[25] L. Sweeney, “Simple demographics often identify people uniquely,” 
2000, Working paper.

[26] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large 
sparse datasets,” in Proc. of the 29th IEEE Symposium on Security and 
Privacy. IEEE Computer Society, May 2008, pp. 111–125. [Online]. 
Available: doi: 10.1109/SP.2008.33

https://www.doi.org/10.3390/sym11091066
https://doi.org/10.1109/TPAMI.2018.2827389
https://doi.org/10.1016/j.cose.2019.101700
https://www.doi.org/10.1364/josaa.4.000519
https://www.doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/CVPR.2015.7298682
https://www.doi.org/10.1109/iwbf.2019.8739179
https://www.doi.org/10.1109/SP.2008.33


De-anonymizing Facial Recognition Embeddings

AUGUST 2020 • VOLUME XII • NUMBER 256

INFOCOMMUNICATIONS JOURNAL

István Fábián is a technical assistant at the Budapest 
University of Technology and Economics (BME) since 
2019. He is a member of the Balatonfüred Student 
Research Group. His research interests include privacy 
and security in machine learning, and he is also working 
on projects related to IoT and Industry 4.0 in the BME 
Technology Center. 

Gábor György Gulyás has been involved with 
Privacy Enhancing Technologies since 2005. In 2015 
he obtained the degree of PhD Budapest University 
of Technology and Economics (BME). The focus of 
his thesis was on how privacy and anonymity could 
be preserved in social networks against largescale re-
identification attacks. Between 2015 and 2018 he was 
a PostDoc and Research Engineer in the Privatics team 
at INRIA (France). There, he was working on research 

projects related to web privacy and at the intersection of machine learning and 
privacy. Since 2019 he is a research fellow at BME with a special focus on 
(but not limited to) the privacy issues related to the IoT and machine learning 
technologies.

[27] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” 
in 2009 30th IEEE Symposium on Security and Privacy, 2009, pp. 
173–187. [Online]. Available: doi: 10.1109/sp.2009.22

[28] Y.-A. de Montjoye, L. Radaelli, V. K. Singh, and A. “. Pentland, 
“Unique in the shopping mall: On the reidentifiability of credit card 
metadata,” Science, vol. 347, no. 6221, pp. 536–539, 2015. [Online]. 
Available: doi: 10.1126/science.1256297 

[29] T. Oliphant, “NumPy: A guide to NumPy,” USA: Trelgol Publishing, 
2006.

[30] W. McKinney, “Data structures for statistical computing in python,” 
in Proceedings of the 9th Python in Science Conference, vol. 445. 
Austin, TX, 2010, pp. 51–56. [Online]. Available: 

  doi: 10.25080/majora-92bf1922-00a
[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, 

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., 
“Scikit-learn: Machine learning in python,” Journal of machine 
learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[32] A. Geitgey, “face recognition: The world’s simplest facial recognition 
api for python and the command line,” 2020.

[33] Y. Zhang Zhifei, Song and H. Qi, “Age progression/regression 
by conditional adversarial autoencoder,” in IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. 
[Online]. Available: doi: 10.1109/cvpr.2017.463

[34] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

1

Adapting IT Algorithms and Protocols to an
Intelligent Urban Traffic Control
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Abstract—Autonomous vehicles, communicating with each
other and with the urban infrastructure as well, open opportunity
to introduce new, complex and effective behaviours to the
intelligent traffic systems. Such systems can be perceived quite
naturally as hierarchically built intelligent multi-agent systems,
with the decision making based upon well-defined and profoundly
tested mathematical algorithms, borrowed e.g. from the field of
information technology.

