
Sidecar based resource estimation method for
virtualized environments

DOI: 10.36244/ICJ.2020.2.1

AUGUST 2020 • VOLUME XII • NUMBER 24

INFOCOMMUNICATIONS JOURNAL

Sidecar based resource estimation method for
virtualized environments

Csaba Simon1, Markosz Maliosz2, Miklós Máté3, Dávid Balla4, and Kristóf Torma5

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

A. Virtualization technologies
Virtualization is a technology that introduces a layer of

abstraction between computing, storage and networking
hardware, and the applications running on it. Thus, the
underlying physical resources (CPU, memory, disk and
network) are shared, and there can be multiple systems (or
virtual machines - VMs) running simultaneously and
concurrently on the same host. There are several approaches to
implement virtualization, but in modern cloud systems there
are two alternatives that are used: the host-based and the
operating system level virtualizations.

The Kernel-based Virtual Machine (KVM) is a hypervisor
module of the Linux kernel [3]. It allows running guest
operating systems in a virtualized environment. The KVM
kernel module is only a hypervisor, the virtual devices,
networking etc. must be supplied to the VM by the
virtualization program, and the most widely known one is
QEMU [4]. QEMU implements CPU emulation in software,
but its qemu-kvm extension uses KVM instead of its soft-cpu
implementation. Finally, we may use libvirt library [5]
manage VMs, including cgroup policy groups for resource
policy control [6]. Since cgroups is a powerful and important
mechanism used by us also for both VM and container
resource control, we describe it in detail in the following
section.

The operating system level virtualization, also known as
containerization, does not virtualize the host hardware as other
types do. Instead, it virtualizes the kernel of the host. Opposed
to the host-based virtualization, the containers do not need a
hypervisor, instead they run directly within the host machine’s
kernel. The isolation and resource control tasks are assured by
the namespaces [7] and control group (cgroup) [6]
mechanisms of the kernel, respectively. The most well-known
container technology is Docker [8]. An important technology
within the container ecosystem is Kubernetes [9], a container
management framework. Kubernetes extends the process-
oriented approach of Docker and focuses on services instead.
In Kubernetes, the service is implemented by a set of
connected containers, called pods. In Kubernetes, the pods are
the basic unit of scaling, and per-pod resource usage pattern
can be specified.

The resource usage of a Linux system by default is
governed by cgroups. The CPU scheduler of Linux shares the
CPU time among the process groups according to their
cpu.shares value; the default value is 1024. E.g., if there is one
CPU, and two groups want to use it fully, by default they both
get 50% share of the CPU. If we change the shares of one
group to 512, that group will receive 33%, and the other will
receive 66%. This division happens hierarchically: the sub-
groups receive the CPU percentage of their parent group.
When Docker is active on the host, it inserts its own slice,
named docker. Similarly, QEMU based VMs get their own
top-level slice, called machine-slice. As a consequence,
Docker containers and KVM/QEMU VMs are handled in
isolated resource buckets (cgroup slices) by the host-level
cgroups scheduler. Kubernetes has its own mechanism that
configures the resource reservation quotas of the containers

started in its pods [10]. In our paper we use the so called
burstable mechanism, where each container specifies its
resource usage intent (request) but lets the Kubernetes
framework to scale the resources according to the total
available set. Then Kubernetes makes sure that the allocated
resources to different containers keep the ratio of the declared
requests.

B. Related work
The authors publishing in this field mostly focused their

efforts on providing a working solution to address the
monitoring needs of the cloud native telecom systems that
emerged since the beginning of the 2010s. As part of these
efforts, several solutions were proposed to provide accurate
resource usage in cloud native telecom systems. Paper [1]
introduces a complete monitoring framework for cloud native
5G systems. Still, it considers that the access to the physical
node metrics is granted.

A more academic approach is followed in [11], where
realtime prediction and long term forecasting is used to
support the autoscaling process for container-based telecom
microservices. The authors exploit the specific nature of
typical telecom services due to the repetitive nature of human
behavior. Still, this approach relies on generic Kubernetes
monitoring technologies and the author's custom monitoring
container, if they have access to the real performance data
from the underlying host system.

Several works analyze the statistical characteristics of the
observed resource usage parameters for the VNFs and infer
the availability and sufficiency of the resources in the system
based on these. A good example of these works is [12], where
the skewness of the probability distribution of per VNF CPU
usage is used as an indicator of system-wide resource
availability. The authors show that their proposal can be used
to provide automatic notifications in case of system overload.
Nevertheless, this approach also requires the access of host
level information or Docker API at the host.

The above cited articles [1][11][12] are representative for
the prior work in this field. Due to lack of space we do not
offer further insight into other proposals, but the interested
reader is referred to the related work sections of these papers
in order to get a wider knowledge of the state of art in this
area. Our solution will differ from these, since our novel
approach avoids any use of any information that may be
obtained from the host.

As already described above, the resource monitoring
approaches observed several parameters when tried to model
the available resource sets, not only the CPU usage. This gave
us the idea to verify if exists such a parameter that can be
measured from inside the virtualized space and is a good
indicator of the available resources (e.g., CPU power). Based
on our literature survey we have seen that the service
completion times, the resources consumption (i.e., the
allocated resources, if the service uses all available resources)
and the user demands are strongly dependent on each other.
We found that relevant works were published since the mid-
2000s and mostly relate to the field of BigData. A good

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—The widespread use of virtualization technologies in

telecommunication system resulted in series of benefits, as
flexibility, agility and increased resource usage efficiency.
Nevertheless, the use of Virtualized Network Functions (VNF) in
virtualized modules (e.g., containers, virtual machines) also
means that some legacy mechanisms that are crucial for a telco
grade operation are no longer efficient. Specifically, the
monitoring of the resource sets (e.g., CPU power, memory
capacity) allocated to VNFs cannot rely anymore on the methods
developed for earlier deployment scenarios. Even the recent
monitoring solutions designed for cloud environments is
rendered useless if the VNF vendor and the telco solution
supplier has to deploy its product into a virtualized environment,
since it does not have access to the host level monitoring tools. In
this paper we propose a sidecar-based solution to evaluate the
resources available for a virtualized process. We evaluated the
accuracy of our proposal in a proof of concept deployment, using
KVM, Docker and Kubernetes virtualization technologies,
respectively. We show that our proposal can provide real
monitoring data and discuss its applicability.

Index Terms—Computer network management, Network
function virtualization.

I. INTRODUCTION

ODERN, high performance telecommunication software
is implemented as a collection of stateless microservices

for maximum scalability and fault-tolerance. These
microservices have so far been running in controlled
environments with known performance characteristics. In the
near future, however, these systems must be able to work in
any environment, even in heterogeneous ones, and ones with
volatile resource availability [1]. Moreover, in a virtualized
environment the available resources reported by the system
may not accurately reflect the amount of resources that are
physically available. Therefore, if the telecommunication
systems want to perform load balancing, autoscaling or
overload prediction, these applications need to measure their
own performance, report it to the framework to provide
sufficient information to deduce the available resources.

Porting such measurement tasks onto stateless microservice
applications is challenging, since new resource monitoring
approach should be applied in order to circumvent the
resource estimation ambiguity. In this paper we examined the
feasibility of using a separate measurement application for the

The authors are with HSNLab, Dept. of Telecommunications and Media
Informatics, Budapest University of Technology and Economics, Budapest,
Hungary. E-mail: {simon|maliosz|mate|balla|torma}@tmit.bme.hu.

estimation of the available resources. This measurement
application runs in a container or a virtual machine separate
from the main telecommunication application. This
configuration is called “sidecar” to reflect on the similarities
with attaching a sidecar to a motorbike and is a well-known
usage pattern in virtualized computing systems [2].

The main goal of this paper is to validate the feasibility of
performance measurements from a sidecar. In this paper we
focus on telecommunication (telco) applications that,
compared to generic webservices, must fulfill much stricter
Service Level Agreements, and they are much vulnerable to
insufficient (or less than agreed) resource sets. Therefore a
correct evaluation of the resources available for a given telco
app is crucial to operate within the agreed parameters. In
principle, increasing resource usage by the telco application
results in degraded computing performance in the sidecar, but
the sensitivity and the accuracy of this method were
previously unknown. In order to eliminate the dependency on
(potentially) bogus CPU usage resource reporting available
from inside a virtualized space, we monitored the completion
time of a reference task as the main indicator of the computing
performance of the underlying infrastructure.

In the next Section we present the technologies used in the
investigated virtualized environments, present a problem
statement and a literature survey. In Section III we introduce
our proposal and present a proof of concept deployment of our
proposal, based on which we present a detailed measurement-
based evaluation of it. In Section IV we discuss the possible
limitations and the applicability of our proposal and finally we
conclude our work.

II. RELATED WORK

In this section we present the virtualization aspects of the
infrastructure that are relevant to our work first. To the best of
our knowledge, our approach described in this paper was not
published before. Still, the wider topic of performance
monitoring aspects of virtualized applications has been
intensively investigated in the last decade and has a vast
literature. In the related work part of this section we present
the typical approaches to mitigate the performance monitoring
problem of telecommunication systems deploying Virtualized
Network Functions (VNFs). We also present a set of works
that inspired us to use service completion times to characterize
the resource set available to an application.

Sidecar based resource estimation method for
virtualized environments

Csaba Simon, Markosz Maliosz, Miklós Máté, Dávid Balla, Kristóf Torma

M

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—The widespread use of virtualization technologies in

telecommunication system resulted in series of benefits, as
flexibility, agility and increased resource usage efficiency.
Nevertheless, the use of Virtualized Network Functions (VNF) in
virtualized modules (e.g., containers, virtual machines) also
means that some legacy mechanisms that are crucial for a telco
grade operation are no longer efficient. Specifically, the
monitoring of the resource sets (e.g., CPU power, memory
capacity) allocated to VNFs cannot rely anymore on the methods
developed for earlier deployment scenarios. Even the recent
monitoring solutions designed for cloud environments is
rendered useless if the VNF vendor and the telco solution
supplier has to deploy its product into a virtualized environment,
since it does not have access to the host level monitoring tools. In
this paper we propose a sidecar-based solution to evaluate the
resources available for a virtualized process. We evaluated the
accuracy of our proposal in a proof of concept deployment, using
KVM, Docker and Kubernetes virtualization technologies,
respectively. We show that our proposal can provide real
monitoring data and discuss its applicability.

Index Terms—Computer network management, Network
function virtualization.

I. INTRODUCTION

ODERN, high performance telecommunication software
is implemented as a collection of stateless microservices

for maximum scalability and fault-tolerance. These
microservices have so far been running in controlled
environments with known performance characteristics. In the
near future, however, these systems must be able to work in
any environment, even in heterogeneous ones, and ones with
volatile resource availability [1]. Moreover, in a virtualized
environment the available resources reported by the system
may not accurately reflect the amount of resources that are
physically available. Therefore, if the telecommunication
systems want to perform load balancing, autoscaling or
overload prediction, these applications need to measure their
own performance, report it to the framework to provide
sufficient information to deduce the available resources.

Porting such measurement tasks onto stateless microservice
applications is challenging, since new resource monitoring
approach should be applied in order to circumvent the
resource estimation ambiguity. In this paper we examined the
feasibility of using a separate measurement application for the

The authors are with HSNLab, Dept. of Telecommunications and Media
Informatics, Budapest University of Technology and Economics, Budapest,
Hungary. E-mail: {simon|maliosz|mate|balla|torma}@tmit.bme.hu.

estimation of the available resources. This measurement
application runs in a container or a virtual machine separate
from the main telecommunication application. This
configuration is called “sidecar” to reflect on the similarities
with attaching a sidecar to a motorbike and is a well-known
usage pattern in virtualized computing systems [2].

The main goal of this paper is to validate the feasibility of
performance measurements from a sidecar. In this paper we
focus on telecommunication (telco) applications that,
compared to generic webservices, must fulfill much stricter
Service Level Agreements, and they are much vulnerable to
insufficient (or less than agreed) resource sets. Therefore a
correct evaluation of the resources available for a given telco
app is crucial to operate within the agreed parameters. In
principle, increasing resource usage by the telco application
results in degraded computing performance in the sidecar, but
the sensitivity and the accuracy of this method were
previously unknown. In order to eliminate the dependency on
(potentially) bogus CPU usage resource reporting available
from inside a virtualized space, we monitored the completion
time of a reference task as the main indicator of the computing
performance of the underlying infrastructure.

In the next Section we present the technologies used in the
investigated virtualized environments, present a problem
statement and a literature survey. In Section III we introduce
our proposal and present a proof of concept deployment of our
proposal, based on which we present a detailed measurement-
based evaluation of it. In Section IV we discuss the possible
limitations and the applicability of our proposal and finally we
conclude our work.

II. RELATED WORK

In this section we present the virtualization aspects of the
infrastructure that are relevant to our work first. To the best of
our knowledge, our approach described in this paper was not
published before. Still, the wider topic of performance
monitoring aspects of virtualized applications has been
intensively investigated in the last decade and has a vast
literature. In the related work part of this section we present
the typical approaches to mitigate the performance monitoring
problem of telecommunication systems deploying Virtualized
Network Functions (VNFs). We also present a set of works
that inspired us to use service completion times to characterize
the resource set available to an application.

Sidecar based resource estimation method for
virtualized environments

Csaba Simon, Markosz Maliosz, Miklós Máté, Dávid Balla, Kristóf Torma

M

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

A. Virtualization technologies
Virtualization is a technology that introduces a layer of

abstraction between computing, storage and networking
hardware, and the applications running on it. Thus, the
underlying physical resources (CPU, memory, disk and
network) are shared, and there can be multiple systems (or
virtual machines - VMs) running simultaneously and
concurrently on the same host. There are several approaches to
implement virtualization, but in modern cloud systems there
are two alternatives that are used: the host-based and the
operating system level virtualizations.

The Kernel-based Virtual Machine (KVM) is a hypervisor
module of the Linux kernel [3]. It allows running guest
operating systems in a virtualized environment. The KVM
kernel module is only a hypervisor, the virtual devices,
networking etc. must be supplied to the VM by the
virtualization program, and the most widely known one is
QEMU [4]. QEMU implements CPU emulation in software,
but its qemu-kvm extension uses KVM instead of its soft-cpu
implementation. Finally, we may use libvirt library [5]
manage VMs, including cgroup policy groups for resource
policy control [6]. Since cgroups is a powerful and important
mechanism used by us also for both VM and container
resource control, we describe it in detail in the following
section.

The operating system level virtualization, also known as
containerization, does not virtualize the host hardware as other
types do. Instead, it virtualizes the kernel of the host. Opposed
to the host-based virtualization, the containers do not need a
hypervisor, instead they run directly within the host machine’s
kernel. The isolation and resource control tasks are assured by
the namespaces [7] and control group (cgroup) [6]
mechanisms of the kernel, respectively. The most well-known
container technology is Docker [8]. An important technology
within the container ecosystem is Kubernetes [9], a container
management framework. Kubernetes extends the process-
oriented approach of Docker and focuses on services instead.
In Kubernetes, the service is implemented by a set of
connected containers, called pods. In Kubernetes, the pods are
the basic unit of scaling, and per-pod resource usage pattern
can be specified.

The resource usage of a Linux system by default is
governed by cgroups. The CPU scheduler of Linux shares the
CPU time among the process groups according to their
cpu.shares value; the default value is 1024. E.g., if there is one
CPU, and two groups want to use it fully, by default they both
get 50% share of the CPU. If we change the shares of one
group to 512, that group will receive 33%, and the other will
receive 66%. This division happens hierarchically: the sub-
groups receive the CPU percentage of their parent group.
When Docker is active on the host, it inserts its own slice,
named docker. Similarly, QEMU based VMs get their own
top-level slice, called machine-slice. As a consequence,
Docker containers and KVM/QEMU VMs are handled in
isolated resource buckets (cgroup slices) by the host-level
cgroups scheduler. Kubernetes has its own mechanism that
configures the resource reservation quotas of the containers

started in its pods [10]. In our paper we use the so called
burstable mechanism, where each container specifies its
resource usage intent (request) but lets the Kubernetes
framework to scale the resources according to the total
available set. Then Kubernetes makes sure that the allocated
resources to different containers keep the ratio of the declared
requests.

B. Related work
The authors publishing in this field mostly focused their

efforts on providing a working solution to address the
monitoring needs of the cloud native telecom systems that
emerged since the beginning of the 2010s. As part of these
efforts, several solutions were proposed to provide accurate
resource usage in cloud native telecom systems. Paper [1]
introduces a complete monitoring framework for cloud native
5G systems. Still, it considers that the access to the physical
node metrics is granted.

A more academic approach is followed in [11], where
realtime prediction and long term forecasting is used to
support the autoscaling process for container-based telecom
microservices. The authors exploit the specific nature of
typical telecom services due to the repetitive nature of human
behavior. Still, this approach relies on generic Kubernetes
monitoring technologies and the author's custom monitoring
container, if they have access to the real performance data
from the underlying host system.

Several works analyze the statistical characteristics of the
observed resource usage parameters for the VNFs and infer
the availability and sufficiency of the resources in the system
based on these. A good example of these works is [12], where
the skewness of the probability distribution of per VNF CPU
usage is used as an indicator of system-wide resource
availability. The authors show that their proposal can be used
to provide automatic notifications in case of system overload.
Nevertheless, this approach also requires the access of host
level information or Docker API at the host.

The above cited articles [1][11][12] are representative for
the prior work in this field. Due to lack of space we do not
offer further insight into other proposals, but the interested
reader is referred to the related work sections of these papers
in order to get a wider knowledge of the state of art in this
area. Our solution will differ from these, since our novel
approach avoids any use of any information that may be
obtained from the host.

As already described above, the resource monitoring
approaches observed several parameters when tried to model
the available resource sets, not only the CPU usage. This gave
us the idea to verify if exists such a parameter that can be
measured from inside the virtualized space and is a good
indicator of the available resources (e.g., CPU power). Based
on our literature survey we have seen that the service
completion times, the resources consumption (i.e., the
allocated resources, if the service uses all available resources)
and the user demands are strongly dependent on each other.
We found that relevant works were published since the mid-
2000s and mostly relate to the field of BigData. A good

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—The widespread use of virtualization technologies in

telecommunication system resulted in series of benefits, as
flexibility, agility and increased resource usage efficiency.
Nevertheless, the use of Virtualized Network Functions (VNF) in
virtualized modules (e.g., containers, virtual machines) also
means that some legacy mechanisms that are crucial for a telco
grade operation are no longer efficient. Specifically, the
monitoring of the resource sets (e.g., CPU power, memory
capacity) allocated to VNFs cannot rely anymore on the methods
developed for earlier deployment scenarios. Even the recent
monitoring solutions designed for cloud environments is
rendered useless if the VNF vendor and the telco solution
supplier has to deploy its product into a virtualized environment,
since it does not have access to the host level monitoring tools. In
this paper we propose a sidecar-based solution to evaluate the
resources available for a virtualized process. We evaluated the
accuracy of our proposal in a proof of concept deployment, using
KVM, Docker and Kubernetes virtualization technologies,
respectively. We show that our proposal can provide real
monitoring data and discuss its applicability.

