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– Guest Editorial
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Guest Editorial

Abstract—This special issue brings selected papers from 
the 2019 Central European Conference on Cryptology, held 
in Telč, June 12-14, 2019.

This special issue focuses on the area of applied cryptog-
raphy, bringing up selected papers from the 2019 Central 

European Conference on Cryptology, covering various aspects 
of cryptology. All accepted papers went through two rounds of 
reviews and the authors duly incorporated the feedback in their 
revised papers.  

The first paper of Michal Andrzejczak and Wladyslaw Dud-
zic “SAT Attacks on ARX Ciphers with Automated Equations 
Generation” investigates a new approach to algebraic attacks on 
block ciphers with SAT solvers. Authors try to find encryption 
keys for ciphers SIMON and SPECK by solving a specific sys-
tem of equations. The equations are converted to satisfiability 
problem, and solved with standard SAT solvers. The novel ap-
proach of the authors is not to model so-called key expansion 
algorithm, producing a smaller system, but with a possibility of 
finding invalid keys. Probability of invalid keys is reduced by 
using multiple input-output pairs, which however increases the 
system.

 The second paper of Mithilesh Kumar et al. “Reducing Lat-
tice Enumeration Search Trees” deals with the security of post-
quantum lattice-based schemes. In particular, the paper focuses 
on algorithms solving the shortest vector problem (SVP). Two 
optimized methods are proposed in the paper. The first method 

(hybrid enumeration) is based on finding suitable permutations, 
the second (sign-based pruning) is based on the estimation of co-
efficient signs. The paper also presents the experimental results 
provided for both methods and the comparison with standard 
techniques.

The third paper “The search of square m-sequences with 
maximum period via GPU and CPU” of Paweł Augustynowicz  
and Krzysztof Kanciak is concerned with the efficient parallel 
search of square m-sequences on modern CPUs and GPUs. The 
authors come up with the idea to exploit particular vector proc-
essor instructions, with the aim to utilize the advantages of the 
Single Instruction Multiple Data and Single Instruction Multiple 
Threads execution patterns. The authors also present the early 
abort sieving strategy based on the application of SAT-solvers. 
The paper shows that the proposed solution can exhaustively 
search m-sequences up to the degree 32.

The last paper “A New Type of Signature Scheme Derived 
from a MRHS Representation of a Symmetric Cipher” of Pavol 
Zajac and Peter Špaček introduces a fundamentally new idea of a 
post-quantum signature scheme. The scheme is defined by Mul-
tiple-Right-Hand-Side (MRHS) equations representing the en-
tire SPN of the given cipher. The paper describes key procedures 
of the algorithm (key generation, signature generation, signature 
verification) and provides simplified examples for some critical 
steps of the algorithm. The security of the scheme is based on 
the difficulty of solving MRHS equations, or equivalently on the 
difficulty of the decoding problem (both are NP-hard).
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are not included in the formulas that are converted to satisfiability
problem. The lack of equations leads to finding the solution
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Index Terms—SAT attacks, cryptanalysis, ARX ciphers, SI-
MON, SPECK, FPGA.

I. INTRODUCTION

Block ciphers are the essential elements in communica-
tion security, providing secrecy of exchanged information at
expected security level. From time to time, a new cipher
is proposed, usually offering some new functionality. For
example, authenticated encryption, or a new property like
smaller hardware requirements. The lightweight cryptography
is a recently growing area of research. It’-s aim is to deliver
secure ciphers suitable for embedded device development,
especially Internet of Things (IoT) devices. Due to hardware
limitations, lightweight cipher usually consists mostly of basic
logic operations.

The proper cipher cryptanalysis is a key part of cipher
development, as well as vital for proving the targeted security
strength of the cipher. To date, many techniques for crypt-
analysis have been introduced. Thus, it takes time to prove
the security of the cipher, since every new cipher must resist
against all known attacks.

Previously, several ciphers were broken by a new kind of at-
tack, which was not known at the time of cipher development.
For example, Data Encryption Standard (DES) was broken by
algebraic cryptanalysis with SAT solvers [1]. Thus, effort put
into searching for new methods and accelerations to known
ones may be beneficial.

The recent development and improvements in SAT solvers
have led to a new algebraic attack on block ciphers. The
current state of SAT solvers lowers the total time of the key
recovery attack for a new set of ciphers directly affecting
cipher’s security, especially the lightweight ones.

This work was not supported by any organization.

A. Contribution

In this paper we present our novel approach to constructing
an SAT attack on lightweight block ciphers. We report the
results for an SAT attack with our method on ARX ciphers:
SIMON and SPECK [2]. The method for obtaining equations
for describing the cipher, which are required for an algebraic
attack is presented with several sources of equations being
listed. We describe our attack approach, considering many
factors influencing the time of the attack — several equations,
the form of equations, the number of known and used plaintex-
ciphertext pairs and the used SAT solver [3]. By analyzing
our results, we propose the best approach to break SIMON
and SPECK with algebraic cryptanalysis. This approach can
be also applied to other ciphers.

II. PREVIOUS WORK

SIMON and SPECK resistance against differential and
linear cryptanalysis has been thoroughly investigated in [4],
[5] and [6]. SAT attacks are widely used in cryptography, often
as a supporting method for other classical attacks like linear
or differential cryptanalysis.

SIMON and SPECK have gained cryptanalyst’s attention
and as a result, several papers about security of the mentioned
ciphers were published. In 2014, Curtois et.al [7] presented
an algebraic attack combined with a truncated differentials
attack on SIMON. They were able to conduct a practical
and successful attack on nine rounds of SIMON. However,
the attack is more distinguished and requires additional time
spent on searching for proper truncated differentials. Found
differentials are provided to a system of equations as a
plaintext-ciphertext pairs. In the next step, an SAT attack is
conducted.

The most recent results have been published by Ren and
Chen [8]. They report the first zero-correlation linear attack
and integral attack on 11 rounds of SPECK. To conduct the
attack, they have used an SAT-based model to search for
impossible differentials and zero-correlation linear hulls.

III. ALGEBRAIC CRYPTANALYSIS

Algebraic cryptanalysis is an attack method on a large
subset of ciphers [9]. It consist of two main steps. The
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[5] and [6]. SAT attacks are widely used in cryptography, often
as a supporting method for other classical attacks like linear
or differential cryptanalysis.

SIMON and SPECK have gained cryptanalyst’s attention
and as a result, several papers about security of the mentioned
ciphers were published. In 2014, Curtois et.al [7] presented
an algebraic attack combined with a truncated differentials
attack on SIMON. They were able to conduct a practical
and successful attack on nine rounds of SIMON. However,
the attack is more distinguished and requires additional time
spent on searching for proper truncated differentials. Found
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plaintext-ciphertext pairs. In the next step, an SAT attack is
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The most recent results have been published by Ren and
Chen [8]. They report the first zero-correlation linear attack
and integral attack on 11 rounds of SPECK. To conduct the
attack, they have used an SAT-based model to search for
impossible differentials and zero-correlation linear hulls.

III. ALGEBRAIC CRYPTANALYSIS

Algebraic cryptanalysis is an attack method on a large
subset of ciphers [9]. It consist of two main steps. The

first step relies on converting the cipher into a system of
polynomial equations, usually over GF (2), but not limited
to this particular ring. In the second step, the system of
equations is being solved to obtain a proper secret key used
for encrypting the provided plaintext-ciphertext pair. There
are several approaches for solving the system of equations,
ranging from XL algorithm and Gröbner basis [10] to SAT-
solvers. A brief overview of algebraic cryptanalysis is provided
by Bard [11]. This technique is also used for cryptanalysis of
the hash function [12].

IV. SIMON AND SPECK CIPHERS

SIMON and SPECK [2] ciphers are members of the ARX
ciphers family. The only operations used in ARX ciphers are
simple logic operations: AND, rotate and XOR. The ciphers
are lightweight and suitable for implementation on constrained
devices. SIMON and SPECK both are Feistel type ciphers.

A. SIMON
SIMON’s round function is as follows. For a round key k,

the round function is a two stage Feistel map Rk : GF (2)n×
GF (2)n ← GF (2)n ×GF (2)n defined as:

Rk(x, y) = (y ⊕ f(x)⊕ k, x), (1)

where f(x) = (Sx&S8x) ⊕ S2x, and Sj is a left circular
shift by j elements. The SIMON cipher family has several
possible data block and key sizes. For each possible combi-
nation the number of rounds also varies. All versions with
parameters of SIMON ciphers are listed in Tab. I.

B. SPECK
The SPECK family of block ciphers is constructed only

from bitwise XOR, addition modulo 2n and similar to SIMON
family, left circular shift Sj by j positions. The round function
is the map Rk : GF (2)n × GF (2)n ← GF (2)n × GF (2)n

defined as:

Rk(x, y) = ((S−αx+ y)⊕ k, Sβy ⊕ (S−α + y)⊕ k), (2)

where k is a round key and α = 7 and β = 2 for block size
n = 32 and α = 8 and β = 3 otherwise. The specification of
all block ciphers from SPECK family is presented in Tab. I

TABLE I
POSSIBLE VARIANTS OF SIMON AND SPECK BLOCK CIPHER

block key word # of SIMON # of SPECK
size size size rounds rounds
32 64 16 32 22
48 72 24 36 22

96 36 23
64 96 32 42 26

128 44 27
96 128 48 52 28

144 54 29
128 128 64 68 32

192 69 33
256 72 34

SIMON and SPECK have a low multiplicative complexity,
which is a one of the measurement units of non-linearity [13].
Thus, algebraic cryptanalysis seems to be promising.

V. SAT ATTACK ON SIMON AND SPECK

We present a known plaintext attack for lightweight block
ciphers. The attack partially belongs to the algebraic crypt-
analysis family. The proposed attack starts with obtaining
proper algebraic equations describing a chosen cipher, which
is necessary for a key recovery attack. Classical algebraic
cryptanalysis methods try to solve given equations with XL
algorithm [14] or Grobner basis [10]. There are also attempts
to minimize the number of variables by using external tools
[15] [16]. In these algorithms, the attacker usually tries to
gather some additional information from equations or tries
to decrease the degree of equations and number of variables
before solving the system of equations. In our approach, we
do not solve the equations directly. Instead, we convert the
equations to a satisfiability problem and we try to find a
key’s values that are valid for used pairs of plaintext and
ciphertext. There are several factors affecting the execution
time and probability of success. We consider them to find the
best approach for attacking SIMON and SPECK with SAT—
solvers. Compared with other SAT attacks on SIMON and
SPECK our method does not require puting an additional
effort into selecting a proper plaintext and does not require
any additional tools for minimizing the number of variables.
Used pairs are picked up at random and the equations are
taken as they were produced by different compilers.

A. Attack model

In our attack we use two different approaches for construct-
ing the attack model.

In the first scenario, equations for the cipher and key
expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.

For the second scenario, equations for the key expansion al-
gorithm are not included in the system of equations converted
to a satisfiability problem. With this approach, the round keys
are found in reduced time, compared to the first scenario, but
the round keys might be unrelated. The unrelated keys are not
valid, and they are a random keys that can not be a result of a
key expansion algorithm. The probability of finding a valid key
depends mostly on the number of plaintext-ciphertext pairs.

B. Number of pairs

The solution found by an SAT-solver in the second sce-
nario is not always the valid key, used for encryption. The
probability of success depends mostly on the number of used
pairs. In theory, only one pair should be needed to solve the
equations. This is true, the solution for an SAT-problem is
found even for one pair and it is done very quickly. However,
without equations for a key expansion included to the model,
it is possible to find invalid unrelated round keys that solve
the satisfiability problem. The probability of finding a valid
key increases with the number of used pairs.

The number of pairs also affects the execution time. In
Fig. 1 , Fig. 2 and Fig. 3 the time required for solving an
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algorithm [14] or Grobner basis [10]. There are also attempts
to minimize the number of variables by using external tools
[15] [16]. In these algorithms, the attacker usually tries to
gather some additional information from equations or tries
to decrease the degree of equations and number of variables
before solving the system of equations. In our approach, we
do not solve the equations directly. Instead, we convert the
equations to a satisfiability problem and we try to find a
key’s values that are valid for used pairs of plaintext and
ciphertext. There are several factors affecting the execution
time and probability of success. We consider them to find the
best approach for attacking SIMON and SPECK with SAT—
solvers. Compared with other SAT attacks on SIMON and
SPECK our method does not require puting an additional
effort into selecting a proper plaintext and does not require
any additional tools for minimizing the number of variables.
Used pairs are picked up at random and the equations are
taken as they were produced by different compilers.

A. Attack model

In our attack we use two different approaches for construct-
ing the attack model.

In the first scenario, equations for the cipher and key
expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.

For the second scenario, equations for the key expansion al-
gorithm are not included in the system of equations converted
to a satisfiability problem. With this approach, the round keys
are found in reduced time, compared to the first scenario, but
the round keys might be unrelated. The unrelated keys are not
valid, and they are a random keys that can not be a result of a
key expansion algorithm. The probability of finding a valid key
depends mostly on the number of plaintext-ciphertext pairs.

B. Number of pairs

The solution found by an SAT-solver in the second sce-
nario is not always the valid key, used for encryption. The
probability of success depends mostly on the number of used
pairs. In theory, only one pair should be needed to solve the
equations. This is true, the solution for an SAT-problem is
found even for one pair and it is done very quickly. However,
without equations for a key expansion included to the model,
it is possible to find invalid unrelated round keys that solve
the satisfiability problem. The probability of finding a valid
key increases with the number of used pairs.

The number of pairs also affects the execution time. In
Fig. 1 , Fig. 2 and Fig. 3 the time required for solving an
SAT problem depens on the number of used pairs. For simple

first step relies on converting the cipher into a system of
polynomial equations, usually over GF (2), but not limited
to this particular ring. In the second step, the system of
equations is being solved to obtain a proper secret key used
for encrypting the provided plaintext-ciphertext pair. There
are several approaches for solving the system of equations,
ranging from XL algorithm and Gröbner basis [10] to SAT-
solvers. A brief overview of algebraic cryptanalysis is provided
by Bard [11]. This technique is also used for cryptanalysis of
the hash function [12].

IV. SIMON AND SPECK CIPHERS

SIMON and SPECK [2] ciphers are members of the ARX
ciphers family. The only operations used in ARX ciphers are
simple logic operations: AND, rotate and XOR. The ciphers
are lightweight and suitable for implementation on constrained
devices. SIMON and SPECK both are Feistel type ciphers.

A. SIMON
SIMON’s round function is as follows. For a round key k,

the round function is a two stage Feistel map Rk : GF (2)n×
GF (2)n ← GF (2)n ×GF (2)n defined as:

Rk(x, y) = (y ⊕ f(x)⊕ k, x), (1)

where f(x) = (Sx&S8x) ⊕ S2x, and Sj is a left circular
shift by j elements. The SIMON cipher family has several
possible data block and key sizes. For each possible combi-
nation the number of rounds also varies. All versions with
parameters of SIMON ciphers are listed in Tab. I.

B. SPECK
The SPECK family of block ciphers is constructed only

from bitwise XOR, addition modulo 2n and similar to SIMON
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is the map Rk : GF (2)n × GF (2)n ← GF (2)n × GF (2)n

defined as:
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where k is a round key and α = 7 and β = 2 for block size
n = 32 and α = 8 and β = 3 otherwise. The specification of
all block ciphers from SPECK family is presented in Tab. I
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equations is being solved to obtain a proper secret key used
for encrypting the provided plaintext-ciphertext pair. There
are several approaches for solving the system of equations,
ranging from XL algorithm and Gröbner basis [10] to SAT-
solvers. A brief overview of algebraic cryptanalysis is provided
by Bard [11]. This technique is also used for cryptanalysis of
the hash function [12].

IV. SIMON AND SPECK CIPHERS

SIMON and SPECK [2] ciphers are members of the ARX
ciphers family. The only operations used in ARX ciphers are
simple logic operations: AND, rotate and XOR. The ciphers
are lightweight and suitable for implementation on constrained
devices. SIMON and SPECK both are Feistel type ciphers.
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where f(x) = (Sx&S8x) ⊕ S2x, and Sj is a left circular
shift by j elements. The SIMON cipher family has several
possible data block and key sizes. For each possible combi-
nation the number of rounds also varies. All versions with
parameters of SIMON ciphers are listed in Tab. I.
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The SPECK family of block ciphers is constructed only

from bitwise XOR, addition modulo 2n and similar to SIMON
family, left circular shift Sj by j positions. The round function
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defined as:
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where k is a round key and α = 7 and β = 2 for block size
n = 32 and α = 8 and β = 3 otherwise. The specification of
all block ciphers from SPECK family is presented in Tab. I
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SIMON and SPECK have a low multiplicative complexity,
which is a one of the measurement units of non-linearity [13].
Thus, algebraic cryptanalysis seems to be promising.

V. SAT ATTACK ON SIMON AND SPECK

We present a known plaintext attack for lightweight block
ciphers. The attack partially belongs to the algebraic crypt-
analysis family. The proposed attack starts with obtaining
proper algebraic equations describing a chosen cipher, which
is necessary for a key recovery attack. Classical algebraic
cryptanalysis methods try to solve given equations with XL
algorithm [14] or Grobner basis [10]. There are also attempts
to minimize the number of variables by using external tools
[15] [16]. In these algorithms, the attacker usually tries to
gather some additional information from equations or tries
to decrease the degree of equations and number of variables
before solving the system of equations. In our approach, we
do not solve the equations directly. Instead, we convert the
equations to a satisfiability problem and we try to find a
key’s values that are valid for used pairs of plaintext and
ciphertext. There are several factors affecting the execution
time and probability of success. We consider them to find the
best approach for attacking SIMON and SPECK with SAT—
solvers. Compared with other SAT attacks on SIMON and
SPECK our method does not require puting an additional
effort into selecting a proper plaintext and does not require
any additional tools for minimizing the number of variables.
Used pairs are picked up at random and the equations are
taken as they were produced by different compilers.

A. Attack model

In our attack we use two different approaches for construct-
ing the attack model.

In the first scenario, equations for the cipher and key
expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.

For the second scenario, equations for the key expansion al-
gorithm are not included in the system of equations converted
to a satisfiability problem. With this approach, the round keys
are found in reduced time, compared to the first scenario, but
the round keys might be unrelated. The unrelated keys are not
valid, and they are a random keys that can not be a result of a
key expansion algorithm. The probability of finding a valid key
depends mostly on the number of plaintext-ciphertext pairs.

B. Number of pairs

The solution found by an SAT-solver in the second sce-
nario is not always the valid key, used for encryption. The
probability of success depends mostly on the number of used
pairs. In theory, only one pair should be needed to solve the
equations. This is true, the solution for an SAT-problem is
found even for one pair and it is done very quickly. However,
without equations for a key expansion included to the model,
it is possible to find invalid unrelated round keys that solve
the satisfiability problem. The probability of finding a valid
key increases with the number of used pairs.

The number of pairs also affects the execution time. In
Fig. 1 , Fig. 2 and Fig. 3 the time required for solving an
SAT problem depens on the number of used pairs. For simple
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Abstract—We propose a novel and simple approach to alge-
braic attack on block ciphers with the SAT-solvers. As opposed to
a standard approach, the equations for key expansion algorithms
are not included in the formulas that are converted to satisfiability
problem. The lack of equations leads to finding the solution
much faster. The method was used to attack a lightweight block
ciphers - SIMON and SPECK. We report the timings for round-
reduced versions of selected ciphers and discuss the potential
factors affecting the execution time of our attack.
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I. INTRODUCTION

Block ciphers are the essential elements in communica-
tion security, providing secrecy of exchanged information at
expected security level. From time to time, a new cipher
is proposed, usually offering some new functionality. For
example, authenticated encryption, or a new property like
smaller hardware requirements. The lightweight cryptography
is a recently growing area of research. It’-s aim is to deliver
secure ciphers suitable for embedded device development,
especially Internet of Things (IoT) devices. Due to hardware
limitations, lightweight cipher usually consists mostly of basic
logic operations.

The proper cipher cryptanalysis is a key part of cipher
development, as well as vital for proving the targeted security
strength of the cipher. To date, many techniques for crypt-
analysis have been introduced. Thus, it takes time to prove
the security of the cipher, since every new cipher must resist
against all known attacks.

Previously, several ciphers were broken by a new kind of at-
tack, which was not known at the time of cipher development.
For example, Data Encryption Standard (DES) was broken by
algebraic cryptanalysis with SAT solvers [1]. Thus, effort put
into searching for new methods and accelerations to known
ones may be beneficial.

The recent development and improvements in SAT solvers
have led to a new algebraic attack on block ciphers. The
current state of SAT solvers lowers the total time of the key
recovery attack for a new set of ciphers directly affecting
cipher’s security, especially the lightweight ones.

This work was not supported by any organization.

A. Contribution

In this paper we present our novel approach to constructing
an SAT attack on lightweight block ciphers. We report the
results for an SAT attack with our method on ARX ciphers:
SIMON and SPECK [2]. The method for obtaining equations
for describing the cipher, which are required for an algebraic
attack is presented with several sources of equations being
listed. We describe our attack approach, considering many
factors influencing the time of the attack — several equations,
the form of equations, the number of known and used plaintex-
ciphertext pairs and the used SAT solver [3]. By analyzing
our results, we propose the best approach to break SIMON
and SPECK with algebraic cryptanalysis. This approach can
be also applied to other ciphers.

II. PREVIOUS WORK

SIMON and SPECK resistance against differential and
linear cryptanalysis has been thoroughly investigated in [4],
[5] and [6]. SAT attacks are widely used in cryptography, often
as a supporting method for other classical attacks like linear
or differential cryptanalysis.

SIMON and SPECK have gained cryptanalyst’s attention
and as a result, several papers about security of the mentioned
ciphers were published. In 2014, Curtois et.al [7] presented
an algebraic attack combined with a truncated differentials
attack on SIMON. They were able to conduct a practical
and successful attack on nine rounds of SIMON. However,
the attack is more distinguished and requires additional time
spent on searching for proper truncated differentials. Found
differentials are provided to a system of equations as a
plaintext-ciphertext pairs. In the next step, an SAT attack is
conducted.

The most recent results have been published by Ren and
Chen [8]. They report the first zero-correlation linear attack
and integral attack on 11 rounds of SPECK. To conduct the
attack, they have used an SAT-based model to search for
impossible differentials and zero-correlation linear hulls.

III. ALGEBRAIC CRYPTANALYSIS

Algebraic cryptanalysis is an attack method on a large
subset of ciphers [9]. It consist of two main steps. The

first step relies on converting the cipher into a system of
polynomial equations, usually over GF (2), but not limited
to this particular ring. In the second step, the system of
equations is being solved to obtain a proper secret key used
for encrypting the provided plaintext-ciphertext pair. There
are several approaches for solving the system of equations,
ranging from XL algorithm and Gröbner basis [10] to SAT-
solvers. A brief overview of algebraic cryptanalysis is provided
by Bard [11]. This technique is also used for cryptanalysis of
the hash function [12].

IV. SIMON AND SPECK CIPHERS

SIMON and SPECK [2] ciphers are members of the ARX
ciphers family. The only operations used in ARX ciphers are
simple logic operations: AND, rotate and XOR. The ciphers
are lightweight and suitable for implementation on constrained
devices. SIMON and SPECK both are Feistel type ciphers.

A. SIMON
SIMON’s round function is as follows. For a round key k,

the round function is a two stage Feistel map Rk : GF (2)n×
GF (2)n ← GF (2)n ×GF (2)n defined as:

Rk(x, y) = (y ⊕ f(x)⊕ k, x), (1)

where f(x) = (Sx&S8x) ⊕ S2x, and Sj is a left circular
shift by j elements. The SIMON cipher family has several
possible data block and key sizes. For each possible combi-
nation the number of rounds also varies. All versions with
parameters of SIMON ciphers are listed in Tab. I.

B. SPECK
The SPECK family of block ciphers is constructed only

from bitwise XOR, addition modulo 2n and similar to SIMON
family, left circular shift Sj by j positions. The round function
is the map Rk : GF (2)n × GF (2)n ← GF (2)n × GF (2)n

defined as:

Rk(x, y) = ((S−αx+ y)⊕ k, Sβy ⊕ (S−α + y)⊕ k), (2)

where k is a round key and α = 7 and β = 2 for block size
n = 32 and α = 8 and β = 3 otherwise. The specification of
all block ciphers from SPECK family is presented in Tab. I

TABLE I
POSSIBLE VARIANTS OF SIMON AND SPECK BLOCK CIPHER

block key word # of SIMON # of SPECK
size size size rounds rounds
32 64 16 32 22
48 72 24 36 22

96 36 23
64 96 32 42 26

128 44 27
96 128 48 52 28

144 54 29
128 128 64 68 32

192 69 33
256 72 34

SIMON and SPECK have a low multiplicative complexity,
which is a one of the measurement units of non-linearity [13].
Thus, algebraic cryptanalysis seems to be promising.