In this article, two examples of how to adapt such algorithms
to the intelligent urban traffic are presented. Since the optimal
and fair timing of the traffic lights is crucial in the traffic
control, we show how a simple Round-Robin scheduler and
Minimal Destination Distance First scheduling (adaptation of
the theoretically optimal Shortest Job First scheduler) were
implemented and tested for traffic light control. Another example
is the mitigation of the congested traffic using the analogy of the
Explicit Congestion Notification (ECN) protocol of the computer
networks. We show that the optimal scheduling based traffic light
control can handle roughly the same complexity of the traffic as
the traditional light programs in the nominal case. However,
in extraordinary and especially fastly evolving situations, the
intelligent solutions can clearly outperform the traditional ones.
The ECN based method can successfully limit the traffic flowing
through bounded areas. That way the number of passing-through
vehicles in e.g. residential areas may be reduced, making them
more comfortable congestion-free zones in a city.

Index Terms—intelligent traffic control, connected vehicles,
congestion notification, Intelligent Transportation Systems (ITS),
Intelligent Traffic Light System (ITLS)

I. INTRODUCTION

AS our vehicles become more and more sophisticated (up
to being self-driving and autonomous, smart cars for

convenience) and the traffic infrastructure itself also evolves,
communication between smart cars (V2V), or between smart
cars and various parts of the infrastructure (V2I), or even
between various elements of the infrastructure (intersections,
parking lots, etc.) is no longer a fiction. If the infrastructure
and the smart cars are also capable of cooperative actions
by following the exchanged communication messages, it is
possible to form intelligent multi-agent systems to improve
road safety, reduce traveling times, costs and pollution, or
even to mitigate congestion as well. For more details, see
Section III.

However, the internal behavior (the decision making) of
these agents has to be defined. Among others such agents have

The research has been supported in part by the BME – Artificial Intelligence
FIKP grant of EMMI (BME FIKP-MI/SC) and in part by the European
Union, co-financed by the European Social Fund (EFOP-3.6.2-16-2017-00013,
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to calculate answers to the e.g. following questions: Would
it be beneficial for a smart car to join a group of cars in
front of it? When should an intelligent traffic light provide a
green-light for a particular platoon of smart cars? When shall
an intelligent traffic light ask one of its neighbor junctions
to reduce its output to prevent congestion? To be able to
answer these questions, Round-Robin, Minimal Destination
Distance First, and Explicit Congestion Notification protocols
are proposed in Section IV. When we defined these methods,
we had the presumption that every vehicle in the traffic are
autonomous and can communicate with each other.

Besides integrating various components of an intelligent
transportation system into a hierarchical multi-agent system,
adopting the aforementioned protocols to the road traffic
domain, especially the ECN protocol, is the principal novelty
in our research. The proposed solutions were also tested by
simulations of different (hopefully realistic) scenarios, using
the Eclipse SUMO microscopic traffic simulator tool [1]. The
measurements and their results are summarized in Section V.

II. LITERATURE REVIEW

As the first coordinated traffic lights were created more than
one hundred years ago [2], the literature of traffic control
contains many interesting articles, books, and lecture-notes.
Even though this is a well-researched area, perhaps the major
problem of transportation, the congestion, still exists.

Traffic signal coordination, green-waves, are nowadays
mainly created by methods depending on analyzing statistical
data, like TRANSYT and SCOOT [3]. Since those algorithms
were created decades ago, they might not be able to handle
the problems of today’s traffic. Thus, it may be helpful to
implement new, intelligent methods into the traffic lights. One
of these approaches may be the usage of Minimal Destination
Distance First [4] control which is analogous to the theoret-
ically optimal scheduling algorithm, called the shortest job
first. Unfortunately, this method is unfair on its own, therefore
it shall be modified to use it in real-life [5].

It is natural to treat the participants of urban traffic (e.g.
vehicles, infrastructural elements, traffic lights, etc.) as a multi-
agent system. In this framework, novel ideas can also be
experimented with, such as a time-slot booking to pass through
at the intersections, explained in [6]. Unfortunately, there is
no guarantee that a smart vehicle will arrive on-time to a
certain intersection, but this method contains the possibility to
withdraw the already posted bookings. The problem is that the
state-space of such a system can be enormous, therefore this
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