Index Terms—Computer network management, Network
function virtualization.

I. INTRODUCTION

ODERN, high performance telecommunication software
is implemented as a collection of stateless microservices

for maximum scalability and fault-tolerance. These
microservices have so far been running in controlled
environments with known performance characteristics. In the
near future, however, these systems must be able to work in
any environment, even in heterogeneous ones, and ones with
volatile resource availability [1]. Moreover, in a virtualized
environment the available resources reported by the system
may not accurately reflect the amount of resources that are
physically available. Therefore, if the telecommunication
systems want to perform load balancing, autoscaling or
overload prediction, these applications need to measure their
own performance, report it to the framework to provide
sufficient information to deduce the available resources.

Porting such measurement tasks onto stateless microservice
applications is challenging, since new resource monitoring
approach should be applied in order to circumvent the
resource estimation ambiguity. In this paper we examined the
feasibility of using a separate measurement application for the

The authors are with HSNLab, Dept. of Telecommunications and Media
Informatics, Budapest University of Technology and Economics, Budapest,
Hungary. E-mail: {simon|maliosz|mate|balla|torma}@tmit.bme.hu.

estimation of the available resources. This measurement
application runs in a container or a virtual machine separate
from the main telecommunication application. This
configuration is called “sidecar” to reflect on the similarities
with attaching a sidecar to a motorbike and is a well-known
usage pattern in virtualized computing systems [2].

The main goal of this paper is to validate the feasibility of
performance measurements from a sidecar. In this paper we
focus on telecommunication (telco) applications that,
compared to generic webservices, must fulfill much stricter
Service Level Agreements, and they are much vulnerable to
insufficient (or less than agreed) resource sets. Therefore a
correct evaluation of the resources available for a given telco
app is crucial to operate within the agreed parameters. In
principle, increasing resource usage by the telco application
results in degraded computing performance in the sidecar, but
the sensitivity and the accuracy of this method were
previously unknown. In order to eliminate the dependency on
(potentially) bogus CPU usage resource reporting available
from inside a virtualized space, we monitored the completion
time of a reference task as the main indicator of the computing
performance of the underlying infrastructure.

In the next Section we present the technologies used in the
investigated virtualized environments, present a problem
statement and a literature survey. In Section III we introduce
our proposal and present a proof of concept deployment of our
proposal, based on which we present a detailed measurement-
based evaluation of it. In Section IV we discuss the possible
limitations and the applicability of our proposal and finally we
conclude our work.

II. RELATED WORK

In this section we present the virtualization aspects of the
infrastructure that are relevant to our work first. To the best of
our knowledge, our approach described in this paper was not
published before. Still, the wider topic of performance
monitoring aspects of virtualized applications has been
intensively investigated in the last decade and has a vast
literature. In the related work part of this section we present
the typical approaches to mitigate the performance monitoring
problem of telecommunication systems deploying Virtualized
Network Functions (VNFs). We also present a set of works
that inspired us to use service completion times to characterize
the resource set available to an application.

Sidecar based resource estimation method for
virtualized environments

Csaba Simon, Markosz Maliosz, Miklós Máté, Dávid Balla, Kristóf Torma

M

1,2,3,4,5The authors are with HSNLab, Dept. of Telecommunications and Media
Informatics, Budapest University of Technology and Economics, Budapest,
Hungary. E-mail: {simon, maliosz, mate, balla, torma}@tmit.bme.hu.

4,5 BME Balatonfüred Student Research Group, Hungary

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—The widespread use of virtualization technologies in

telecommunication system resulted in series of benefits, as
flexibility, agility and increased resource usage efficiency.
Nevertheless, the use of Virtualized Network Functions (VNF) in
virtualized modules (e.g., containers, virtual machines) also
means that some legacy mechanisms that are crucial for a telco
grade operation are no longer efficient. Specifically, the
monitoring of the resource sets (e.g., CPU power, memory
capacity) allocated to VNFs cannot rely anymore on the methods
developed for earlier deployment scenarios. Even the recent
monitoring solutions designed for cloud environments is
rendered useless if the VNF vendor and the telco solution
supplier has to deploy its product into a virtualized environment,
since it does not have access to the host level monitoring tools. In
this paper we propose a sidecar-based solution to evaluate the
resources available for a virtualized process. We evaluated the
accuracy of our proposal in a proof of concept deployment, using
KVM, Docker and Kubernetes virtualization technologies,
respectively. We show that our proposal can provide real
monitoring data and discuss its applicability.

Index Terms—Computer network management, Network
function virtualization.

I. INTRODUCTION

ODERN, high performance telecommunication software
is implemented as a collection of stateless microservices

for maximum scalability and fault-tolerance. These
microservices have so far been running in controlled
environments with known performance characteristics. In the
near future, however, these systems must be able to work in
any environment, even in heterogeneous ones, and ones with
volatile resource availability [1]. Moreover, in a virtualized
environment the available resources reported by the system
may not accurately reflect the amount of resources that are
physically available. Therefore, if the telecommunication
systems want to perform load balancing, autoscaling or
overload prediction, these applications need to measure their
own performance, report it to the framework to provide
sufficient information to deduce the available resources.

Porting such measurement tasks onto stateless microservice
applications is challenging, since new resource monitoring
approach should be applied in order to circumvent the
resource estimation ambiguity. In this paper we examined the
feasibility of using a separate measurement application for the

The authors are with HSNLab, Dept. of Telecommunications and Media
Informatics, Budapest University of Technology and Economics, Budapest,
Hungary. E-mail: {simon|maliosz|mate|balla|torma}@tmit.bme.hu.

estimation of the available resources. This measurement
application runs in a container or a virtual machine separate
from the main telecommunication application. This
configuration is called “sidecar” to reflect on the similarities
with attaching a sidecar to a motorbike and is a well-known
usage pattern in virtualized computing systems [2].

The main goal of this paper is to validate the feasibility of
performance measurements from a sidecar. In this paper we
focus on telecommunication (telco) applications that,
compared to generic webservices, must fulfill much stricter
Service Level Agreements, and they are much vulnerable to
insufficient (or less than agreed) resource sets. Therefore a
correct evaluation of the resources available for a given telco
app is crucial to operate within the agreed parameters. In
principle, increasing resource usage by the telco application
results in degraded computing performance in the sidecar, but
the sensitivity and the accuracy of this method were
previously unknown. In order to eliminate the dependency on
(potentially) bogus CPU usage resource reporting available
from inside a virtualized space, we monitored the completion
time of a reference task as the main indicator of the computing
performance of the underlying infrastructure.

In the next Section we present the technologies used in the
investigated virtualized environments, present a problem
statement and a literature survey. In Section III we introduce
our proposal and present a proof of concept deployment of our
proposal, based on which we present a detailed measurement-
based evaluation of it. In Section IV we discuss the possible
limitations and the applicability of our proposal and finally we
conclude our work.

II. RELATED WORK

In this section we present the virtualization aspects of the
infrastructure that are relevant to our work first. To the best of
our knowledge, our approach described in this paper was not
published before. Still, the wider topic of performance
monitoring aspects of virtualized applications has been
intensively investigated in the last decade and has a vast
literature. In the related work part of this section we present
the typical approaches to mitigate the performance monitoring
problem of telecommunication systems deploying Virtualized
Network Functions (VNFs). We also present a set of works
that inspired us to use service completion times to characterize
the resource set available to an application.

Sidecar based resource estimation method for
virtualized environments

Csaba Simon, Markosz Maliosz, Miklós Máté, Dávid Balla, Kristóf Torma

M

http://doi.org/10.36244/ICJ.2020.2.1
mailto:simon%40tmit.bme.hu?subject=
mailto:maliosz%40tmit.bme.hu?subject=
mailto:mate%40tmit.bme.hu?subject=
mailto:balla%40tmit.bme.hu?subject=
mailto:torma%40tmit.bme.hu?subject=

Sidecar based resource estimation method for
virtualized environments

INFOCOMMUNICATIONS JOURNAL

AUGUST 2020 • VOLUME XII • NUMBER 2 5

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

A. Virtualization technologies
Virtualization is a technology that introduces a layer of

abstraction between computing, storage and networking
hardware, and the applications running on it. Thus, the
underlying physical resources (CPU, memory, disk and
network) are shared, and there can be multiple systems (or
virtual machines - VMs) running simultaneously and
concurrently on the same host. There are several approaches to
implement virtualization, but in modern cloud systems there
are two alternatives that are used: the host-based and the
operating system level virtualizations.

The Kernel-based Virtual Machine (KVM) is a hypervisor
module of the Linux kernel [3]. It allows running guest
operating systems in a virtualized environment. The KVM
kernel module is only a hypervisor, the virtual devices,
networking etc. must be supplied to the VM by the
virtualization program, and the most widely known one is
QEMU [4]. QEMU implements CPU emulation in software,
but its qemu-kvm extension uses KVM instead of its soft-cpu
implementation. Finally, we may use libvirt library [5]
manage VMs, including cgroup policy groups for resource
policy control [6]. Since cgroups is a powerful and important
mechanism used by us also for both VM and container
resource control, we describe it in detail in the following
section.

The operating system level virtualization, also known as
containerization, does not virtualize the host hardware as other
types do. Instead, it virtualizes the kernel of the host. Opposed
to the host-based virtualization, the containers do not need a
hypervisor, instead they run directly within the host machine’s
kernel. The isolation and resource control tasks are assured by
the namespaces [7] and control group (cgroup) [6]
mechanisms of the kernel, respectively. The most well-known
container technology is Docker [8]. An important technology
within the container ecosystem is Kubernetes [9], a container
management framework. Kubernetes extends the process-
oriented approach of Docker and focuses on services instead.
In Kubernetes, the service is implemented by a set of
connected containers, called pods. In Kubernetes, the pods are
the basic unit of scaling, and per-pod resource usage pattern
can be specified.

The resource usage of a Linux system by default is
governed by cgroups. The CPU scheduler of Linux shares the
CPU time among the process groups according to their
cpu.shares value; the default value is 1024. E.g., if there is one
CPU, and two groups want to use it fully, by default they both
get 50% share of the CPU. If we change the shares of one
group to 512, that group will receive 33%, and the other will
receive 66%. This division happens hierarchically: the sub-
groups receive the CPU percentage of their parent group.
When Docker is active on the host, it inserts its own slice,
named docker. Similarly, QEMU based VMs get their own
top-level slice, called machine-slice. As a consequence,
Docker containers and KVM/QEMU VMs are handled in
isolated resource buckets (cgroup slices) by the host-level
cgroups scheduler. Kubernetes has its own mechanism that
configures the resource reservation quotas of the containers

started in its pods [10]. In our paper we use the so called
burstable mechanism, where each container specifies its
resource usage intent (request) but lets the Kubernetes
framework to scale the resources according to the total
available set. Then Kubernetes makes sure that the allocated
resources to different containers keep the ratio of the declared
requests.

B. Related work
The authors publishing in this field mostly focused their

efforts on providing a working solution to address the
monitoring needs of the cloud native telecom systems that
emerged since the beginning of the 2010s. As part of these
efforts, several solutions were proposed to provide accurate
resource usage in cloud native telecom systems. Paper [1]
introduces a complete monitoring framework for cloud native
5G systems. Still, it considers that the access to the physical
node metrics is granted.

A more academic approach is followed in [11], where
realtime prediction and long term forecasting is used to
support the autoscaling process for container-based telecom
microservices. The authors exploit the specific nature of
typical telecom services due to the repetitive nature of human
behavior. Still, this approach relies on generic Kubernetes
monitoring technologies and the author's custom monitoring
container, if they have access to the real performance data
from the underlying host system.

Several works analyze the statistical characteristics of the
observed resource usage parameters for the VNFs and infer
the availability and sufficiency of the resources in the system
based on these. A good example of these works is [12], where
the skewness of the probability distribution of per VNF CPU
usage is used as an indicator of system-wide resource
availability. The authors show that their proposal can be used
to provide automatic notifications in case of system overload.
Nevertheless, this approach also requires the access of host
level information or Docker API at the host.

The above cited articles [1][11][12] are representative for
the prior work in this field. Due to lack of space we do not
offer further insight into other proposals, but the interested
reader is referred to the related work sections of these papers
in order to get a wider knowledge of the state of art in this
area. Our solution will differ from these, since our novel
approach avoids any use of any information that may be
obtained from the host.

As already described above, the resource monitoring
approaches observed several parameters when tried to model
the available resource sets, not only the CPU usage. This gave
us the idea to verify if exists such a parameter that can be
measured from inside the virtualized space and is a good
indicator of the available resources (e.g., CPU power). Based
on our literature survey we have seen that the service
completion times, the resources consumption (i.e., the
allocated resources, if the service uses all available resources)
and the user demands are strongly dependent on each other.
We found that relevant works were published since the mid-
2000s and mostly relate to the field of BigData. A good

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

A. Virtualization technologies
Virtualization is a technology that introduces a layer of

abstraction between computing, storage and networking
hardware, and the applications running on it. Thus, the
underlying physical resources (CPU, memory, disk and
network) are shared, and there can be multiple systems (or
virtual machines - VMs) running simultaneously and
concurrently on the same host. There are several approaches to
implement virtualization, but in modern cloud systems there
are two alternatives that are used: the host-based and the
operating system level virtualizations.

The Kernel-based Virtual Machine (KVM) is a hypervisor
module of the Linux kernel [3]. It allows running guest
operating systems in a virtualized environment. The KVM
kernel module is only a hypervisor, the virtual devices,
networking etc. must be supplied to the VM by the
virtualization program, and the most widely known one is
QEMU [4]. QEMU implements CPU emulation in software,
but its qemu-kvm extension uses KVM instead of its soft-cpu
implementation. Finally, we may use libvirt library [5]
manage VMs, including cgroup policy groups for resource
policy control [6]. Since cgroups is a powerful and important
mechanism used by us also for both VM and container
resource control, we describe it in detail in the following
section.

The operating system level virtualization, also known as
containerization, does not virtualize the host hardware as other
types do. Instead, it virtualizes the kernel of the host. Opposed
to the host-based virtualization, the containers do not need a
hypervisor, instead they run directly within the host machine’s
kernel. The isolation and resource control tasks are assured by
the namespaces [7] and control group (cgroup) [6]
mechanisms of the kernel, respectively. The most well-known
container technology is Docker [8]. An important technology
within the container ecosystem is Kubernetes [9], a container
management framework. Kubernetes extends the process-
oriented approach of Docker and focuses on services instead.
In Kubernetes, the service is implemented by a set of
connected containers, called pods. In Kubernetes, the pods are
the basic unit of scaling, and per-pod resource usage pattern
can be specified.

The resource usage of a Linux system by default is
governed by cgroups. The CPU scheduler of Linux shares the
CPU time among the process groups according to their
cpu.shares value; the default value is 1024. E.g., if there is one
CPU, and two groups want to use it fully, by default they both
get 50% share of the CPU. If we change the shares of one
group to 512, that group will receive 33%, and the other will
receive 66%. This division happens hierarchically: the sub-
groups receive the CPU percentage of their parent group.
When Docker is active on the host, it inserts its own slice,
named docker. Similarly, QEMU based VMs get their own
top-level slice, called machine-slice. As a consequence,
Docker containers and KVM/QEMU VMs are handled in
isolated resource buckets (cgroup slices) by the host-level
cgroups scheduler. Kubernetes has its own mechanism that
configures the resource reservation quotas of the containers

started in its pods [10]. In our paper we use the so called
burstable mechanism, where each container specifies its
resource usage intent (request) but lets the Kubernetes
framework to scale the resources according to the total
available set. Then Kubernetes makes sure that the allocated
resources to different containers keep the ratio of the declared
requests.

B. Related work
The authors publishing in this field mostly focused their

efforts on providing a working solution to address the
monitoring needs of the cloud native telecom systems that
emerged since the beginning of the 2010s. As part of these
efforts, several solutions were proposed to provide accurate
resource usage in cloud native telecom systems. Paper [1]
introduces a complete monitoring framework for cloud native
5G systems. Still, it considers that the access to the physical
node metrics is granted.

A more academic approach is followed in [11], where
realtime prediction and long term forecasting is used to
support the autoscaling process for container-based telecom
microservices. The authors exploit the specific nature of
typical telecom services due to the repetitive nature of human
behavior. Still, this approach relies on generic Kubernetes
monitoring technologies and the author's custom monitoring
container, if they have access to the real performance data
from the underlying host system.

Several works analyze the statistical characteristics of the
observed resource usage parameters for the VNFs and infer
the availability and sufficiency of the resources in the system
based on these. A good example of these works is [12], where
the skewness of the probability distribution of per VNF CPU
usage is used as an indicator of system-wide resource
availability. The authors show that their proposal can be used
to provide automatic notifications in case of system overload.
Nevertheless, this approach also requires the access of host
level information or Docker API at the host.

The above cited articles [1][11][12] are representative for
the prior work in this field. Due to lack of space we do not
offer further insight into other proposals, but the interested
reader is referred to the related work sections of these papers
in order to get a wider knowledge of the state of art in this
area. Our solution will differ from these, since our novel
approach avoids any use of any information that may be
obtained from the host.

As already described above, the resource monitoring
approaches observed several parameters when tried to model
the available resource sets, not only the CPU usage. This gave
us the idea to verify if exists such a parameter that can be
measured from inside the virtualized space and is a good
indicator of the available resources (e.g., CPU power). Based
on our literature survey we have seen that the service
completion times, the resources consumption (i.e., the
allocated resources, if the service uses all available resources)
and the user demands are strongly dependent on each other.
We found that relevant works were published since the mid-
2000s and mostly relate to the field of BigData. A good

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

A. Virtualization technologies
Virtualization is a technology that introduces a layer of

abstraction between computing, storage and networking
hardware, and the applications running on it. Thus, the
underlying physical resources (CPU, memory, disk and
network) are shared, and there can be multiple systems (or
virtual machines - VMs) running simultaneously and
concurrently on the same host. There are several approaches to
implement virtualization, but in modern cloud systems there
are two alternatives that are used: the host-based and the
operating system level virtualizations.