V. SAT ATTACK ON SIMON AND SPECK
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ciphers. The attack partially belongs to the algebraic crypt-
analysis family. The proposed attack starts with obtaining
proper algebraic equations describing a chosen cipher, which
is necessary for a key recovery attack. Classical algebraic
cryptanalysis methods try to solve given equations with XL
algorithm [14] or Grobner basis [10]. There are also attempts
to minimize the number of variables by using external tools
[15] [16]. In these algorithms, the attacker usually tries to
gather some additional information from equations or tries
to decrease the degree of equations and number of variables
before solving the system of equations. In our approach, we
do not solve the equations directly. Instead, we convert the
equations to a satisfiability problem and we try to find a
key’s values that are valid for used pairs of plaintext and
ciphertext. There are several factors affecting the execution
time and probability of success. We consider them to find the
best approach for attacking SIMON and SPECK with SAT—
solvers. Compared with other SAT attacks on SIMON and
SPECK our method does not require puting an additional
effort into selecting a proper plaintext and does not require
any additional tools for minimizing the number of variables.
Used pairs are picked up at random and the equations are
taken as they were produced by different compilers.

A. Attack model

In our attack we use two different approaches for construct-
ing the attack model.

In the first scenario, equations for the cipher and key
expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.

For the second scenario, equations for the key expansion al-
gorithm are not included in the system of equations converted
to a satisfiability problem. With this approach, the round keys
are found in reduced time, compared to the first scenario, but
the round keys might be unrelated. The unrelated keys are not
valid, and they are a random keys that can not be a result of a
key expansion algorithm. The probability of finding a valid key
depends mostly on the number of plaintext-ciphertext pairs.

B. Number of pairs

The solution found by an SAT-solver in the second sce-
nario is not always the valid key, used for encryption. The
probability of success depends mostly on the number of used
pairs. In theory, only one pair should be needed to solve the
equations. This is true, the solution for an SAT-problem is
found even for one pair and it is done very quickly. However,
without equations for a key expansion included to the model,
it is possible to find invalid unrelated round keys that solve
the satisfiability problem. The probability of finding a valid
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V. SAT ATTACK ON SIMON AND SPECK

We present a known plaintext attack for lightweight block
ciphers. The attack partially belongs to the algebraic crypt-
analysis family. The proposed attack starts with obtaining
proper algebraic equations describing a chosen cipher, which
is necessary for a key recovery attack. Classical algebraic
cryptanalysis methods try to solve given equations with XL
algorithm [14] or Grobner basis [10]. There are also attempts
to minimize the number of variables by using external tools
[15] [16]. In these algorithms, the attacker usually tries to
gather some additional information from equations or tries
to decrease the degree of equations and number of variables
before solving the system of equations. In our approach, we
do not solve the equations directly. Instead, we convert the
equations to a satisfiability problem and we try to find a
key’s values that are valid for used pairs of plaintext and
ciphertext. There are several factors affecting the execution
time and probability of success. We consider them to find the
best approach for attacking SIMON and SPECK with SAT—
solvers. Compared with other SAT attacks on SIMON and
SPECK our method does not require puting an additional
effort into selecting a proper plaintext and does not require
any additional tools for minimizing the number of variables.
Used pairs are picked up at random and the equations are
taken as they were produced by different compilers.

A. Attack model

In our attack we use two different approaches for construct-
ing the attack model.

In the first scenario, equations for the cipher and key
expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.

For the second scenario, equations for the key expansion al-
gorithm are not included in the system of equations converted
to a satisfiability problem. With this approach, the round keys
are found in reduced time, compared to the first scenario, but
the round keys might be unrelated. The unrelated keys are not
valid, and they are a random keys that can not be a result of a
key expansion algorithm. The probability of finding a valid key
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B. Number of pairs

The solution found by an SAT-solver in the second sce-
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pairs. In theory, only one pair should be needed to solve the
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found even for one pair and it is done very quickly. However,
without equations for a key expansion included to the model,
it is possible to find invalid unrelated round keys that solve
the satisfiability problem. The probability of finding a valid
key increases with the number of used pairs.

The number of pairs also affects the execution time. In
Fig. 1 , Fig. 2 and Fig. 3 the time required for solving an
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Fig. 1. Average time of attack using Lingeling and different number of pairs
of SPECK 32/64 (with key expand algorithm and handmade equations)

Fig. 2. Average time of attack using Lingeling and different number of pairs
of SPECK 32/64 (without key expand algorithm and handmade equations)

problems, additional pairs extended the running time. There is
a visible cross point, where adding more pairs extend the time
required for finding solution. For five rounds of SPECK, the
attack works the best for only 10 pairs. For complex problems,
the situation is the opposite.

Large systems of equations can be solved more efficiently
with more pairs available. This dependency works for both
attack models.

This is probably the case where some of the SAT-solvers
are able to utilize additional information taken from a larger
number of pairs, which results in finding the solution in a
shorter timeframe. There are also solvers not able to utilize
this additional information and their running time increases
with the number of pairs

C. Equations type

The same cipher can be described by sets of a different
algebraic equations. The main differences between two sets

Fig. 3. Average time of attack using Lingeling and different number of pairs
of SIMON 32/64 (without key expand algorithm and handmade equations)

are: the number of equations, the maximal algebraic degree
and the number of clauses. The equations can be obtained
automatically by proper software tools. We have developed
a method for extracting algebraic equations from software
and hardware implementations. Thus, we are able to pro-
cess different equations describing the same cipher. In the
experiments we used equations from several sources including:
handwritten, generated by hardware synthesis tools, generated
by C compiler and generated by Cryptol. Handwritten equa-
tions seems to be the most natural and readable for human.
The hardware equations are describing every logic cell in
the implementation of the cipher in FPGAs, so the structure
of the cipher is hidden. It is similar to equations from C
and Cryptol, where the cipher is translated by compiler to
computer readable format.

The idea of using an equation taken from hardware tools
was earlier explored by Courtois et al. [1] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-3
competition, Homsirikamol et al. [15] developed a similar
tool to obtain hardware equations describing SHA-3 final
candidates and evaluating their security margin.

D. Numbers of clauses and variables

Fig.4 presents the increase of the number of clauses for
SPECK cipher with every additional round. Fig.5 presents
the number of variables obtained from conversion tools to
describe the round reduced SPECK cipher. Both numbers have
a linear dependency on the number of rounds. The numbers
describing the hardware and software equations increase more
than handwritten ones. However, according to our experiments,
the system of equations with larger number of variables and
clauses can be solved faster than smaller ones. In some cases,
an SAT solver can utilize the additional information hidden
under the equations.
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VI. RESULTS

We report the best results obtained among three SAT—
solvers: Cadical, Lingeling and Treengeling using AMD
FX(tm)-8300 CPU clocked with 3531 MHz. The results were
obtained by attacking the smallest ciphers from the SIMON
and SPECK families with limited computation time set to
maximum one hour. The hardware equations are taken from
synthesizing the cipher design into an FPGA board by a free-
of-charge version of Intel Quartus 18.1. For every logic cell
in the FPGA design, an appropriate equation is given. Our
targeted FPGA family was Intel Cyclone V. Equations from C
implementation are obtained by translating the and-inverted-
graphs (AIG) [17] produced by clang version 3.6.0 C compiler.
Equations from Cryptol [18] implementation are obtained in
a similar way. The reported results are taken as average of
40 runs of each experiment. To make the comparison fair, the
used key was random and the plaintext-ciphertext pairs were
the same in every experiment.

All of our experiments took less than one hour. After one
hour of computation, the tasks were terminated. With this
approach, we failed to perform a successful attack on six
round of SPECK and 8 rounds of SIMON with the first attack
model, where key expansion algorithm is included into system
of equations.

# of rounds\# of pairs 3 4 >= 5
5 ∼0,23 ∼0.62 ∼1,00
6 ∼0,05 ∼0.47 ∼1,00
7 ∼0,00 ∼0.62 ∼1,00
8 ∼0,00 ∼0.59 ∼1,00
9 ∼0,00 ∼0.58 ∼1,00
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In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This

Fig. 1. Average time of attack using Lingeling and different number of pairs
of SPECK 32/64 (with key expand algorithm and handmade equations)
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problems, additional pairs extended the running time. There is
a visible cross point, where adding more pairs extend the time
required for finding solution. For five rounds of SPECK, the
attack works the best for only 10 pairs. For complex problems,
the situation is the opposite.

Large systems of equations can be solved more efficiently
with more pairs available. This dependency works for both
attack models.

This is probably the case where some of the SAT-solvers
are able to utilize additional information taken from a larger
number of pairs, which results in finding the solution in a
shorter timeframe. There are also solvers not able to utilize
this additional information and their running time increases
with the number of pairs

C. Equations type

The same cipher can be described by sets of a different
algebraic equations. The main differences between two sets
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are: the number of equations, the maximal algebraic degree
and the number of clauses. The equations can be obtained
automatically by proper software tools. We have developed
a method for extracting algebraic equations from software
and hardware implementations. Thus, we are able to pro-
cess different equations describing the same cipher. In the
experiments we used equations from several sources including:
handwritten, generated by hardware synthesis tools, generated
by C compiler and generated by Cryptol. Handwritten equa-
tions seems to be the most natural and readable for human.
The hardware equations are describing every logic cell in
the implementation of the cipher in FPGAs, so the structure
of the cipher is hidden. It is similar to equations from C
and Cryptol, where the cipher is translated by compiler to
computer readable format.

The idea of using an equation taken from hardware tools
was earlier explored by Courtois et al. [1] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-3
competition, Homsirikamol et al. [15] developed a similar
tool to obtain hardware equations describing SHA-3 final
candidates and evaluating their security margin.

D. Numbers of clauses and variables

Fig.4 presents the increase of the number of clauses for
SPECK cipher with every additional round. Fig.5 presents
the number of variables obtained from conversion tools to
describe the round reduced SPECK cipher. Both numbers have
a linear dependency on the number of rounds. The numbers
describing the hardware and software equations increase more
than handwritten ones. However, according to our experiments,
the system of equations with larger number of variables and
clauses can be solved faster than smaller ones. In some cases,
an SAT solver can utilize the additional information hidden
under the equations.
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We report the best results obtained among three SAT—
solvers: Cadical, Lingeling and Treengeling using AMD
FX(tm)-8300 CPU clocked with 3531 MHz. The results were
obtained by attacking the smallest ciphers from the SIMON
and SPECK families with limited computation time set to
maximum one hour. The hardware equations are taken from
synthesizing the cipher design into an FPGA board by a free-
of-charge version of Intel Quartus 18.1. For every logic cell
in the FPGA design, an appropriate equation is given. Our
targeted FPGA family was Intel Cyclone V. Equations from C
implementation are obtained by translating the and-inverted-
graphs (AIG) [17] produced by clang version 3.6.0 C compiler.
Equations from Cryptol [18] implementation are obtained in
a similar way. The reported results are taken as average of
40 runs of each experiment. To make the comparison fair, the
used key was random and the plaintext-ciphertext pairs were
the same in every experiment.

All of our experiments took less than one hour. After one
hour of computation, the tasks were terminated. With this
approach, we failed to perform a successful attack on six
round of SPECK and 8 rounds of SIMON with the first attack
model, where key expansion algorithm is included into system
of equations.
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In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This
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In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This
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problems, additional pairs extended the running time. There is
a visible cross point, where adding more pairs extend the time
required for finding solution. For five rounds of SPECK, the
attack works the best for only 10 pairs. For complex problems,
the situation is the opposite.

Large systems of equations can be solved more efficiently
with more pairs available. This dependency works for both
attack models.

This is probably the case where some of the SAT-solvers
are able to utilize additional information taken from a larger
number of pairs, which results in finding the solution in a
shorter timeframe. There are also solvers not able to utilize
this additional information and their running time increases
with the number of pairs

C. Equations type

The same cipher can be described by sets of a different
algebraic equations. The main differences between two sets
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are: the number of equations, the maximal algebraic degree
and the number of clauses. The equations can be obtained
automatically by proper software tools. We have developed
a method for extracting algebraic equations from software
and hardware implementations. Thus, we are able to pro-
cess different equations describing the same cipher. In the
experiments we used equations from several sources including:
handwritten, generated by hardware synthesis tools, generated
by C compiler and generated by Cryptol. Handwritten equa-
tions seems to be the most natural and readable for human.
The hardware equations are describing every logic cell in
the implementation of the cipher in FPGAs, so the structure
of the cipher is hidden. It is similar to equations from C
and Cryptol, where the cipher is translated by compiler to
computer readable format.

The idea of using an equation taken from hardware tools
was earlier explored by Courtois et al. [1] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-3
competition, Homsirikamol et al. [15] developed a similar
tool to obtain hardware equations describing SHA-3 final
candidates and evaluating their security margin.

D. Numbers of clauses and variables

Fig.4 presents the increase of the number of clauses for
SPECK cipher with every additional round. Fig.5 presents
the number of variables obtained from conversion tools to
describe the round reduced SPECK cipher. Both numbers have
a linear dependency on the number of rounds. The numbers
describing the hardware and software equations increase more
than handwritten ones. However, according to our experiments,
the system of equations with larger number of variables and
clauses can be solved faster than smaller ones. In some cases,
an SAT solver can utilize the additional information hidden
under the equations.
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the implementation of the cipher in FPGAs, so the structure
of the cipher is hidden. It is similar to equations from C
and Cryptol, where the cipher is translated by compiler to
computer readable format.

The idea of using an equation taken from hardware tools
was earlier explored by Courtois et al. [1] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-3
competition, Homsirikamol et al. [15] developed a similar
tool to obtain hardware equations describing SHA-3 final
candidates and evaluating their security margin.
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the number of variables obtained from conversion tools to
describe the round reduced SPECK cipher. Both numbers have
a linear dependency on the number of rounds. The numbers
describing the hardware and software equations increase more
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Fig. 5. Number of variables in CNF equation, depending on the type of
equations generator and number of SPECK rounds for two pairs (without key
expand algorithm)

VI. RESULTS

We report the best results obtained among three SAT—
solvers: Cadical, Lingeling and Treengeling using AMD
FX(tm)-8300 CPU clocked with 3531 MHz. The results were
obtained by attacking the smallest ciphers from the SIMON
and SPECK families with limited computation time set to
maximum one hour. The hardware equations are taken from
synthesizing the cipher design into an FPGA board by a free-
of-charge version of Intel Quartus 18.1. For every logic cell
in the FPGA design, an appropriate equation is given. Our
targeted FPGA family was Intel Cyclone V. Equations from C
implementation are obtained by translating the and-inverted-
graphs (AIG) [17] produced by clang version 3.6.0 C compiler.
Equations from Cryptol [18] implementation are obtained in
a similar way. The reported results are taken as average of
40 runs of each experiment. To make the comparison fair, the
used key was random and the plaintext-ciphertext pairs were
the same in every experiment.

All of our experiments took less than one hour. After one
hour of computation, the tasks were terminated. With this
approach, we failed to perform a successful attack on six
round of SPECK and 8 rounds of SIMON with the first attack
model, where key expansion algorithm is included into system
of equations.

# of rounds\# of pairs 3 4 >= 5
5 ∼0,23 ∼0.62 ∼1,00
6 ∼0,05 ∼0.47 ∼1,00
7 ∼0,00 ∼0.62 ∼1,00
8 ∼0,00 ∼0.59 ∼1,00
9 ∼0,00 ∼0.58 ∼1,00
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Fig. 6. Average time of attack using Lingeling for ten pairs of SIMON
(without key expand algorithm)

In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This
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In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
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problems, additional pairs extended the running time. There is
a visible cross point, where adding more pairs extend the time
required for finding solution. For five rounds of SPECK, the
attack works the best for only 10 pairs. For complex problems,
the situation is the opposite.

Large systems of equations can be solved more efficiently
with more pairs available. This dependency works for both
attack models.

This is probably the case where some of the SAT-solvers
are able to utilize additional information taken from a larger
number of pairs, which results in finding the solution in a
shorter timeframe. There are also solvers not able to utilize
this additional information and their running time increases
with the number of pairs
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cess different equations describing the same cipher. In the
experiments we used equations from several sources including:
handwritten, generated by hardware synthesis tools, generated
by C compiler and generated by Cryptol. Handwritten equa-
tions seems to be the most natural and readable for human.
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of the cipher is hidden. It is similar to equations from C
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computer readable format.
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tool to obtain hardware equations describing SHA-3 final
candidates and evaluating their security margin.
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obtained by attacking the smallest ciphers from the SIMON
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maximum one hour. The hardware equations are taken from
synthesizing the cipher design into an FPGA board by a free-
of-charge version of Intel Quartus 18.1. For every logic cell
in the FPGA design, an appropriate equation is given. Our
targeted FPGA family was Intel Cyclone V. Equations from C
implementation are obtained by translating the and-inverted-
graphs (AIG) [17] produced by clang version 3.6.0 C compiler.
Equations from Cryptol [18] implementation are obtained in
a similar way. The reported results are taken as average of
40 runs of each experiment. To make the comparison fair, the
used key was random and the plaintext-ciphertext pairs were
the same in every experiment.

All of our experiments took less than one hour. After one
hour of computation, the tasks were terminated. With this
approach, we failed to perform a successful attack on six
round of SPECK and 8 rounds of SIMON with the first attack
model, where key expansion algorithm is included into system
of equations.
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is the opposite to most of the other experiments. Hardware
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# of rounds\# of pairs 1 2 >= 3
3 ∼0,00 ∼0.05 ∼1,00
4 ∼0,00 ∼0.12 ∼1,00
5 ∼0,00 ∼0.68 ∼1,00
6 ∼0,00 ? ?
7 ∼0,00 ? ?

≥ 8 ? ? ?
TABLE III

EXPERIMENTAL PROBABILITY OF SUCCESS ATTACK FOR SPECK 32/64
(WITH KEY EXPAND ALGORITHM)

# of rounds\# of pairs 2 3 >= 4
3 ∼0,68 ∼0.95 ∼1,00
4 ∼0,07 ∼0.85 ∼1,00
5 ∼0,00 ∼0.88 ∼1,00
6 ∼0,00 ∼0.86 ∼1,00

≥ 7 ∼0,00 ? ?
TABLE IV

EXPERIMENTAL PROBABILITY OF SUCCESS ATTACK FOR SPECK 32/64
(WITHOUT KEY EXPAND ALGORITHM)

VII. CONCLUSION

As for now, we have focused on research about the best
parameters to set for an attack, rather than attacking the highest
number of rounds. We have checked the influence of several
parameters on the solving time of an satisfiability problem.

Considering all mentioned factors, we were able to suc-
cessfully break up to 6 rounds of SPECK cipher and up to
10 rounds of SIMON cipher using our novel approach on a
single-core CPU. In Tab. V we report our best results. For
aforementioned ciphers, the best approach is to use the second
attack scenario, where the key expansion algorithm is not
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number of rounds and attack model may lead to even better
results affecting the claimed security of the aforementioned
ciphers or even to a full break of these ciphers.

Our new approach to an SAT attack offers a significant
speed-up when compared to the standard method. It also
decreases the amount of work required for preparing the attack.
Moreover, the attack can be applied to other ciphers and the
preparation costs of the attack are very low. Thus, our tool
seems to be a good choice for a plug-and-play attack on the
initial security strength evaluation. Our method can be also

combined with other types of attacks as reported in [7], [19].
Using pairs selected with linear or differential cryptanalysis for
an SAT attack without key expansion algorithm is a promising
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aforementioned ciphers, the best approach is to use the second
attack scenario, where the key expansion algorithm is not
included.

number number equations SAT time [s]
of rounds of pairs type

SPECK 6 10 cryptol Lingeling 451,29
SPECK 6 10 vhdl Lingeling 588,74
SIMON 10 10 cryptol Lingeling 8,98
SIMON 10 10 manual Lingeling 5,78

TABLE V
OUR THE BEST RESULTS OF SAT ATTACK ON SPECK 32/64 AND SIMON

32/64 (WITHOUT KEY EXPAND ALGORITHM)

Presented results are only a fraction of those obtained from
experiments. We have shown that many factors affect the
success rate and time required for SAT attack on SPECK
and SIMON ciphers. Further exploration of mentioned factors
like source of equations, used SAT—solver, number of pairs,
number of rounds and attack model may lead to even better
results affecting the claimed security of the aforementioned
ciphers or even to a full break of these ciphers.

Our new approach to an SAT attack offers a significant
speed-up when compared to the standard method. It also
decreases the amount of work required for preparing the attack.
Moreover, the attack can be applied to other ciphers and the
preparation costs of the attack are very low. Thus, our tool
seems to be a good choice for a plug-and-play attack on the
initial security strength evaluation. Our method can be also

combined with other types of attacks as reported in [7], [19].
Using pairs selected with linear or differential cryptanalysis for
an SAT attack without key expansion algorithm is a promising
idea for further research and obtaining even better results.
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Abstract—We revisit the standard enumeration algorithm for
finding the shortest vectors in a lattice, and study how the number
of nodes in the associated search tree can be reduced. Two
approaches for reducing the number of nodes are suggested. First
we show that different permutations of the basis vectors have a
big effect on the running time of standard enumeration, and
give a class of permutations that give relatively few nodes in the
search tree. This leads to an algorithm called hybrid enumeration
that has a better running time than standard enumeration when
the lattice is large. Next we show that it is possible to estimate
the signs of the coefficients yielding a shortest vector, and that a
pruning strategy can be based on this fact. Sign-based pruning
gives fewer nodes in the search tree, and never missed the shortest
vector in the experiments we did.

Index Terms—Lattices, SVP problem, enumeration, pruning

I. INTRODUCTION

A lattice in Rn is the set of all integer combinations of m
linearly independent vectors b1, b2, ..., bm in Rn. In this work
we assume m = n, but all results can easily be generalized.
One of the most basic computational problems concerning
lattices is the shortest vector problem (SVP): given a lattice
basis as an input the task is to find a nonzero lattice vector of
smallest norm.

It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
points.

Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing

All authors are with Simula UiB, Bergen, Norway

the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we
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the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we
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only propose to use the new enumeration technique at the
nodes on the highest levels in the search tree, and then switch
to standard GS enumeration for levels lower than that. This
still leads to a significant reduction in the number of nodes in
comparison with the standard enumeration method, depending
on type of lattice and the level where we switch to standard
GS enumeration.

The second technique we provide is to estimate the signs
of each vi. The main idea behind the algorithm is to exploit
the dot product function which contains information about the
length and angle between the basis vectors. Given two vectors
a and b, if the angle between them is less than 90 degrees
then their sum a + b is longer than both a and b and a − b
will be shorter than at least one of a and b. To get a short
vector we need to subtract one from another which implies
that the sign of these vectors are opposite with respect to each
other. Similarly, when the angle between them is more than
90 degrees, then addition gives a short vector, so their relative
signs should be the same.

We generalize this observation on n vectors, developing a
method for estimating the signs of each vi together with a
confidence measure for each estimate. We then give a pruning
strategy where the interval computed for each vi is cut down
using the estimate of the sign and confidence factor. Unlike
other pruning methods, this leads to a one-sided pruning where
we only cut away a portion of possible vi values where the
sign is believed to be wrong. A useful fact is that our sign-
based pruning can be applied on the top of any other pruning
strategy.

II. PRELIMINARIES

Throughout the paper, we will denote all vectors in bold-
face type, all matrices as capital letters, and all scalars in
lower case italics. Given a linearly independent set of vectors
{b1, b2, ..., bn} in Rn, the lattice L generated by them is the
set

L =
{ n∑

i=1

vibi|vi ∈ Z
}

of integer linear combination of bi’s. The set of vectors
{b1, b2, . . . , bn} is called the lattice basis.

The inner product of two vectors a = (a1, . . . , an) and
b = (b1, . . . , bn) is defined as

a · b = a1b1 + a2b2 + · · ·+ anbn.

The Euclidean norm of a vector a is defined as
√
a · a and

is denoted ‖a‖. The vectors a and b are said to be orthogonal
if a ·b = 0. Given a basis B = {b1, b2, . . . , bn} of a lattice L,
B is said to be orthogonal if for every pair of distinct vectors
bi and bj in B are orthogonal.

A lattice L contains non-zero vectors of shortest length with
respect to the Euclidean norm. This parameter is denoted by
λ1(L). A vector of norm λ1(L) is called a shortest vector of
L.

A. Gram-Schmidt orthogonalization

In general, a basis B for a lattice is not orthogonal. The
Gram-Schmidt process is a method for orthogonalizing a set
of vectors in an n-dimensional Euclidean space Rn. The
projection of a vector a onto a vector b is defined as

Pb(a) =

(
b · a
b · b

)
b. (1)

The Gram-Schmidt process can then be described via the
following equations:

b∗1 = b1

b∗2 = b2 − Pb∗
1
(b2)

b∗3 = b3 − Pb∗
1
(b3)− Pb∗

2
(b3)

...

b∗n = bn −
n−1∑
j=1

Pb∗
j
(bn)

The set {b∗1, b∗2, . . . , b∗n} is an orthogonal basis for the same
space as that spanned by {b1, b2, . . . , bn}. More generally, for
any 1 ≤ i ≤ n the subspace spanned by {b∗1, b∗2, . . . , b∗i } is
the same as that spanned by {b1, b2, . . . , bi}.

B. Projections

We can generalize the projection given in (1) to apply to
a larger space. Let the space V be given by the basis V =
{b1, . . . , bk}. The projection of a vector a onto the space V
is then given by

PV (a) = Pb∗
1
(a) + · · ·+ Pb∗

k
(a),

where the b∗i form the orthogonal basis of V , giving a vector
that lies inside the space V .

Lemma 1. Let V be a subspace of Rn. For any a ∈ Rn, the
vector a− PV (a) is perpendicular to every vector in V .

Proof. We start with a basis BV = {b1, . . . , bk} for V
and expand it to a basis for the entire space by adding
some vectors bk+1, . . . , bn. We then apply the Gram-Schmidt
process to get an orthogonal basis K = {b∗1, . . . , b∗n} for Rn.
Then K is the concatenation of the two bases {b∗1, . . . , b∗k}
and {b∗k+1, . . . , b

∗
n}, and by the GS property, {b∗1, . . . , b∗k}

is a basis for V . Any vector a ∈ Rn can be written as
a = r1b

∗
1 + · · ·+ rnb

∗
n where ri =

a·b∗
i

b∗
i ·b∗

i
.

By definition we have PV (a) = r1b
∗
1 + · · ·+ rkb

∗
k. Hence,

a− PV (a) = rk+1b
∗
k+1 + · · ·+ rnb

∗
n. Since any vector u in

V is a linear combination of the vectors in {b∗1, . . . , b∗k}, we
have u · (a− PV (a)) = 0.

The following lemma provides us with a way to compute
the projection of a vector onto a space V , without needing to
orthogonalize the basis for V .

Lemma 2. Let a be a vector in Rn and let V be a subspace
of Rn with basis BV = {b1, . . . , bk}. Let A be the matrix
with b1, . . . , bk as columns. Then

PV (a) = c1b1 + · · ·+ ckbk
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It is known that SVP is NP-hard under randomized reduc-
tions [1]. With the current interest in post-quantum cryptog-
raphy, lattice based cryptographic primitives are among the
most promising candidates for achieving secure and efficient
quantum safe crypto.

There are two main algorithmic techniques for the lattice
problems. The first technique is called lattice reduction, and
the best known algorithms are the famous LLL algorithm [2]
and BKZ algorithm [3]. Both of these algorithms work by
applying successive transformations to the input basis in an
attempt to make the basis vectors short and as orthogonal as
possible. A second and more basic approach, which is the fo-
cus of our work, is the enumeration technique which is simply
an exhaustive search for finding the integer combinations of
basis vectors whose norm is small enough.

The search can be seen as a depth-first search tree where
internal nodes correspond to the partial assignments of the
integer coefficients and the leaves correspond to the lattice
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Previous results: In the 1980’s Fincke, Pohst and Kan-
nan studied how to improve the complexity of the standard
algorithm for solving SVP at the time [4], [5], [6]. These
algorithms are deterministic and based on exhaustive search
of lattice points within a small convex set. In general, the
running time of an enumeration algorithm heavily depends
on the quality of the input basis. So, suitably pre-processing
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the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.

Recently there have been other approaches using sieving
and discrete pruning techniques, see [7], [8], [9], [10]. For a
survey paper on lattice reduction algorithms, see [11].

In the 90’s Schnorr, Euchner and Horner introduced the
pruning technique, by which these algorithms obtained a
substantial speedups [12], [13]. The rough idea is to prune
away sub-trees where the probability of finding the desired
lattice vector is small. This restricts the exhaustive search to a
subset of all solutions. Although there is a chance of missing
the desired vector, the probability of this is small compared
to the gain in running time.

The pruning strategy was later studied more rigorously by
Gama, Nguyen and Regev in [14] in 2010, introducing what
they called extreme pruning. Very large parts of the search tree
is cut away with extreme pruning. This makes the search very
fast, but the probability of finding the shortest vector on a given
run is very small. However, the authors show that the search
tree is reduced more than the probability of finding the shortest
vector, so one obtains a speed-up by just permuting the basis
and repeating the process a number of times. The algorithm
using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
and show their benefit in speeding up lattice enumeration.
First, we propose a new enumeration algorithm called the
hybrid enumeration for computing intervals for the coefficients
vi. Second, we provide an algorithm for estimating the signs
(+ or -) of the coefficients v1, v2, ..., vn in the lattice basis∑n

i=1 vibi. Both these algorithms aims at reducing the size of
search tree, thereby providing faster enumeration to find the
shortest vector.

One disadvantage with the standard enumeration technique
is that the algorithm depends on the computed Gram-Schmidt
(GS) orthogonal basis for computing the intervals where the
vi-coefficients can be found. Once the GS orthogonal basis is
computed, it fixes the order of the coefficients to be guessed.

In our paper, the hybrid enumeration takes a new approach
by computing the intervals in a way that does not depend
on GS orthogonalization. This means the basis vectors are not
bound by any particular order and we are free to choose which
of the untried coefficients vi to guess on at any given point
in the search tree. We show that dynamically changing the
order of the guessed vi’s significantly lowers the number of
nodes in the search tree compared to the standard enumeration
algorithm.

The price to pay for this flexibility is increased work at
each node of the search tree. Hence the actual time taken to
enumerate a lattice using the new method may be longer than
the time taken by the standard GS enumeration. Therefore we
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the input lattice using a basis reduction algorithm is essential
before starting a lattice enumeration method.
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using extreme pruning is the fastest known, and today’s state
of the art when it comes to enumeration.

Our contribution: In this paper we propose two new ideas,
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only propose to use the new enumeration technique at the
nodes on the highest levels in the search tree, and then switch
to standard GS enumeration for levels lower than that. This
still leads to a significant reduction in the number of nodes in
comparison with the standard enumeration method, depending
on type of lattice and the level where we switch to standard
GS enumeration.

The second technique we provide is to estimate the signs
of each vi. The main idea behind the algorithm is to exploit
the dot product function which contains information about the
length and angle between the basis vectors. Given two vectors
a and b, if the angle between them is less than 90 degrees
then their sum a + b is longer than both a and b and a − b
will be shorter than at least one of a and b. To get a short
vector we need to subtract one from another which implies
that the sign of these vectors are opposite with respect to each
other. Similarly, when the angle between them is more than
90 degrees, then addition gives a short vector, so their relative
signs should be the same.

We generalize this observation on n vectors, developing a
method for estimating the signs of each vi together with a
confidence measure for each estimate. We then give a pruning
strategy where the interval computed for each vi is cut down
using the estimate of the sign and confidence factor. Unlike
other pruning methods, this leads to a one-sided pruning where
we only cut away a portion of possible vi values where the
sign is believed to be wrong. A useful fact is that our sign-
based pruning can be applied on the top of any other pruning
strategy.

II. PRELIMINARIES

Throughout the paper, we will denote all vectors in bold-
face type, all matrices as capital letters, and all scalars in
lower case italics. Given a linearly independent set of vectors
{b1, b2, ..., bn} in Rn, the lattice L generated by them is the
set

L =
{ n∑

i=1

vibi|vi ∈ Z
}

of integer linear combination of bi’s. The set of vectors
{b1, b2, . . . , bn} is called the lattice basis.

The inner product of two vectors a = (a1, . . . , an) and
b = (b1, . . . , bn) is defined as

a · b = a1b1 + a2b2 + · · ·+ anbn.

The Euclidean norm of a vector a is defined as
√
a · a and

is denoted ‖a‖. The vectors a and b are said to be orthogonal
if a ·b = 0. Given a basis B = {b1, b2, . . . , bn} of a lattice L,
B is said to be orthogonal if for every pair of distinct vectors
bi and bj in B are orthogonal.

A lattice L contains non-zero vectors of shortest length with
respect to the Euclidean norm. This parameter is denoted by
λ1(L). A vector of norm λ1(L) is called a shortest vector of
L.

A. Gram-Schmidt orthogonalization

In general, a basis B for a lattice is not orthogonal. The
Gram-Schmidt process is a method for orthogonalizing a set
of vectors in an n-dimensional Euclidean space Rn. The
projection of a vector a onto a vector b is defined as

Pb(a) =

(
b · a
b · b

)
b. (1)

The Gram-Schmidt process can then be described via the
following equations:

b∗1 = b1

b∗2 = b2 − Pb∗
1
(b2)

b∗3 = b3 − Pb∗
1
(b3)− Pb∗

2
(b3)

...

b∗n = bn −
n−1∑
j=1

Pb∗
j
(bn)

The set {b∗1, b∗2, . . . , b∗n} is an orthogonal basis for the same
space as that spanned by {b1, b2, . . . , bn}. More generally, for
any 1 ≤ i ≤ n the subspace spanned by {b∗1, b∗2, . . . , b∗i } is
the same as that spanned by {b1, b2, . . . , bi}.

B. Projections

We can generalize the projection given in (1) to apply to
a larger space. Let the space V be given by the basis V =
{b1, . . . , bk}. The projection of a vector a onto the space V
is then given by

PV (a) = Pb∗
1
(a) + · · ·+ Pb∗

k
(a),

where the b∗i form the orthogonal basis of V , giving a vector
that lies inside the space V .

Lemma 1. Let V be a subspace of Rn. For any a ∈ Rn, the
vector a− PV (a) is perpendicular to every vector in V .

Proof. We start with a basis BV = {b1, . . . , bk} for V
and expand it to a basis for the entire space by adding
some vectors bk+1, . . . , bn. We then apply the Gram-Schmidt
process to get an orthogonal basis K = {b∗1, . . . , b∗n} for Rn.
Then K is the concatenation of the two bases {b∗1, . . . , b∗k}
and {b∗k+1, . . . , b

∗
n}, and by the GS property, {b∗1, . . . , b∗k}

is a basis for V . Any vector a ∈ Rn can be written as
a = r1b

∗
1 + · · ·+ rnb

∗
n where ri =

a·b∗
i

b∗
i ·b∗

i
.

By definition we have PV (a) = r1b
∗
1 + · · ·+ rkb

∗
k. Hence,

a− PV (a) = rk+1b
∗
k+1 + · · ·+ rnb

∗
n. Since any vector u in

V is a linear combination of the vectors in {b∗1, . . . , b∗k}, we
have u · (a− PV (a)) = 0.

The following lemma provides us with a way to compute
the projection of a vector onto a space V , without needing to
orthogonalize the basis for V .

Lemma 2. Let a be a vector in Rn and let V be a subspace
of Rn with basis BV = {b1, . . . , bk}. Let A be the matrix
with b1, . . . , bk as columns. Then

PV (a) = c1b1 + · · ·+ ckbk
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once it is computed this order remains fixed throughout the
standard enumeration routine.

The actual enumeration starts by computing an interval In
such that ‖s‖ ≤ R implies vn ∈ In. The algorithm then fixes
an integer value in In for vn, and based on the choice computes
an interval In−1 such that ‖s‖ ≤ R implies vn−1 ∈ In−1.
Then an integer is selected from In−1 and assigned to vn−1,
and the interval where vn−2 must be found is computed. This
continues until a selection for v1 can be made, in which case
we find a lattice vector with length less than R, or until an
interval Ij that contains no integers is computed.

Intervals are computed recursively in the order
In, In−1, . . . , I2, I1, and all values from all intervals
must be tried to do a complete search that guarantees that a
shortest vector will be found. In the following, we denote the
length of an interval Ii by |Ii|.

Basic enumeration assumes the µ-matrix is computed once
and for all before actual enumeration starts, but this is not
strictly necessary. We can set every basis vector bi in the basis
as the last one, recompute the µ-matrix, and find the interval
of possible coefficients for Ii. Doing this allows us to make
a choice of which vector to first fix the coefficient for. For
instance, we may select the basis vector giving the shortest
interval as the first one to branch for.

This strategy can be generalized and done at any point
during enumeration: Assume vj for j ∈ J ⊆ {1, . . . , n} have
been fixed, where |J | = k. All remaining basis vectors bi for
i ∈ ({1, . . . , n}\J) can be tried by placing them successively
in position n−k in the basis. The µ-matrix and the coefficient
intervals are re-computed for every choice, and the vector
giving the shortest interval is selected as the next one to branch
for. In this way we may dynamically change the order of which
basis vector to branch for, while the enumeration algorithm is
running.

Remark: To compute the smallest interval at a given node,
we do not need to re-compute the full µ-matrix. We only need
to re-compute the entries in µ from the point where we have
changed the order of the basis vectors. For example, if we are
computing the interval for vj , only the rows of µ with indices
higher than j needs to be updated when setting bj last.

C. Strategy for selecting order for basis vectors
The strategy we use for choosing the order of basis vectors

to branch for follows a greedy approach: We always choose
the next vi to try as the one with the shortest interval Ii. The
rationale for this strategy can be explained via the following
lemma, basically saying that the interval for one vi shortens,
when more of the other coefficients are fixed.

Lemma 3. Let J1 ⊆ J2 ⊆ ({1, . . . , n} \ {i}). Let Ii(J1) be
the interval for vi after values of vj , j ∈ J1 have been fixed,
and let Ii(J2) be the interval for vi after some additional vj’s,
j ∈ J2 \ J1 have been fixed. Then |Ii(J1)| ≥ |Ii(J2)|.

Proof. From Equation (2) we see that the length of Ii(J1) is
determined by the sum

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2 ∥∥b∗j
∥∥2 , (3)

while the center of the interval is determined by

n∑
i=k+1

µi,kvi.

When we branch in an unspecified order, (3) can be written
as

∑
j∈J1

t2j ,

where the tj’s are terms decided by the specific order in
which the indices in J1 were chosen. The larger this sum
becomes, the smaller |Ii(J1)| will be. The terms in the sum
are all positive, so expanding with the extra terms to create
the sum

∑
j∈J2

t2j before branching for vi can only decrease
the length of Ii. Hence |Ii(J1)| ≥ |Ii(J2)|.

Lemma 3 shows that the longer we wait to select a particular
vi to branch for, the shorter its interval Ii will become. The
idea for the branching strategy is that intervals that are long
when few vj’s have been selected will become short by the
time the algorithm is forced to branch on them. This will lead
to relatively small search trees.

One way to more easily see this is in the case when one
Ii becomes empty after fixing the vj’s for j ∈ J , for some
J . Say the branching order has been fixed from the start, the
values of vj , j ∈ J have been fixed, and that Ii is empty,
but vi is only to be branched for after another 10 vk’s have
been fixed. Even though it is clear (if we compute Ii) that
all choices of values for the vk’s will lead to a dead end, the
traditional enumeration algorithm will try all of them before
backtracking away from this sub-tree. By always selecting the
next vi to branch for as the one with the shortest interval,
vi will be selected as soon as |Ii| = 0 (the shortest length
possible), and backtracking into the vj’s where j ∈ J will
start immediately.

D. Cost vs effect for minimizing intervals

The drawback of checking which of the remaining indices
to branch for is the extra work done in each node. If we
compute an interval Ii using the µ-matrix of Gram-Schmidt
coefficients, we in general have to recompute the µ-matrix as
part of the process. The complexity for computing this matrix
for one index is O(n3) multiplications, and doing this for every
remaining index not yet branched for gives overall complexity
of O(n4) in each node.

Computing an interval Ii using the projection method in-
volves inverting a matrix, which also has complexity O(n3).
Repeating for all unbranched indices again gives an overall
complexity of O(n4) for the work done in each node. These
complexities are quite high considering they have to be done
for each node. However, they are still polynomial and the
number of nodes in a search tree is super-exponential in n,
so if the reduction in the number of nodes is big enough it is
still worthwhile.

As we saw in Table I, the number of nodes in a search tree
without using any minimizing strategy depends heavily on the
order of the basis vectors. The order of the basis vectors does

3

where the ci are the entries of the vector (ATA)−1ATa.
In particular, the projection can be computed as PV (a) =
A(ATA)−1ATa.

Proof. Since the columns of A are the basis vectors for V ,
we can write PV (a) = c1b1 + · · · + ckbk = Ac for some
values ci. By Lemma 1, the vector a − PV (a) is orthogonal
to every vector in V . Hence AT (a − PV (a)) = 0 since the
matrix/vector multiplication is just taking the inner product of
basis vectors with (a − PV (a)). Substituting for PV (a), we
get ATa−ATAc = 0 which implies that c = (ATA)−1ATa.
Hence, PV (a) = A(ATA)−1ATa.

C. The standard enumeration algorithm

Let L be a lattice whose shortest vector v is unique up to
the sign. Assume we are given the basis {b1, b2, ..., bn} of L
and an upper bound R on λ1(L) such that we need to find all
vectors w in the lattice L that satisfy ‖w‖ ≤ R.

The shortest vector s ∈ L can be written as s = v1b1 +
v2b2 + ... + vnbn where the v′is are unknown integers and
bi =

∑i−1
j=1 µi,jb

∗
j , where µi,j = (bi · b∗j )/(b∗j · b∗j ) are the

Gram-Schmidt coefficients. Our goal is to find s.
To find ±s, the enumeration goes through an enumeration

tree formed by the subspace spanned by the vectors whose
norm is at most R. The enumeration tree is a depth first search
tree of depth n. Each internal node in the tree is associated
with a particular vi and each outgoing edge represents an
assignment of an integer value (obtained from a range) to vi.
In particular the root of the tree is the zero vector, while the
leaves are all the vectors of L whose norm is at most R.

At any node, the enumeration algorithm selects an index i
not yet branched for, obtains a set of integers (interval range)
Ii for the possible values vi can take and for each integer t ∈ Ii
the algorithm calls itself recursively to compute the interval
for the next level. The length bound here remains constant
throughout the algorithm. For 1 ≤ k ≤ n, the following
inequality (see [14]) needs to be satisfied, essentially defining
the interval Ik:

(
vk +

n∑
i=k+1

µi,kvi

)2

‖b∗k‖
2
+

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2 ∥∥b∗j
∥∥2 ≤ R2 (2)

By the inequality above, for each 1 ≤ k ≤ n the interval
range Ik for vk can be obtained if vj is known for each j ∈
{k + 1, k + 2, ..., n}. This implies that in the enumeration
algorithm, the indices i can only be chosen in the order starting
from n, n− 1, .. down to 1. In the rest of the paper we refer
to the root node of the search tree being at level n, the second
highest level being level n − 1, etc. That is, if a node is at
level l in the search tree, then only the coefficient vl can be
selected for branching at that node.

III. HYBRID ENUMERATION

In this section we study how permutations of the basis
vectors of a lattice affects the running time of enumeration.

nodes in search tree BKZ-10 BKZ-20
minimum 60.934.596 4.059.025
average 424.300.658 52.886.123
maximum 1.180.735.200 194.214.522
std. deviation 361.710.571 40.202.374

TABLE I: Number of nodes to fully enumerate the BKZ-
reduced SVP40 challenge lattice for 20 random permutations
of the basis. The number of nodes in a search tree is highly
dependent on the particular permutation.

Based on this we present a good strategy for selecting an
order of the basis vectors that results in relatively small search
trees when doing enumeration. This can help speed up extreme
pruning, by only selecting permutations that give small search
trees when iterating the extremely pruned enumeration runs.

A. Variations in Enumeration Complexity from Basis Permu-
tations

As far as we know, there have been no studies of how the
complexity of standard enumeration varies when the vectors
in the input basis are permuted. To motivate the work that
follows, we first present the results of some experiments
showing that the number of nodes in the search tree when
doing full enumeration is highly sensitive with respect to the
order of the basis vectors.

The lattice we use for the demonstration is Darmstadt’s
SVP40 challenge [15], generated from seed 0. The experiment
was done as follows: First, we ran two BKZ-reductions on
the SVP40 lattice, one with block size 10 and one with block
size 20. Then we did full enumeration of each of the two
BKZ-reduced lattices, counting the number of nodes in the
search tree. Next we randomized the two BKZ-reduced bases
20 times each, and ran full enumeration on all of them. The
average number of nodes in the search trees for the randomized
bases are shown in Table I, together with the maximum and
minimum numbers observed and the standard deviation.

From Table I we see that the order of the basis vectors
has a big impact on the size of the enumeration search tree.
The standard deviation is of similar size as the average,
showing that the sizes of the search trees vary greatly with
the permutation.

Another interesting thing we observed is that the order of
the reduced basis as given straight out of BKZ is particularly
good for enumeration. Enumerating the SVP40 challenge
with the basis order given by BKZ-10 gives a tree with
5.968.085 nodes, and the order given by BKZ-20 gives a tree
with 1.232.737 nodes, significantly smaller than the numbers
observed for any of the random permutations.

B. Intervals for coefficients

Given a length bound R, basic enumeration will search
exhaustively for all lattice vectors of length less than or equal
to R. Assume that s = v1b1 + v2b2 + . . .+ vnbn is a vector
such that ‖s‖ ≤ R. Before the enumeration can start, the µ-
matrix [µi,j ] of Gram-Schmidt coefficients and the orthogonal
basis vectors b∗1, . . . , b

∗
n must be computed. The µ-matrix is

dependent on the particular order of the basis vectors, and
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once it is computed this order remains fixed throughout the
standard enumeration routine.

The actual enumeration starts by computing an interval In
such that ‖s‖ ≤ R implies vn ∈ In. The algorithm then fixes
an integer value in In for vn, and based on the choice computes
an interval In−1 such that ‖s‖ ≤ R implies vn−1 ∈ In−1.
Then an integer is selected from In−1 and assigned to vn−1,
and the interval where vn−2 must be found is computed. This
continues until a selection for v1 can be made, in which case
we find a lattice vector with length less than R, or until an
interval Ij that contains no integers is computed.

Intervals are computed recursively in the order
In, In−1, . . . , I2, I1, and all values from all intervals
must be tried to do a complete search that guarantees that a
shortest vector will be found. In the following, we denote the
length of an interval Ii by |Ii|.

Basic enumeration assumes the µ-matrix is computed once
and for all before actual enumeration starts, but this is not
strictly necessary. We can set every basis vector bi in the basis
as the last one, recompute the µ-matrix, and find the interval
of possible coefficients for Ii. Doing this allows us to make
a choice of which vector to first fix the coefficient for. For
instance, we may select the basis vector giving the shortest
interval as the first one to branch for.

This strategy can be generalized and done at any point
during enumeration: Assume vj for j ∈ J ⊆ {1, . . . , n} have
been fixed, where |J | = k. All remaining basis vectors bi for
i ∈ ({1, . . . , n}\J) can be tried by placing them successively
in position n−k in the basis. The µ-matrix and the coefficient
intervals are re-computed for every choice, and the vector
giving the shortest interval is selected as the next one to branch
for. In this way we may dynamically change the order of which
basis vector to branch for, while the enumeration algorithm is
running.

Remark: To compute the smallest interval at a given node,
we do not need to re-compute the full µ-matrix. We only need
to re-compute the entries in µ from the point where we have
changed the order of the basis vectors. For example, if we are
computing the interval for vj , only the rows of µ with indices
higher than j needs to be updated when setting bj last.

C. Strategy for selecting order for basis vectors
The strategy we use for choosing the order of basis vectors

to branch for follows a greedy approach: We always choose
the next vi to try as the one with the shortest interval Ii. The
rationale for this strategy can be explained via the following
lemma, basically saying that the interval for one vi shortens,
when more of the other coefficients are fixed.

Lemma 3. Let J1 ⊆ J2 ⊆ ({1, . . . , n} \ {i}). Let Ii(J1) be
the interval for vi after values of vj , j ∈ J1 have been fixed,
and let Ii(J2) be the interval for vi after some additional vj’s,
j ∈ J2 \ J1 have been fixed. Then |Ii(J1)| ≥ |Ii(J2)|.

Proof. From Equation (2) we see that the length of Ii(J1) is
determined by the sum

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2 ∥∥b∗j
∥∥2 , (3)

while the center of the interval is determined by

n∑
i=k+1

µi,kvi.

When we branch in an unspecified order, (3) can be written
as

∑
j∈J1

t2j ,

where the tj’s are terms decided by the specific order in
which the indices in J1 were chosen. The larger this sum
becomes, the smaller |Ii(J1)| will be. The terms in the sum
are all positive, so expanding with the extra terms to create
the sum

∑
j∈J2

t2j before branching for vi can only decrease
the length of Ii. Hence |Ii(J1)| ≥ |Ii(J2)|.

Lemma 3 shows that the longer we wait to select a particular
vi to branch for, the shorter its interval Ii will become. The
idea for the branching strategy is that intervals that are long
when few vj’s have been selected will become short by the
time the algorithm is forced to branch on them. This will lead
to relatively small search trees.