The Kernel-based Virtual Machine (KVM) is a hypervisor
module of the Linux kernel [3]. It allows running guest
operating systems in a virtualized environment. The KVM
kernel module is only a hypervisor, the virtual devices,
networking etc. must be supplied to the VM by the
virtualization program, and the most widely known one is
QEMU [4]. QEMU implements CPU emulation in software,
but its qemu-kvm extension uses KVM instead of its soft-cpu
implementation. Finally, we may use libvirt library [5]
manage VMs, including cgroup policy groups for resource
policy control [6]. Since cgroups is a powerful and important
mechanism used by us also for both VM and container
resource control, we describe it in detail in the following
section.

The operating system level virtualization, also known as
containerization, does not virtualize the host hardware as other
types do. Instead, it virtualizes the kernel of the host. Opposed
to the host-based virtualization, the containers do not need a
hypervisor, instead they run directly within the host machine’s
kernel. The isolation and resource control tasks are assured by
the namespaces [7] and control group (cgroup) [6]
mechanisms of the kernel, respectively. The most well-known
container technology is Docker [8]. An important technology
within the container ecosystem is Kubernetes [9], a container
management framework. Kubernetes extends the process-
oriented approach of Docker and focuses on services instead.
In Kubernetes, the service is implemented by a set of
connected containers, called pods. In Kubernetes, the pods are
the basic unit of scaling, and per-pod resource usage pattern
can be specified.

The resource usage of a Linux system by default is
governed by cgroups. The CPU scheduler of Linux shares the
CPU time among the process groups according to their
cpu.shares value; the default value is 1024. E.g., if there is one
CPU, and two groups want to use it fully, by default they both
get 50% share of the CPU. If we change the shares of one
group to 512, that group will receive 33%, and the other will
receive 66%. This division happens hierarchically: the sub-
groups receive the CPU percentage of their parent group.
When Docker is active on the host, it inserts its own slice,
named docker. Similarly, QEMU based VMs get their own
top-level slice, called machine-slice. As a consequence,
Docker containers and KVM/QEMU VMs are handled in
isolated resource buckets (cgroup slices) by the host-level
cgroups scheduler. Kubernetes has its own mechanism that
configures the resource reservation quotas of the containers

started in its pods [10]. In our paper we use the so called
burstable mechanism, where each container specifies its
resource usage intent (request) but lets the Kubernetes
framework to scale the resources according to the total
available set. Then Kubernetes makes sure that the allocated
resources to different containers keep the ratio of the declared
requests.

B. Related work
The authors publishing in this field mostly focused their

efforts on providing a working solution to address the
monitoring needs of the cloud native telecom systems that
emerged since the beginning of the 2010s. As part of these
efforts, several solutions were proposed to provide accurate
resource usage in cloud native telecom systems. Paper [1]
introduces a complete monitoring framework for cloud native
5G systems. Still, it considers that the access to the physical
node metrics is granted.

A more academic approach is followed in [11], where
realtime prediction and long term forecasting is used to
support the autoscaling process for container-based telecom
microservices. The authors exploit the specific nature of
typical telecom services due to the repetitive nature of human
behavior. Still, this approach relies on generic Kubernetes
monitoring technologies and the author's custom monitoring
container, if they have access to the real performance data
from the underlying host system.

Several works analyze the statistical characteristics of the
observed resource usage parameters for the VNFs and infer
the availability and sufficiency of the resources in the system
based on these. A good example of these works is [12], where
the skewness of the probability distribution of per VNF CPU
usage is used as an indicator of system-wide resource
availability. The authors show that their proposal can be used
to provide automatic notifications in case of system overload.
Nevertheless, this approach also requires the access of host
level information or Docker API at the host.

The above cited articles [1][11][12] are representative for
the prior work in this field. Due to lack of space we do not
offer further insight into other proposals, but the interested
reader is referred to the related work sections of these papers
in order to get a wider knowledge of the state of art in this
area. Our solution will differ from these, since our novel
approach avoids any use of any information that may be
obtained from the host.

As already described above, the resource monitoring
approaches observed several parameters when tried to model
the available resource sets, not only the CPU usage. This gave
us the idea to verify if exists such a parameter that can be
measured from inside the virtualized space and is a good
indicator of the available resources (e.g., CPU power). Based
on our literature survey we have seen that the service
completion times, the resources consumption (i.e., the
allocated resources, if the service uses all available resources)
and the user demands are strongly dependent on each other.
We found that relevant works were published since the mid-
2000s and mostly relate to the field of BigData. A good

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

A. Virtualization technologies
Virtualization is a technology that introduces a layer of

abstraction between computing, storage and networking
hardware, and the applications running on it. Thus, the
underlying physical resources (CPU, memory, disk and
network) are shared, and there can be multiple systems (or
virtual machines - VMs) running simultaneously and
concurrently on the same host. There are several approaches to
implement virtualization, but in modern cloud systems there
are two alternatives that are used: the host-based and the
operating system level virtualizations.

The Kernel-based Virtual Machine (KVM) is a hypervisor
module of the Linux kernel [3]. It allows running guest
operating systems in a virtualized environment. The KVM
kernel module is only a hypervisor, the virtual devices,
networking etc. must be supplied to the VM by the
virtualization program, and the most widely known one is
QEMU [4]. QEMU implements CPU emulation in software,
but its qemu-kvm extension uses KVM instead of its soft-cpu
implementation. Finally, we may use libvirt library [5]
manage VMs, including cgroup policy groups for resource
policy control [6]. Since cgroups is a powerful and important
mechanism used by us also for both VM and container
resource control, we describe it in detail in the following
section.

The operating system level virtualization, also known as
containerization, does not virtualize the host hardware as other
types do. Instead, it virtualizes the kernel of the host. Opposed
to the host-based virtualization, the containers do not need a
hypervisor, instead they run directly within the host machine’s
kernel. The isolation and resource control tasks are assured by
the namespaces [7] and control group (cgroup) [6]
mechanisms of the kernel, respectively. The most well-known
container technology is Docker [8]. An important technology
within the container ecosystem is Kubernetes [9], a container
management framework. Kubernetes extends the process-
oriented approach of Docker and focuses on services instead.
In Kubernetes, the service is implemented by a set of
connected containers, called pods. In Kubernetes, the pods are
the basic unit of scaling, and per-pod resource usage pattern
can be specified.

The resource usage of a Linux system by default is
governed by cgroups. The CPU scheduler of Linux shares the
CPU time among the process groups according to their
cpu.shares value; the default value is 1024. E.g., if there is one
CPU, and two groups want to use it fully, by default they both
get 50% share of the CPU. If we change the shares of one
group to 512, that group will receive 33%, and the other will
receive 66%. This division happens hierarchically: the sub-
groups receive the CPU percentage of their parent group.
When Docker is active on the host, it inserts its own slice,
named docker. Similarly, QEMU based VMs get their own
top-level slice, called machine-slice. As a consequence,
Docker containers and KVM/QEMU VMs are handled in
isolated resource buckets (cgroup slices) by the host-level
cgroups scheduler. Kubernetes has its own mechanism that
configures the resource reservation quotas of the containers

started in its pods [10]. In our paper we use the so called
burstable mechanism, where each container specifies its
resource usage intent (request) but lets the Kubernetes
framework to scale the resources according to the total
available set. Then Kubernetes makes sure that the allocated
resources to different containers keep the ratio of the declared
requests.

B. Related work
The authors publishing in this field mostly focused their

efforts on providing a working solution to address the
monitoring needs of the cloud native telecom systems that
emerged since the beginning of the 2010s. As part of these
efforts, several solutions were proposed to provide accurate
resource usage in cloud native telecom systems. Paper [1]
introduces a complete monitoring framework for cloud native
5G systems. Still, it considers that the access to the physical
node metrics is granted.

A more academic approach is followed in [11], where
realtime prediction and long term forecasting is used to
support the autoscaling process for container-based telecom
microservices. The authors exploit the specific nature of
typical telecom services due to the repetitive nature of human
behavior. Still, this approach relies on generic Kubernetes
monitoring technologies and the author's custom monitoring
container, if they have access to the real performance data
from the underlying host system.

Several works analyze the statistical characteristics of the
observed resource usage parameters for the VNFs and infer
the availability and sufficiency of the resources in the system
based on these. A good example of these works is [12], where
the skewness of the probability distribution of per VNF CPU
usage is used as an indicator of system-wide resource
availability. The authors show that their proposal can be used
to provide automatic notifications in case of system overload.
Nevertheless, this approach also requires the access of host
level information or Docker API at the host.

The above cited articles [1][11][12] are representative for
the prior work in this field. Due to lack of space we do not
offer further insight into other proposals, but the interested
reader is referred to the related work sections of these papers
in order to get a wider knowledge of the state of art in this
area. Our solution will differ from these, since our novel
approach avoids any use of any information that may be
obtained from the host.

As already described above, the resource monitoring
approaches observed several parameters when tried to model
the available resource sets, not only the CPU usage. This gave
us the idea to verify if exists such a parameter that can be
measured from inside the virtualized space and is a good
indicator of the available resources (e.g., CPU power). Based
on our literature survey we have seen that the service
completion times, the resources consumption (i.e., the
allocated resources, if the service uses all available resources)
and the user demands are strongly dependent on each other.
We found that relevant works were published since the mid-
2000s and mostly relate to the field of BigData. A good

Sidecar based resource estimation method for
virtualized environments

AUGUST 2020 • VOLUME XII • NUMBER 26

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

introduction of this approach is found in [13], where the
authors measured both the response times of classical
industrial IT applications and the CPU utilization, and used it
to estimate the volumes of user demands. The approach of
measuring the service completion time later was used in paper
[14] to offer an accurate scheduling mechanism, where based
on demand (i.e., job size) and resource availability (number of
parallel worker instances) a certain completion time can be
guaranteed.

In our scenarios user demand can be easily obtained, either
by the framework itself or by the application by monitoring
the incoming request rate. The service completion time can be
measured from inside the virtualized space. Thus, based on
[13][14] we supposed that observing these two parameters, we
can provide a good estimation of the compute resources, and
we proposed a method, which is introduced in the next
section.

III. SIDECAR BASED RESOURCE ESTIMATION METHOD AND
PROOF OF CONCEPT

A. Sidecar based resource estimation
As described in the previous section, we propose to evaluate

the resource usage of a virtualized function (or application) by
observing the duration of an application. In practice there is a
large variety of VNFs in a telecom system, and each of these
VNFs have their own resource usage characteristics, which
also depend on the current load. Therefore, the measurement
of the VNF is not useful for this role. Before using the
measured response time of a VNF to evaluate the resources it
used during the observation period, a detailed profiling of the
VNF would be needed. Even if this is doable, as VNF vendors
may be required to do this profiling before shipping their
product, the management of release schedule and continuous
update of this data in a large telecommunication system is not
practical.

As an alternative we propose to use the same application for
every VNF and use this application as a benchmark. This
application should be selected such as it correlates with the
resource set allocated to it and it has a stable performance.

We propose to deploy this monitoring application as a
sidecar together with all the VNFs that require resource
estimation. This sidecar should run in the same virtualized
environment, as the “target” VNF. In the case of VMs or
Docker containers both the monitoring sidecar application and
the target VNF should run on the same machine, with further
conditions detailed in Section IV. In the case of Kubernetes
based deployment, the monitoring sidecar application and the
target VNF should be deployed within the same pod.

B. Load emulation
In our work we used the stress-ng utility [15] to generate

load on the CPU. It is a flexible utility capable of running
several different stressor routines in any number of parallel
processes. Therefore, we considered to be versatile enough to
model a generic VNF during our evaluations. It was not
designed to be a benchmark, but we judged that its metrics
(called bogo operations/sec, referred to as bogo ops) are
sufficiently accurate for our purposes. Thus, we used the same

tool for both generating load (gen) and serving as a monitoring
probe (mon).

We mainly used the cpu stressor, which contains more than
70 different stressor algorithms, and the default setting is to
loop over all of them repeatedly. These algorithms perform
different numeric computations, and together they stress of the
various arithmetic units of the CPU. Nevertheless, we also
tested the memory stressor, and two stressors using system-
calls (executing timer calls and pipe operations).

Stress-ng can print the number of iterations it ran within the
specified time limit with the option --metrics-brief. It cannot
report per-process results, just the total for all the stressor
processes of the same type. For continuous monitoring of the
performance of stress-ng it must be run in an endless loop with
short timeout of 20 s. This reporting period is much longer
than the measurement periods typical for monitoring systems
in production (1 s), but in our evaluation let stress-ng perform
several hundred iterations in all scenarios to minimize
quantization errors. In a real-life scenario, running VNFs
under heavy load, a 1 s measurement period would lead to
similar accuracy. The overhead of restarting stress-ng is
negligible.

Based on extensive tests we decided to configure four
stress-ng stressors during the tests. For both the gen and mon
roles, we run the following operations to generate their load:
 CPU – integer and floating-point mathematical

operations run in user mode
 Memory – mmap()/munmap() calls with 256 MB data
 Timer – sets one million timers each second, and counts

how many of them are completed successfully
 Pipe – moving data through Linux pipes. The size of the

pipe is 512 MB, and the data size is 4 KB (equals the
memory page size).

The detailed parameter setup is shown in Table I. It can be
seen that the parameters, and implicitly the load of the mon
process is independent of the monitored gen process. Thus the
cost of our solution is constant. In a real life deployment
scenario the load level can be adjusted to the available
resources.

C. Configuration of the virtual environments
During our measurements we used both KVM/QEMU VMs

and Docker containers. The VMs used in our tests were
provisioned with Vagrant, and depending on the scenario, we
run a single VM or two VMs. When two VMs were
provisioned, one VM acted as the target application,
generating the load to be monitored (gen). The other VM acted
as the monitoring VM (mon). We allocated two CPU cores

TABLE I
THE PARAMETERS OF THE STRESS TOOL USED TO TEST THE SIDECAR SCENARIO

Stressor type “gen” process “mon” process

CPU --cpu 1 --cpu 1
Virtual Memory --vm 1 --vm 1 –vm-bytes 20
Timer --timer 1 --timer 1
Pipe --pipe 1 --pipe 1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

introduction of this approach is found in [13], where the
authors measured both the response times of classical
industrial IT applications and the CPU utilization, and used it
to estimate the volumes of user demands. The approach of
measuring the service completion time later was used in paper
[14] to offer an accurate scheduling mechanism, where based
on demand (i.e., job size) and resource availability (number of
parallel worker instances) a certain completion time can be
guaranteed.

In our scenarios user demand can be easily obtained, either
by the framework itself or by the application by monitoring
the incoming request rate. The service completion time can be
measured from inside the virtualized space. Thus, based on
[13][14] we supposed that observing these two parameters, we
can provide a good estimation of the compute resources, and
we proposed a method, which is introduced in the next
section.

III. SIDECAR BASED RESOURCE ESTIMATION METHOD AND
PROOF OF CONCEPT

A. Sidecar based resource estimation
As described in the previous section, we propose to evaluate

the resource usage of a virtualized function (or application) by
observing the duration of an application. In practice there is a
large variety of VNFs in a telecom system, and each of these
VNFs have their own resource usage characteristics, which
also depend on the current load. Therefore, the measurement
of the VNF is not useful for this role. Before using the
measured response time of a VNF to evaluate the resources it
used during the observation period, a detailed profiling of the
VNF would be needed. Even if this is doable, as VNF vendors
may be required to do this profiling before shipping their
product, the management of release schedule and continuous
update of this data in a large telecommunication system is not
practical.

As an alternative we propose to use the same application for
every VNF and use this application as a benchmark. This
application should be selected such as it correlates with the
resource set allocated to it and it has a stable performance.

We propose to deploy this monitoring application as a
sidecar together with all the VNFs that require resource
estimation. This sidecar should run in the same virtualized
environment, as the “target” VNF. In the case of VMs or
Docker containers both the monitoring sidecar application and
the target VNF should run on the same machine, with further
conditions detailed in Section IV. In the case of Kubernetes
based deployment, the monitoring sidecar application and the
target VNF should be deployed within the same pod.

B. Load emulation
In our work we used the stress-ng utility [15] to generate

load on the CPU. It is a flexible utility capable of running
several different stressor routines in any number of parallel
processes. Therefore, we considered to be versatile enough to
model a generic VNF during our evaluations. It was not
designed to be a benchmark, but we judged that its metrics
(called bogo operations/sec, referred to as bogo ops) are
sufficiently accurate for our purposes. Thus, we used the same

tool for both generating load (gen) and serving as a monitoring
probe (mon).

We mainly used the cpu stressor, which contains more than
70 different stressor algorithms, and the default setting is to
loop over all of them repeatedly. These algorithms perform
different numeric computations, and together they stress of the
various arithmetic units of the CPU. Nevertheless, we also
tested the memory stressor, and two stressors using system-
calls (executing timer calls and pipe operations).

Stress-ng can print the number of iterations it ran within the
specified time limit with the option --metrics-brief. It cannot
report per-process results, just the total for all the stressor
processes of the same type. For continuous monitoring of the
performance of stress-ng it must be run in an endless loop with
short timeout of 20 s. This reporting period is much longer
than the measurement periods typical for monitoring systems
in production (1 s), but in our evaluation let stress-ng perform
several hundred iterations in all scenarios to minimize
quantization errors. In a real-life scenario, running VNFs
under heavy load, a 1 s measurement period would lead to
similar accuracy. The overhead of restarting stress-ng is
negligible.

Based on extensive tests we decided to configure four
stress-ng stressors during the tests. For both the gen and mon
roles, we run the following operations to generate their load:
 CPU – integer and floating-point mathematical

operations run in user mode
 Memory – mmap()/munmap() calls with 256 MB data
 Timer – sets one million timers each second, and counts

how many of them are completed successfully
 Pipe – moving data through Linux pipes. The size of the

pipe is 512 MB, and the data size is 4 KB (equals the
memory page size).

The detailed parameter setup is shown in Table I. It can be
seen that the parameters, and implicitly the load of the mon
process is independent of the monitored gen process. Thus the
cost of our solution is constant. In a real life deployment
scenario the load level can be adjusted to the available
resources.

C. Configuration of the virtual environments
During our measurements we used both KVM/QEMU VMs

and Docker containers. The VMs used in our tests were
provisioned with Vagrant, and depending on the scenario, we
run a single VM or two VMs. When two VMs were
provisioned, one VM acted as the target application,
generating the load to be monitored (gen). The other VM acted
as the monitoring VM (mon). We allocated two CPU cores

TABLE I
THE PARAMETERS OF THE STRESS TOOL USED TO TEST THE SIDECAR SCENARIO

Stressor type “gen” process “mon” process

CPU --cpu 1 --cpu 1
Virtual Memory --vm 1 --vm 1 –vm-bytes 20
Timer --timer 1 --timer 1
Pipe --pipe 1 --pipe 1

Sidecar based resource estimation method for
virtualized environments

INFOCOMMUNICATIONS JOURNAL

AUGUST 2020 • VOLUME XII • NUMBER 2 7

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

introduction of this approach is found in [13], where the
authors measured both the response times of classical
industrial IT applications and the CPU utilization, and used it
to estimate the volumes of user demands. The approach of
measuring the service completion time later was used in paper
[14] to offer an accurate scheduling mechanism, where based
on demand (i.e., job size) and resource availability (number of
parallel worker instances) a certain completion time can be
guaranteed.

In our scenarios user demand can be easily obtained, either
by the framework itself or by the application by monitoring
the incoming request rate. The service completion time can be
measured from inside the virtualized space. Thus, based on
[13][14] we supposed that observing these two parameters, we
can provide a good estimation of the compute resources, and
we proposed a method, which is introduced in the next
section.

III. SIDECAR BASED RESOURCE ESTIMATION METHOD AND
PROOF OF CONCEPT

A. Sidecar based resource estimation
As described in the previous section, we propose to evaluate

the resource usage of a virtualized function (or application) by
observing the duration of an application. In practice there is a
large variety of VNFs in a telecom system, and each of these
VNFs have their own resource usage characteristics, which
also depend on the current load. Therefore, the measurement
of the VNF is not useful for this role. Before using the
measured response time of a VNF to evaluate the resources it
used during the observation period, a detailed profiling of the
VNF would be needed. Even if this is doable, as VNF vendors
may be required to do this profiling before shipping their
product, the management of release schedule and continuous
update of this data in a large telecommunication system is not
practical.

As an alternative we propose to use the same application for
every VNF and use this application as a benchmark. This
application should be selected such as it correlates with the
resource set allocated to it and it has a stable performance.

We propose to deploy this monitoring application as a
sidecar together with all the VNFs that require resource
estimation. This sidecar should run in the same virtualized
environment, as the “target” VNF. In the case of VMs or
Docker containers both the monitoring sidecar application and
the target VNF should run on the same machine, with further
conditions detailed in Section IV. In the case of Kubernetes
based deployment, the monitoring sidecar application and the
target VNF should be deployed within the same pod.

B. Load emulation
In our work we used the stress-ng utility [15] to generate

load on the CPU. It is a flexible utility capable of running
several different stressor routines in any number of parallel
processes. Therefore, we considered to be versatile enough to
model a generic VNF during our evaluations. It was not
designed to be a benchmark, but we judged that its metrics
(called bogo operations/sec, referred to as bogo ops) are
sufficiently accurate for our purposes. Thus, we used the same

tool for both generating load (gen) and serving as a monitoring
probe (mon).

We mainly used the cpu stressor, which contains more than
70 different stressor algorithms, and the default setting is to
loop over all of them repeatedly. These algorithms perform
different numeric computations, and together they stress of the
various arithmetic units of the CPU. Nevertheless, we also
tested the memory stressor, and two stressors using system-
calls (executing timer calls and pipe operations).

Stress-ng can print the number of iterations it ran within the
specified time limit with the option --metrics-brief. It cannot
report per-process results, just the total for all the stressor
processes of the same type. For continuous monitoring of the
performance of stress-ng it must be run in an endless loop with
short timeout of 20 s. This reporting period is much longer
than the measurement periods typical for monitoring systems
in production (1 s), but in our evaluation let stress-ng perform
several hundred iterations in all scenarios to minimize
quantization errors. In a real-life scenario, running VNFs
under heavy load, a 1 s measurement period would lead to
similar accuracy. The overhead of restarting stress-ng is
negligible.

Based on extensive tests we decided to configure four
stress-ng stressors during the tests. For both the gen and mon
roles, we run the following operations to generate their load:
 CPU – integer and floating-point mathematical

operations run in user mode
 Memory – mmap()/munmap() calls with 256 MB data
 Timer – sets one million timers each second, and counts

how many of them are completed successfully
 Pipe – moving data through Linux pipes. The size of the

pipe is 512 MB, and the data size is 4 KB (equals the
memory page size).

The detailed parameter setup is shown in Table I. It can be
seen that the parameters, and implicitly the load of the mon
process is independent of the monitored gen process. Thus the
cost of our solution is constant. In a real life deployment
scenario the load level can be adjusted to the available
resources.

C. Configuration of the virtual environments
During our measurements we used both KVM/QEMU VMs

and Docker containers. The VMs used in our tests were
provisioned with Vagrant, and depending on the scenario, we
run a single VM or two VMs. When two VMs were
provisioned, one VM acted as the target application,
generating the load to be monitored (gen). The other VM acted
as the monitoring VM (mon). We allocated two CPU cores

TABLE I
THE PARAMETERS OF THE STRESS TOOL USED TO TEST THE SIDECAR SCENARIO

Stressor type “gen” process “mon” process

CPU --cpu 1 --cpu 1
Virtual Memory --vm 1 --vm 1 –vm-bytes 20
Timer --timer 1 --timer 1
Pipe --pipe 1 --pipe 1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

and 1 GB RAM for each. When a single VM was used (e.g., in
Section V.A), only one of the VMs was started. When the
stress-ng process was containerized (e.g., in Sections IV.A and
IV.B), we used our custom Docker image, created from
Ubuntu 18.04.1 LTS, and installed a stress-ng v.0.09.25. The
Docker container was run with no resource limits.

Depending on the measurement setup, we had four
arrangements. In the first one we had two VMs and in each
VM we run a stress-ng process, as shown in Fig. 1 a) and the
measurements on this setup are discussed in Section IV.A.

Note that the pinning of VMs might differ from the one
illustrated in Fig. 1 a), according to the details given in Section
IV.A. The parameters of these two stress-ng processes were
the ones already shown in Table I.

A second measurement setup used only one VM, both the
gen and mon processes were containerized, and these two
containers were run within the VM. This setup is shown in
Fig. 1 b) and is discussed in Section IV.B. A third
measurement setup without VMs used only Docker containers,
where the gen and mon containers were run on the host. The
containers shared all the resources of the hosts and this setup
is illustrated in Fig. 1 c) and is discussed in Section IV.B.
Finally, we had a fourth measurement setup, where two
containers were run in a single pod. The measurements with
this setup are discussed in Section IV.C.

We run our test on desktop PCs, the detailed hardware
specification is shown in Table II.

IV. EVALUATION OF THE PROPOSAL

In this section we run three set of experiments to evaluate
our proposal from III.A in the test environment described in
the previous section.

A. VM based deployments
The first sets of experiments were conducted with VM

based deployments. The measurement setup is illustrated in
Fig. 1 a), where machine mon is the sidecar VM that monitors
its own performance, and tries to deduce the resources used by
the gen process from the other VM, based on its own
performance.

We limited the CPU usage of stress-ng with cgroups policies
applied to the processes representing QEMU's virtual CPUs on
the host. We used the cpuset cgroup to pin the vCPUs to
specific physical CPUs, and the cpu cgroup's cfs_quota_ms
parameter to impose a quota on per-VM level. Each presented
measurement point is the aggregation of 10 experiments.

When each VM only have 1 vCPU allocated, it can be the
same cores for both VMs, or different. Fig. 2 shows the
performance of mon when it shares a single CPU with gen.
The different colors correspond to different loads on gen.
When there is light load on gen, the measured performance of
mon VM correlates with the load of gen. But when gen is at
least 50% loaded, the performance of mon is independent of
the load, this setup is thus not suitable for detecting overload
on the telecom application.

Fig. 2. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

When each VM only have 1 vCPU allocated, but they are
mapped the different physical CPU cores, the performance
figure differs from the previous case, as shown in Fig. 3. In
this case when gen is getting close to the maximum load, the
performance of mon gets a noticeable bump. Note however,
that this bump starts at around 70% percent load on gen,
which is still quite far from its maximum capacity. Another
problem with this setup is that we are loading only 1+1 cores
of a 4-core CPU; thus, the performance bump of mon comes
from the raised CPU frequencies under heavy load. In a real
deployment the applications usually try to put load on all
available CPU cores, resulting in different performance
profiles.

Fig. 3. Performance measured in bogo ops, when “gen” and “mon” run on
different CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

TABLE II
THE HARDWARE USED DURING TO EVALUATE THE SCENARIOS

Name CPU type Frequency
[GHz]

RAM
[GBytes]

PC1 Intel Core i5-2400 3,1 8 (DDR3)
PC2 Intel Core2 Quad Q6600 2,4 6 (DDR2)
PC3 AMD Athlon 64 X2

5050e
2,6 6 (DDR2)

PC4 Core i5-3320M 2,6 8 (DDR3)

(a) (b) (c)
Fig. 1. Sidecar scenarios with a) two VMs, b) two containers run in single
VMs, and c) with two containers run on the host, respectively.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

and 1 GB RAM for each. When a single VM was used (e.g., in
Section V.A), only one of the VMs was started. When the
stress-ng process was containerized (e.g., in Sections IV.A and
IV.B), we used our custom Docker image, created from
Ubuntu 18.04.1 LTS, and installed a stress-ng v.0.09.25. The
Docker container was run with no resource limits.

Depending on the measurement setup, we had four
arrangements. In the first one we had two VMs and in each
VM we run a stress-ng process, as shown in Fig. 1 a) and the
measurements on this setup are discussed in Section IV.A.

Note that the pinning of VMs might differ from the one
illustrated in Fig. 1 a), according to the details given in Section
IV.A. The parameters of these two stress-ng processes were
the ones already shown in Table I.

A second measurement setup used only one VM, both the
gen and mon processes were containerized, and these two
containers were run within the VM. This setup is shown in
Fig. 1 b) and is discussed in Section IV.B. A third
measurement setup without VMs used only Docker containers,
where the gen and mon containers were run on the host. The
containers shared all the resources of the hosts and this setup
is illustrated in Fig. 1 c) and is discussed in Section IV.B.
Finally, we had a fourth measurement setup, where two
containers were run in a single pod. The measurements with
this setup are discussed in Section IV.C.

We run our test on desktop PCs, the detailed hardware
specification is shown in Table II.

IV. EVALUATION OF THE PROPOSAL

In this section we run three set of experiments to evaluate
our proposal from III.A in the test environment described in
the previous section.

A. VM based deployments
The first sets of experiments were conducted with VM

based deployments. The measurement setup is illustrated in
Fig. 1 a), where machine mon is the sidecar VM that monitors
its own performance, and tries to deduce the resources used by
the gen process from the other VM, based on its own
performance.

We limited the CPU usage of stress-ng with cgroups policies
applied to the processes representing QEMU's virtual CPUs on
the host. We used the cpuset cgroup to pin the vCPUs to
specific physical CPUs, and the cpu cgroup's cfs_quota_ms
parameter to impose a quota on per-VM level. Each presented
measurement point is the aggregation of 10 experiments.

When each VM only have 1 vCPU allocated, it can be the
same cores for both VMs, or different. Fig. 2 shows the
performance of mon when it shares a single CPU with gen.
The different colors correspond to different loads on gen.
When there is light load on gen, the measured performance of
mon VM correlates with the load of gen. But when gen is at
least 50% loaded, the performance of mon is independent of
the load, this setup is thus not suitable for detecting overload
on the telecom application.

Fig. 2. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

When each VM only have 1 vCPU allocated, but they are
mapped the different physical CPU cores, the performance
figure differs from the previous case, as shown in Fig. 3. In
this case when gen is getting close to the maximum load, the
performance of mon gets a noticeable bump. Note however,
that this bump starts at around 70% percent load on gen,
which is still quite far from its maximum capacity. Another
problem with this setup is that we are loading only 1+1 cores
of a 4-core CPU; thus, the performance bump of mon comes
from the raised CPU frequencies under heavy load. In a real
deployment the applications usually try to put load on all
available CPU cores, resulting in different performance
profiles.

Fig. 3. Performance measured in bogo ops, when “gen” and “mon” run on
different CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

TABLE II
THE HARDWARE USED DURING TO EVALUATE THE SCENARIOS

Name CPU type Frequency
[GHz]

RAM
[GBytes]

PC1 Intel Core i5-2400 3,1 8 (DDR3)
PC2 Intel Core2 Quad Q6600 2,4 6 (DDR2)
PC3 AMD Athlon 64 X2

5050e
2,6 6 (DDR2)

PC4 Core i5-3320M 2,6 8 (DDR3)

(a) (b) (c)
Fig. 1. Sidecar scenarios with a) two VMs, b) two containers run in single
VMs, and c) with two containers run on the host, respectively.

Sidecar based resource estimation method for
virtualized environments

AUGUST 2020 • VOLUME XII • NUMBER 28

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

When in our 4 core CPU host machines two vCPUs are
allocated to both VMs, the CPU cores assigned to the VMs
can be all different, only one shared, or both shared between
the two VMs. The figures for the “all different” and the “all
shared” CPU core scenarios look identical to the results shown
in Fig. 2 and Fig. 3, respectively. This was the expected
behavior and we do not show the results. Nevertheless, we
observed a different behavior in the case when the VMs share
one core, but they both have one independent core, as well.
Fig. 4 shows that this scenario is quite like to the single shared
CPU core scenario (i.e., Fig 2), but it inherits the sensitivity
threshold of the single different CPU core scenario. The load
percentages on the figure are doubled in this case, because
maximum load for 2 CPUs is 200%.

Fig. 4. Performance measured in bogo ops, when “gen” and “mon” share one
of their CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

We also created a scenario, where gen had access to all four
CPU cores, and mon had only one vCPU. Probably this
scenario models the best a real deployment of a telco
application getting the most computation resources possible,
with a sidecar VM with limited CPU usage measuring it. Fig.
5 shows the results for this scenario (note that the maximum
load of 400% corresponds to full utilization of 4 CPU cores).
It is largely identical to the previous results: mon can detect
changes in the load of gen, when that is low, however, when
the load of gen is high, mon becomes blind.

Fig. 5. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU core. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

Note that in all the above scenarios mon can perform its load
detection while generating small load itself. This is a nice
property, as it allows running the performance monitoring
sidecar with low impact on the telco application.

B. Docker container-based deployments
In this section we describe our results on testing the sidecar

scenario when the processes were containerized. Similarly to
the previous section, the container emulating the load of the
target application was named gen, and the monitoring
container was named mon.

In the case of container-based deployments we did not
experience the dependence of the accuracy of load detection
on the load level of the mon or the gen processes, as seen in
the VM based deployments. Therefore in this section we
compare the outcome of experiments with the same loads, but
run on computers with different resource sets.

We compared two use cases: in the first case the containers
run on the host (see Fig. 1 c), corresponding to a bare metal
deployment of Docker containers. In the second one the two
containers were run within a KVM/QEMU VM (see Fig. 1 b),
modelling the widely used practice of deploying a container in
a VM of a datacenter. The details of the VM, container setup,
and the parameters of the load generator are all described in
section III.

In these measurements the stress-ng was started at once
(with the 4 stressors of different types set as shown in Table I),
but we present them in four different charts: Fig. 6 for the
CPU stressor, Fig. 7 for the memory stressor, Fig. 8 for the
timer stressor and Fig. 9 for the pipe stressor.

Fig. 6. Container-based scenario results with the CPU stressor.

Fig. 7. Container-based scenario results with the memory stressor.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

When in our 4 core CPU host machines two vCPUs are
allocated to both VMs, the CPU cores assigned to the VMs
can be all different, only one shared, or both shared between
the two VMs. The figures for the “all different” and the “all
shared” CPU core scenarios look identical to the results shown
in Fig. 2 and Fig. 3, respectively. This was the expected
behavior and we do not show the results. Nevertheless, we
observed a different behavior in the case when the VMs share
one core, but they both have one independent core, as well.
Fig. 4 shows that this scenario is quite like to the single shared
CPU core scenario (i.e., Fig 2), but it inherits the sensitivity
threshold of the single different CPU core scenario. The load
percentages on the figure are doubled in this case, because
maximum load for 2 CPUs is 200%.

Fig. 4. Performance measured in bogo ops, when “gen” and “mon” share one
of their CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

We also created a scenario, where gen had access to all four
CPU cores, and mon had only one vCPU. Probably this
scenario models the best a real deployment of a telco
application getting the most computation resources possible,
with a sidecar VM with limited CPU usage measuring it. Fig.
5 shows the results for this scenario (note that the maximum
load of 400% corresponds to full utilization of 4 CPU cores).
It is largely identical to the previous results: mon can detect
changes in the load of gen, when that is low, however, when
the load of gen is high, mon becomes blind.

Fig. 5. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU core. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

Note that in all the above scenarios mon can perform its load
detection while generating small load itself. This is a nice
property, as it allows running the performance monitoring
sidecar with low impact on the telco application.

B. Docker container-based deployments
In this section we describe our results on testing the sidecar

scenario when the processes were containerized. Similarly to
the previous section, the container emulating the load of the
target application was named gen, and the monitoring
container was named mon.

In the case of container-based deployments we did not
experience the dependence of the accuracy of load detection
on the load level of the mon or the gen processes, as seen in
the VM based deployments. Therefore in this section we
compare the outcome of experiments with the same loads, but
run on computers with different resource sets.

We compared two use cases: in the first case the containers
run on the host (see Fig. 1 c), corresponding to a bare metal
deployment of Docker containers. In the second one the two
containers were run within a KVM/QEMU VM (see Fig. 1 b),
modelling the widely used practice of deploying a container in
a VM of a datacenter. The details of the VM, container setup,
and the parameters of the load generator are all described in
section III.

In these measurements the stress-ng was started at once
(with the 4 stressors of different types set as shown in Table I),
but we present them in four different charts: Fig. 6 for the
CPU stressor, Fig. 7 for the memory stressor, Fig. 8 for the
timer stressor and Fig. 9 for the pipe stressor.

Fig. 6. Container-based scenario results with the CPU stressor.

Fig. 7. Container-based scenario results with the memory stressor.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

When in our 4 core CPU host machines two vCPUs are
allocated to both VMs, the CPU cores assigned to the VMs
can be all different, only one shared, or both shared between
the two VMs. The figures for the “all different” and the “all
shared” CPU core scenarios look identical to the results shown
in Fig. 2 and Fig. 3, respectively. This was the expected
behavior and we do not show the results. Nevertheless, we
observed a different behavior in the case when the VMs share
one core, but they both have one independent core, as well.
Fig. 4 shows that this scenario is quite like to the single shared
CPU core scenario (i.e., Fig 2), but it inherits the sensitivity
threshold of the single different CPU core scenario. The load
percentages on the figure are doubled in this case, because
maximum load for 2 CPUs is 200%.

Fig. 4. Performance measured in bogo ops, when “gen” and “mon” share one
of their CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

We also created a scenario, where gen had access to all four
CPU cores, and mon had only one vCPU. Probably this
scenario models the best a real deployment of a telco
application getting the most computation resources possible,
with a sidecar VM with limited CPU usage measuring it. Fig.
5 shows the results for this scenario (note that the maximum
load of 400% corresponds to full utilization of 4 CPU cores).
It is largely identical to the previous results: mon can detect
changes in the load of gen, when that is low, however, when
the load of gen is high, mon becomes blind.