One way to more easily see this is in the case when one
Ii becomes empty after fixing the vj’s for j ∈ J , for some
J . Say the branching order has been fixed from the start, the
values of vj , j ∈ J have been fixed, and that Ii is empty,
but vi is only to be branched for after another 10 vk’s have
been fixed. Even though it is clear (if we compute Ii) that
all choices of values for the vk’s will lead to a dead end, the
traditional enumeration algorithm will try all of them before
backtracking away from this sub-tree. By always selecting the
next vi to branch for as the one with the shortest interval,
vi will be selected as soon as |Ii| = 0 (the shortest length
possible), and backtracking into the vj’s where j ∈ J will
start immediately.

D. Cost vs effect for minimizing intervals

The drawback of checking which of the remaining indices
to branch for is the extra work done in each node. If we
compute an interval Ii using the µ-matrix of Gram-Schmidt
coefficients, we in general have to recompute the µ-matrix as
part of the process. The complexity for computing this matrix
for one index is O(n3) multiplications, and doing this for every
remaining index not yet branched for gives overall complexity
of O(n4) in each node.

Computing an interval Ii using the projection method in-
volves inverting a matrix, which also has complexity O(n3).
Repeating for all unbranched indices again gives an overall
complexity of O(n4) for the work done in each node. These
complexities are quite high considering they have to be done
for each node. However, they are still polynomial and the
number of nodes in a search tree is super-exponential in n,
so if the reduction in the number of nodes is big enough it is
still worthwhile.

As we saw in Table I, the number of nodes in a search tree
without using any minimizing strategy depends heavily on the
order of the basis vectors. The order of the basis vectors does
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where the ci are the entries of the vector (ATA)−1ATa.
In particular, the projection can be computed as PV (a) =
A(ATA)−1ATa.

Proof. Since the columns of A are the basis vectors for V ,
we can write PV (a) = c1b1 + · · · + ckbk = Ac for some
values ci. By Lemma 1, the vector a − PV (a) is orthogonal
to every vector in V . Hence AT (a − PV (a)) = 0 since the
matrix/vector multiplication is just taking the inner product of
basis vectors with (a − PV (a)). Substituting for PV (a), we
get ATa−ATAc = 0 which implies that c = (ATA)−1ATa.
Hence, PV (a) = A(ATA)−1ATa.

C. The standard enumeration algorithm

Let L be a lattice whose shortest vector v is unique up to
the sign. Assume we are given the basis {b1, b2, ..., bn} of L
and an upper bound R on λ1(L) such that we need to find all
vectors w in the lattice L that satisfy ‖w‖ ≤ R.

The shortest vector s ∈ L can be written as s = v1b1 +
v2b2 + ... + vnbn where the v′is are unknown integers and
bi =

∑i−1
j=1 µi,jb

∗
j , where µi,j = (bi · b∗j )/(b∗j · b∗j ) are the

Gram-Schmidt coefficients. Our goal is to find s.
To find ±s, the enumeration goes through an enumeration

tree formed by the subspace spanned by the vectors whose
norm is at most R. The enumeration tree is a depth first search
tree of depth n. Each internal node in the tree is associated
with a particular vi and each outgoing edge represents an
assignment of an integer value (obtained from a range) to vi.
In particular the root of the tree is the zero vector, while the
leaves are all the vectors of L whose norm is at most R.

At any node, the enumeration algorithm selects an index i
not yet branched for, obtains a set of integers (interval range)
Ii for the possible values vi can take and for each integer t ∈ Ii
the algorithm calls itself recursively to compute the interval
for the next level. The length bound here remains constant
throughout the algorithm. For 1 ≤ k ≤ n, the following
inequality (see [14]) needs to be satisfied, essentially defining
the interval Ik:

(
vk +

n∑
i=k+1

µi,kvi

)2

‖b∗k‖
2
+

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2 ∥∥b∗j
∥∥2 ≤ R2 (2)

By the inequality above, for each 1 ≤ k ≤ n the interval
range Ik for vk can be obtained if vj is known for each j ∈
{k + 1, k + 2, ..., n}. This implies that in the enumeration
algorithm, the indices i can only be chosen in the order starting
from n, n− 1, .. down to 1. In the rest of the paper we refer
to the root node of the search tree being at level n, the second
highest level being level n − 1, etc. That is, if a node is at
level l in the search tree, then only the coefficient vl can be
selected for branching at that node.

III. HYBRID ENUMERATION

In this section we study how permutations of the basis
vectors of a lattice affects the running time of enumeration.

nodes in search tree BKZ-10 BKZ-20
minimum 60.934.596 4.059.025
average 424.300.658 52.886.123
maximum 1.180.735.200 194.214.522
std. deviation 361.710.571 40.202.374

TABLE I: Number of nodes to fully enumerate the BKZ-
reduced SVP40 challenge lattice for 20 random permutations
of the basis. The number of nodes in a search tree is highly
dependent on the particular permutation.

Based on this we present a good strategy for selecting an
order of the basis vectors that results in relatively small search
trees when doing enumeration. This can help speed up extreme
pruning, by only selecting permutations that give small search
trees when iterating the extremely pruned enumeration runs.

A. Variations in Enumeration Complexity from Basis Permu-
tations

As far as we know, there have been no studies of how the
complexity of standard enumeration varies when the vectors
in the input basis are permuted. To motivate the work that
follows, we first present the results of some experiments
showing that the number of nodes in the search tree when
doing full enumeration is highly sensitive with respect to the
order of the basis vectors.

The lattice we use for the demonstration is Darmstadt’s
SVP40 challenge [15], generated from seed 0. The experiment
was done as follows: First, we ran two BKZ-reductions on
the SVP40 lattice, one with block size 10 and one with block
size 20. Then we did full enumeration of each of the two
BKZ-reduced lattices, counting the number of nodes in the
search tree. Next we randomized the two BKZ-reduced bases
20 times each, and ran full enumeration on all of them. The
average number of nodes in the search trees for the randomized
bases are shown in Table I, together with the maximum and
minimum numbers observed and the standard deviation.

From Table I we see that the order of the basis vectors
has a big impact on the size of the enumeration search tree.
The standard deviation is of similar size as the average,
showing that the sizes of the search trees vary greatly with
the permutation.

Another interesting thing we observed is that the order of
the reduced basis as given straight out of BKZ is particularly
good for enumeration. Enumerating the SVP40 challenge
with the basis order given by BKZ-10 gives a tree with
5.968.085 nodes, and the order given by BKZ-20 gives a tree
with 1.232.737 nodes, significantly smaller than the numbers
observed for any of the random permutations.

B. Intervals for coefficients

Given a length bound R, basic enumeration will search
exhaustively for all lattice vectors of length less than or equal
to R. Assume that s = v1b1 + v2b2 + . . .+ vnbn is a vector
such that ‖s‖ ≤ R. Before the enumeration can start, the µ-
matrix [µi,j ] of Gram-Schmidt coefficients and the orthogonal
basis vectors b∗1, . . . , b

∗
n must be computed. The µ-matrix is

dependent on the particular order of the basis vectors, and
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(a) SVP40

(b) SVP46

(c) SVP50

(d) SVP54

Fig. 1: Number of nodes using hybrid enumeration on lattice
bases pre-processed with BKZ-β for β ∈ {10, 20, 30}.

Fig. 2: Fraction of time taken for doing full hybrid enumeration
on BKZ-10 reduced lattice bases, compared to time taken for
standard enumeration.

levels. For enumerating the lattices only reduced by BKZ-10,
there is a significant decrease in the number of nodes as the
switch level decreases. Is this enough to weigh up for the
O(n4) work done in each node at and above the switch level?

In Figure 2 we have plotted the fraction of time taken
for enumerating the four lattices we have used, compared
to standard enumeration (switch level n + 1). The typical
time taken for running these instances ranged from about one
minute for the SVP46 basis, to about 24 hours for the SVP54,
both pre-processed with BKZ-10. The experiments were run
on a DELL computer running Linux with two 2.8 GHz AMD
EPYC 7451 24-Core processors and 188 GB of RAM.

We observe a few things from Figure 2. First, except for
SVP46, the time it takes to do hybrid enumeration is less than
the time for doing standard enumeration, for some switch level.
Using switch level n gives an increase in time because of an
increase in the number of nodes. For deeper switch levels the
reduction in the number of nodes is actually worth the extra
work done in the few nodes at the top. Second, for the bigger
lattices, the time saving is largest, with full hybrid enumeration
for SVP54 using switch level 51 only taking 34.8% of the
time it takes to do full standard enumeration. Third, we also
see there is an optimal switch level. For SVP40 and SVP50,
hybrid enumeration takes longer for switch level n − 3 than
for n− 2, even though the number of nodes is less for switch
level n− 3. The reduction in the number of nodes is then not
worth the extra work for all nodes on level n− 3.

Figure 2 is only for BKZ-10 reduced bases, and for better
BKZ reductions we do not demonstrate an improvement in
running time. However, the lattices we are able to do full
enumeration for in practice have dimensions in the range 40 -
60, and a block size of 20 and 30 when running BKZ is then a
large portion of that. We see in the plots that there is not much
difference between BKZ-20 and BKZ-30 reduced bases, and
there is hardly any improvement to be done for these cases.
They appear to be quite optimal from the start.
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not matter when using the minimizing strategy as the vectors
will be sorted as part of the enumeration routine. Hence it
is hard to say anything in general about how large the effect
of minimizing intervals will have, since it depends on how
”lucky” the initial order of the vectors is.

We have tested the minimizing strategy on random lattices
of relatively small dimensions (10 ≤ n ≤ 20), and compared
the number of nodes in these search trees with the number
of nodes in the search trees using standard enumeration. The
minimizing strategy indeed leads to search trees with much
fewer nodes, on the average the reduction is approximately
by a factor n for the small dimensions we looked at. As
the increase in workload in each node is by a factor O(n4),
applying the minimizing strategy in every node is not worth
the extra effort.

E. Hybrid enumeration

When values for many vj’s have been assigned (for j ∈ J),
the effect of minimizing intervals for the relatively few re-
maining indices in {1, . . . , n}\J is small. On the other hand,
applying the minimizing strategy on the very first vj’s to be
fixed has a much greater effect. The number of large sub-
trees rooted high up in the full tree when no ordering strategy
is applied, become significantly smaller when minimizing
intervals. In the extreme case of some interval becoming
empty, the whole sub-tree gets pruned away.

Thus we propose to only apply the minimizing strategy on
the relatively few nodes at the highest levels of the search tree.
This has the benefit of a relatively low cost for a high effect.
We call enumeration with the strategy of minimizing intervals
for the first few levels of the tree for hybrid enumeration.

One parameter for hybrid enumeration is the level in the
tree where we switch from finding an optimal order based on
minimizing intervals to classic enumeration where the basis
is in some given and fixed order. We call this parameter the
switch level.

More precisely, when we reach a node at the switch level
we do the following: We compute the interval lengths for
remaining indices one last time, and permute the remaining
basis vectors according to these lengths. Indices with the
shortest intervals will be branched for first. Then we do normal
enumeration for the sub-tree rooted at the current node, using
this fixed order for the whole sub-tree. Pseudo code for hybrid
enumeration is given in Algorithm 1.

For B = {b1, . . . , bn}, we regard the root node of the tree
(at the top) to be at level n, and the short vectors of L(B) will
be found at level 0. Note that we can run basic enumeration of
the lattice by calling HybridEnumerate(B,R, n+1, n). Calling
HybridEnumerate(B,R, n, n) will also run basic enumeration,
but the basis is first permuted according to the strategy of
minimizing intervals. This makes it easy to compare the benefit
of using hybrid enumeration over basic enumeration.

F. Experiments

We have tested hybrid enumeration on several of the SVP
challenges of [15] and counted the number of nodes hybrid
enumeration gives for different switch levels. The lattice

Algorithm 1 HybridEnumerate(B,R, sl, l)

Input: The basis vectors B = {b1, . . . , bn} of a lattice L,
a length bound R, the current level l, and the switch level
sl.
Output: All vectors s ∈ L with ‖s‖ ≤ R

if l > sl then
Ii ← shortest interval for bi ∈ B
for vi ∈ Ii do

r ← min. length added to ‖s‖ due to choice of vi
HybridEnumerate(B \ {bi}, R− r, sl, l − 1)

end for
end if
if l = sl then

Compute intervals Ij , ∀bj ∈ B
Sort B according to |Ij |, basis vectors on bottom of B

has shortest intervals
HybridEnumerate(B,R, sl, l − 1)

end if
if l < sl then

Run standard enumeration on B with length bound R
end if

bases were first reduced by running BKZ-β on them, for
β ∈ {10, 20, 30}. For each reduced lattice, we ran hybrid
enumeration with switch levels ranging from n+1, equivalent
to standard enumeration, to n− 4, counting the nodes in each
search tree. The results are shown as plots in Figure 1.

We see a few trends from these plots. First, there is not
much difference between BKZ-20 and BKZ-30 regarding the
quality of the bases. Both of them give search trees with
approximately the same number of nodes, and applying the
strategy of minimizing intervals does not change this by
much. Also, the order of the basis vectors given by hybrid
enumeration yields search trees approximately as small as the
order given by BKZ. This is in contrast to the random orders
used for computing the numbers in Table I, that shows a large
increase in the number of nodes. Hence the strategy of sorting
the basis vectors according to interval lengths clearly is a good
approach.

For the BKZ-10 reduced bases, we see a much bigger effect.
First, we see that BKZ-10 gives a significantly weaker reduc-
tion than BKZ-20 or BKZ-30, leading to larger enumeration
search trees. The order as given by BKZ-10 is still good
for enumeration, and doing one initial sorting of the basis
according to interval lengths (switch level n) increases the
search tree. However, lowering the switch level has a clear
impact and significantly reduces the number of nodes in the
search tree, beyond the low number of nodes given by the
initial BKZ-order.

Of course, what matters in the end for a lattice enumeration
algorithm is its complexity, measured in the actual time taken.
We recorded the times taken in all the experiments, to see
if the extra work done in the nodes at and above the switch
level is worth the effort. For the enumeration of BKZ-20 and
BKZ-30 reduced bases it is clearly not worth the effort as the
number of nodes stay almost the same for the various switch
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(a) SVP40

(b) SVP46

(c) SVP50

(d) SVP54

Fig. 1: Number of nodes using hybrid enumeration on lattice
bases pre-processed with BKZ-β for β ∈ {10, 20, 30}.

Fig. 2: Fraction of time taken for doing full hybrid enumeration
on BKZ-10 reduced lattice bases, compared to time taken for
standard enumeration.

levels. For enumerating the lattices only reduced by BKZ-10,
there is a significant decrease in the number of nodes as the
switch level decreases. Is this enough to weigh up for the
O(n4) work done in each node at and above the switch level?

In Figure 2 we have plotted the fraction of time taken
for enumerating the four lattices we have used, compared
to standard enumeration (switch level n + 1). The typical
time taken for running these instances ranged from about one
minute for the SVP46 basis, to about 24 hours for the SVP54,
both pre-processed with BKZ-10. The experiments were run
on a DELL computer running Linux with two 2.8 GHz AMD
EPYC 7451 24-Core processors and 188 GB of RAM.

We observe a few things from Figure 2. First, except for
SVP46, the time it takes to do hybrid enumeration is less than
the time for doing standard enumeration, for some switch level.
Using switch level n gives an increase in time because of an
increase in the number of nodes. For deeper switch levels the
reduction in the number of nodes is actually worth the extra
work done in the few nodes at the top. Second, for the bigger
lattices, the time saving is largest, with full hybrid enumeration
for SVP54 using switch level 51 only taking 34.8% of the
time it takes to do full standard enumeration. Third, we also
see there is an optimal switch level. For SVP40 and SVP50,
hybrid enumeration takes longer for switch level n − 3 than
for n− 2, even though the number of nodes is less for switch
level n− 3. The reduction in the number of nodes is then not
worth the extra work for all nodes on level n− 3.

Figure 2 is only for BKZ-10 reduced bases, and for better
BKZ reductions we do not demonstrate an improvement in
running time. However, the lattices we are able to do full
enumeration for in practice have dimensions in the range 40 -
60, and a block size of 20 and 30 when running BKZ is then a
large portion of that. We see in the plots that there is not much
difference between BKZ-20 and BKZ-30 reduced bases, and
there is hardly any improvement to be done for these cases.
They appear to be quite optimal from the start.

5

not matter when using the minimizing strategy as the vectors
will be sorted as part of the enumeration routine. Hence it
is hard to say anything in general about how large the effect
of minimizing intervals will have, since it depends on how
”lucky” the initial order of the vectors is.

We have tested the minimizing strategy on random lattices
of relatively small dimensions (10 ≤ n ≤ 20), and compared
the number of nodes in these search trees with the number
of nodes in the search trees using standard enumeration. The
minimizing strategy indeed leads to search trees with much
fewer nodes, on the average the reduction is approximately
by a factor n for the small dimensions we looked at. As
the increase in workload in each node is by a factor O(n4),
applying the minimizing strategy in every node is not worth
the extra effort.

E. Hybrid enumeration

When values for many vj’s have been assigned (for j ∈ J),
the effect of minimizing intervals for the relatively few re-
maining indices in {1, . . . , n}\J is small. On the other hand,
applying the minimizing strategy on the very first vj’s to be
fixed has a much greater effect. The number of large sub-
trees rooted high up in the full tree when no ordering strategy
is applied, become significantly smaller when minimizing
intervals. In the extreme case of some interval becoming
empty, the whole sub-tree gets pruned away.

Thus we propose to only apply the minimizing strategy on
the relatively few nodes at the highest levels of the search tree.
This has the benefit of a relatively low cost for a high effect.
We call enumeration with the strategy of minimizing intervals
for the first few levels of the tree for hybrid enumeration.

One parameter for hybrid enumeration is the level in the
tree where we switch from finding an optimal order based on
minimizing intervals to classic enumeration where the basis
is in some given and fixed order. We call this parameter the
switch level.

More precisely, when we reach a node at the switch level
we do the following: We compute the interval lengths for
remaining indices one last time, and permute the remaining
basis vectors according to these lengths. Indices with the
shortest intervals will be branched for first. Then we do normal
enumeration for the sub-tree rooted at the current node, using
this fixed order for the whole sub-tree. Pseudo code for hybrid
enumeration is given in Algorithm 1.

For B = {b1, . . . , bn}, we regard the root node of the tree
(at the top) to be at level n, and the short vectors of L(B) will
be found at level 0. Note that we can run basic enumeration of
the lattice by calling HybridEnumerate(B,R, n+1, n). Calling
HybridEnumerate(B,R, n, n) will also run basic enumeration,
but the basis is first permuted according to the strategy of
minimizing intervals. This makes it easy to compare the benefit
of using hybrid enumeration over basic enumeration.

F. Experiments

We have tested hybrid enumeration on several of the SVP
challenges of [15] and counted the number of nodes hybrid
enumeration gives for different switch levels. The lattice

Algorithm 1 HybridEnumerate(B,R, sl, l)

Input: The basis vectors B = {b1, . . . , bn} of a lattice L,
a length bound R, the current level l, and the switch level
sl.
Output: All vectors s ∈ L with ‖s‖ ≤ R

if l > sl then
Ii ← shortest interval for bi ∈ B
for vi ∈ Ii do

r ← min. length added to ‖s‖ due to choice of vi
HybridEnumerate(B \ {bi}, R− r, sl, l − 1)

end for
end if
if l = sl then

Compute intervals Ij , ∀bj ∈ B
Sort B according to |Ij |, basis vectors on bottom of B

has shortest intervals
HybridEnumerate(B,R, sl, l − 1)

end if
if l < sl then

Run standard enumeration on B with length bound R
end if

bases were first reduced by running BKZ-β on them, for
β ∈ {10, 20, 30}. For each reduced lattice, we ran hybrid
enumeration with switch levels ranging from n+1, equivalent
to standard enumeration, to n− 4, counting the nodes in each
search tree. The results are shown as plots in Figure 1.

We see a few trends from these plots. First, there is not
much difference between BKZ-20 and BKZ-30 regarding the
quality of the bases. Both of them give search trees with
approximately the same number of nodes, and applying the
strategy of minimizing intervals does not change this by
much. Also, the order of the basis vectors given by hybrid
enumeration yields search trees approximately as small as the
order given by BKZ. This is in contrast to the random orders
used for computing the numbers in Table I, that shows a large
increase in the number of nodes. Hence the strategy of sorting
the basis vectors according to interval lengths clearly is a good
approach.

For the BKZ-10 reduced bases, we see a much bigger effect.
First, we see that BKZ-10 gives a significantly weaker reduc-
tion than BKZ-20 or BKZ-30, leading to larger enumeration
search trees. The order as given by BKZ-10 is still good
for enumeration, and doing one initial sorting of the basis
according to interval lengths (switch level n) increases the
search tree. However, lowering the switch level has a clear
impact and significantly reduces the number of nodes in the
search tree, beyond the low number of nodes given by the
initial BKZ-order.

Of course, what matters in the end for a lattice enumeration
algorithm is its complexity, measured in the actual time taken.
We recorded the times taken in all the experiments, to see
if the extra work done in the nodes at and above the switch
level is worth the effort. For the enumeration of BKZ-20 and
BKZ-30 reduced bases it is clearly not worth the effort as the
number of nodes stay almost the same for the various switch
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We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short
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Lattice Pre-processing node fraction shortest vector found
SVP40 BKZ10 0.670 yes
SVP40 BKZ20 0.745 yes
SVP40 BKZ30 0.665 yes
SVP46 BKZ10 0.682 yes
SVP46 BKZ20 0.750 yes
SVP46 BKZ30 0.800 yes

TABLE II: Measure of effect of sign-based pruning. The node
fraction is the number of nodes in pruned search tree compared
to the number of nodes in the full enumeration search tree.

vector s, the other basis vectors must be able to offset this
long vector. If the signs of the coefficients are opposite, a sum
of the two approximately parallel basis vectors would be much
shorter. It is easier to sufficiently offset a short vector than a
long one, in order to find the shortest vector overall.

When two vectors are close to being parallel then a·bi

‖a‖‖bi‖
is close to being 1, and when two vectors are close to being
anti-parallel a·bi

‖a‖‖bi‖ is close to being −1. In both cases γi ≈ 1.
On the other hand, when a and bi are close to orthogonal

(i.e. a ·bi ≈ 0), then a+bi and a−bi will be of almost equal
lengths, and we can only to a little extent distinguish which
of the two cases that will be most easily offset by the other
basis vectors. The confidence value will therefore be close to
0 in this case.

We now turn to how we use the confidence values to prune
intervals in the search tree.

B. Pruning intervals based on sign estimation

We can use the sign estimations and their confidence values
to shorten the intervals computed for enumeration, while still
maintaining a high probability we do not prune away all
shortest vectors.

For a node in the search tree where possible values for
vi are tried, let Ii be the interval computed for vi. Let I+i :=
Ii∩ [0,∞) and I−i := Ii∩(−∞, 0]. For an interval I := [l,m]
and a positive number α ∈ R, let us define the interval αI to be
[αl, αm]. If σi = −1, then Ii is pruned to Ii = (1−γi)I

+
i ∪I−i .

If σi = +1, then Ii is pruned to Ii = (1−γi)I
−
i ∪I+i . In other

words, we cut away a portion of the interval where we believe
a correct value for vi will not be found. The portion cut away
is proportional to the confidence we have in our estimate.

An advantage of this pruning strategy is that it can be put on
top of any other pruning strategy. The sign-based pruning does
not depend on how the intervals are computed. This pruning
strategy reduces the search tree as long as the given intervals
are non-empty and cuts away integer values that are opposite
in sign to the predicted sign.

C. Experiments

We have used a few of the SVP challenge lattices to test the
sign-based pruning strategy. We measured both the reduction
in the number of nodes in the search tree, and whether the
pruning failed to find the shortest vector. The results are
summarized in Table II.

What we see in Table II is that in the experiments we
never failed to find the shortest vector, and that the reduction

in the number of nodes is by a modest but still significant
fraction. One explanation for this is that we cut away the ends
of the intervals, which only takes away small subtrees from
the whole enumeration tree. The vi-values found at the ends
of the intervals are those that consume much of the length
limit R when selected, probably quickly leading to dead ends
anyway. Cutting away these values may not prune away very
large parts of the search tree. Still, it is worthwhile to apply
the sign-based pruning as it costs practically nothing in terms
of extra complexity. The actual run times are cut down by
almost the same fraction as the reduction in the number of
nodes.

V. CONCLUSIONS

Public key encryption schemes based on lattices are one
of the most promising approaches for achieving quantum safe
crypto, and it is important to understand the hardness of the
SVP problem on which they are based. Lattice enumeration
plays a central role in the best known methods for solving SVP,
so studying how to speed up lattice enumeration is important
for assessing the security of lattice-based encryption. In this
paper we have explored two different ideas for speeding up
lattice enumeration.

First we looked at how permutations of the basis vectors of
a lattice affect the running time of the standard enumeration
algorithm. We demonstrate that the particular order of the
basis vectors have a big impact on the number of nodes
in the search tree and the running time. Next we identified
particular permutations that give relatively small search trees.
Dynamically finding the best permutations has a high cost on
its own. However, if the lattice dimension is big enough and
the pre-processing does not leave a strongly reduced basis, it
is well worth the effort to apply the strategy in the relatively
few nodes at the top of the search tree. We call this type of
enumeration for hybrid enumeration.

Secondly, we looked at the possibility of estimating the
signs of the coefficients giving a shortest vector. We can only
estimate the signs with some degree of confidence, but the
estimates and the confidence values leads directly to a pruning
strategy. Unlike other pruning strategies that cuts away values
from both ends of the interval where a coefficient vi can be
found, sign-based pruning only cuts values from one side of
the interval (the side where the values have the ”wrong” sign).
Sign-based pruning can therefore be applied together with any
other pruning strategy one may use.

The experiments of sign-based pruning give a reduction in
the number of nodes in the search tree compared to standard
enumeration, but the reduction is not great. However, we never
failed to find the shortest vector using sign-based pruning.
This may indicate that the pruning we employed from the
confidence measure is not aggressive enough, and that larger
parts of the intervals could be cut away without sacrificing too
much accuracy in solving the SVP. Further studies of sign-
based pruning is topic for future work.
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We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short
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of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short
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of the basis vectors s =
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computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short

Similarly, if they are acute (angle less than
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s = v1b1 + v2b2 can only be obtained if the signs of v1 and
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to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short
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We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.

A. Sign-estimation

First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
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to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.
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have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
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measure of how parallel or anti-parallel bi and bj are.
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shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if
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same direction as the other two. In order to be part of a short

7

We conjecture that for higher dimensions, like n = 150,
BKZ-30 would not give an optimally reduced basis, and that
hybrid enumeration then would show the same improvements
as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration
on large lattices that are not optimally reduced, then hybrid
enumeration will be faster than standard enumeration.

IV. SIGN-BASED PRUNING

Going back to the expansion of a shortest vector in terms
of the basis vectors s =

∑n
i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
for vi is likely to contain both positive and negative values.
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First we show how to compute the signs of the coefficients
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to see this, as a (positive) sum of two vectors pointing in
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To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
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is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
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shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
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Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
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Let i be the index of
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Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi
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The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi
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two vectors are very close to being parallel, then having the
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finding either of those. If we could a priori know the sign of
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and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.
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First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
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90◦) to each other, a shortest vector can only be obtained if
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to see this, as a (positive) sum of two vectors pointing in
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To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
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on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
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The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
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Set a = a+ σibi
Set D = D + σiMi
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The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi
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The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short
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i=1 vibi, an enumeration algorithm

computes possible values for each coefficient vi. The equation
for computing the coefficients vi indicates that the range Ii
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As both s and −s are shortest vectors, we are content in
finding either of those. If we could a priori know the sign of
these integers (that is whether vi ≤ 0 or vi ≥ 0), we could
discard appropriate values from Ii, making the enumeration
tree smaller. Effectively, this would provide us with another
strategy for pruning. In this section, we describe an algorithm
for making educated guesses for the signs of these coefficients
and how to use them for pruning. In the following we assume
that the lattice basis has been reduced, and that the lengths of
the basis vectors are of low variance.
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First we show how to compute the signs of the coefficients
of the shortest vector when the dimension on the given lattice
is only 2. Let us consider a lattice in 2 dimensions with basis
vectors {b1, b2}. If b1 and b2 are obtuse to each other (i.e. the
angle between them is more than 90◦), then a shortest vector
s = v1b1 + v2b2 can only be obtained if the signs of v1 and
v2 are the same. Similarly, if they are acute (angle less that
90◦) to each other, a shortest vector can only be obtained if
the signs of v1 and v2 are opposite to each other. It is easy
to see this, as a (positive) sum of two vectors pointing in
approximately the same direction can only increase in length.

To extend this observation to higher dimensions we define
the dot-product matrix M , where Mij = bi · bj . Two vectors
have a positive dot product when the angle between them
is less than 90◦ and a negative dot product when the angle
between them is larger than 90◦. Moreover, the magnitude of
bi · bj relative to the product of the lengths of bi and bj is a
measure of how parallel or anti-parallel bi and bj are.

The algorithm for computing the sign of coefficients is
shown in Algorithm 2. The algorithm computes a vector σ of
signs with entries +1 or −1. The sign for the coefficients vi are
computed one at a time, and the estimated sign of vi depends
on the signs of coefficients that have already been computed.
Intuitively, the algorithm compares each basis vector with
some reference vector to estimate the sign of the corresponding
coefficient.

The sign of the first basis vector b1 is set to be positive
by default, so σ1 = +1. This is without loss of generality
since both s and −s are shortest vectors and at least one of
them must have non-negative v1. The vector b1 is set as the
reference vector a for the next basis vector. The first row of

M contains the inner product of b1(= a) with all the other
basis vectors. The basis vector with the largest inner product
in absolute value is both a relatively long vector, and makes an
angle close to 0◦ or 180◦ with b1. Let bi be this basis vector.
Then the sign of vi is set to −1 if M12 > 0, otherwise σi is
set to +1. The reference vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel
or anti-parallel to a. For this we look at the largest entry in
the vector D = M1 + σiMi, where M1 is the top row of M
and Mi is the i’th row. The largest entry in absolute value in
D (except for index 1 and i) indicates the third vector, say
bj , to estimate the sign for. If Dj > 0 then σj = −1, and if
Dj ≥ 0, σj = +1. The vector σjbj is added to a and D is
updated to D = D+σjMj . The algorithm continues like this
until all basis vectors have had their signs estimated.

Algorithm 2 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each
coefficient vi in s =

∑
i vibi where s is a shortest vector,

and a vector γ of real values indicating confidence for each
estimate.

Compute dot-product matrix M such that Mij = bi · bj .
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a := b1
Set the counter ns := 1.
while ns ≤ n do

Let i be the index of
max{|Dj ||j is not among already fixed signs}.

if Di > 0 then
Set σi = −1

else
Set σi = +1

end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | a·bi

‖a‖‖bi‖ |
Set ns = ns + 1

end while

The signs computed in Algorithm 2 are not necessarily
correct for a shortest vector. For each variable vi, we compute
a number 0 ≤ γi ≤ 1 to denote how confident we are that
the computed σi is correct. When γi = 1 we are certain that
the corresponding σi is correct and γi = 0 means we have
no knowledge whether the sign for vi should be positive or
negative. We compute the confidence values of the estimated
signs as follows: Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed and let the reference vector be
a =

∑
j∈J σjbj . Then the confidence value for the σi estimate

is given as γi = | a·bi

‖a‖‖bi‖ |.
The intuition behind this measure for confidence is that if

two vectors are very close to being parallel, then having the
same sign on the coefficients of these vectors will always lead
to a longer vector as their sum, pointing approximately in the
same direction as the other two. In order to be part of a short
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Lattice Pre-processing node fraction shortest vector found
SVP40 BKZ10 0.670 yes
SVP40 BKZ20 0.745 yes
SVP40 BKZ30 0.665 yes
SVP46 BKZ10 0.682 yes
SVP46 BKZ20 0.750 yes
SVP46 BKZ30 0.800 yes

TABLE II: Measure of effect of sign-based pruning. The node
fraction is the number of nodes in pruned search tree compared
to the number of nodes in the full enumeration search tree.

vector s, the other basis vectors must be able to offset this
long vector. If the signs of the coefficients are opposite, a sum
of the two approximately parallel basis vectors would be much
shorter. It is easier to sufficiently offset a short vector than a
long one, in order to find the shortest vector overall.

When two vectors are close to being parallel then a·bi

‖a‖‖bi‖
is close to being 1, and when two vectors are close to being
anti-parallel a·bi

‖a‖‖bi‖ is close to being −1. In both cases γi ≈ 1.
On the other hand, when a and bi are close to orthogonal

(i.e. a ·bi ≈ 0), then a+bi and a−bi will be of almost equal
lengths, and we can only to a little extent distinguish which
of the two cases that will be most easily offset by the other
basis vectors. The confidence value will therefore be close to
0 in this case.

We now turn to how we use the confidence values to prune
intervals in the search tree.

B. Pruning intervals based on sign estimation

We can use the sign estimations and their confidence values
to shorten the intervals computed for enumeration, while still
maintaining a high probability we do not prune away all
shortest vectors.

For a node in the search tree where possible values for
vi are tried, let Ii be the interval computed for vi. Let I+i :=
Ii∩ [0,∞) and I−i := Ii∩(−∞, 0]. For an interval I := [l,m]
and a positive number α ∈ R, let us define the interval αI to be
[αl, αm]. If σi = −1, then Ii is pruned to Ii = (1−γi)I

+
i ∪I−i .

If σi = +1, then Ii is pruned to Ii = (1−γi)I
−
i ∪I+i . In other

words, we cut away a portion of the interval where we believe
a correct value for vi will not be found. The portion cut away
is proportional to the confidence we have in our estimate.

An advantage of this pruning strategy is that it can be put on
top of any other pruning strategy. The sign-based pruning does
not depend on how the intervals are computed. This pruning
strategy reduces the search tree as long as the given intervals
are non-empty and cuts away integer values that are opposite
in sign to the predicted sign.

C. Experiments

We have used a few of the SVP challenge lattices to test the
sign-based pruning strategy. We measured both the reduction
in the number of nodes in the search tree, and whether the
pruning failed to find the shortest vector. The results are
summarized in Table II.

What we see in Table II is that in the experiments we
never failed to find the shortest vector, and that the reduction

in the number of nodes is by a modest but still significant
fraction. One explanation for this is that we cut away the ends
of the intervals, which only takes away small subtrees from
the whole enumeration tree. The vi-values found at the ends
of the intervals are those that consume much of the length
limit R when selected, probably quickly leading to dead ends
anyway. Cutting away these values may not prune away very
large parts of the search tree. Still, it is worthwhile to apply
the sign-based pruning as it costs practically nothing in terms
of extra complexity. The actual run times are cut down by
almost the same fraction as the reduction in the number of
nodes.

V. CONCLUSIONS

Public key encryption schemes based on lattices are one
of the most promising approaches for achieving quantum safe
crypto, and it is important to understand the hardness of the
SVP problem on which they are based. Lattice enumeration
plays a central role in the best known methods for solving SVP,
so studying how to speed up lattice enumeration is important
for assessing the security of lattice-based encryption. In this
paper we have explored two different ideas for speeding up
lattice enumeration.

First we looked at how permutations of the basis vectors of
a lattice affect the running time of the standard enumeration
algorithm. We demonstrate that the particular order of the
basis vectors have a big impact on the number of nodes
in the search tree and the running time. Next we identified
particular permutations that give relatively small search trees.
Dynamically finding the best permutations has a high cost on
its own. However, if the lattice dimension is big enough and
the pre-processing does not leave a strongly reduced basis, it
is well worth the effort to apply the strategy in the relatively
few nodes at the top of the search tree. We call this type of
enumeration for hybrid enumeration.

Secondly, we looked at the possibility of estimating the
signs of the coefficients giving a shortest vector. We can only
estimate the signs with some degree of confidence, but the
estimates and the confidence values leads directly to a pruning
strategy. Unlike other pruning strategies that cuts away values
from both ends of the interval where a coefficient vi can be
found, sign-based pruning only cuts values from one side of
the interval (the side where the values have the ”wrong” sign).
Sign-based pruning can therefore be applied together with any
other pruning strategy one may use.

The experiments of sign-based pruning give a reduction in
the number of nodes in the search tree compared to standard
enumeration, but the reduction is not great. However, we never
failed to find the shortest vector using sign-based pruning.
This may indicate that the pruning we employed from the
confidence measure is not aggressive enough, and that larger
parts of the intervals could be cut away without sacrificing too
much accuracy in solving the SVP. Further studies of sign-
based pruning is topic for future work.
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lengths, and we can only to a little extent distinguish which
of the two cases that will be most easily offset by the other
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0 in this case.

We now turn to how we use the confidence values to prune
intervals in the search tree.

B. Pruning intervals based on sign estimation
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For a node in the search tree where possible values for
vi are tried, let Ii be the interval computed for vi. Let I+i :=
Ii∩ [0,∞) and I−i := Ii∩(−∞, 0]. For an interval I := [l,m]
and a positive number α ∈ R, let us define the interval αI to be
[αl, αm]. If σi = −1, then Ii is pruned to Ii = (1−γi)I

+
i ∪I−i .

If σi = +1, then Ii is pruned to Ii = (1−γi)I
−
i ∪I+i . In other

words, we cut away a portion of the interval where we believe
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strategy reduces the search tree as long as the given intervals
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in sign to the predicted sign.

C. Experiments

We have used a few of the SVP challenge lattices to test the
sign-based pruning strategy. We measured both the reduction
in the number of nodes in the search tree, and whether the
pruning failed to find the shortest vector. The results are
summarized in Table II.

What we see in Table II is that in the experiments we
never failed to find the shortest vector, and that the reduction

in the number of nodes is by a modest but still significant
fraction. One explanation for this is that we cut away the ends
of the intervals, which only takes away small subtrees from
the whole enumeration tree. The vi-values found at the ends
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limit R when selected, probably quickly leading to dead ends
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large parts of the search tree. Still, it is worthwhile to apply
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of extra complexity. The actual run times are cut down by
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particular permutations that give relatively small search trees.
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the pre-processing does not leave a strongly reduced basis, it
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estimates and the confidence values leads directly to a pruning
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from both ends of the interval where a coefficient vi can be
found, sign-based pruning only cuts values from one side of
the interval (the side where the values have the ”wrong” sign).
Sign-based pruning can therefore be applied together with any
other pruning strategy one may use.

The experiments of sign-based pruning give a reduction in
the number of nodes in the search tree compared to standard
enumeration, but the reduction is not great. However, we never
failed to find the shortest vector using sign-based pruning.
This may indicate that the pruning we employed from the
confidence measure is not aggressive enough, and that larger
parts of the intervals could be cut away without sacrificing too
much accuracy in solving the SVP. Further studies of sign-
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−
i ∪I+i . In other
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a correct value for vi will not be found. The portion cut away
is proportional to the confidence we have in our estimate.

An advantage of this pruning strategy is that it can be put on
top of any other pruning strategy. The sign-based pruning does
not depend on how the intervals are computed. This pruning
strategy reduces the search tree as long as the given intervals
are non-empty and cuts away integer values that are opposite
in sign to the predicted sign.

C. Experiments

We have used a few of the SVP challenge lattices to test the
sign-based pruning strategy. We measured both the reduction
in the number of nodes in the search tree, and whether the
pruning failed to find the shortest vector. The results are
summarized in Table II.

What we see in Table II is that in the experiments we
never failed to find the shortest vector, and that the reduction

in the number of nodes is by a modest but still significant
fraction. One explanation for this is that we cut away the ends
of the intervals, which only takes away small subtrees from
the whole enumeration tree. The vi-values found at the ends
of the intervals are those that consume much of the length
limit R when selected, probably quickly leading to dead ends
anyway. Cutting away these values may not prune away very
large parts of the search tree. Still, it is worthwhile to apply
the sign-based pruning as it costs practically nothing in terms
of extra complexity. The actual run times are cut down by
almost the same fraction as the reduction in the number of
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plays a central role in the best known methods for solving SVP,
so studying how to speed up lattice enumeration is important
for assessing the security of lattice-based encryption. In this
paper we have explored two different ideas for speeding up
lattice enumeration.

First we looked at how permutations of the basis vectors of
a lattice affect the running time of the standard enumeration
algorithm. We demonstrate that the particular order of the
basis vectors have a big impact on the number of nodes
in the search tree and the running time. Next we identified
particular permutations that give relatively small search trees.
Dynamically finding the best permutations has a high cost on
its own. However, if the lattice dimension is big enough and
the pre-processing does not leave a strongly reduced basis, it
is well worth the effort to apply the strategy in the relatively
few nodes at the top of the search tree. We call this type of
enumeration for hybrid enumeration.

Secondly, we looked at the possibility of estimating the
signs of the coefficients giving a shortest vector. We can only
estimate the signs with some degree of confidence, but the
estimates and the confidence values leads directly to a pruning
strategy. Unlike other pruning strategies that cuts away values
from both ends of the interval where a coefficient vi can be
found, sign-based pruning only cuts values from one side of
the interval (the side where the values have the ”wrong” sign).
Sign-based pruning can therefore be applied together with any
other pruning strategy one may use.

The experiments of sign-based pruning give a reduction in
the number of nodes in the search tree compared to standard
enumeration, but the reduction is not great. However, we never
failed to find the shortest vector using sign-based pruning.
This may indicate that the pruning we employed from the
confidence measure is not aggressive enough, and that larger
parts of the intervals could be cut away without sacrificing too
much accuracy in solving the SVP. Further studies of sign-
based pruning is topic for future work.
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Abstract—This paper deals with the efficient parallel search of
square m-sequences on both modern CPUs and GPUs. The key
idea is based on applying particular vector processor instructions
with a view to maximizing the advantage of Single Instruction
Multiple Data (SIMD) and Single Instruction Multiple Threads
(SIMT) execution patterns. The developed implementation was
adjusted to testing for the maximum-period of m-sequences of
some particular forms. Furthermore, the early abort sieving
strategy based on the application of SAT-solvers were presented.
With this solution, it is possible to search m-sequences up to
degree 32 exhaustively.

I. INTRODUCTION

Feedback Shift Registers (FSR) are used to generate cryp-
tographically applicable binary sequences. They have many
proponents due to their simplicity, both software and hardware
effectiveness and well-known properties. In particular, stream
ciphers designers use them to construct invertible mappings
with internal state. The strongly desirable property of stream
ciphers is their long period. Therefore, the FSR used in
them should also have this feature. Informally, the period of
mapping is the length of the most extended cycle in its state
transition graph.

In recent years, many cryptographic algorithms such as
stream ciphers (for example GRAIN which is NIST standard
[9], Trivium [3] or Achterbahn [2]), lightweight block ciphers
and sponge-based generators [4, 10] have used NLFSR for
providing both security and efficiency. In most cases, NLF-
SRs have much greater linear-complexity than LFSRs of the
same period, which is directly connected with the security of
cryptographic algorithms [12].

Computationally efficient methods for construction of cryp-
tographically strong NLFSRs remains unknown. The most
critical NLFSR related problem is finding a systematic proce-
dure for constructing NLFSRs with a long confirmed period.
Available algorithms either consider some individual cases
or apply to low order NLFSRs only [7, 14, 16]. Nikolay
Poluyanenko developed the most efficient method. However, it
was not sufficient to obtain applicable NLFSR of degree 30 or
higher [13]. Moreover, it requires the usage of special-purpose
Field-Programmable Gate Arrays (FPGA) hardware, which is
not commonly available.

If we look at the above-mentioned subject from another
point of view, NLFSRs are also known as de Bruijn sequences.

In a de Bruijn series of order n, all 2n different binary n-
tuples appear precisely once. A modified de Bruijn sequence
is obtained from a proper de Bruijn sequence by removing
tuple containing zero elements only.

Another essential sequence type, which statistical and struc-
tural properties were examined, are so-called m-sequences.
Boolean functions that generate the m-sequence can by con-
structed by introducing nonlinear disturbances into linear
functions[11]. Unfortunately, complexity of this approach is
extremely high for orders greater than 8. As a result in this
paper we address the problem of efficient searching for m-
sequences with a guaranteed full period by exhaustively search
for the NLFSR with the following form of feedback function:

f(x0, x1, . . . , xn−1) = g(x0, x1, . . . , xn−1) + xi + xi · xj

for which i �= j, 1 ≤ i, j ≤ n − 1 and g(x0, x1, . . . , xn−1)
is defined by a primitive polynomial over F2. Owing to the
large number of candidate feedback functions, the search was
conducted on GPUs and special strategy of early abort via
SAT solvers’ detection of short cycles were applied.

The aforementioned computational experiment allows ob-
taining an extensive, complete list of n-bit NLFSR (n < 31)
with a maximum period for the considered form of feedback
functions. The previous research in the investigated area has
resulted in maximum period NLFSR up to degree 27 [6]
on Central Processing Units (CPU) and up to degree 29
on FPGA [13]. We have enumerated all m-sequences up to
degree 31. Obtained results suggest the dependency between
the Hamming weight of feedback functions and the period of
NLFSR generated by that function was observed (see Table
VII).

II. BASIC NOTATIONS AND DEFINITIONS

Definition 1: Binary Feedback Shift Register of order n is
a mapping Fn

2 → Fn
2 of the form:

(x0, x1, ..., xn−1) → (x1, x2, ..., xn−1, f(x0, x1, ..., xn−1)),

where:
• f is a boolean function of n variables;
• xn−1 is an output bit.
Depending on the type of feedback function two main types

of shift registers are concerned:
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I. INTRODUCTION

Feedback Shift Registers (FSR) are used to generate cryp-
tographically applicable binary sequences. They have many
proponents due to their simplicity, both software and hardware
effectiveness and well-known properties. In particular, stream
ciphers designers use them to construct invertible mappings
with internal state. The strongly desirable property of stream
ciphers is their long period. Therefore, the FSR used in
them should also have this feature. Informally, the period of
mapping is the length of the most extended cycle in its state
transition graph.

In recent years, many cryptographic algorithms such as
stream ciphers (for example GRAIN which is NIST standard
[9], Trivium [3] or Achterbahn [2]), lightweight block ciphers
and sponge-based generators [4, 10] have used NLFSR for
providing both security and efficiency. In most cases, NLF-
SRs have much greater linear-complexity than LFSRs of the
same period, which is directly connected with the security of
cryptographic algorithms [12].

Computationally efficient methods for construction of cryp-
tographically strong NLFSRs remains unknown. The most
critical NLFSR related problem is finding a systematic proce-
dure for constructing NLFSRs with a long confirmed period.
Available algorithms either consider some individual cases
or apply to low order NLFSRs only [7, 14, 16]. Nikolay
Poluyanenko developed the most efficient method. However, it
was not sufficient to obtain applicable NLFSR of degree 30 or
higher [13]. Moreover, it requires the usage of special-purpose
Field-Programmable Gate Arrays (FPGA) hardware, which is
not commonly available.

If we look at the above-mentioned subject from another
point of view, NLFSRs are also known as de Bruijn sequences.

In a de Bruijn series of order n, all 2n different binary n-
tuples appear precisely once. A modified de Bruijn sequence
is obtained from a proper de Bruijn sequence by removing
tuple containing zero elements only.

Another essential sequence type, which statistical and struc-
tural properties were examined, are so-called m-sequences.
Boolean functions that generate the m-sequence can by con-
structed by introducing nonlinear disturbances into linear
functions[11]. Unfortunately, complexity of this approach is
extremely high for orders greater than 8. As a result in this
paper we address the problem of efficient searching for m-
sequences with a guaranteed full period by exhaustively search
for the NLFSR with the following form of feedback function:

f(x0, x1, . . . , xn−1) = g(x0, x1, . . . , xn−1) + xi + xi · xj

for which i �= j, 1 ≤ i, j ≤ n − 1 and g(x0, x1, . . . , xn−1)
is defined by a primitive polynomial over F2. Owing to the
large number of candidate feedback functions, the search was
conducted on GPUs and special strategy of early abort via
SAT solvers’ detection of short cycles were applied.

The aforementioned computational experiment allows ob-
taining an extensive, complete list of n-bit NLFSR (n < 31)
with a maximum period for the considered form of feedback
functions. The previous research in the investigated area has
resulted in maximum period NLFSR up to degree 27 [6]
on Central Processing Units (CPU) and up to degree 29
on FPGA [13]. We have enumerated all m-sequences up to
degree 31. Obtained results suggest the dependency between
the Hamming weight of feedback functions and the period of
NLFSR generated by that function was observed (see Table
VII).

II. BASIC NOTATIONS AND DEFINITIONS

Definition 1: Binary Feedback Shift Register of order n is
a mapping Fn

2 → Fn
2 of the form:

(x0, x1, ..., xn−1) → (x1, x2, ..., xn−1, f(x0, x1, ..., xn−1)),

where:
• f is a boolean function of n variables;
• xn−1 is an output bit.
Depending on the type of feedback function two main types

of shift registers are concerned:
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application of SIMD vector instructions, simple calculations,
such as xor, bit shifts or counting ones in a word can be
performed even on eight words by one thread. For example the
concurrent rotation of 8 32-bits words can be realized by the
Intel processor intrinsic _mm256_mullo_epi32, whearas
xor can be computed via _mm256_xor_si256.