Fig. 5. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU core. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

Note that in all the above scenarios mon can perform its load
detection while generating small load itself. This is a nice
property, as it allows running the performance monitoring
sidecar with low impact on the telco application.

B. Docker container-based deployments
In this section we describe our results on testing the sidecar

scenario when the processes were containerized. Similarly to
the previous section, the container emulating the load of the
target application was named gen, and the monitoring
container was named mon.

In the case of container-based deployments we did not
experience the dependence of the accuracy of load detection
on the load level of the mon or the gen processes, as seen in
the VM based deployments. Therefore in this section we
compare the outcome of experiments with the same loads, but
run on computers with different resource sets.

We compared two use cases: in the first case the containers
run on the host (see Fig. 1 c), corresponding to a bare metal
deployment of Docker containers. In the second one the two
containers were run within a KVM/QEMU VM (see Fig. 1 b),
modelling the widely used practice of deploying a container in
a VM of a datacenter. The details of the VM, container setup,
and the parameters of the load generator are all described in
section III.

In these measurements the stress-ng was started at once
(with the 4 stressors of different types set as shown in Table I),
but we present them in four different charts: Fig. 6 for the
CPU stressor, Fig. 7 for the memory stressor, Fig. 8 for the
timer stressor and Fig. 9 for the pipe stressor.

Fig. 6. Container-based scenario results with the CPU stressor.

Fig. 7. Container-based scenario results with the memory stressor.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

When in our 4 core CPU host machines two vCPUs are
allocated to both VMs, the CPU cores assigned to the VMs
can be all different, only one shared, or both shared between
the two VMs. The figures for the “all different” and the “all
shared” CPU core scenarios look identical to the results shown
in Fig. 2 and Fig. 3, respectively. This was the expected
behavior and we do not show the results. Nevertheless, we
observed a different behavior in the case when the VMs share
one core, but they both have one independent core, as well.
Fig. 4 shows that this scenario is quite like to the single shared
CPU core scenario (i.e., Fig 2), but it inherits the sensitivity
threshold of the single different CPU core scenario. The load
percentages on the figure are doubled in this case, because
maximum load for 2 CPUs is 200%.

Fig. 4. Performance measured in bogo ops, when “gen” and “mon” share one
of their CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

We also created a scenario, where gen had access to all four
CPU cores, and mon had only one vCPU. Probably this
scenario models the best a real deployment of a telco
application getting the most computation resources possible,
with a sidecar VM with limited CPU usage measuring it. Fig.
5 shows the results for this scenario (note that the maximum
load of 400% corresponds to full utilization of 4 CPU cores).
It is largely identical to the previous results: mon can detect
changes in the load of gen, when that is low, however, when
the load of gen is high, mon becomes blind.

Fig. 5. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU core. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

Note that in all the above scenarios mon can perform its load
detection while generating small load itself. This is a nice
property, as it allows running the performance monitoring
sidecar with low impact on the telco application.

B. Docker container-based deployments
In this section we describe our results on testing the sidecar

scenario when the processes were containerized. Similarly to
the previous section, the container emulating the load of the
target application was named gen, and the monitoring
container was named mon.

In the case of container-based deployments we did not
experience the dependence of the accuracy of load detection
on the load level of the mon or the gen processes, as seen in
the VM based deployments. Therefore in this section we
compare the outcome of experiments with the same loads, but
run on computers with different resource sets.

We compared two use cases: in the first case the containers
run on the host (see Fig. 1 c), corresponding to a bare metal
deployment of Docker containers. In the second one the two
containers were run within a KVM/QEMU VM (see Fig. 1 b),
modelling the widely used practice of deploying a container in
a VM of a datacenter. The details of the VM, container setup,
and the parameters of the load generator are all described in
section III.

In these measurements the stress-ng was started at once
(with the 4 stressors of different types set as shown in Table I),
but we present them in four different charts: Fig. 6 for the
CPU stressor, Fig. 7 for the memory stressor, Fig. 8 for the
timer stressor and Fig. 9 for the pipe stressor.

Fig. 6. Container-based scenario results with the CPU stressor.

Fig. 7. Container-based scenario results with the memory stressor.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

When in our 4 core CPU host machines two vCPUs are
allocated to both VMs, the CPU cores assigned to the VMs
can be all different, only one shared, or both shared between
the two VMs. The figures for the “all different” and the “all
shared” CPU core scenarios look identical to the results shown
in Fig. 2 and Fig. 3, respectively. This was the expected
behavior and we do not show the results. Nevertheless, we
observed a different behavior in the case when the VMs share
one core, but they both have one independent core, as well.
Fig. 4 shows that this scenario is quite like to the single shared
CPU core scenario (i.e., Fig 2), but it inherits the sensitivity
threshold of the single different CPU core scenario. The load
percentages on the figure are doubled in this case, because
maximum load for 2 CPUs is 200%.

Fig. 4. Performance measured in bogo ops, when “gen” and “mon” share one
of their CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

We also created a scenario, where gen had access to all four
CPU cores, and mon had only one vCPU. Probably this
scenario models the best a real deployment of a telco
application getting the most computation resources possible,
with a sidecar VM with limited CPU usage measuring it. Fig.
5 shows the results for this scenario (note that the maximum
load of 400% corresponds to full utilization of 4 CPU cores).
It is largely identical to the previous results: mon can detect
changes in the load of gen, when that is low, however, when
the load of gen is high, mon becomes blind.

Fig. 5. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU core. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

Note that in all the above scenarios mon can perform its load
detection while generating small load itself. This is a nice
property, as it allows running the performance monitoring
sidecar with low impact on the telco application.

B. Docker container-based deployments
In this section we describe our results on testing the sidecar

scenario when the processes were containerized. Similarly to
the previous section, the container emulating the load of the
target application was named gen, and the monitoring
container was named mon.

In the case of container-based deployments we did not
experience the dependence of the accuracy of load detection
on the load level of the mon or the gen processes, as seen in
the VM based deployments. Therefore in this section we
compare the outcome of experiments with the same loads, but
run on computers with different resource sets.

We compared two use cases: in the first case the containers
run on the host (see Fig. 1 c), corresponding to a bare metal
deployment of Docker containers. In the second one the two
containers were run within a KVM/QEMU VM (see Fig. 1 b),
modelling the widely used practice of deploying a container in
a VM of a datacenter. The details of the VM, container setup,
and the parameters of the load generator are all described in
section III.

In these measurements the stress-ng was started at once
(with the 4 stressors of different types set as shown in Table I),
but we present them in four different charts: Fig. 6 for the
CPU stressor, Fig. 7 for the memory stressor, Fig. 8 for the
timer stressor and Fig. 9 for the pipe stressor.

Fig. 6. Container-based scenario results with the CPU stressor.

Fig. 7. Container-based scenario results with the memory stressor.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

When in our 4 core CPU host machines two vCPUs are
allocated to both VMs, the CPU cores assigned to the VMs
can be all different, only one shared, or both shared between
the two VMs. The figures for the “all different” and the “all
shared” CPU core scenarios look identical to the results shown
in Fig. 2 and Fig. 3, respectively. This was the expected
behavior and we do not show the results. Nevertheless, we
observed a different behavior in the case when the VMs share
one core, but they both have one independent core, as well.
Fig. 4 shows that this scenario is quite like to the single shared
CPU core scenario (i.e., Fig 2), but it inherits the sensitivity
threshold of the single different CPU core scenario. The load
percentages on the figure are doubled in this case, because
maximum load for 2 CPUs is 200%.

Fig. 4. Performance measured in bogo ops, when “gen” and “mon” share one
of their CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

We also created a scenario, where gen had access to all four
CPU cores, and mon had only one vCPU. Probably this
scenario models the best a real deployment of a telco
application getting the most computation resources possible,
with a sidecar VM with limited CPU usage measuring it. Fig.
5 shows the results for this scenario (note that the maximum
load of 400% corresponds to full utilization of 4 CPU cores).
It is largely identical to the previous results: mon can detect
changes in the load of gen, when that is low, however, when
the load of gen is high, mon becomes blind.

Fig. 5. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU core. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

Note that in all the above scenarios mon can perform its load
detection while generating small load itself. This is a nice
property, as it allows running the performance monitoring
sidecar with low impact on the telco application.

B. Docker container-based deployments
In this section we describe our results on testing the sidecar

scenario when the processes were containerized. Similarly to
the previous section, the container emulating the load of the
target application was named gen, and the monitoring
container was named mon.

In the case of container-based deployments we did not
experience the dependence of the accuracy of load detection
on the load level of the mon or the gen processes, as seen in
the VM based deployments. Therefore in this section we
compare the outcome of experiments with the same loads, but
run on computers with different resource sets.

We compared two use cases: in the first case the containers
run on the host (see Fig. 1 c), corresponding to a bare metal
deployment of Docker containers. In the second one the two
containers were run within a KVM/QEMU VM (see Fig. 1 b),
modelling the widely used practice of deploying a container in
a VM of a datacenter. The details of the VM, container setup,
and the parameters of the load generator are all described in
section III.

In these measurements the stress-ng was started at once
(with the 4 stressors of different types set as shown in Table I),
but we present them in four different charts: Fig. 6 for the
CPU stressor, Fig. 7 for the memory stressor, Fig. 8 for the
timer stressor and Fig. 9 for the pipe stressor.

Fig. 6. Container-based scenario results with the CPU stressor.

Fig. 7. Container-based scenario results with the memory stressor.

Sidecar based resource estimation method for
virtualized environments

INFOCOMMUNICATIONS JOURNAL

AUGUST 2020 • VOLUME XII • NUMBER 2 9

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

When in our 4 core CPU host machines two vCPUs are
allocated to both VMs, the CPU cores assigned to the VMs
can be all different, only one shared, or both shared between
the two VMs. The figures for the “all different” and the “all
shared” CPU core scenarios look identical to the results shown
in Fig. 2 and Fig. 3, respectively. This was the expected
behavior and we do not show the results. Nevertheless, we
observed a different behavior in the case when the VMs share
one core, but they both have one independent core, as well.
Fig. 4 shows that this scenario is quite like to the single shared
CPU core scenario (i.e., Fig 2), but it inherits the sensitivity
threshold of the single different CPU core scenario. The load
percentages on the figure are doubled in this case, because
maximum load for 2 CPUs is 200%.

Fig. 4. Performance measured in bogo ops, when “gen” and “mon” share one
of their CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

We also created a scenario, where gen had access to all four
CPU cores, and mon had only one vCPU. Probably this
scenario models the best a real deployment of a telco
application getting the most computation resources possible,
with a sidecar VM with limited CPU usage measuring it. Fig.
5 shows the results for this scenario (note that the maximum
load of 400% corresponds to full utilization of 4 CPU cores).
It is largely identical to the previous results: mon can detect
changes in the load of gen, when that is low, however, when
the load of gen is high, mon becomes blind.

Fig. 5. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU core. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

Note that in all the above scenarios mon can perform its load
detection while generating small load itself. This is a nice
property, as it allows running the performance monitoring
sidecar with low impact on the telco application.

B. Docker container-based deployments
In this section we describe our results on testing the sidecar

scenario when the processes were containerized. Similarly to
the previous section, the container emulating the load of the
target application was named gen, and the monitoring
container was named mon.

In the case of container-based deployments we did not
experience the dependence of the accuracy of load detection
on the load level of the mon or the gen processes, as seen in
the VM based deployments. Therefore in this section we
compare the outcome of experiments with the same loads, but
run on computers with different resource sets.

We compared two use cases: in the first case the containers
run on the host (see Fig. 1 c), corresponding to a bare metal
deployment of Docker containers. In the second one the two
containers were run within a KVM/QEMU VM (see Fig. 1 b),
modelling the widely used practice of deploying a container in
a VM of a datacenter. The details of the VM, container setup,
and the parameters of the load generator are all described in
section III.

In these measurements the stress-ng was started at once
(with the 4 stressors of different types set as shown in Table I),
but we present them in four different charts: Fig. 6 for the
CPU stressor, Fig. 7 for the memory stressor, Fig. 8 for the
timer stressor and Fig. 9 for the pipe stressor.

Fig. 6. Container-based scenario results with the CPU stressor.

Fig. 7. Container-based scenario results with the memory stressor.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

When in our 4 core CPU host machines two vCPUs are
allocated to both VMs, the CPU cores assigned to the VMs
can be all different, only one shared, or both shared between
the two VMs. The figures for the “all different” and the “all
shared” CPU core scenarios look identical to the results shown
in Fig. 2 and Fig. 3, respectively. This was the expected
behavior and we do not show the results. Nevertheless, we
observed a different behavior in the case when the VMs share
one core, but they both have one independent core, as well.
Fig. 4 shows that this scenario is quite like to the single shared
CPU core scenario (i.e., Fig 2), but it inherits the sensitivity
threshold of the single different CPU core scenario. The load
percentages on the figure are doubled in this case, because
maximum load for 2 CPUs is 200%.

Fig. 4. Performance measured in bogo ops, when “gen” and “mon” share one
of their CPU cores. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

We also created a scenario, where gen had access to all four
CPU cores, and mon had only one vCPU. Probably this
scenario models the best a real deployment of a telco
application getting the most computation resources possible,
with a sidecar VM with limited CPU usage measuring it. Fig.
5 shows the results for this scenario (note that the maximum
load of 400% corresponds to full utilization of 4 CPU cores).
It is largely identical to the previous results: mon can detect
changes in the load of gen, when that is low, however, when
the load of gen is high, mon becomes blind.

Fig. 5. Performance measured in bogo ops, when “gen” and “mon” share a
single CPU core. The colored bars correspond to different loads on “gen”,
expressed as % of 1 CPU core capacity.

Note that in all the above scenarios mon can perform its load
detection while generating small load itself. This is a nice
property, as it allows running the performance monitoring
sidecar with low impact on the telco application.

B. Docker container-based deployments
In this section we describe our results on testing the sidecar

scenario when the processes were containerized. Similarly to
the previous section, the container emulating the load of the
target application was named gen, and the monitoring
container was named mon.

In the case of container-based deployments we did not
experience the dependence of the accuracy of load detection
on the load level of the mon or the gen processes, as seen in
the VM based deployments. Therefore in this section we
compare the outcome of experiments with the same loads, but
run on computers with different resource sets.

We compared two use cases: in the first case the containers
run on the host (see Fig. 1 c), corresponding to a bare metal
deployment of Docker containers. In the second one the two
containers were run within a KVM/QEMU VM (see Fig. 1 b),
modelling the widely used practice of deploying a container in
a VM of a datacenter. The details of the VM, container setup,
and the parameters of the load generator are all described in
section III.

In these measurements the stress-ng was started at once
(with the 4 stressors of different types set as shown in Table I),
but we present them in four different charts: Fig. 6 for the
CPU stressor, Fig. 7 for the memory stressor, Fig. 8 for the
timer stressor and Fig. 9 for the pipe stressor.

Fig. 6. Container-based scenario results with the CPU stressor.

Fig. 7. Container-based scenario results with the memory stressor.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Fig. 8. Container-based scenario results with the timer stressor.

Fig. 9. Container-based scenario results with the pipe stressor.

In all four cases, for both host and VM based measurements
it is clearly observable the effect of the stress on the gen
container. It also can be seen that VM-based measurements
result in lower values. However, the difference between the
host-based and VM-based values depends on the stressor
types: for the memory stressor the differences may be minimal
(depends on the motherboard architecture and RAM type, not
only on CPU type), whereas for the timer stressor we observed
extreme differences.

For the stressors triggering timer() and pipe() system calls
are much more sensitive to the computer architectures and
react much more in terms of absolute value to the presence of
load. Whereas this is useful to detect differences in both load
and computational power, it has the drawback that it is volatile
and has larger variance compared to the cpu and memory
stressors.

In Table III we summarized the relative differences among
the three PCs, calculated based on the bogo ops, as reported by
the CPU stressor of mon.

In a separate column we show the cpu score based relative
performance of the 3 CPUs, as provided by the cpuboss.com
independent CPU benchmark site. It can be seen that our
measurement accurately profile the 3 computers (note that the
motherboard and RAM configurations correspond to the

performance levels of the CPUs, thus this did not introduce
further bias in the measurements).

C. Kubernetes based deployments
In the third experiment series we tested the sidecar scenario

in a Kubernetes cluster. We deployed a pod running the two
containers (gen and mon). Each container ran one stress-ng
process each. The stressors were parameterized according to
Table I, with the notable exception of starting 4 parallel CPU
stressors in the gen container in order to allow it to consume
as much CPU as it can.

During the tests, we started an external stress in a second
pod, which stole resources from our pod. The mon container
repeated the measurements in an infinite loop. The goal was to
let the mon container measure the level of resource
degradation.

The resource definition for the pod was set for CPU only.
Within our pod, the gen container requested 1800 milli cores,
and the mon container requested 200 milli cores of CPU,
respectively. The external load that supposed to stole
resources from our pod requested 1000 milli cores of CPU.
The resource allocation policy was burstable (see Section II.A)
and the pods were scheduled on PC2. The measurements have
shown that the performances of the two containers (mon and
gen) correlate. We verified the CPU usage on the host using
the top tool. At the beginning of the experiment the pod
generating the external load was not deployed, then we started
the external load. The CPU consumption of the gen and mon
containers before and after the external load is started is
shown in Table IV. Initially the gen container uses as much
resources as it can (3.8 CPUs). After the external load steals
some resources (it gets 1.2 CPUs), the gen container can
consume only ~60% of this resource (2.4 CPUs). The resource
usage of the mon container scales down in a similar manner.

The 4th column of Table IV shows the measured values, as
recorded by the “mon” container (expressed in bogo ops). The
resource degradation level measured by the mon container is
like the one observed at the host (3rd column) but is not exact
match. This is because that the stress-ng load does not depend
solely on the CPU usage. In practice this method must be
calibrated to the proper application it is supposed to measure.

V. DISCUSSION OF RESULTS

The measurement results presented in this study were done
on computers with four cores, and the results shown in the
previous section suggest that sidecar containers can detect if
the main container is loaded just by monitoring the CPU

TABLE III CPU PERFORMANCE COMPARISON (RELATIVE TO PC1)

Name Measured by
“mon” container

CPUboss.com
benchmark values

PC1 1 1
PC2 0,56 0,46
PC3 0,17 0,24

TABLE IV THE CPU CONSUMPTION OF THE OBSERVED CONTAINERS DEPLOYED
INTO A KUBERNETES CLUSTER, AS FUNCTION OF EXTERNAL LOAD

External
load?

CPU
consumption
of the “gen”

container
[milli cores]

CPU
consumption
of the “mon”

container
[milli cores]

CPU
consumption
of the “mon”

container
[bogo ops]

NO 3777 213 134
YES 2410 118 68

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Fig. 8. Container-based scenario results with the timer stressor.