As far as GPU implementation and its SIMT (Single Instruc-
tion Multiple Threads) parallel model are concerned, the most
significant factor is to determine the number of ones in the
given integer effectively. It can be realized by generating ptx
code or exploiting popcntq instruction on NVIDIA graphics
cards and their CUDA (Compute Unified Device Architecture)
development tools. Nevertheless, it is impossible to achieve
similar performance on OpenCL (Open Computing Language)
implementations. Moreover we have observed that usign one
thread per one i state strategy is obviously optimal. Unluckily
performing conditional instructions on GPU is exceptionally
inefficient. Consequently, the inner if condition should be
omitted in these kind of implementations. As a result the
developed algorithm posses no early abort strategy on GPU
platform, which would allow to efficient filtration of short-
period NLFSRs. However, it can be realized on CPU by the
usage of SAT-solvers.

IV. APPLICATION OF SAT SOLVERS

For polynomials up to degree 31, GPU exhaustive cy-
cle verification method works well since we can examine
thousands of registers at once. For polynomials of higher
degrees, we found FPGA and CPU implementations much
more convenient. Furthermore, before full-cycle FPGA or
GPU exhaustive verification, we strongly recommend to check
for short cycle existence by solving a Boolean satisfiability
problem. It can be realized automatically with the help of
some open source tools. Firstly, it is required to translate
our for example C programming language implementation
to And-Inverter Graphs (AIG), which are intermediate states
only of Algebraic Normal Form generation (ANF). This step
can be done by usage of ABC: System for Sequential Logic
Synthesis and Formal Verification and SAW The Software
Analysis Workbench. From ANF, there is the well-known path
to Conjunctive Normal Form (CNF), which is finally inputted
to SAT-solver (Cadical and Lingeling work well and much
better than other more popular SAT-solvers in this case [1]).
We do not know NLFSR cycles structure, but the majority
of polynomials of degree higher than 31 can be quickly
eliminated by SAT searching of cycles shorter than 16 states.
FPGA or CPU based full cycle verification is being performed
in case of UNSAT (no model found) result of prior SAT short
cycle check. SAT-based pre-phase works entirely on the CPU,
which gives us tremendous resources utilization rate of the
entire computing system. The proposed approach is inspired
by the work of Elena Dubrova and Maxim Teslenko [8], [5]. It
is worth mentioning that the first application of SAT solvers to
NLFSR was motivated by the search of short cycles in stream
ciphers [8].

V. EXAMPLE APPLICATION OF SAT-SOLVER FILTERING
RESULTS

Short cycle existence of polynomial can be checked during
filtration phase in seconds. For instance polynomial x0+x3+
x31+x1+x1x2 is being checked for consecutive cycle lenghts:

1) cycle lengths equal from 2 to 5 — gives us UNSAT
result in miliseconds which means that there is no
2,3,4,5-step cycle

2) cycle lenght equal to 6 — gives us SAT result in
less than 3 seconds and bits assignment is equal to
10011010011010011010011010011010

Next polynomial x0 + x3 + x31 + x1 + x1x3 has
2-step cycle and SAT solver returned the assignment
10101010101010101010101010101010 in less than 2 seconds.
The exact distribution of cycle lengths remains unknown.
Nevertheless, the vast majority of polynomials has cycles
shorter than 32-steps and can be easily eliminated in seconds
without using extensive computing power. It is estimated that
the rejection ratio is approximately about 70% of rejected
polynomials for NLFSR degree 31 and checking time less than
60 seconds. Further extension of checking time or the length
of the short cycles probably will not result in a performance
gain.

VI. PERFORMANCE EVALUATION

A fair comparison of the efficiency of various computing
platforms is a very troublesome task due to their completely
diverse characteristic. Therefore we simplify the comparison
by analyzing only the most important efficiency indicators
such as:

• the time of one n-bit full-cycle NLFSR enumeration
Tcycle,

• the number of simultaneously tested NLFSRs,
• the estimated time of enumeration of 1 GB pack of n-bit

NLFSRs excluding memory transactions T1GB .
The time of one n-bit full-cycle NLFSR enumeration Tcycle

is based on the measurement of search time of 105 possible
NLFSRs for CPU and GPU. The computations were conducted
on following computing platforms:

• Intel Core i7 6700K, 4.0 GHz CPU, MSI GeForce GTX
1080 8GB GDDR5 with 32 GB of RAM,

• 2 x Xeon 2699 v3, Tesla K80 with 32 GB of RAM,
• Xeon2699 v4, Tesla P100 with 32 GB of RAM.
As it can be seen from the Tables III and IV GPUs are very

efficient for small NLFSRs, but they tend to lose efficiency
with the growth of NLFSR order. Consequently, as it can be
concluded from Figure 2 and Tables III and IV for degrees
higher than 31, it is inefficient to take advantage of GPU
computing platform.

i7-6700 Xeon2699v4 Tesla P100 Tesla K80 1080GTX
8 44 3584 2496 2560

TABLE II: The number of parallel computing units for differ-
ent platforms.
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Fig. 1: A structure of Feedback Shift Register.

• linear if the feedback function is linear;
• nonlinear if the feedback functions has degree equal two

or higher.

The period of an FSR is the length of the longest cyclic
output sequence it generates.

Definition 2: A de Bruijn sequence of order n is a cyclic
sequence of length 2n of elements of F2 in which all different
n-tuples appear exactly once.

Definition 3: A modified de Bruijn sequence of order n
is a sequence of length 2n − 1 obtained from a de Bruijn
sequence of order n by removing one zero from the tuple of
n consecutive zeros.

From the cryptographic or random number generation per-
spective, it is strongly desirable that NLFSR of order n should
generate a de Bruijn sequence of order n. Furthermore, due to
practical reasons, the following conditions should be fulfilled:

• the number of feedback function’s linear and nonlinear
terms should remain as small as possible;

• the algebraic degree of feedback function should be the
lowest possible;

• the feedback function should be easy to generate.

So-called square m-sequences achieve all the considered
restrictions.

Definition 4: A square m-sequence is a bit sequence gen-
erated by a shift register with a feedback function with the
following form:

f(x0, x1, . . . , xn−1) =
∑

0≤i≤j≤n−1

ai,jxixj .

Moreover, square m-sequences can be described by a very
concise form of the recurrence, which can by formulated as:

∀k≥0 : sn+k =
∑

0≤i≤j≤n−1

ai,jsisj ,

where si denotes the i-th position in the sequence s. It is
well-known, that square m-sequences can be algorithmically
generated by introducing nonlinear disturbances into linear
functions, for example by the following form:

f(x0, x1, . . . , xn−1) = g(x0, x1, . . . , xn−1) + xi + xi · xj ,

where i �= j, 0 ≤ i ≤ j ≤ n − 1, and g(x0, x1, . . . , xn−1)
is linear functions whose LFSR generates maximum-period
sequence. From the theory of de Bruijn sequences [15], it can
be concluded that g(x0, x1, . . . , xn−1) must be defined by a
primitive polynomial in F2[x].

III. MASSIVELY PARALLEL ALGORITHM

Due to overhelming number of possible feedback functions
(see Table I), we have constructed massively parallel algorithm
for the search of square m-sequences. It examines the provided
functions’ period completeness by enumerating the following
states and checking for their uniqueness. In practice, it satisfies
to prove that their initial states will be generated after exactly
2n − 1 steps.

Degree 26 27 28 29 30
log2(#Candidates) 29,05 30,45 30,73 32,79 32,85

TABLE I: The number of square m-sequences candidates to
be examined by computational experiment.

For accurate description and outline of the feedback func-
tion examining algorithm, consider the subsequent data labels:

LFSR – bit representation of the linear component of the
feedback function;

NLFSR– bit representation of the nonlinear component of
the feedback function;

N – the order of the shift register;
For example for the primitive polynomial of form x9+x4+1

and nonlinear part of function with the form x3 · x2, its bit
representation of the linear component has following form in
hex: 0x211 whereas the nonlinear one: 0x00c. Its length N
is naturally equal 9.

Input : LFSR , NLFSR - ,N - length of register;
i state = 0x01;
for i = 1, . . . , 2n − 1 do

b LFSR = (popcount(i state and LFSR)) mod 2;
b NLFSR = (popcount(i state and NLFSR)) mod 2;
bit = b LFSR xor b NLFSR;
i state = (i state rot left 1) xor bit;
if i state == 0x01 then

return false;
end

end
if i state == 0x01 then

return true;
else

return false;
end

Algorithm 1: The period examination algorithm of NLFSR’s
feedback function.

For the sake of completeness of the specifications consid-
ered in the algorithm 1, it should be completed that popcount
indicates an operation of returning the number of ones in
the given integer and mod – an instruction of a division
with the remainder. The algorithm 1 considered above can
be implemented on all kinds of Graphical Processing Units
(GPU) resulting in efficiency advantage over modern CPUs. It
is strongly recommended to take advantage of SIMD (Single
Instruction Multiple Data), a parallel execution model of mod-
ern CPUs, to achieve maximum possible efficiency. With the
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for the search of square m-sequences. It examines the provided
functions’ period completeness by enumerating the following
states and checking for their uniqueness. In practice, it satisfies
to prove that their initial states will be generated after exactly
2n − 1 steps.

Degree 26 27 28 29 30
log2(#Candidates) 29,05 30,45 30,73 32,79 32,85

TABLE I: The number of square m-sequences candidates to
be examined by computational experiment.

For accurate description and outline of the feedback func-
tion examining algorithm, consider the subsequent data labels:

LFSR – bit representation of the linear component of the
feedback function;

NLFSR– bit representation of the nonlinear component of
the feedback function;

N – the order of the shift register;
For example for the primitive polynomial of form x9+x4+1

and nonlinear part of function with the form x3 · x2, its bit
representation of the linear component has following form in
hex: 0x211 whereas the nonlinear one: 0x00c. Its length N
is naturally equal 9.

Input : LFSR , NLFSR - ,N - length of register;
i state = 0x01;
for i = 1, . . . , 2n − 1 do

b LFSR = (popcount(i state and LFSR)) mod 2;
b NLFSR = (popcount(i state and NLFSR)) mod 2;
bit = b LFSR xor b NLFSR;
i state = (i state rot left 1) xor bit;
if i state == 0x01 then

return false;
end

end
if i state == 0x01 then

return true;
else

return false;
end

Algorithm 1: The period examination algorithm of NLFSR’s
feedback function.

For the sake of completeness of the specifications consid-
ered in the algorithm 1, it should be completed that popcount
indicates an operation of returning the number of ones in
the given integer and mod – an instruction of a division
with the remainder. The algorithm 1 considered above can
be implemented on all kinds of Graphical Processing Units
(GPU) resulting in efficiency advantage over modern CPUs. It
is strongly recommended to take advantage of SIMD (Single
Instruction Multiple Data), a parallel execution model of mod-
ern CPUs, to achieve maximum possible efficiency. With the
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n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular
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Fig. 2: Comparison of the estimated enumeration time of 1 GB pack of n-bit NLFSRs.

deg <7 9 11 13 15 17 19 21 23
26 0 24 26 32 48 22 2 0 0
27 0 6 28 58 56 36 4 0 0
28 0 4 10 26 42 32 12 0 2
29 0 4 24 49 72 32 24 8 0
30 0 0 17 37 32 27 13 5 2

TABLE VII: The number of feedback functions with certain
number of non-zero coefficients.

form of NLFSRs was conducted, and the results were dis-
cussed. Following conclusions can be drawn:

1) the search of NLFSR can be realized both on modern
CPU and GPU by adjusting the enumeration algorithm
to SIMD and SIMT parallel execution models;

2) square m-sequences have certain cryptographic and
practical properties, that are desirable, especially very
concise form and lowest possible algebraic degree;

3) the number of square m-sequences with lesser number
of terms decreases with the degree of the NLFSR.

4) the GPU implementation should be altered for the 31-
degree NLFSR due to the efficiency decrease. One
possible solution is to apply the bit-slicing methodology
in order to avoid a costly switch to 64-bit arithmetic.

5) SAT solvers sieving can contribute to the fast rejection
of short period NLFSR and in consequence, reduce the
reasonable time of computational experiments.

It is planned to continue the search of square m-sequences
up to degree 32 on FPGA platform and GPU after modification
of algorithm 1 via bit-slicing methodology. Moreover, it is
necessary to improve the sieving ratio of short period NLFSR
due to numerous possible m-sequences of degrees 31 and 32

(approximately 234,9 and 235 respectively).
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A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

Pavol Zajac, and Peter Špaček

Abstract—We propose a new concept of (post-quantum) digital
signature algorithm derived from a symmetric cipher. Key deriva-
tion is based on a system of Multiple-Right-Hand-Sides equations.
The source of the equations is the encryption algorithm. Our
trapdoor is based on the difficulty of creating a valid transcript
of the encryption algorithm for a given plaintext (derived from
the signed message): the signer can use the encryption algorithm,
because he knows the secret key, and the verifier can only
check that the solution of the equation system is correct. To
further facilitate the verification, we use techniques from coding
theory. Security of the system is based on the difficulty of solving
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We propose a new concept of (post-quantum) digital sig-
nature algorithm derived from a symmetric cipher. There
are already some signature algorithms that use symmetric
primitives as their basis: hash-based signatures, that use one-
way property of the underlying hash function (e.g.,SPHINGS+
[1]), and generic schemes based on non-interactive proofs and
multiparty computation (e.g., Picnic [2]).

Main innovation of our design is that it does not use
underlying cipher as a black-box, but instead as a white-box.
This might seem similar to white-box cryptography [3], but
our goal is different. While white-box cryptography models
the user as a potential attacker, we use white-box version of
the cipher to provide a secret algorithm for signatures for a
legitimate owner of a secret key. The recipient that verifies
the signature does not have access to the white-box, but is
instead provided a public key that is created from the cipher
representation.

Our design is mostly related to multivariate signatures [4]:
Public key is essentially a system of equations, that only the
signer can solve (with the help of the secret key). Unlike
multivariate case, we use a different representation of equa-
tion systems, so called Multiple-Right-Hand-Sides equations
(MRHS, [5]). The source of our equations is the encryption
algorithm. Our trapdoor is based on the difficulty of creating
a valid transcript of the encryption algorithm for a given
plaintext (derived from the signed message): the signer can
use the encryption algorithm, because he knows the secret
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key, and the verifier can only check that the solution of the
equation system is correct. To further facilitate the verification,
we use techniques from coding theory.

In Section II, we summarize the notation, basic definitions
and notions required to understand the proposed scheme.
The scheme itself is specified in Section III. We provide a
simplified example of some steps of the algorithm in Section
IV. In Section V we discuss the correctness of the scheme,
as well as its efficiency. Finally, in Section VI we analyse the
security of the proposed scheme. The security of the system
is based on the difficulty of solving MRHS equations, or
equivalently on the difficulty of special decoding problem.
Both of the problems are NP-hard (in generic version), and
should be difficult to solve with quantum computer as well.

Our original goal was to base the signature scheme directly
on the symmetric encryption standard AES. Main advantage
would be prevalent existence of hardware and software imple-
mentations of AES on essentially any platform. As our security
analysis shows, it is not clear, whether the scheme can be made
secure with the underlying design of AES, which is strongly
structured, and this structure might leak the used trapdoor.
A more suitable underlying cipher might be LowMC [6] or
similar designs. We believe that to construct a fully secure
signature scheme, a new type of symmetric cipher should be
designed in a way that will facilitate our trapdoor type. We
leave these questions open for further research.

II. DEFINITIONS

We presume that the reader is acquainted with basic crypto-
graphic definitions such as cryptosystem, (symmetric) cipher,
public-key encryption, signature scheme, hash function, etc.,
as well as the related security notions. We also suppose that
the reader is familiar with basic notions of coding theory, such
as generator and parity-check matrix.

A. Notation

In this article we will use the following notation:
• All bit operations are represented in algebraic way over

field GF (2), shortened to F2. Note that standard operator
+ in this field corresponds to a logic operation XOR.

• Sets are denoted by block form, e.g. R ⊂ Fm
2 .

• Integers are represented by simple notation i, j, n ∈ Z.
• Vectors of bits are denoted by bold variables such as u,x.

The dimension of the vector depends on the context, and
is introduced when defining the vector, e.g., x ∈ Fn

2 . In
our paper, all vectors are always row vectors.
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underlying cipher as a black-box, but instead as a white-box.
This might seem similar to white-box cryptography [3], but
our goal is different. While white-box cryptography models
the user as a potential attacker, we use white-box version of
the cipher to provide a secret algorithm for signatures for a
legitimate owner of a secret key. The recipient that verifies
the signature does not have access to the white-box, but is
instead provided a public key that is created from the cipher
representation.

Our design is mostly related to multivariate signatures [4]:
Public key is essentially a system of equations, that only the
signer can solve (with the help of the secret key). Unlike
multivariate case, we use a different representation of equa-
tion systems, so called Multiple-Right-Hand-Sides equations
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In Section II, we summarize the notation, basic definitions
and notions required to understand the proposed scheme.
The scheme itself is specified in Section III. We provide a
simplified example of some steps of the algorithm in Section
IV. In Section V we discuss the correctness of the scheme,
as well as its efficiency. Finally, in Section VI we analyse the
security of the proposed scheme. The security of the system
is based on the difficulty of solving MRHS equations, or
equivalently on the difficulty of special decoding problem.
Both of the problems are NP-hard (in generic version), and
should be difficult to solve with quantum computer as well.

Our original goal was to base the signature scheme directly
on the symmetric encryption standard AES. Main advantage
would be prevalent existence of hardware and software imple-
mentations of AES on essentially any platform. As our security
analysis shows, it is not clear, whether the scheme can be made
secure with the underlying design of AES, which is strongly
structured, and this structure might leak the used trapdoor.
A more suitable underlying cipher might be LowMC [6] or
similar designs. We believe that to construct a fully secure
signature scheme, a new type of symmetric cipher should be
designed in a way that will facilitate our trapdoor type. We
leave these questions open for further research.
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We presume that the reader is acquainted with basic crypto-
graphic definitions such as cryptosystem, (symmetric) cipher,
public-key encryption, signature scheme, hash function, etc.,
as well as the related security notions. We also suppose that
the reader is familiar with basic notions of coding theory, such
as generator and parity-check matrix.

A. Notation

In this article we will use the following notation:
• All bit operations are represented in algebraic way over

field GF (2), shortened to F2. Note that standard operator
+ in this field corresponds to a logic operation XOR.

• Sets are denoted by block form, e.g. R ⊂ Fm
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• Integers are represented by simple notation i, j, n ∈ Z.
• Vectors of bits are denoted by bold variables such as u,x.
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is introduced when defining the vector, e.g., x ∈ Fn
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We propose a new concept of (post-quantum) digital sig-
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primitives as their basis: hash-based signatures, that use one-
way property of the underlying hash function (e.g.,SPHINGS+
[1]), and generic schemes based on non-interactive proofs and
multiparty computation (e.g., Picnic [2]).

Main innovation of our design is that it does not use
underlying cipher as a black-box, but instead as a white-box.
This might seem similar to white-box cryptography [3], but
our goal is different. While white-box cryptography models
the user as a potential attacker, we use white-box version of
the cipher to provide a secret algorithm for signatures for a
legitimate owner of a secret key. The recipient that verifies
the signature does not have access to the white-box, but is
instead provided a public key that is created from the cipher
representation.

Our design is mostly related to multivariate signatures [4]:
Public key is essentially a system of equations, that only the
signer can solve (with the help of the secret key). Unlike
multivariate case, we use a different representation of equa-
tion systems, so called Multiple-Right-Hand-Sides equations
(MRHS, [5]). The source of our equations is the encryption
algorithm. Our trapdoor is based on the difficulty of creating
a valid transcript of the encryption algorithm for a given
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key, and the verifier can only check that the solution of the
equation system is correct. To further facilitate the verification,
we use techniques from coding theory.

In Section II, we summarize the notation, basic definitions
and notions required to understand the proposed scheme.
The scheme itself is specified in Section III. We provide a
simplified example of some steps of the algorithm in Section
IV. In Section V we discuss the correctness of the scheme,
as well as its efficiency. Finally, in Section VI we analyse the
security of the proposed scheme. The security of the system
is based on the difficulty of solving MRHS equations, or
equivalently on the difficulty of special decoding problem.
Both of the problems are NP-hard (in generic version), and
should be difficult to solve with quantum computer as well.

Our original goal was to base the signature scheme directly
on the symmetric encryption standard AES. Main advantage
would be prevalent existence of hardware and software imple-
mentations of AES on essentially any platform. As our security
analysis shows, it is not clear, whether the scheme can be made
secure with the underlying design of AES, which is strongly
structured, and this structure might leak the used trapdoor.
A more suitable underlying cipher might be LowMC [6] or
similar designs. We believe that to construct a fully secure
signature scheme, a new type of symmetric cipher should be
designed in a way that will facilitate our trapdoor type. We
leave these questions open for further research.
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We presume that the reader is acquainted with basic crypto-
graphic definitions such as cryptosystem, (symmetric) cipher,
public-key encryption, signature scheme, hash function, etc.,
as well as the related security notions. We also suppose that
the reader is familiar with basic notions of coding theory, such
as generator and parity-check matrix.

A. Notation

In this article we will use the following notation:
• All bit operations are represented in algebraic way over

field GF (2), shortened to F2. Note that standard operator
+ in this field corresponds to a logic operation XOR.

• Sets are denoted by block form, e.g. R ⊂ Fm
2 .

• Integers are represented by simple notation i, j, n ∈ Z.
• Vectors of bits are denoted by bold variables such as u,x.

The dimension of the vector depends on the context, and
is introduced when defining the vector, e.g., x ∈ Fn
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III. ALGORITHM DESCRIPTION

Let us have a symmetric block cipher with encryption
algorithm defined by function Enc : Fn

2 × K → Fn
2 , which

is itself an SPN network with r rounds. Let S : Fk
2 → Fk

2 be
an S-box of the SPN network. We suppose that non-linear part
of each of the r rounds of SPN consists of n/k applications of
the same S-box S (in parallel). The condition that each S-box
is the same is important for the security of the scheme. We will
denote the total number of S-box applications by m = rn/k.
Let KS : K → Fn(r+1)

2 be a key schedule algorithm.
We define a signature scheme derived from this SPN with

the following algorithms: KeyGen, Sign, and V erify.

A. Key generation algorithm

Let k ∈ K be a randomly selected secret key (both of
the symmetric cipher, and as a part of a private key of our
signature scheme). Furthermore, let π be a randomly selected
secret permutation of numbers 1, 2, . . . ,m, which does not
change the order of the initial n/k elements. Private key for
creating signatures consists of the pair (k, π).

To construct the public key, we must do the following:
1) Expand the key. Given k ∈ K, we compute the SPN’s

key schedule: k̂ = (k1,k2, . . . ,k(r+1)) = KS(k).
2) Prepare the MRHS system. Let x ∈ Fn(r+1)

2 denote a
vector of unknowns corresponding to the inputs of the
S-boxes during the SPN evaluation plus one set of S-box
outputs in the last round. Inner outputs of the S-boxes
can be expressed as linear combinations of variables
from x, cipher constants, and constants based on the
expanded key k̂. Given linear expressions for the inputs
and outputs of the S-boxes, we can construct a MRHS
system (as described in section II-C) in the form

xM+ c ∈
⊗{

(u, S(u)) ;u ∈ Fk
2

}
. (1)

Constant c is derived from the constants of the algo-
rithm and bits of the expanded key k̂. Matrix M has
dimensions n(r + 1)× 2mk.
Note that this step can be precomputed up to computa-
tion of the final constant c that depends on k.

3) Apply masking permutation. Matrix M from equation
(1) can be written as M = (M1|M2| · · ·Mm). Blocks
Mi of dimension (n(r + 1)× 2k) correspond to linear
functions that construct inputs and outputs of S-boxes
from variables x. Similarly, split c into blocks of size
2k denoted by (c1, c2, . . . , cm).
Apply the secret permutation π on the order of blocks
of M and c. A permuted form of the system is given
as:

x · (Mπ(1)|Mπ(2)| · · ·Mπ(m))

+ (cπ(1), cπ(2), . . . , cπ(m)) ∈⊗{
(u, S(u)) ;u ∈ Fk

2

}
.

(2)

Let us denote the joint matrix of system (2) by Mπ , and
similarly let us denote be permuted vector c by cπ .

Fig. 2. An overview of the signature algorithm.

4) Parity check matrix. Compute systematic1 parity check
matrix H = (I|Q), such that MπH

T = 0.
5) Syndrome. Compute q = cπH

T .
6) Final public key The public key consist of the pair

(Q,q).

When applicable, public key should be augmented by ”do-
main parameters” describing the used SPN. These consist of
a triplet (n,m, k, S), in order: the block size, the number of
S-boxes, the S-box size, and the S-box itself.

B. Signature algorithm

Let m ∈ F∗
2 be a message we want to sign. Let H :

F∗
2 → Fn

2 be a cryptographically secure hash function2. To
sign message m do the following:

1) Generate random (nonce) r ∈ Fn
2 .

2) Let p = H(r|m) + k1. Here k1 is the first subkey
derived by KS. Note that value p is constructed in such
a way that H(r|m) is the vector of inputs to the first
layer of S-boxes in the first round of the SPN.

3) Compute c = Enc(p,k) using SPN algorithm. During
encryption, store a sequence of S-box inputs as vector
u = (u1,u2, . . . ,um).

4) Apply secret permutation π to the order of blocks of u,
and compute vector w = (uπ(1),uπ(2), . . . ,uπ(m)).

5) Signature of m is pair of vectors (r,w).

1We can compute systematic parity check matrix by linear algebra. Simple
algorithm is to use (modified) Gaussian elimination to get Mπ to form
(QT |I). Note that we cannot change the order of columns during the Gaussian
elimination (if no pivots are available, we need to restart the algorithm, or
change π to swap blocks as required).

2We require that H is one-way and collision resistant.

Fig. 1. An example of a subsitution-permutation network.

• Matrix is represented by a bold uppercase letter, with
dimensions either depended on the context, or directly
defined in the definition of the matrix: M ∈ F(n×m)

2 .
• Functions are denoted by uppercase letters, such as

F,H,R, S, e.g., F : Fn
2 → Fm

2 .
• Greek notation, such as π, is reserved for permutations of

numbers 1, 2, . . . , n (for some n defined in the context).

B. Substitution-permutation network

Let F : Fn
2 → Fm

2 be a vectorial Boolean function. In
cryptographic context, F is called an S-box, if n is relatively
small, and F is a highly non-linear function used in cipher
design. In our paper, we will denote S-boxes always with S,
or Si if we need to number them.

Substitution-permutation network (SPN) is a type of sym-
metric cipher, in which the encryption algorithm consists of
multiple rounds (number of rounds will be denoted by r). Each
round consists of three basic steps:

1) key addition: y = x+ ki, where ki is a round subkey;
2) non-linear layer of S-boxes: yi···j = S(xi···j);
3) a linear diffusion layer (in basic case just a permutation

of bits): y = xM.
In the last round of SPN, linear layer is typically replaced
by another key addition. Round subkeys are derived from the
main key k by a specific algorithm call a key schedule, i.e.,
(k1,k2, . . . ,k(r+1)) = KS(k).

Sequence of internal bits that is used during the encryption
(of required granularity, e.g., inputs to S-boxes) is denoted as
a transcript of the encryption. If we know the encryption key
and the cipher input, the whole transcript can be reproduced by
following the computation steps of the SPN. For the attacker,
the knowledge of the transcript is typically equivalent to the
knowledge of the key. In SPN, if the attacker knows the
transcript, he can easily compute round keys (using inverse
of the key addition operation), and use the round keys instead
of the original key (or the attacker can derive the original key
if the key schedule allows it).

Advanced Encryption Standard (AES) is a specific instance
of SPN-like cipher Rijndael [7], with linear layer defined by
two operations ( ShiftRows, MixColumns, with a specific
last round). In our concrete instantiation of the signature

scheme, we will use version AES-128, which has 128-bit
key and block size, 10 rounds. Each round uses 16 bijective
S-boxes on groups of 8 bits. Further details of the AES
encryption process are not required to understand the paper.

C. MRHS equations

In our system, we create a non-linear Boolean equation
system derived from the selected SPN. While such a system
can be written in multiple forms (such as ANF for Gröbner
basis method, or CNF for SAT solvers), for our purpose a
specific form of a MRHS system [5] is preferable.

Definition 1: [8] Let F be a finite field. Let M ∈ F(n×m)

be an (n × m) matrix. Let R be a set of vectors from Fm.
MRHS equation is defined by an inclusion:

xM ∈ R.

Vector x ∈ Fn is a solution of MRHS equation, if the inclusion
holds for this particular value of x.

MRHS equations related to SPN are centered on S-boxes.
Let x be a vector of variables (e.g. selected unknown transcript
bits during encryption with SPN). Suppose that each vector
of input bits of an S-box S can be expressed as a linear
combination of unknown transcript bits: u = xU. Similarly
let v = xV be the output vector of the same S-box S. We
can then write an MRHS equation for S-box S as

x (U|V) ∈
{
(u, S(u));u ∈ Fk

2

}
.

MRHS (equation) system is a set of MRHS equations, each
of which must be satisfied simultaneously for some x (the
particular x is then a solution of the MRHS system). MRHS
system can be written in a similar form to a simple MRHS
equation by using a Cartesian product:

xM ∈ R1 × R2 × · · · × Rl,

where system matrix M = (M1|M2| · · · |Ml) is composed of
matrices of individual MRHS equations.

MRHS system for an SPN is then a set of MRHS equations
for each S-box in the system. Unknowns x in the system must
be selected in such a way, that each input and output of the
S-box can be expressed as a linear combination of bits of x.
Note that we can create a virtual ”variable” 1 that can express
the addition of a constant (0 or 1) when creating the system.
After transcribing the system with variable 1:

(x,1) ·
(

M
c

)
∈ R1 × R2 × · · · × Rl,

we can rewrite it in extended form as follows:

xM+ c ∈ R1 × R2 × · · · × Rl.

Constant c can be transferred to the right-hand side by adding
corresponding parts of c to each vector in Ri.

If MRHS equation has a small number of right-hand sides
(members of R), it is easy to solve such a system by repeatedly
solving a linear system of equations. Unlike individual equa-
tions, an MRHS system has exponentially many right-hand
sides (if we try to express the Cartesian product directly). For
a general MRHS system, a question of existence of a solution
(MRHS problem) is an NP-hard problem [9].
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Let k ∈ K be a randomly selected secret key (both of
the symmetric cipher, and as a part of a private key of our
signature scheme). Furthermore, let π be a randomly selected
secret permutation of numbers 1, 2, . . . ,m, which does not
change the order of the initial n/k elements. Private key for
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To construct the public key, we must do the following:
1) Expand the key. Given k ∈ K, we compute the SPN’s
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2 denote a
vector of unknowns corresponding to the inputs of the
S-boxes during the SPN evaluation plus one set of S-box
outputs in the last round. Inner outputs of the S-boxes
can be expressed as linear combinations of variables
from x, cipher constants, and constants based on the
expanded key k̂. Given linear expressions for the inputs
and outputs of the S-boxes, we can construct a MRHS
system (as described in section II-C) in the form

xM+ c ∈
⊗{

(u, S(u)) ;u ∈ Fk
2

}
. (1)

Constant c is derived from the constants of the algo-
rithm and bits of the expanded key k̂. Matrix M has
dimensions n(r + 1)× 2mk.
Note that this step can be precomputed up to computa-
tion of the final constant c that depends on k.

3) Apply masking permutation. Matrix M from equation
(1) can be written as M = (M1|M2| · · ·Mm). Blocks
Mi of dimension (n(r + 1)× 2k) correspond to linear
functions that construct inputs and outputs of S-boxes
from variables x. Similarly, split c into blocks of size
2k denoted by (c1, c2, . . . , cm).
Apply the secret permutation π on the order of blocks
of M and c. A permuted form of the system is given
as:

x · (Mπ(1)|Mπ(2)| · · ·Mπ(m))

+ (cπ(1), cπ(2), . . . , cπ(m)) ∈⊗{
(u, S(u)) ;u ∈ Fk

2

}
.

(2)

Let us denote the joint matrix of system (2) by Mπ , and
similarly let us denote be permuted vector c by cπ .

Fig. 2. An overview of the signature algorithm.

4) Parity check matrix. Compute systematic1 parity check
matrix H = (I|Q), such that MπH

T = 0.
5) Syndrome. Compute q = cπH

T .
6) Final public key The public key consist of the pair

(Q,q).

When applicable, public key should be augmented by ”do-
main parameters” describing the used SPN. These consist of
a triplet (n,m, k, S), in order: the block size, the number of
S-boxes, the S-box size, and the S-box itself.

B. Signature algorithm

Let m ∈ F∗
2 be a message we want to sign. Let H :

F∗
2 → Fn

2 be a cryptographically secure hash function2. To
sign message m do the following:

1) Generate random (nonce) r ∈ Fn
2 .

2) Let p = H(r|m) + k1. Here k1 is the first subkey
derived by KS. Note that value p is constructed in such
a way that H(r|m) is the vector of inputs to the first
layer of S-boxes in the first round of the SPN.

3) Compute c = Enc(p,k) using SPN algorithm. During
encryption, store a sequence of S-box inputs as vector
u = (u1,u2, . . . ,um).

4) Apply secret permutation π to the order of blocks of u,
and compute vector w = (uπ(1),uπ(2), . . . ,uπ(m)).

5) Signature of m is pair of vectors (r,w).

1We can compute systematic parity check matrix by linear algebra. Simple
algorithm is to use (modified) Gaussian elimination to get Mπ to form
(QT |I). Note that we cannot change the order of columns during the Gaussian
elimination (if no pivots are available, we need to restart the algorithm, or
change π to swap blocks as required).

2We require that H is one-way and collision resistant.

Fig. 1. An example of a subsitution-permutation network.

• Matrix is represented by a bold uppercase letter, with
dimensions either depended on the context, or directly
defined in the definition of the matrix: M ∈ F(n×m)

2 .
• Functions are denoted by uppercase letters, such as

F,H,R, S, e.g., F : Fn
2 → Fm

2 .
• Greek notation, such as π, is reserved for permutations of

numbers 1, 2, . . . , n (for some n defined in the context).

B. Substitution-permutation network

Let F : Fn
2 → Fm

2 be a vectorial Boolean function. In
cryptographic context, F is called an S-box, if n is relatively
small, and F is a highly non-linear function used in cipher
design. In our paper, we will denote S-boxes always with S,
or Si if we need to number them.

Substitution-permutation network (SPN) is a type of sym-
metric cipher, in which the encryption algorithm consists of
multiple rounds (number of rounds will be denoted by r). Each
round consists of three basic steps:

1) key addition: y = x+ ki, where ki is a round subkey;
2) non-linear layer of S-boxes: yi···j = S(xi···j);
3) a linear diffusion layer (in basic case just a permutation

of bits): y = xM.
In the last round of SPN, linear layer is typically replaced
by another key addition. Round subkeys are derived from the
main key k by a specific algorithm call a key schedule, i.e.,
(k1,k2, . . . ,k(r+1)) = KS(k).

Sequence of internal bits that is used during the encryption
(of required granularity, e.g., inputs to S-boxes) is denoted as
a transcript of the encryption. If we know the encryption key
and the cipher input, the whole transcript can be reproduced by
following the computation steps of the SPN. For the attacker,
the knowledge of the transcript is typically equivalent to the
knowledge of the key. In SPN, if the attacker knows the
transcript, he can easily compute round keys (using inverse
of the key addition operation), and use the round keys instead
of the original key (or the attacker can derive the original key
if the key schedule allows it).

Advanced Encryption Standard (AES) is a specific instance
of SPN-like cipher Rijndael [7], with linear layer defined by
two operations ( ShiftRows, MixColumns, with a specific
last round). In our concrete instantiation of the signature

scheme, we will use version AES-128, which has 128-bit
key and block size, 10 rounds. Each round uses 16 bijective
S-boxes on groups of 8 bits. Further details of the AES
encryption process are not required to understand the paper.

C. MRHS equations

In our system, we create a non-linear Boolean equation
system derived from the selected SPN. While such a system
can be written in multiple forms (such as ANF for Gröbner
basis method, or CNF for SAT solvers), for our purpose a
specific form of a MRHS system [5] is preferable.

Definition 1: [8] Let F be a finite field. Let M ∈ F(n×m)

be an (n × m) matrix. Let R be a set of vectors from Fm.
MRHS equation is defined by an inclusion:

xM ∈ R.

Vector x ∈ Fn is a solution of MRHS equation, if the inclusion
holds for this particular value of x.

MRHS equations related to SPN are centered on S-boxes.
Let x be a vector of variables (e.g. selected unknown transcript
bits during encryption with SPN). Suppose that each vector
of input bits of an S-box S can be expressed as a linear
combination of unknown transcript bits: u = xU. Similarly
let v = xV be the output vector of the same S-box S. We
can then write an MRHS equation for S-box S as

x (U|V) ∈
{
(u, S(u));u ∈ Fk

2

}
.

MRHS (equation) system is a set of MRHS equations, each
of which must be satisfied simultaneously for some x (the
particular x is then a solution of the MRHS system). MRHS
system can be written in a similar form to a simple MRHS
equation by using a Cartesian product:

xM ∈ R1 × R2 × · · · × Rl,

where system matrix M = (M1|M2| · · · |Ml) is composed of
matrices of individual MRHS equations.

MRHS system for an SPN is then a set of MRHS equations
for each S-box in the system. Unknowns x in the system must
be selected in such a way, that each input and output of the
S-box can be expressed as a linear combination of bits of x.
Note that we can create a virtual ”variable” 1 that can express
the addition of a constant (0 or 1) when creating the system.
After transcribing the system with variable 1:

(x,1) ·
(

M
c

)
∈ R1 × R2 × · · · × Rl,

we can rewrite it in extended form as follows:

xM+ c ∈ R1 × R2 × · · · × Rl.

Constant c can be transferred to the right-hand side by adding
corresponding parts of c to each vector in Ri.

If MRHS equation has a small number of right-hand sides
(members of R), it is easy to solve such a system by repeatedly
solving a linear system of equations. Unlike individual equa-
tions, an MRHS system has exponentially many right-hand
sides (if we try to express the Cartesian product directly). For
a general MRHS system, a question of existence of a solution
(MRHS problem) is an NP-hard problem [9].
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Having constructed private and public keys for the signature
scheme, following the steps of the signature and verification
algorithms is relatively simple. We do not provide concrete
bit values, as the number of bits involved is quite large even
for the SPN-based demo. To provide a working demonstration
of the system, we have prepared a proof of concept imple-
mentation based on simple SPN with 16-bit block and 4-bit
S-boxes. The source code is available on GitHub at https:
//github.com/zajacpa/SPNsig. The demonstration code requires
SAGE linear algebra system [10] to run.

Note that for a simpler implementation we store inputs and
outputs of S-boxes in different order: first we store sequence
of all S-box inputs, and then the sequence of S-box outputs.
While not exactly corresponding to the theoretical MRHS
instance, it is easy to see that the algorithm still works
regardless of the bit order. We only need to ensure that the
corresponding columns of M (with correct H) and c are
arranged in the same way as the desired order of the bits
in the transcript of the encryption.

V. SIGNATURE SCHEME PROPERTIES

After the description of the signature scheme, we devote this
short section to the discussion of the correctness and efficiency
of the proposed scheme.

A. Correctness

Verification algorithm has two steps where it can reject the
signature: verification of the hash h, and verification of the
syndrome of v.

During the signature, inputs to SPN encryption were chosen
in such a way that h is the input to the first layer of S-boxes in
the first round of SPN. Recall that during the key generation
we require that the order of these S-boxes remains fixed by
permutation π. This means the verifier in the second step just
checks whether plaintext p was constructed from message m
and provided randomness r.

Signature process is based on SPN encryption modelled by
MRHS system (1). The pairs (ui, S(ui)) are corresponding
right-hand sides providing a valid solution of this system. They
are published in modified order, which is obtained as vector v
by the verifier. The following (overdetermined) linear equation
system thus has a solution:

xMπ + cπ = v.

If we multiply this by HT = (I|Q)T we get:

xMπH
T + cπH

T = vHT ,

or equivalently
q = v(I|Q)T .

B. Efficiency

The performance of the scheme depends on the chosen
underlying SPN. However, in comparison with number the-
oretic or other post-quantum signature schemes the algorithm
is extremely simple. In the following we consider the part
of the algorithm without message hashing (which is required
regardless of the signature algorithm).

The signature algorithm is equivalent to a single symmetric
encryption accompanied with a simple permutation of a vector
of transcript bits. Similarly, the verification algorithm requires
evaluation of S-boxes plus vector-matrix multiplication. The
number of nonlinear operations is the same as the number
of operations required during a single SPN encryption. While
the complexity of the linear part can be higher than required
in SPN encryption, this operation is quite simple and can be
efficiently implemented.

The size of the public key and signature is related to the
chosen SPN. Private key consists of an l-bit symmetric key and
a permutation of m numbers. Public key is a pair consisting
of a vector q of size 2mk − (r + 1)n bits and a matrix Q
of size (2mk− (r+ 1)n)×mk bits. Each signature is also a
sequence of mk bits.

Let us consider instantiation of the scheme with AES
algorithm. In this case, we use m = 160 S-boxes of size
k = 8 bits. This means that each signature is 1280 bits long
(160 bytes). This is comparable to a standard RSA signature.
Public key contains vector q of size 1280 bits, and matrix Q
of size 1638400 bits. Together, this is approximately 200kB.

VI. SECURITY

As mentioned in the introduction, the proposed signature
scheme is a provided as a new (and hopefully interesting)
concept. Security of the scheme is related to the difficulty of
solving MRHS equations and the decoding problem, but also
to the security of the underlying symmetric encryption scheme.
To be able to fully instantiate the (modified version of the)
scheme in a provably secure manner requires a deeper research
of the proposed scheme, and the related security questions. In
this section we focus on security aspects of the scheme and
the potential attacks that can compromise the security of the
scheme.

Informally, a signature system is secure, if no (poly-time)
attacker is able to forge signatures on new messages. To
formally prove the security we would have to provide suitable
security reduction to some computationally difficult problem.
While we believe this might be possible with a suitable
instantiation of the SPN and further tweaks of the design, the
current scheme as described is not (provably) secure.

The security level of the scheme is limited to n/2, where
n is the block size of the used SPN. This is due to the
use of initial hashing step: If the attacker can find a hash
collision in the form h(r|m1) = h(r|m2), he can use the
same signature for two different messages, breaking the non-
repudiation property of the signatures. Thus, for our scheme
instantiated with AES we can guarantee at most 64-bit security.
It is possible to use general Rijndael algorithm with 256-bit
block, and with 256-bit hash function (e.g., SHA-2) to extend
the presumed security level to 128-bits. In this case m = 448
(Rijndael with 256-bit block and 128-bit key, 14 rounds, 32 S-
boxes in each), the signature size is 3584 bits, and public key
size is 1568 kB. If we take into account Grover’s algorithm
and extend the key to 256-bits as well, we get m = 576
(18 rounds), i.e., 576B signature, and 2592kB public key,
respectively.

Fig. 3. An overview of the verification algorithm.

C. Verification algorithm

Let m′ ∈ F∗
2 be a message with a supposed signature (r,w).

Let (Q,q) be the corresponding public key of the signer. To
verify whether the signature is valid, perform the following
steps.

1) Split w into m blocks of size k, w =
(w1,w2, . . . ,wm).

2) Let h = H(r|m). Verify that h = (w1,w2, . . . ,wn/k).
If not, signature is invalid.

3) Construct m vectors vi by using specified S-box S to
compute vi = (wi, S(wi)).

4) Concatenate vi to get vector v = (v1,v2, . . . ,vm).
5) Verify that q = v(I|Q)T . If not, signature is invalid.

IV. EXAMPLE

In this section, we provide (simplified) examples for some
of the critical steps of the algorithm. In our example, we will
work with SPN introduced in Section II-B (see Figure 1).
To demonstrate MRHS equation building step, imagine first a
simple SPN with 2-bit ”S-boxes” given by permutation 1230.
Suppose we denote S-box inputs by x1, x2, and outputs by
y1, y2. MRHS equation with solutions corresponding to valid
I/O pairs for S-box can be written as

(x1, x2, y1, y2) ·




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ∈




(0, 0, 0, 1),
(0, 1, 1, 0),
(1, 0, 1, 1),
(1, 1, 0, 0)




If we wanted to demonstrate an MRHS equation related to a
4-bit S-box, we would need four input variables, four output
variables, 8 × 8 identity matrix, and a set of sixteen 8-bit
vectors on the right-hand side.

Now let us construct an MRHS system for Figure 1. We
have selected that our unknowns are S-box inputs. We do not
use variables of type y1, y2, . . . as in the previous example.
Instead, we express y variables as linear combinations of x
variables and subkey bits. We use SPN network as denoted

in Figure 1. Its linear layer is represented as a multiplication
with matrix L. We can write

(x5,x6,x7,x8) = (y1,y2,y3,y4) · L+ (k5,k6,k7,k8),

which leads to

(y1,y2,y3,y4) = (x5,x6,x7,x8)·L−1+(k5,k6,k7,k8)·L−1

We can extract equations for separate yi variables (one for
each S-box) by splitting matrix L into blocks Li,j of size 4×4
bits (k×k in general). We get the following system (simplified
for the first two S-boxes only):

(x1, . . . ,x8, 1) ·




I 0 0 0 · · ·
0 0 I 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 L−1

11 0 L−1
12 · · ·

0 L−1
21 0 L−1

22 · · ·
0 L−1

31 0 L−1
32 · · ·

0 L−1
41 0 L−1

42 · · ·
0 c1 0 c2 · · ·




∈ R× R,

where R is a set of sixteen 8-bit vectors R = {(x, S(x)),x ∈
F4
2}. Constants are computed from subkeys:

(c1, c2, c3, c4) = (k5,k6,k7,k8) · L−1,

and can be extracted from MRHS equation matrix to get an
extended form x ·M+ c ∈ R, as described in Section II-C.

The system is expanded for each round in a similar way.
However, for the last round, we need to add variables that
denote S-box outputs, as there are no other S-box inputs. In
four round SPN, we get a system in form

(x1, . . . ,x20) ·




A1 0 0 0
A2 A3 0 0
0 A4 A5 0
0 0 A6 A7

0 0 0 A8




+ c ∈ R× · · · ×R,

where each matrix Ai is 16 × 16 bit matrix, each xi is an
unknown 4-bit vector (x1 to x16 are S-box inputs, x17 to x20

are last-round S-box outputs). Constant c is an 80-bit vector
(computed from subkeys), and there are 16 (identical) right-
hand side sets R in the Cartesian product.

The system matrix and the constant c can be rewritten into
16 blocks of 8 bits, corresponding to each S-box used during
the encryption. I.e., we understand the system to be

x · (M1| · · · |M16) + (c1, . . . , c16) ∈ R× · · · × R.

Select a secret 16-element permutation with first 4 elements
fixed, e.g. π = (1, 2, 3, 4, 12, · · · , 7). To get the public key,
we construct

Mπ = (M1| · · · |M4|M12| · · · |M7) ,

and compute the corresponding systematic parity check matrix
H. Size of the matrix Mπ is 80 × 128 bits, thus H has
dimensions 48×128. Finally, we compute 48-bit public vector

q = (c1, . . . , c4, c12, . . . , c7) ·HT .
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Having constructed private and public keys for the signature
scheme, following the steps of the signature and verification
algorithms is relatively simple. We do not provide concrete
bit values, as the number of bits involved is quite large even
for the SPN-based demo. To provide a working demonstration
of the system, we have prepared a proof of concept imple-
mentation based on simple SPN with 16-bit block and 4-bit
S-boxes. The source code is available on GitHub at https:
//github.com/zajacpa/SPNsig. The demonstration code requires
SAGE linear algebra system [10] to run.

Note that for a simpler implementation we store inputs and
outputs of S-boxes in different order: first we store sequence
of all S-box inputs, and then the sequence of S-box outputs.
While not exactly corresponding to the theoretical MRHS
instance, it is easy to see that the algorithm still works
regardless of the bit order. We only need to ensure that the
corresponding columns of M (with correct H) and c are
arranged in the same way as the desired order of the bits
in the transcript of the encryption.

V. SIGNATURE SCHEME PROPERTIES

After the description of the signature scheme, we devote this
short section to the discussion of the correctness and efficiency
of the proposed scheme.

A. Correctness

Verification algorithm has two steps where it can reject the
signature: verification of the hash h, and verification of the
syndrome of v.

During the signature, inputs to SPN encryption were chosen
in such a way that h is the input to the first layer of S-boxes in
the first round of SPN. Recall that during the key generation
we require that the order of these S-boxes remains fixed by
permutation π. This means the verifier in the second step just
checks whether plaintext p was constructed from message m
and provided randomness r.

Signature process is based on SPN encryption modelled by
MRHS system (1). The pairs (ui, S(ui)) are corresponding
right-hand sides providing a valid solution of this system. They
are published in modified order, which is obtained as vector v
by the verifier. The following (overdetermined) linear equation
system thus has a solution:

xMπ + cπ = v.

If we multiply this by HT = (I|Q)T we get:

xMπH
T + cπH

T = vHT ,

or equivalently
q = v(I|Q)T .

B. Efficiency

The performance of the scheme depends on the chosen
underlying SPN. However, in comparison with number the-
oretic or other post-quantum signature schemes the algorithm
is extremely simple. In the following we consider the part
of the algorithm without message hashing (which is required
regardless of the signature algorithm).