Fig. 9. Container-based scenario results with the pipe stressor.

In all four cases, for both host and VM based measurements
it is clearly observable the effect of the stress on the gen
container. It also can be seen that VM-based measurements
result in lower values. However, the difference between the
host-based and VM-based values depends on the stressor
types: for the memory stressor the differences may be minimal
(depends on the motherboard architecture and RAM type, not
only on CPU type), whereas for the timer stressor we observed
extreme differences.

For the stressors triggering timer() and pipe() system calls
are much more sensitive to the computer architectures and
react much more in terms of absolute value to the presence of
load. Whereas this is useful to detect differences in both load
and computational power, it has the drawback that it is volatile
and has larger variance compared to the cpu and memory
stressors.

In Table III we summarized the relative differences among
the three PCs, calculated based on the bogo ops, as reported by
the CPU stressor of mon.

In a separate column we show the cpu score based relative
performance of the 3 CPUs, as provided by the cpuboss.com
independent CPU benchmark site. It can be seen that our
measurement accurately profile the 3 computers (note that the
motherboard and RAM configurations correspond to the

performance levels of the CPUs, thus this did not introduce
further bias in the measurements).

C. Kubernetes based deployments
In the third experiment series we tested the sidecar scenario

in a Kubernetes cluster. We deployed a pod running the two
containers (gen and mon). Each container ran one stress-ng
process each. The stressors were parameterized according to
Table I, with the notable exception of starting 4 parallel CPU
stressors in the gen container in order to allow it to consume
as much CPU as it can.

During the tests, we started an external stress in a second
pod, which stole resources from our pod. The mon container
repeated the measurements in an infinite loop. The goal was to
let the mon container measure the level of resource
degradation.

The resource definition for the pod was set for CPU only.
Within our pod, the gen container requested 1800 milli cores,
and the mon container requested 200 milli cores of CPU,
respectively. The external load that supposed to stole
resources from our pod requested 1000 milli cores of CPU.
The resource allocation policy was burstable (see Section II.A)
and the pods were scheduled on PC2. The measurements have
shown that the performances of the two containers (mon and
gen) correlate. We verified the CPU usage on the host using
the top tool. At the beginning of the experiment the pod
generating the external load was not deployed, then we started
the external load. The CPU consumption of the gen and mon
containers before and after the external load is started is
shown in Table IV. Initially the gen container uses as much
resources as it can (3.8 CPUs). After the external load steals
some resources (it gets 1.2 CPUs), the gen container can
consume only ~60% of this resource (2.4 CPUs). The resource
usage of the mon container scales down in a similar manner.

The 4th column of Table IV shows the measured values, as
recorded by the “mon” container (expressed in bogo ops). The
resource degradation level measured by the mon container is
like the one observed at the host (3rd column) but is not exact
match. This is because that the stress-ng load does not depend
solely on the CPU usage. In practice this method must be
calibrated to the proper application it is supposed to measure.

V. DISCUSSION OF RESULTS

The measurement results presented in this study were done
on computers with four cores, and the results shown in the
previous section suggest that sidecar containers can detect if
the main container is loaded just by monitoring the CPU

TABLE III CPU PERFORMANCE COMPARISON (RELATIVE TO PC1)

Name Measured by
“mon” container

CPUboss.com
benchmark values

PC1 1 1
PC2 0,56 0,46
PC3 0,17 0,24

TABLE IV THE CPU CONSUMPTION OF THE OBSERVED CONTAINERS DEPLOYED
INTO A KUBERNETES CLUSTER, AS FUNCTION OF EXTERNAL LOAD

External
load?

CPU
consumption
of the “gen”

container
[milli cores]

CPU
consumption
of the “mon”

container
[milli cores]

CPU
consumption
of the “mon”

container
[bogo ops]

NO 3777 213 134
YES 2410 118 68

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Fig. 8. Container-based scenario results with the timer stressor.

Fig. 9. Container-based scenario results with the pipe stressor.

In all four cases, for both host and VM based measurements
it is clearly observable the effect of the stress on the gen
container. It also can be seen that VM-based measurements
result in lower values. However, the difference between the
host-based and VM-based values depends on the stressor
types: for the memory stressor the differences may be minimal
(depends on the motherboard architecture and RAM type, not
only on CPU type), whereas for the timer stressor we observed
extreme differences.

For the stressors triggering timer() and pipe() system calls
are much more sensitive to the computer architectures and
react much more in terms of absolute value to the presence of
load. Whereas this is useful to detect differences in both load
and computational power, it has the drawback that it is volatile
and has larger variance compared to the cpu and memory
stressors.

In Table III we summarized the relative differences among
the three PCs, calculated based on the bogo ops, as reported by
the CPU stressor of mon.

In a separate column we show the cpu score based relative
performance of the 3 CPUs, as provided by the cpuboss.com
independent CPU benchmark site. It can be seen that our
measurement accurately profile the 3 computers (note that the
motherboard and RAM configurations correspond to the

performance levels of the CPUs, thus this did not introduce
further bias in the measurements).

C. Kubernetes based deployments
In the third experiment series we tested the sidecar scenario

in a Kubernetes cluster. We deployed a pod running the two
containers (gen and mon). Each container ran one stress-ng
process each. The stressors were parameterized according to
Table I, with the notable exception of starting 4 parallel CPU
stressors in the gen container in order to allow it to consume
as much CPU as it can.

During the tests, we started an external stress in a second
pod, which stole resources from our pod. The mon container
repeated the measurements in an infinite loop. The goal was to
let the mon container measure the level of resource
degradation.

The resource definition for the pod was set for CPU only.
Within our pod, the gen container requested 1800 milli cores,
and the mon container requested 200 milli cores of CPU,
respectively. The external load that supposed to stole
resources from our pod requested 1000 milli cores of CPU.
The resource allocation policy was burstable (see Section II.A)
and the pods were scheduled on PC2. The measurements have
shown that the performances of the two containers (mon and
gen) correlate. We verified the CPU usage on the host using
the top tool. At the beginning of the experiment the pod
generating the external load was not deployed, then we started
the external load. The CPU consumption of the gen and mon
containers before and after the external load is started is
shown in Table IV. Initially the gen container uses as much
resources as it can (3.8 CPUs). After the external load steals
some resources (it gets 1.2 CPUs), the gen container can
consume only ~60% of this resource (2.4 CPUs). The resource
usage of the mon container scales down in a similar manner.

The 4th column of Table IV shows the measured values, as
recorded by the “mon” container (expressed in bogo ops). The
resource degradation level measured by the mon container is
like the one observed at the host (3rd column) but is not exact
match. This is because that the stress-ng load does not depend
solely on the CPU usage. In practice this method must be
calibrated to the proper application it is supposed to measure.

V. DISCUSSION OF RESULTS

The measurement results presented in this study were done
on computers with four cores, and the results shown in the
previous section suggest that sidecar containers can detect if
the main container is loaded just by monitoring the CPU

TABLE III CPU PERFORMANCE COMPARISON (RELATIVE TO PC1)

Name Measured by
“mon” container

CPUboss.com
benchmark values

PC1 1 1
PC2 0,56 0,46
PC3 0,17 0,24

TABLE IV THE CPU CONSUMPTION OF THE OBSERVED CONTAINERS DEPLOYED
INTO A KUBERNETES CLUSTER, AS FUNCTION OF EXTERNAL LOAD

External
load?

CPU
consumption
of the “gen”

container
[milli cores]

CPU
consumption
of the “mon”

container
[milli cores]

CPU
consumption
of the “mon”

container
[bogo ops]

NO 3777 213 134
YES 2410 118 68

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Fig. 8. Container-based scenario results with the timer stressor.

Fig. 9. Container-based scenario results with the pipe stressor.

In all four cases, for both host and VM based measurements
it is clearly observable the effect of the stress on the gen
container. It also can be seen that VM-based measurements
result in lower values. However, the difference between the
host-based and VM-based values depends on the stressor
types: for the memory stressor the differences may be minimal
(depends on the motherboard architecture and RAM type, not
only on CPU type), whereas for the timer stressor we observed
extreme differences.

For the stressors triggering timer() and pipe() system calls
are much more sensitive to the computer architectures and
react much more in terms of absolute value to the presence of
load. Whereas this is useful to detect differences in both load
and computational power, it has the drawback that it is volatile
and has larger variance compared to the cpu and memory
stressors.

In Table III we summarized the relative differences among
the three PCs, calculated based on the bogo ops, as reported by
the CPU stressor of mon.

In a separate column we show the cpu score based relative
performance of the 3 CPUs, as provided by the cpuboss.com
independent CPU benchmark site. It can be seen that our
measurement accurately profile the 3 computers (note that the
motherboard and RAM configurations correspond to the

performance levels of the CPUs, thus this did not introduce
further bias in the measurements).

C. Kubernetes based deployments
In the third experiment series we tested the sidecar scenario

in a Kubernetes cluster. We deployed a pod running the two
containers (gen and mon). Each container ran one stress-ng
process each. The stressors were parameterized according to
Table I, with the notable exception of starting 4 parallel CPU
stressors in the gen container in order to allow it to consume
as much CPU as it can.

During the tests, we started an external stress in a second
pod, which stole resources from our pod. The mon container
repeated the measurements in an infinite loop. The goal was to
let the mon container measure the level of resource
degradation.

The resource definition for the pod was set for CPU only.
Within our pod, the gen container requested 1800 milli cores,
and the mon container requested 200 milli cores of CPU,
respectively. The external load that supposed to stole
resources from our pod requested 1000 milli cores of CPU.
The resource allocation policy was burstable (see Section II.A)
and the pods were scheduled on PC2. The measurements have
shown that the performances of the two containers (mon and
gen) correlate. We verified the CPU usage on the host using
the top tool. At the beginning of the experiment the pod
generating the external load was not deployed, then we started
the external load. The CPU consumption of the gen and mon
containers before and after the external load is started is
shown in Table IV. Initially the gen container uses as much
resources as it can (3.8 CPUs). After the external load steals
some resources (it gets 1.2 CPUs), the gen container can
consume only ~60% of this resource (2.4 CPUs). The resource
usage of the mon container scales down in a similar manner.

The 4th column of Table IV shows the measured values, as
recorded by the “mon” container (expressed in bogo ops). The
resource degradation level measured by the mon container is
like the one observed at the host (3rd column) but is not exact
match. This is because that the stress-ng load does not depend
solely on the CPU usage. In practice this method must be
calibrated to the proper application it is supposed to measure.

V. DISCUSSION OF RESULTS

The measurement results presented in this study were done
on computers with four cores, and the results shown in the
previous section suggest that sidecar containers can detect if
the main container is loaded just by monitoring the CPU

TABLE III CPU PERFORMANCE COMPARISON (RELATIVE TO PC1)

Name Measured by
“mon” container

CPUboss.com
benchmark values

PC1 1 1
PC2 0,56 0,46
PC3 0,17 0,24

TABLE IV THE CPU CONSUMPTION OF THE OBSERVED CONTAINERS DEPLOYED
INTO A KUBERNETES CLUSTER, AS FUNCTION OF EXTERNAL LOAD

External
load?

CPU
consumption
of the “gen”

container
[milli cores]

CPU
consumption
of the “mon”

container
[milli cores]

CPU
consumption
of the “mon”

container
[bogo ops]

NO 3777 213 134
YES 2410 118 68

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Fig. 8. Container-based scenario results with the timer stressor.

Fig. 9. Container-based scenario results with the pipe stressor.

In all four cases, for both host and VM based measurements
it is clearly observable the effect of the stress on the gen
container. It also can be seen that VM-based measurements
result in lower values. However, the difference between the
host-based and VM-based values depends on the stressor
types: for the memory stressor the differences may be minimal
(depends on the motherboard architecture and RAM type, not
only on CPU type), whereas for the timer stressor we observed
extreme differences.

For the stressors triggering timer() and pipe() system calls
are much more sensitive to the computer architectures and
react much more in terms of absolute value to the presence of
load. Whereas this is useful to detect differences in both load
and computational power, it has the drawback that it is volatile
and has larger variance compared to the cpu and memory
stressors.

In Table III we summarized the relative differences among
the three PCs, calculated based on the bogo ops, as reported by
the CPU stressor of mon.

In a separate column we show the cpu score based relative
performance of the 3 CPUs, as provided by the cpuboss.com
independent CPU benchmark site. It can be seen that our
measurement accurately profile the 3 computers (note that the
motherboard and RAM configurations correspond to the

performance levels of the CPUs, thus this did not introduce
further bias in the measurements).

C. Kubernetes based deployments
In the third experiment series we tested the sidecar scenario

in a Kubernetes cluster. We deployed a pod running the two
containers (gen and mon). Each container ran one stress-ng
process each. The stressors were parameterized according to
Table I, with the notable exception of starting 4 parallel CPU
stressors in the gen container in order to allow it to consume
as much CPU as it can.

During the tests, we started an external stress in a second
pod, which stole resources from our pod. The mon container
repeated the measurements in an infinite loop. The goal was to
let the mon container measure the level of resource
degradation.

The resource definition for the pod was set for CPU only.
Within our pod, the gen container requested 1800 milli cores,
and the mon container requested 200 milli cores of CPU,
respectively. The external load that supposed to stole
resources from our pod requested 1000 milli cores of CPU.
The resource allocation policy was burstable (see Section II.A)
and the pods were scheduled on PC2. The measurements have
shown that the performances of the two containers (mon and
gen) correlate. We verified the CPU usage on the host using
the top tool. At the beginning of the experiment the pod
generating the external load was not deployed, then we started
the external load. The CPU consumption of the gen and mon
containers before and after the external load is started is
shown in Table IV. Initially the gen container uses as much
resources as it can (3.8 CPUs). After the external load steals
some resources (it gets 1.2 CPUs), the gen container can
consume only ~60% of this resource (2.4 CPUs). The resource
usage of the mon container scales down in a similar manner.

The 4th column of Table IV shows the measured values, as
recorded by the “mon” container (expressed in bogo ops). The
resource degradation level measured by the mon container is
like the one observed at the host (3rd column) but is not exact
match. This is because that the stress-ng load does not depend
solely on the CPU usage. In practice this method must be
calibrated to the proper application it is supposed to measure.

V. DISCUSSION OF RESULTS

The measurement results presented in this study were done
on computers with four cores, and the results shown in the
previous section suggest that sidecar containers can detect if
the main container is loaded just by monitoring the CPU

TABLE III CPU PERFORMANCE COMPARISON (RELATIVE TO PC1)

Name Measured by
“mon” container

CPUboss.com
benchmark values

PC1 1 1
PC2 0,56 0,46
PC3 0,17 0,24

TABLE IV THE CPU CONSUMPTION OF THE OBSERVED CONTAINERS DEPLOYED
INTO A KUBERNETES CLUSTER, AS FUNCTION OF EXTERNAL LOAD

External
load?

CPU
consumption
of the “gen”

container
[milli cores]

CPU
consumption
of the “mon”

container
[milli cores]

CPU
consumption
of the “mon”

container
[bogo ops]

NO 3777 213 134
YES 2410 118 68

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Fig. 8. Container-based scenario results with the timer stressor.

Fig. 9. Container-based scenario results with the pipe stressor.

In all four cases, for both host and VM based measurements
it is clearly observable the effect of the stress on the gen
container. It also can be seen that VM-based measurements
result in lower values. However, the difference between the
host-based and VM-based values depends on the stressor
types: for the memory stressor the differences may be minimal
(depends on the motherboard architecture and RAM type, not
only on CPU type), whereas for the timer stressor we observed
extreme differences.

For the stressors triggering timer() and pipe() system calls
are much more sensitive to the computer architectures and
react much more in terms of absolute value to the presence of
load. Whereas this is useful to detect differences in both load
and computational power, it has the drawback that it is volatile
and has larger variance compared to the cpu and memory
stressors.

In Table III we summarized the relative differences among
the three PCs, calculated based on the bogo ops, as reported by
the CPU stressor of mon.

In a separate column we show the cpu score based relative
performance of the 3 CPUs, as provided by the cpuboss.com
independent CPU benchmark site. It can be seen that our
measurement accurately profile the 3 computers (note that the
motherboard and RAM configurations correspond to the

performance levels of the CPUs, thus this did not introduce
further bias in the measurements).

C. Kubernetes based deployments
In the third experiment series we tested the sidecar scenario

in a Kubernetes cluster. We deployed a pod running the two
containers (gen and mon). Each container ran one stress-ng
process each. The stressors were parameterized according to
Table I, with the notable exception of starting 4 parallel CPU
stressors in the gen container in order to allow it to consume
as much CPU as it can.

During the tests, we started an external stress in a second
pod, which stole resources from our pod. The mon container
repeated the measurements in an infinite loop. The goal was to
let the mon container measure the level of resource
degradation.

The resource definition for the pod was set for CPU only.
Within our pod, the gen container requested 1800 milli cores,
and the mon container requested 200 milli cores of CPU,
respectively. The external load that supposed to stole
resources from our pod requested 1000 milli cores of CPU.
The resource allocation policy was burstable (see Section II.A)
and the pods were scheduled on PC2. The measurements have
shown that the performances of the two containers (mon and
gen) correlate. We verified the CPU usage on the host using
the top tool. At the beginning of the experiment the pod
generating the external load was not deployed, then we started
the external load. The CPU consumption of the gen and mon
containers before and after the external load is started is
shown in Table IV. Initially the gen container uses as much
resources as it can (3.8 CPUs). After the external load steals
some resources (it gets 1.2 CPUs), the gen container can
consume only ~60% of this resource (2.4 CPUs). The resource
usage of the mon container scales down in a similar manner.

The 4th column of Table IV shows the measured values, as
recorded by the “mon” container (expressed in bogo ops). The
resource degradation level measured by the mon container is
like the one observed at the host (3rd column) but is not exact
match. This is because that the stress-ng load does not depend
solely on the CPU usage. In practice this method must be
calibrated to the proper application it is supposed to measure.

V. DISCUSSION OF RESULTS

The measurement results presented in this study were done
on computers with four cores, and the results shown in the
previous section suggest that sidecar containers can detect if
the main container is loaded just by monitoring the CPU

TABLE III CPU PERFORMANCE COMPARISON (RELATIVE TO PC1)

Name Measured by
“mon” container

CPUboss.com
benchmark values

PC1 1 1
PC2 0,56 0,46
PC3 0,17 0,24

TABLE IV THE CPU CONSUMPTION OF THE OBSERVED CONTAINERS DEPLOYED
INTO A KUBERNETES CLUSTER, AS FUNCTION OF EXTERNAL LOAD

External
load?

CPU
consumption
of the “gen”

container
[milli cores]

CPU
consumption
of the “mon”

container
[milli cores]

CPU
consumption
of the “mon”

container
[bogo ops]

NO 3777 213 134
YES 2410 118 68

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Fig. 8. Container-based scenario results with the timer stressor.

Fig. 9. Container-based scenario results with the pipe stressor.

In all four cases, for both host and VM based measurements
it is clearly observable the effect of the stress on the gen
container. It also can be seen that VM-based measurements
result in lower values. However, the difference between the
host-based and VM-based values depends on the stressor
types: for the memory stressor the differences may be minimal
(depends on the motherboard architecture and RAM type, not
only on CPU type), whereas for the timer stressor we observed
extreme differences.

For the stressors triggering timer() and pipe() system calls
are much more sensitive to the computer architectures and
react much more in terms of absolute value to the presence of
load. Whereas this is useful to detect differences in both load
and computational power, it has the drawback that it is volatile
and has larger variance compared to the cpu and memory
stressors.

In Table III we summarized the relative differences among
the three PCs, calculated based on the bogo ops, as reported by
the CPU stressor of mon.

In a separate column we show the cpu score based relative
performance of the 3 CPUs, as provided by the cpuboss.com
independent CPU benchmark site. It can be seen that our
measurement accurately profile the 3 computers (note that the
motherboard and RAM configurations correspond to the

performance levels of the CPUs, thus this did not introduce
further bias in the measurements).

C. Kubernetes based deployments
In the third experiment series we tested the sidecar scenario

in a Kubernetes cluster. We deployed a pod running the two
containers (gen and mon). Each container ran one stress-ng
process each. The stressors were parameterized according to
Table I, with the notable exception of starting 4 parallel CPU
stressors in the gen container in order to allow it to consume
as much CPU as it can.

During the tests, we started an external stress in a second
pod, which stole resources from our pod. The mon container
repeated the measurements in an infinite loop. The goal was to
let the mon container measure the level of resource
degradation.

The resource definition for the pod was set for CPU only.
Within our pod, the gen container requested 1800 milli cores,
and the mon container requested 200 milli cores of CPU,
respectively. The external load that supposed to stole
resources from our pod requested 1000 milli cores of CPU.
The resource allocation policy was burstable (see Section II.A)
and the pods were scheduled on PC2. The measurements have
shown that the performances of the two containers (mon and
gen) correlate. We verified the CPU usage on the host using
the top tool. At the beginning of the experiment the pod
generating the external load was not deployed, then we started
the external load. The CPU consumption of the gen and mon
containers before and after the external load is started is
shown in Table IV. Initially the gen container uses as much
resources as it can (3.8 CPUs). After the external load steals
some resources (it gets 1.2 CPUs), the gen container can
consume only ~60% of this resource (2.4 CPUs). The resource
usage of the mon container scales down in a similar manner.

The 4th column of Table IV shows the measured values, as
recorded by the “mon” container (expressed in bogo ops). The
resource degradation level measured by the mon container is
like the one observed at the host (3rd column) but is not exact
match. This is because that the stress-ng load does not depend
solely on the CPU usage. In practice this method must be
calibrated to the proper application it is supposed to measure.

V. DISCUSSION OF RESULTS

The measurement results presented in this study were done
on computers with four cores, and the results shown in the
previous section suggest that sidecar containers can detect if
the main container is loaded just by monitoring the CPU

TABLE III CPU PERFORMANCE COMPARISON (RELATIVE TO PC1)

Name Measured by
“mon” container

CPUboss.com
benchmark values

PC1 1 1
PC2 0,56 0,46
PC3 0,17 0,24

TABLE IV THE CPU CONSUMPTION OF THE OBSERVED CONTAINERS DEPLOYED
INTO A KUBERNETES CLUSTER, AS FUNCTION OF EXTERNAL LOAD

External
load?

CPU
consumption
of the “gen”

container
[milli cores]

CPU
consumption
of the “mon”

container
[milli cores]

CPU
consumption
of the “mon”

container
[bogo ops]

NO 3777 213 134
YES 2410 118 68

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Fig. 8. Container-based scenario results with the timer stressor.

Fig. 9. Container-based scenario results with the pipe stressor.

In all four cases, for both host and VM based measurements
it is clearly observable the effect of the stress on the gen
container. It also can be seen that VM-based measurements
result in lower values. However, the difference between the
host-based and VM-based values depends on the stressor
types: for the memory stressor the differences may be minimal
(depends on the motherboard architecture and RAM type, not
only on CPU type), whereas for the timer stressor we observed
extreme differences.

For the stressors triggering timer() and pipe() system calls
are much more sensitive to the computer architectures and
react much more in terms of absolute value to the presence of
load. Whereas this is useful to detect differences in both load
and computational power, it has the drawback that it is volatile
and has larger variance compared to the cpu and memory
stressors.

In Table III we summarized the relative differences among
the three PCs, calculated based on the bogo ops, as reported by
the CPU stressor of mon.

In a separate column we show the cpu score based relative
performance of the 3 CPUs, as provided by the cpuboss.com
independent CPU benchmark site. It can be seen that our
measurement accurately profile the 3 computers (note that the
motherboard and RAM configurations correspond to the

performance levels of the CPUs, thus this did not introduce
further bias in the measurements).

C. Kubernetes based deployments
In the third experiment series we tested the sidecar scenario

in a Kubernetes cluster. We deployed a pod running the two
containers (gen and mon). Each container ran one stress-ng
process each. The stressors were parameterized according to
Table I, with the notable exception of starting 4 parallel CPU
stressors in the gen container in order to allow it to consume
as much CPU as it can.

During the tests, we started an external stress in a second
pod, which stole resources from our pod. The mon container
repeated the measurements in an infinite loop. The goal was to
let the mon container measure the level of resource
degradation.

The resource definition for the pod was set for CPU only.
Within our pod, the gen container requested 1800 milli cores,
and the mon container requested 200 milli cores of CPU,
respectively. The external load that supposed to stole
resources from our pod requested 1000 milli cores of CPU.
The resource allocation policy was burstable (see Section II.A)
and the pods were scheduled on PC2. The measurements have
shown that the performances of the two containers (mon and
gen) correlate. We verified the CPU usage on the host using
the top tool. At the beginning of the experiment the pod
generating the external load was not deployed, then we started
the external load. The CPU consumption of the gen and mon
containers before and after the external load is started is
shown in Table IV. Initially the gen container uses as much
resources as it can (3.8 CPUs). After the external load steals
some resources (it gets 1.2 CPUs), the gen container can
consume only ~60% of this resource (2.4 CPUs). The resource
usage of the mon container scales down in a similar manner.

The 4th column of Table IV shows the measured values, as
recorded by the “mon” container (expressed in bogo ops). The
resource degradation level measured by the mon container is
like the one observed at the host (3rd column) but is not exact
match. This is because that the stress-ng load does not depend
solely on the CPU usage. In practice this method must be
calibrated to the proper application it is supposed to measure.

V. DISCUSSION OF RESULTS

The measurement results presented in this study were done
on computers with four cores, and the results shown in the
previous section suggest that sidecar containers can detect if
the main container is loaded just by monitoring the CPU

TABLE III CPU PERFORMANCE COMPARISON (RELATIVE TO PC1)

Name Measured by
“mon” container

CPUboss.com
benchmark values

PC1 1 1
PC2 0,56 0,46
PC3 0,17 0,24

TABLE IV THE CPU CONSUMPTION OF THE OBSERVED CONTAINERS DEPLOYED
INTO A KUBERNETES CLUSTER, AS FUNCTION OF EXTERNAL LOAD

External
load?

CPU
consumption
of the “gen”

container
[milli cores]

CPU
consumption
of the “mon”

container
[milli cores]

CPU
consumption
of the “mon”

container
[bogo ops]

NO 3777 213 134
YES 2410 118 68

Sidecar based resource estimation method for
virtualized environments

AUGUST 2020 • VOLUME XII • NUMBER 210

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Fig. 8. Container-based scenario results with the timer stressor.

Fig. 9. Container-based scenario results with the pipe stressor.

In all four cases, for both host and VM based measurements
it is clearly observable the effect of the stress on the gen
container. It also can be seen that VM-based measurements
result in lower values. However, the difference between the
host-based and VM-based values depends on the stressor
types: for the memory stressor the differences may be minimal
(depends on the motherboard architecture and RAM type, not
only on CPU type), whereas for the timer stressor we observed
extreme differences.

For the stressors triggering timer() and pipe() system calls
are much more sensitive to the computer architectures and
react much more in terms of absolute value to the presence of
load. Whereas this is useful to detect differences in both load
and computational power, it has the drawback that it is volatile
and has larger variance compared to the cpu and memory
stressors.

In Table III we summarized the relative differences among
the three PCs, calculated based on the bogo ops, as reported by
the CPU stressor of mon.

In a separate column we show the cpu score based relative
performance of the 3 CPUs, as provided by the cpuboss.com
independent CPU benchmark site. It can be seen that our
measurement accurately profile the 3 computers (note that the
motherboard and RAM configurations correspond to the

performance levels of the CPUs, thus this did not introduce
further bias in the measurements).

C. Kubernetes based deployments
In the third experiment series we tested the sidecar scenario

in a Kubernetes cluster. We deployed a pod running the two
containers (gen and mon). Each container ran one stress-ng
process each. The stressors were parameterized according to
Table I, with the notable exception of starting 4 parallel CPU
stressors in the gen container in order to allow it to consume
as much CPU as it can.

During the tests, we started an external stress in a second
pod, which stole resources from our pod. The mon container
repeated the measurements in an infinite loop. The goal was to
let the mon container measure the level of resource
degradation.

The resource definition for the pod was set for CPU only.
Within our pod, the gen container requested 1800 milli cores,
and the mon container requested 200 milli cores of CPU,
respectively. The external load that supposed to stole
resources from our pod requested 1000 milli cores of CPU.
The resource allocation policy was burstable (see Section II.A)
and the pods were scheduled on PC2. The measurements have
shown that the performances of the two containers (mon and
gen) correlate. We verified the CPU usage on the host using
the top tool. At the beginning of the experiment the pod
generating the external load was not deployed, then we started
the external load. The CPU consumption of the gen and mon
containers before and after the external load is started is
shown in Table IV. Initially the gen container uses as much
resources as it can (3.8 CPUs). After the external load steals
some resources (it gets 1.2 CPUs), the gen container can
consume only ~60% of this resource (2.4 CPUs). The resource
usage of the mon container scales down in a similar manner.

The 4th column of Table IV shows the measured values, as
recorded by the “mon” container (expressed in bogo ops). The
resource degradation level measured by the mon container is
like the one observed at the host (3rd column) but is not exact
match. This is because that the stress-ng load does not depend
solely on the CPU usage. In practice this method must be
calibrated to the proper application it is supposed to measure.

V. DISCUSSION OF RESULTS

The measurement results presented in this study were done
on computers with four cores, and the results shown in the
previous section suggest that sidecar containers can detect if
the main container is loaded just by monitoring the CPU

TABLE III CPU PERFORMANCE COMPARISON (RELATIVE TO PC1)

Name Measured by
“mon” container

CPUboss.com
benchmark values

PC1 1 1
PC2 0,56 0,46
PC3 0,17 0,24

TABLE IV THE CPU CONSUMPTION OF THE OBSERVED CONTAINERS DEPLOYED
INTO A KUBERNETES CLUSTER, AS FUNCTION OF EXTERNAL LOAD

External
load?

CPU
consumption
of the “gen”

container
[milli cores]

CPU
consumption
of the “mon”

container
[milli cores]

CPU
consumption
of the “mon”

container
[bogo ops]

NO 3777 213 134
YES 2410 118 68

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

frequencies, even if the two are pinned to different CPU cores.

A. The effects of the CPU frequency modifying mechanisms
The modern CPU architectures apply several optimization

features, resulting in dynamic CPU resource availability that
adapts to the load variations. Most of these features were
introduced to increase the power consumption efficiency. The
Intel CPUs implement frequency scaling in hardware, called
SpeedStep technology. When a workload is deployed on one
core, this technology raises the clock frequencies on all cores;
the fewer cores are loaded, the higher their frequency can go.

Additionally to the above feature, a mechanism called turbo
frequency adjustment aims to allow higher peak performances
for short periods If multiple cores are loaded at the same time,
their clock frequency drops below the maximum turbo
frequency; thus, the overall computing capacity of the CPU
doesn't scale linearly with the number of threads running.

We also ran some of the measurements detailed in section
IV.A on a computing cluster, where the servers had CPU
frequency scaling turned off in the BIOS. The measurement
results confirmed that when the CPU frequencies are constant
throughout the tests, the fluctuations presented earlier in that
section are not present and the performance of the system
scales linearly with the number of cores.

B. The effects of HyperThreading
Most Intel CPUs support the HyperThreading [16]

technology, which allows a CPU core to share its computing
resources between two threads, thus appearing as two virtual
cores to the operating system. On Linux the CPU cores are
ordered such that the second halves of the CPU cores are the
hyperthreads of the first half of the cores, in the same order.
We tested this experiment over PC4, which supports
HyperThreading technology.

We repeatedly ran two simultaneous instances of stress-ng
with one stressor process each for 20 seconds, as part of the
KVM/QEMU-based measurement sets (see Section IV.A).
Fig. 10 shows the measured CPU frequencies and the number
of operations completed for various setups: only one stressor,
both on the same core, on different cores, on the two
hyperthreads of the same core. If both physical cores are
loaded, the CPU frequency decreases by 100 MHz, which
shows in the per-thread performance, but even in this case the
CPU runs well above its nominal frequency. Running two
stressors on the two hyperthreads of the same core yields
higher performance than running them on the same logical
core, but it is nowhere near the performance we get when
using two separate cores.

Thus, HyperThreading can indeed improve the performance
of parallel computations beyond the number of physical CPU
cores, but it is more useful in improving the responsiveness on
a desktop PC than increasing the computing power of a server.

Fig. 10. HyperThreading results

Summarizing, if the monitoring process runs on the same
CPU core as the monitored application, but on the other
hyperthread, it can detect the load of the application while
generating less interference than running on the same
hyperthread. Of course, in a virtualized environment the
processes running on the guest have no knowledge about
HyperThreading of the host CPU; thus, exploiting it is usually
not feasible.

C. The effects of different CPU architectures
The brief tests shown in this section already illustrates the

dependence of CPU performance on the CPU architecture and
setup.

Our measurements were taken on multiple different
computers, but we were not able to cover every possible
architecture. For example, AMD CPUs are known to scale the
frequencies of the cores more independently of each other than
Intel CPUs, and when there is more than one CPU in the
machine, those also scale their frequencies independently of
each other. These properties may affect the sensitivity of the
sidecar measurements negatively. Heterogeneous architectures
exist too: in the ARM world the so called big.LITTLE
architecture is very popular: depending on the workload a low
power or a high-performance CPU core may execute the task.
In the future it might be worth investigating the possibility of
using sidecar measurements on such architectures.

VI. CONCLUSION

In this paper we presented a measurement-based
evaluation of the sidecar concept, aiming at evaluating the
telecom application performance in a virtualized environment
under dynamic load conditions. We considered several
virtualization technologies and provided a quantitative
analysis of the scenario.

According to our results the sidecar concept is viable.
There is a correlation between the performance of the
measurement application running in the sidecar and the
resource usage of the main application running in a different
VM or container. A good property of this measurement
method is that the best sensitivity is achieved when the
measurement application applies only slight load on the
system, thus creating low interference with the main
application. The downside of this method is that it has low
sensitivity when the main application is near full load, thus it

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

frequencies, even if the two are pinned to different CPU cores.

A. The effects of the CPU frequency modifying mechanisms
The modern CPU architectures apply several optimization

features, resulting in dynamic CPU resource availability that
adapts to the load variations. Most of these features were
introduced to increase the power consumption efficiency. The
Intel CPUs implement frequency scaling in hardware, called
SpeedStep technology. When a workload is deployed on one
core, this technology raises the clock frequencies on all cores;
the fewer cores are loaded, the higher their frequency can go.

Additionally to the above feature, a mechanism called turbo
frequency adjustment aims to allow higher peak performances
for short periods If multiple cores are loaded at the same time,
their clock frequency drops below the maximum turbo
frequency; thus, the overall computing capacity of the CPU
doesn't scale linearly with the number of threads running.

We also ran some of the measurements detailed in section
IV.A on a computing cluster, where the servers had CPU
frequency scaling turned off in the BIOS. The measurement
results confirmed that when the CPU frequencies are constant
throughout the tests, the fluctuations presented earlier in that
section are not present and the performance of the system
scales linearly with the number of cores.

B. The effects of HyperThreading
Most Intel CPUs support the HyperThreading [16]

technology, which allows a CPU core to share its computing
resources between two threads, thus appearing as two virtual
cores to the operating system. On Linux the CPU cores are
ordered such that the second halves of the CPU cores are the
hyperthreads of the first half of the cores, in the same order.
We tested this experiment over PC4, which supports
HyperThreading technology.

We repeatedly ran two simultaneous instances of stress-ng
with one stressor process each for 20 seconds, as part of the
KVM/QEMU-based measurement sets (see Section IV.A).
Fig. 10 shows the measured CPU frequencies and the number
of operations completed for various setups: only one stressor,
both on the same core, on different cores, on the two
hyperthreads of the same core. If both physical cores are
loaded, the CPU frequency decreases by 100 MHz, which
shows in the per-thread performance, but even in this case the
CPU runs well above its nominal frequency. Running two
stressors on the two hyperthreads of the same core yields
higher performance than running them on the same logical
core, but it is nowhere near the performance we get when
using two separate cores.

Thus, HyperThreading can indeed improve the performance
of parallel computations beyond the number of physical CPU
cores, but it is more useful in improving the responsiveness on
a desktop PC than increasing the computing power of a server.

Fig. 10. HyperThreading results

Summarizing, if the monitoring process runs on the same
CPU core as the monitored application, but on the other
hyperthread, it can detect the load of the application while
generating less interference than running on the same
hyperthread. Of course, in a virtualized environment the
processes running on the guest have no knowledge about
HyperThreading of the host CPU; thus, exploiting it is usually
not feasible.

C. The effects of different CPU architectures
The brief tests shown in this section already illustrates the

dependence of CPU performance on the CPU architecture and
setup.

Our measurements were taken on multiple different
computers, but we were not able to cover every possible
architecture. For example, AMD CPUs are known to scale the
frequencies of the cores more independently of each other than
Intel CPUs, and when there is more than one CPU in the
machine, those also scale their frequencies independently of
each other. These properties may affect the sensitivity of the
sidecar measurements negatively. Heterogeneous architectures
exist too: in the ARM world the so called big.LITTLE
architecture is very popular: depending on the workload a low
power or a high-performance CPU core may execute the task.
In the future it might be worth investigating the possibility of
using sidecar measurements on such architectures.

VI. CONCLUSION

In this paper we presented a measurement-based
evaluation of the sidecar concept, aiming at evaluating the
telecom application performance in a virtualized environment
under dynamic load conditions. We considered several
virtualization technologies and provided a quantitative
analysis of the scenario.

According to our results the sidecar concept is viable.
There is a correlation between the performance of the
measurement application running in the sidecar and the
resource usage of the main application running in a different
VM or container. A good property of this measurement
method is that the best sensitivity is achieved when the
measurement application applies only slight load on the
system, thus creating low interference with the main
application. The downside of this method is that it has low
sensitivity when the main application is near full load, thus it

Sidecar based resource estimation method for
virtualized environments

INFOCOMMUNICATIONS JOURNAL

AUGUST 2020 • VOLUME XII • NUMBER 2 11

Csaba Simon obtained his PhD degree at Budapest
University of Technology and Economics, Department
of Telecommunications and Media Informatics and
he is working at the same Department since 2001. He
is a member of the Balatonfüred Student Research
Group. His research interests are mostly related to
5G systems and virtualization, IP QoS, peer-to-peer
communications and network and service management.
He was involved in several national and international
research projects, covering his resarch topics. He is an

active member of the Scientific Association for Infocommunications, Hungary,
organising national conferences and being a contact for international relations
and of the Sister and Related Societies Board at the IEEE ComSoc. He is the
member of the International Working Group of the 5G Coalition, Hungary.

Markosz Maliosz received his PhD (2006) and MSc
(1998) degrees in Computer Science from BME. He
is a member of the Balatonfüred Student Research
Group. He has participated in several national (OTKA-
NKTH, TÁMOP, NFÜ) and EU-funded research
projects (STREP, CELTIC, 5G PPP) and also worked
in bilateral cooperation projects with Ericsson and Telia
Research. His current research activity covers network
virtualization and optimization focusing on industrial
and cloud networking.

Miklós Máté received his MSc (2007) and PhD
(2019) degrees in electrical engineering in the field of
infocommunication systems at Budapest University
of Technology and Economics (BME), Hungary. He
is a research engineer in the High-Speed Networks
Laboratory at the Department of Telecommunication
and Media Informatics, BME. His research interests
include intelligent transportation systems, distributed
networks, and cloud technologies.

Dávid Balla is a PhD student at the University of
Technology in Budapest, and also follows the PhD
courses of the EIT Digital Doctoral School. He is a
member of the Balatonfüred Student Research Group.
He works at the High Speed Networks Laboratory at
the university, and he is also the member of the research
team at Ericsson Hungary. His main research topics are
the physical and the software layers of cloud systems.
During his master studies he worked with RDMA based
interconnections and now he is dealing with Function as

a Service and container based virtualization technologies.

Kristóf Torma graduated Budapest University of
Technology and Economics in 2019. He is a member
of the Balatonfüred Student Research Group. He joined
the Faculty of Electrical Engineering and Informatics
in 2020. His current research interest are cloud and
container-based systems and their scaling behaviors, as
well as scaling of IoT systems in Kubernetes.

	 [1]	 John, W., Moradi, F., Pechenot, B. and Sköldström, P., “Meeting
the observability challenges for VNFs in 5G systems,” IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), pp.
1127-1130, 2017. doi: 10.23919/INM.2017.7987445

	 [2]	 Burns, B., "How Kubernetes Changes Operations,"; login: The
USENIX magazine, Vol. 40(5), 2015.

	 [3]	 Kernel Virtual Machine homepage – https://www.linux-kvm.org/page/
Main_Page

	 [4]	 QEMU homepage – https://www.qemu.org/
	 [5]	 Libvirt, the virtualization API homepage – https://libvirt.org/
	 [6]	 Introduction to control groups (cgroups), RedHat documentation,

https://access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/6/html/resource_management_guide/

	 [7]	 Namespaces - Overview of Linux namespaces, Linux Programmer's
Manual, http://man7.org/linux/man-pages/man7/namespaces.7.html

	 [8]	 Docker homepage – https://www.docker.com/
	 [9]	 Kubernetes homepage - https://kubernetes.io/
[10]	 Configure Quality of Service for Pods, Kubernetes documentation,

https://kubernetes.io/docs/tasks/configure-pod-container/quality-
service-pod/

[11]	 Luong, D.H. et al., "Predictive Autoscaling Orchestration for Cloud-
native Telecom Microservices," 2018 IEEE 5G World Forum (5GWF),
pp. 153-158, 2018. doi: 10.1109/5GWF.2018.8516950

[12]	 Van Rossem, S. et al., "Automated monitoring and detection of
resource-limited NFV-based services," 2017 IEEE Conference on
Network Softwarization (NetSoft), 2017.

		 doi: 10.1109/NETSOFT.2017.8004220
[13]	 Kraft S, Pacheco-Sanchez S, Casale G, Dawson S., "Estimating

service resource consumption from response time measurements,"
4th International ICST Conference on Performance Evaluation
Methodologies and Tools, pp. 1-10. 2009.

		 doi: 10.4108/ICST.VALUETOOLS2009.7526
[14]	 Khan M, Jin Y, Li M, Xiang Y, Jiang C., "Hadoop performance modeling

for job estimation and resource provisioning," IEEE Transactions on
Parallel and Distributed Systems, Vol. 27(2), pp. 441-454, 2015.

		 doi: 10.1109/TPDS.2015.2405552
[15]	 stress-ng homepage – https://kernel.ubuntu.com/~cking/stress-ng/
[16]	 Marr et al., “Hyper-Threading Technology Architecture and

Microarchitecture,” Intel Technology Journal, 2002.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

frequencies, even if the two are pinned to different CPU cores.

A. The effects of the CPU frequency modifying mechanisms
The modern CPU architectures apply several optimization

features, resulting in dynamic CPU resource availability that
adapts to the load variations. Most of these features were
introduced to increase the power consumption efficiency. The
Intel CPUs implement frequency scaling in hardware, called
SpeedStep technology. When a workload is deployed on one
core, this technology raises the clock frequencies on all cores;
the fewer cores are loaded, the higher their frequency can go.

Additionally to the above feature, a mechanism called turbo
frequency adjustment aims to allow higher peak performances
for short periods If multiple cores are loaded at the same time,
their clock frequency drops below the maximum turbo
frequency; thus, the overall computing capacity of the CPU
doesn't scale linearly with the number of threads running.

We also ran some of the measurements detailed in section
IV.A on a computing cluster, where the servers had CPU
frequency scaling turned off in the BIOS. The measurement
results confirmed that when the CPU frequencies are constant
throughout the tests, the fluctuations presented earlier in that
section are not present and the performance of the system
scales linearly with the number of cores.

B. The effects of HyperThreading
Most Intel CPUs support the HyperThreading [16]

technology, which allows a CPU core to share its computing
resources between two threads, thus appearing as two virtual
cores to the operating system. On Linux the CPU cores are
ordered such that the second halves of the CPU cores are the
hyperthreads of the first half of the cores, in the same order.
We tested this experiment over PC4, which supports
HyperThreading technology.

We repeatedly ran two simultaneous instances of stress-ng
with one stressor process each for 20 seconds, as part of the
KVM/QEMU-based measurement sets (see Section IV.A).
Fig. 10 shows the measured CPU frequencies and the number
of operations completed for various setups: only one stressor,
both on the same core, on different cores, on the two
hyperthreads of the same core. If both physical cores are
loaded, the CPU frequency decreases by 100 MHz, which
shows in the per-thread performance, but even in this case the
CPU runs well above its nominal frequency. Running two
stressors on the two hyperthreads of the same core yields
higher performance than running them on the same logical
core, but it is nowhere near the performance we get when
using two separate cores.

Thus, HyperThreading can indeed improve the performance
of parallel computations beyond the number of physical CPU
cores, but it is more useful in improving the responsiveness on
a desktop PC than increasing the computing power of a server.

Fig. 10. HyperThreading results

Summarizing, if the monitoring process runs on the same
CPU core as the monitored application, but on the other
hyperthread, it can detect the load of the application while
generating less interference than running on the same
hyperthread. Of course, in a virtualized environment the
processes running on the guest have no knowledge about
HyperThreading of the host CPU; thus, exploiting it is usually
not feasible.

C. The effects of different CPU architectures
The brief tests shown in this section already illustrates the

dependence of CPU performance on the CPU architecture and
setup.

Our measurements were taken on multiple different
computers, but we were not able to cover every possible
architecture. For example, AMD CPUs are known to scale the
frequencies of the cores more independently of each other than
Intel CPUs, and when there is more than one CPU in the
machine, those also scale their frequencies independently of
each other. These properties may affect the sensitivity of the
sidecar measurements negatively. Heterogeneous architectures
exist too: in the ARM world the so called big.LITTLE
architecture is very popular: depending on the workload a low
power or a high-performance CPU core may execute the task.
In the future it might be worth investigating the possibility of
using sidecar measurements on such architectures.

VI. CONCLUSION

In this paper we presented a measurement-based
evaluation of the sidecar concept, aiming at evaluating the
telecom application performance in a virtualized environment
under dynamic load conditions. We considered several
virtualization technologies and provided a quantitative
analysis of the scenario.

According to our results the sidecar concept is viable.
There is a correlation between the performance of the
measurement application running in the sidecar and the
resource usage of the main application running in a different
VM or container. A good property of this measurement
method is that the best sensitivity is achieved when the
measurement application applies only slight load on the
system, thus creating low interference with the main
application. The downside of this method is that it has low
sensitivity when the main application is near full load, thus it

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

frequencies, even if the two are pinned to different CPU cores.

A. The effects of the CPU frequency modifying mechanisms
The modern CPU architectures apply several optimization

features, resulting in dynamic CPU resource availability that
adapts to the load variations. Most of these features were
introduced to increase the power consumption efficiency. The
Intel CPUs implement frequency scaling in hardware, called
SpeedStep technology. When a workload is deployed on one
core, this technology raises the clock frequencies on all cores;
the fewer cores are loaded, the higher their frequency can go.

Additionally to the above feature, a mechanism called turbo
frequency adjustment aims to allow higher peak performances
for short periods If multiple cores are loaded at the same time,
their clock frequency drops below the maximum turbo
frequency; thus, the overall computing capacity of the CPU
doesn't scale linearly with the number of threads running.

We also ran some of the measurements detailed in section
IV.A on a computing cluster, where the servers had CPU
frequency scaling turned off in the BIOS. The measurement
results confirmed that when the CPU frequencies are constant
throughout the tests, the fluctuations presented earlier in that
section are not present and the performance of the system
scales linearly with the number of cores.

B. The effects of HyperThreading
Most Intel CPUs support the HyperThreading [16]

technology, which allows a CPU core to share its computing
resources between two threads, thus appearing as two virtual
cores to the operating system. On Linux the CPU cores are
ordered such that the second halves of the CPU cores are the
hyperthreads of the first half of the cores, in the same order.
We tested this experiment over PC4, which supports
HyperThreading technology.

We repeatedly ran two simultaneous instances of stress-ng
with one stressor process each for 20 seconds, as part of the
KVM/QEMU-based measurement sets (see Section IV.A).
Fig. 10 shows the measured CPU frequencies and the number
of operations completed for various setups: only one stressor,
both on the same core, on different cores, on the two
hyperthreads of the same core. If both physical cores are
loaded, the CPU frequency decreases by 100 MHz, which
shows in the per-thread performance, but even in this case the
CPU runs well above its nominal frequency. Running two
stressors on the two hyperthreads of the same core yields
higher performance than running them on the same logical
core, but it is nowhere near the performance we get when
using two separate cores.

Thus, HyperThreading can indeed improve the performance
of parallel computations beyond the number of physical CPU
cores, but it is more useful in improving the responsiveness on
a desktop PC than increasing the computing power of a server.

Fig. 10. HyperThreading results

Summarizing, if the monitoring process runs on the same
CPU core as the monitored application, but on the other
hyperthread, it can detect the load of the application while
generating less interference than running on the same
hyperthread. Of course, in a virtualized environment the
processes running on the guest have no knowledge about
HyperThreading of the host CPU; thus, exploiting it is usually
not feasible.

C. The effects of different CPU architectures
The brief tests shown in this section already illustrates the

dependence of CPU performance on the CPU architecture and
setup.

Our measurements were taken on multiple different
computers, but we were not able to cover every possible
architecture. For example, AMD CPUs are known to scale the
frequencies of the cores more independently of each other than
Intel CPUs, and when there is more than one CPU in the
machine, those also scale their frequencies independently of
each other. These properties may affect the sensitivity of the
sidecar measurements negatively. Heterogeneous architectures
exist too: in the ARM world the so called big.LITTLE
architecture is very popular: depending on the workload a low
power or a high-performance CPU core may execute the task.
In the future it might be worth investigating the possibility of
using sidecar measurements on such architectures.

VI. CONCLUSION

In this paper we presented a measurement-based
evaluation of the sidecar concept, aiming at evaluating the
telecom application performance in a virtualized environment
under dynamic load conditions. We considered several
virtualization technologies and provided a quantitative
analysis of the scenario.

According to our results the sidecar concept is viable.
There is a correlation between the performance of the
measurement application running in the sidecar and the
resource usage of the main application running in a different
VM or container. A good property of this measurement
method is that the best sensitivity is achieved when the
measurement application applies only slight load on the
system, thus creating low interference with the main
application. The downside of this method is that it has low
sensitivity when the main application is near full load, thus it

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

cannot accurately predict an overload event. Running these
measurements in a virtualized environment also adds
challenges, as the visible resources not necessarily align with
the resources that are physically available on that system.

ACKNOWLEDGMENT

The research has been supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-
2017-00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and
Infocommunications)”.

The authors thank the valuable help, motivation and
technical guidance of Attila Gál and Olga Papp from Ericsson
Hungary. We also thank the help of László Sári, who
supported us in setting up the measurement environment.

REFERENCES

[1] John, W., Moradi, F., Pechenot, B. and Sköldström, P., “Meeting the
observability challenges for VNFs in 5G systems,” IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), pp.
1127-1130, 2017. DOI: 10.23919/INM.2017.7987445

[2] Burns, B., "How Kubernetes Changes Operations," ;login: The
USENIX magazine, Vol. 40(5), 2015.

[3] Kernel Virtual Machine homepage – https://www.linux-
kvm.org/page/Main_Page

[4] QEMU homepage – https://www.qemu.org/
[5] Libvirt, the virtualization API homepage – https://libvirt.org/
[6] Introduction to control groups (cgroups), RedHat documentation,

https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/6/html/resource_management_guide/

[7] Namespaces - Overview of Linux namespaces, Linux Programmer's
Manual, http://man7.org/linux/man-pages/man7/namespaces.7.html

[8] Docker homepage – https://www.docker.com/
[9] Kubernetes homepage - https://kubernetes.io/
[10] Configure Quality of Service for Pods, Kubernetes documentation,

https://kubernetes.io/docs/tasks/configure-pod-container/quality-
service-pod/

[11] Luong, D.H. et al., "Predictive Autoscaling Orchestration for Cloud-
native Telecom Microservices," 2018 IEEE 5G World Forum (5GWF),
pp. 153-158, 2018. DOI: 10.1109/5GWF.2018.8516950

[12] Van Rossem, S. et al., "Automated monitoring and detection of
resource-limited NFV-based services," 2017 IEEE Conference on
Network Softwarization (NetSoft), 2017. DOI:
10.1109/NETSOFT.2017.8004220

[13] Kraft S, Pacheco-Sanchez S, Casale G, Dawson S., "Estimating service
resource consumption from response time measurements," 4th

International ICST Conference on Performance Evaluation
Methodologies and Tools, pp. 1-10. 2009. DOI:
10.4108/ICST.VALUETOOLS2009.7526

[14] Khan M, Jin Y, Li M, Xiang Y, Jiang C., "Hadoop performance
modeling for job estimation and resource provisioning," IEEE
Transactions on Parallel and Distributed Systems, Vol. 27(2), pp. 441-
454, 2015. DOI: 10.1109/TPDS.2015.2405552

[15] stress-ng homepage – https://kernel.ubuntu.com/~cking/stress-ng/
[16] Marr et al., “Hyper-Threading Technology Architecture and

Microarchitecture,” Intel Technology Journal, 2002.

Csaba Simon obtained his PhD degree at Budapest
University of Technology and Economics, Department of
Telecommunications and Media Informatics and he is
working at the same Department since 2001. His research
interests are mostly related to 5G systems and
virtualization, IP QoS, peer-to-peer communications and
network and service management. He was involved in
several national and international research projects,
covering his resarch topics. He is an active member of the

Scientific Association for Infocommunications, Hungary, organising national

conferences and being a contact for international relations and of the Sister
and Related Societies Board at the IEEE ComSoc. He is the member of the
International Working Group of the 5G Coalition, Hungary.

Markosz Maliosz received his PhD (2006) and MSc
(1998) degrees in Computer Science from BME. He has
participated in several national (OTKA-NKTH,
TÁMOP, NFÜ) and EU-funded research projects
(STREP, CELTIC, 5G PPP) and also worked in bilateral
cooperation projects with Ericsson and Telia Research.
His current research activity covers network
virtualization and optimization focusing on industrial
and cloud networking.

Miklós Máté received his MSc (2007) and PhD (2019)
degrees in electrical engineering in the field of
infocommunication systems at Budapest University of
Technology and Economics (BME), Hungary. He is a
research engineer in the High-Speed Networks
Laboratory at the Department of Telecommunication and
Media Informatics, BME. His research interests include
intelligent transportation systems, distributed networks,
and cloud technologies.

Dávid Balla is a PhD student at the University of
Technology in Budapest, and also follows the PhD
courses of the EIT Digital Doctoral School. He works at
the High Speed Networks Laboratory at the university,
and he is also the member of the research team at
Ericsson Hungary. His main research topics are the
physical and the software layers of cloud systems.

During his master studies he worked with RDMA based interconnections and
now he is dealing with Function as a Service and container based
virtualization technologies.

Kristóf Torma graduated Budapest University of
Technology and Economics in 2019. He joined the
Faculty of Electrical Engineering and Informatics in
2020. His current research interest are cloud and
container-based systems and their scaling behaviors, as
well as scaling of IoT systems in Kubernetes.

http://doi.org/10.23919/INM.2017.7987445
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.qemu.org/
https://libvirt.org/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.docker.com/
https://kubernetes.io/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
http://doi.org/10.1109/5GWF.2018.8516950
http://doi.org/10.1109/NETSOFT.2017.8004220
http://doi.org/10.4108/ICST.VALUETOOLS2009.7526
http://doi.org/10.1109/TPDS.2015.2405552
https://kernel.ubuntu.com/~cking/stress-ng/