The signature algorithm is equivalent to a single symmetric
encryption accompanied with a simple permutation of a vector
of transcript bits. Similarly, the verification algorithm requires
evaluation of S-boxes plus vector-matrix multiplication. The
number of nonlinear operations is the same as the number
of operations required during a single SPN encryption. While
the complexity of the linear part can be higher than required
in SPN encryption, this operation is quite simple and can be
efficiently implemented.

The size of the public key and signature is related to the
chosen SPN. Private key consists of an l-bit symmetric key and
a permutation of m numbers. Public key is a pair consisting
of a vector q of size 2mk − (r + 1)n bits and a matrix Q
of size (2mk− (r+ 1)n)×mk bits. Each signature is also a
sequence of mk bits.

Let us consider instantiation of the scheme with AES
algorithm. In this case, we use m = 160 S-boxes of size
k = 8 bits. This means that each signature is 1280 bits long
(160 bytes). This is comparable to a standard RSA signature.
Public key contains vector q of size 1280 bits, and matrix Q
of size 1638400 bits. Together, this is approximately 200kB.

VI. SECURITY

As mentioned in the introduction, the proposed signature
scheme is a provided as a new (and hopefully interesting)
concept. Security of the scheme is related to the difficulty of
solving MRHS equations and the decoding problem, but also
to the security of the underlying symmetric encryption scheme.
To be able to fully instantiate the (modified version of the)
scheme in a provably secure manner requires a deeper research
of the proposed scheme, and the related security questions. In
this section we focus on security aspects of the scheme and
the potential attacks that can compromise the security of the
scheme.

Informally, a signature system is secure, if no (poly-time)
attacker is able to forge signatures on new messages. To
formally prove the security we would have to provide suitable
security reduction to some computationally difficult problem.
While we believe this might be possible with a suitable
instantiation of the SPN and further tweaks of the design, the
current scheme as described is not (provably) secure.

The security level of the scheme is limited to n/2, where
n is the block size of the used SPN. This is due to the
use of initial hashing step: If the attacker can find a hash
collision in the form h(r|m1) = h(r|m2), he can use the
same signature for two different messages, breaking the non-
repudiation property of the signatures. Thus, for our scheme
instantiated with AES we can guarantee at most 64-bit security.
It is possible to use general Rijndael algorithm with 256-bit
block, and with 256-bit hash function (e.g., SHA-2) to extend
the presumed security level to 128-bits. In this case m = 448
(Rijndael with 256-bit block and 128-bit key, 14 rounds, 32 S-
boxes in each), the signature size is 3584 bits, and public key
size is 1568 kB. If we take into account Grover’s algorithm
and extend the key to 256-bits as well, we get m = 576
(18 rounds), i.e., 576B signature, and 2592kB public key,
respectively.

Fig. 3. An overview of the verification algorithm.

C. Verification algorithm

Let m′ ∈ F∗
2 be a message with a supposed signature (r,w).

Let (Q,q) be the corresponding public key of the signer. To
verify whether the signature is valid, perform the following
steps.

1) Split w into m blocks of size k, w =
(w1,w2, . . . ,wm).

2) Let h = H(r|m). Verify that h = (w1,w2, . . . ,wn/k).
If not, signature is invalid.

3) Construct m vectors vi by using specified S-box S to
compute vi = (wi, S(wi)).

4) Concatenate vi to get vector v = (v1,v2, . . . ,vm).
5) Verify that q = v(I|Q)T . If not, signature is invalid.

IV. EXAMPLE

In this section, we provide (simplified) examples for some
of the critical steps of the algorithm. In our example, we will
work with SPN introduced in Section II-B (see Figure 1).
To demonstrate MRHS equation building step, imagine first a
simple SPN with 2-bit ”S-boxes” given by permutation 1230.
Suppose we denote S-box inputs by x1, x2, and outputs by
y1, y2. MRHS equation with solutions corresponding to valid
I/O pairs for S-box can be written as

(x1, x2, y1, y2) ·




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ∈




(0, 0, 0, 1),
(0, 1, 1, 0),
(1, 0, 1, 1),
(1, 1, 0, 0)




If we wanted to demonstrate an MRHS equation related to a
4-bit S-box, we would need four input variables, four output
variables, 8 × 8 identity matrix, and a set of sixteen 8-bit
vectors on the right-hand side.

Now let us construct an MRHS system for Figure 1. We
have selected that our unknowns are S-box inputs. We do not
use variables of type y1, y2, . . . as in the previous example.
Instead, we express y variables as linear combinations of x
variables and subkey bits. We use SPN network as denoted

in Figure 1. Its linear layer is represented as a multiplication
with matrix L. We can write

(x5,x6,x7,x8) = (y1,y2,y3,y4) · L+ (k5,k6,k7,k8),

which leads to

(y1,y2,y3,y4) = (x5,x6,x7,x8)·L−1+(k5,k6,k7,k8)·L−1

We can extract equations for separate yi variables (one for
each S-box) by splitting matrix L into blocks Li,j of size 4×4
bits (k×k in general). We get the following system (simplified
for the first two S-boxes only):

(x1, . . . ,x8, 1) ·




I 0 0 0 · · ·
0 0 I 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 L−1

11 0 L−1
12 · · ·

0 L−1
21 0 L−1

22 · · ·
0 L−1

31 0 L−1
32 · · ·

0 L−1
41 0 L−1

42 · · ·
0 c1 0 c2 · · ·




∈ R× R,

where R is a set of sixteen 8-bit vectors R = {(x, S(x)),x ∈
F4
2}. Constants are computed from subkeys:

(c1, c2, c3, c4) = (k5,k6,k7,k8) · L−1,

and can be extracted from MRHS equation matrix to get an
extended form x ·M+ c ∈ R, as described in Section II-C.

The system is expanded for each round in a similar way.
However, for the last round, we need to add variables that
denote S-box outputs, as there are no other S-box inputs. In
four round SPN, we get a system in form

(x1, . . . ,x20) ·




A1 0 0 0
A2 A3 0 0
0 A4 A5 0
0 0 A6 A7

0 0 0 A8




+ c ∈ R× · · · ×R,

where each matrix Ai is 16 × 16 bit matrix, each xi is an
unknown 4-bit vector (x1 to x16 are S-box inputs, x17 to x20

are last-round S-box outputs). Constant c is an 80-bit vector
(computed from subkeys), and there are 16 (identical) right-
hand side sets R in the Cartesian product.

The system matrix and the constant c can be rewritten into
16 blocks of 8 bits, corresponding to each S-box used during
the encryption. I.e., we understand the system to be

x · (M1| · · · |M16) + (c1, . . . , c16) ∈ R× · · · × R.

Select a secret 16-element permutation with first 4 elements
fixed, e.g. π = (1, 2, 3, 4, 12, · · · , 7). To get the public key,
we construct

Mπ = (M1| · · · |M4|M12| · · · |M7) ,

and compute the corresponding systematic parity check matrix
H. Size of the matrix Mπ is 80 × 128 bits, thus H has
dimensions 48×128. Finally, we compute 48-bit public vector

q = (c1, . . . , c4, c12, . . . , c7) ·HT .
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as an input of the first layer of S-boxes. Suppose that SPN was
AES-128, and attacker used some signature oracle to obtain
signatures for two messages that differ in a single byte. From
the properties of AES diffusion layer we know that in second
round there are exactly 4 non-zero differences and 12 zero
differences. Attacker marks those bytes that are unchanged
between signatures. Repeating this with different bytes, he can
disclose the positions of the round-2 S-box inputs (in 4 byte
groups, whose order can be quickly searched to completly
disclose the subkey).

To prevent the class of chosen plaintext attacks on SPN,
we have added a randomized hashing3 as the first step of the
algorithm. The attacker still knows the inputs to the first layer
of S-boxes, but cannot select them in arbitrary way. E.g., if the
attacker was to reproduce the previous attack, he requires two
hashes that coincide in each byte except one. This is slightly
easier than the security level (in AES-128 expected complexity
is 260 hashes), but it is then followed by an attack with a
difficulty higher than the reduction obtained while looking for
collisions.

While the randomized hashing restricts the efficiency of
some of the structural attacks, it is not clear whether it is
sufficient to prevent all attacks of this type (and how serious
is the security level reduction). Efficiency of these types
of attacks are related to the concrete structure of the used
SPN. It is not sufficient that the cipher under consideration
has a sufficient number of rounds to resist some type of
cryptanalysis: as we have seen the goal of the attacker can
be different, as in some cases he only needs to distinguish
which blocks are used in some specific round.

C. Structural attacks on public key

In previous section we have discussed some ways that the
attacker can try to recover secret permutation π from some
known or chosen signatures. There is still another attack vector
related to the public key, namely parity check matrix H =
(I|Q).

System matrix M reflects the structure of the used SPN, and
is very sparse. Essentially, each block Mi can be expressed
as 


0 0
I 0
0 L
0 0


 ,

where I is an identity matrix corresponding to S-box inputs
in round i. Matrix L, along with constant c reflects the linear
layer of SPN, and represent the affine transformation applied
to S-box inputs in round i + 1 to compute S-box outputs in
round i.

This structure of the matrix is in essence preserved when
π is applied. It is however not clear, whether this structure
is always present in matrix H. Note that there are multiple
possible matrices H: any base of the dual space is suitable for
signature verification. For efficiency reasons, we have chosen
to restrict H to have a systematic form (so we only need to

3We thank one of the anonymous reviewers of the Central European
Conference on Cryptology 2019 for the general idea.

Fig. 4. Graphical depiction of the systematic parity check matrix obtained in
one of the experiments with small 16-bit SPN.

store Q). Another advantage of the systematic form is that
during the computation of systematic H we hope to hide the
sparsity and structure of the original M, similarly to LDPC-
and MDPC-based cryptosystems [13].

Our experiments with the small SPN show that in this case
a computation of the systematic parity check matrix is not
enough to mask the structure of the system. In Figure 4, we
show an example of the matrix H obtained from the SPN
demo. Structure of the original Mπ is clearly preserved, and
by matching ones on corresponding lines attacker can obtain
permutation π.

We have not implemented a full version of AES-based
scheme, thus it is not clear whether this problem is also
affecting this larger scheme. While AES-based matrix is less
sparse due to MixColumns operations, it is still significantly
structured. We believe that in this case, systematic form of H
would still not be enough to hide the structure sufficiently.

We might ask, whether the signature scheme be ever made
secure in view of this structural attack? Unfortunately, we do
not have a definitive answer, but we propose some possible
solutions to hide the system structure:

• Change the basis of variables in the system. Instead of
defining x as a vector of S-box inputs, define x as a
vector of arbitrary linearly independent variables y, from
which S-box inputs can be computed with linear algebra
as x = yA. In the key generation, we get modified
system yAM, and we compute parity check matrix for
the code generated by AMπ . Note that this is actually
the same code as the one generated by Mπ . Our hope
is to obtain different matrix H that is less sparse and
structured as before. It is not clear whether this matrix
can really be obtained, and even if it is obtained, whether
attacker cannot find different H that will show him the
system structure.

• Use SPN with secret random linear layer. We are inspired
by cipher family LowMC [6], but in the signature scheme
we do not publish the linear layer, but make it part of
the secret key. In this case we lose some efficiency and
flexibility in symmetric encryption: linear layer is now
asymmetric secret, thus the cipher cannot be reused for
symmetric encryption between network participants. This
can be remedied by using two versions of the cipher: one
for encryption, with fixed (simple) linear layer, and one

Regardless of generic attacks on the hash function, there are
multiple other ways that attacker can try to attack the signature
algorithm:

1) Try to submit false vector w′ that will satisfy the
verification algorithm. First part of the verification (hash
of message with nonce r should be the prefix of w′) is
easily satisfied. Thus the attacker is only concerned with
providing false w′ that will satisfy q = v(I|Q)T .

2) Try to derive the private key from the public key.
3) Try to derive the private key, or a new signature from

the public key and (chosen) signatures.
To prevent these attacks we rely on the following (presum-

ably) difficult problems:
1) Decoding problem/MRHS problem. These problems are

in general NP-hard, and both are related as discussed in
[11]. Parameters of the proposed scheme (if instantiated
by AES/Rijndael) are comparable (or even stronger) to
parameters of proposed code-based cryptosystems with
the same expected security level. Main concern for our
scheme is whether our specific type of decoding/MRHS
instances derived from SPN representation by MRHS
system are still sufficiently hard (in relation to random
instances of the problem).

2) Given a set of permuted transcripts of the SPN en-
cryption (with known, but not chosen, input to the first
layer of S-boxes), can the attacker find the key, or
at least provide any new transcript (permuted in the
same way)? This question is related to the security of
the underlying SPN, and the efficiency of the proposed
masking (random permutation of S-box inputs).

We will now discuss these attack vectors in more details.

A. Decoding/MRHS attacks

Verification algorithm consists of verifying the identity
v · HT = q. There is an exponentially large number of
solutions v′, but only some of them represent a valid signature.
Given valid signature v, such that vHT = q, attacker can
compute any other valid v′ by adding a codeword u of the
code generated by Mπ (which can be computed from public
Q). If our signature system was just based on the Niederreiter-
like code-based system [12], attacker could just use any prefix
h(m′, r′) and find a valid v′ · HT = q by solving a linear
system of equations.

However, our scheme has an additional property: only one
half of the vector v is provided in the signature, second half
is computed using SPN’s non-linear S-boxes. This means that
valid signatures form only a (very small and non-linear) subset
of the code coset. Each valid signature is a solution of the
MRHS system given by equation 2. If the attacker can forge
signatures, he can solve this non-linear MRHS system, and
vice-versa.

Note that underlying SPN is a block cipher, and thus a
permutation for each secret key. This means that there is a
unique transcript of the encryption and thus a unique signature
for each message hash.

As mentioned, the MRHS problem problem is related to the
decoding problem. We can use a specific decoding algorithm

to solve MRHS problem [11]. In our system there is also
a specific case where the attacker can apply the decoding
algorithm: given public key (q,Q), attacker tries to find the
original constant cπ which was used to define code coset
defined by syndrome q. If the attacker obtains cπ it might
be possible to reconstruct the original key: Attacker knowns
a permuted set of subkeys (except the first and the last one),
how difficult it is obtain original key?

However, to get c attacker needs to solve the decoding
problem first. Depending on the structure of the cipher he can
presume that cπ is a sparse vector (in contrast to signatures v)
with a specific structure (i.e., subkeys are only used to compute
outputs of S-boxes from the S-box inputs of the next round).
It is not clear whether this information can be sufficient to
simplify the decoding problem, as the expected weight of c is
still too large (compared to expected minimum code weight).

B. Structural attacks on signatures

We believe that the security of the signature scheme with
respect to decoding/MRHS problem is sufficient with respect
to generic solving methods. However, there are more critical
attacks that exploit the internal structure of the used MRHS
problem to circumvent the need to apply generic solution
methods, or to assist the generic methods. We will call these
attacks structural attacks (similar to terminology used in code-
based crypto).

First, let us note that it is necessary that attacker cannot
recover permutation π. If the attacker knowns π and a single
signature w, he can reconstruct the exact sequence of S-box
inputs in SPN. As S-boxes are public, he also knows the
corresponding S-box outputs. Let x denote a vector of outputs
of S-boxes in round i− 1, and let y denote a vector of inputs
of S-boxes in round i. Let L represent a (known) matrix of the
linear diffusion layer of SPN. Then ki = y+L(x). This means
that knowledge of π leads to a knowledge of the sequence
of subkeys. This sequence is sufficient to forge signatures
(regardless of the key schedule).

Note that specific key schedules can have an adverse effect
on the security. In AES (and many other ciphers), main encryp-
tion key can be derived from any single subkey (by running
the key schedule algorithm in reverse). This means that the
attacker only needs to find matching S-box outputs/inputs
between arbitrary rounds i − 1 and i. The easiest case is to
find the correct inputs to S-boxes in round 2 (as round 1 is
known, due to fixed part of π). This means that attacker needs
to correctly place a sequence of b = n/k blocks out of (r−1)b
blocks. Complexity of exhaustive search in this case is

N =
((r − 1) b)!

((r − 2) b)!
.

In case of AES-128, we get N ≈ 2113, which is much higher
than expected security of 64 bits. Similarly for Rijndael-256-
256, we get N ≈ 2289, which is again much higher than
security level of 128 bits.

On the other hand, attacker is not limited to an exhaustive
search. In the first version of the signature scheme, message
m (of fixed length given by the block size) was used directly
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as an input of the first layer of S-boxes. Suppose that SPN was
AES-128, and attacker used some signature oracle to obtain
signatures for two messages that differ in a single byte. From
the properties of AES diffusion layer we know that in second
round there are exactly 4 non-zero differences and 12 zero
differences. Attacker marks those bytes that are unchanged
between signatures. Repeating this with different bytes, he can
disclose the positions of the round-2 S-box inputs (in 4 byte
groups, whose order can be quickly searched to completly
disclose the subkey).

To prevent the class of chosen plaintext attacks on SPN,
we have added a randomized hashing3 as the first step of the
algorithm. The attacker still knows the inputs to the first layer
of S-boxes, but cannot select them in arbitrary way. E.g., if the
attacker was to reproduce the previous attack, he requires two
hashes that coincide in each byte except one. This is slightly
easier than the security level (in AES-128 expected complexity
is 260 hashes), but it is then followed by an attack with a
difficulty higher than the reduction obtained while looking for
collisions.

While the randomized hashing restricts the efficiency of
some of the structural attacks, it is not clear whether it is
sufficient to prevent all attacks of this type (and how serious
is the security level reduction). Efficiency of these types
of attacks are related to the concrete structure of the used
SPN. It is not sufficient that the cipher under consideration
has a sufficient number of rounds to resist some type of
cryptanalysis: as we have seen the goal of the attacker can
be different, as in some cases he only needs to distinguish
which blocks are used in some specific round.

C. Structural attacks on public key

In previous section we have discussed some ways that the
attacker can try to recover secret permutation π from some
known or chosen signatures. There is still another attack vector
related to the public key, namely parity check matrix H =
(I|Q).

System matrix M reflects the structure of the used SPN, and
is very sparse. Essentially, each block Mi can be expressed
as 


0 0
I 0
0 L
0 0


 ,

where I is an identity matrix corresponding to S-box inputs
in round i. Matrix L, along with constant c reflects the linear
layer of SPN, and represent the affine transformation applied
to S-box inputs in round i + 1 to compute S-box outputs in
round i.

This structure of the matrix is in essence preserved when
π is applied. It is however not clear, whether this structure
is always present in matrix H. Note that there are multiple
possible matrices H: any base of the dual space is suitable for
signature verification. For efficiency reasons, we have chosen
to restrict H to have a systematic form (so we only need to

3We thank one of the anonymous reviewers of the Central European
Conference on Cryptology 2019 for the general idea.

Fig. 4. Graphical depiction of the systematic parity check matrix obtained in
one of the experiments with small 16-bit SPN.

store Q). Another advantage of the systematic form is that
during the computation of systematic H we hope to hide the
sparsity and structure of the original M, similarly to LDPC-
and MDPC-based cryptosystems [13].

Our experiments with the small SPN show that in this case
a computation of the systematic parity check matrix is not
enough to mask the structure of the system. In Figure 4, we
show an example of the matrix H obtained from the SPN
demo. Structure of the original Mπ is clearly preserved, and
by matching ones on corresponding lines attacker can obtain
permutation π.

We have not implemented a full version of AES-based
scheme, thus it is not clear whether this problem is also
affecting this larger scheme. While AES-based matrix is less
sparse due to MixColumns operations, it is still significantly
structured. We believe that in this case, systematic form of H
would still not be enough to hide the structure sufficiently.

We might ask, whether the signature scheme be ever made
secure in view of this structural attack? Unfortunately, we do
not have a definitive answer, but we propose some possible
solutions to hide the system structure:

• Change the basis of variables in the system. Instead of
defining x as a vector of S-box inputs, define x as a
vector of arbitrary linearly independent variables y, from
which S-box inputs can be computed with linear algebra
as x = yA. In the key generation, we get modified
system yAM, and we compute parity check matrix for
the code generated by AMπ . Note that this is actually
the same code as the one generated by Mπ . Our hope
is to obtain different matrix H that is less sparse and
structured as before. It is not clear whether this matrix
can really be obtained, and even if it is obtained, whether
attacker cannot find different H that will show him the
system structure.

• Use SPN with secret random linear layer. We are inspired
by cipher family LowMC [6], but in the signature scheme
we do not publish the linear layer, but make it part of
the secret key. In this case we lose some efficiency and
flexibility in symmetric encryption: linear layer is now
asymmetric secret, thus the cipher cannot be reused for
symmetric encryption between network participants. This
can be remedied by using two versions of the cipher: one
for encryption, with fixed (simple) linear layer, and one

Regardless of generic attacks on the hash function, there are
multiple other ways that attacker can try to attack the signature
algorithm:

1) Try to submit false vector w′ that will satisfy the
verification algorithm. First part of the verification (hash
of message with nonce r should be the prefix of w′) is
easily satisfied. Thus the attacker is only concerned with
providing false w′ that will satisfy q = v(I|Q)T .

2) Try to derive the private key from the public key.
3) Try to derive the private key, or a new signature from

the public key and (chosen) signatures.
To prevent these attacks we rely on the following (presum-

ably) difficult problems:
1) Decoding problem/MRHS problem. These problems are

in general NP-hard, and both are related as discussed in
[11]. Parameters of the proposed scheme (if instantiated
by AES/Rijndael) are comparable (or even stronger) to
parameters of proposed code-based cryptosystems with
the same expected security level. Main concern for our
scheme is whether our specific type of decoding/MRHS
instances derived from SPN representation by MRHS
system are still sufficiently hard (in relation to random
instances of the problem).

2) Given a set of permuted transcripts of the SPN en-
cryption (with known, but not chosen, input to the first
layer of S-boxes), can the attacker find the key, or
at least provide any new transcript (permuted in the
same way)? This question is related to the security of
the underlying SPN, and the efficiency of the proposed
masking (random permutation of S-box inputs).

We will now discuss these attack vectors in more details.

A. Decoding/MRHS attacks

Verification algorithm consists of verifying the identity
v · HT = q. There is an exponentially large number of
solutions v′, but only some of them represent a valid signature.
Given valid signature v, such that vHT = q, attacker can
compute any other valid v′ by adding a codeword u of the
code generated by Mπ (which can be computed from public
Q). If our signature system was just based on the Niederreiter-
like code-based system [12], attacker could just use any prefix
h(m′, r′) and find a valid v′ · HT = q by solving a linear
system of equations.

However, our scheme has an additional property: only one
half of the vector v is provided in the signature, second half
is computed using SPN’s non-linear S-boxes. This means that
valid signatures form only a (very small and non-linear) subset
of the code coset. Each valid signature is a solution of the
MRHS system given by equation 2. If the attacker can forge
signatures, he can solve this non-linear MRHS system, and
vice-versa.

Note that underlying SPN is a block cipher, and thus a
permutation for each secret key. This means that there is a
unique transcript of the encryption and thus a unique signature
for each message hash.

As mentioned, the MRHS problem problem is related to the
decoding problem. We can use a specific decoding algorithm

to solve MRHS problem [11]. In our system there is also
a specific case where the attacker can apply the decoding
algorithm: given public key (q,Q), attacker tries to find the
original constant cπ which was used to define code coset
defined by syndrome q. If the attacker obtains cπ it might
be possible to reconstruct the original key: Attacker knowns
a permuted set of subkeys (except the first and the last one),
how difficult it is obtain original key?

However, to get c attacker needs to solve the decoding
problem first. Depending on the structure of the cipher he can
presume that cπ is a sparse vector (in contrast to signatures v)
with a specific structure (i.e., subkeys are only used to compute
outputs of S-boxes from the S-box inputs of the next round).
It is not clear whether this information can be sufficient to
simplify the decoding problem, as the expected weight of c is
still too large (compared to expected minimum code weight).

B. Structural attacks on signatures

We believe that the security of the signature scheme with
respect to decoding/MRHS problem is sufficient with respect
to generic solving methods. However, there are more critical
attacks that exploit the internal structure of the used MRHS
problem to circumvent the need to apply generic solution
methods, or to assist the generic methods. We will call these
attacks structural attacks (similar to terminology used in code-
based crypto).

First, let us note that it is necessary that attacker cannot
recover permutation π. If the attacker knowns π and a single
signature w, he can reconstruct the exact sequence of S-box
inputs in SPN. As S-boxes are public, he also knows the
corresponding S-box outputs. Let x denote a vector of outputs
of S-boxes in round i− 1, and let y denote a vector of inputs
of S-boxes in round i. Let L represent a (known) matrix of the
linear diffusion layer of SPN. Then ki = y+L(x). This means
that knowledge of π leads to a knowledge of the sequence
of subkeys. This sequence is sufficient to forge signatures
(regardless of the key schedule).

Note that specific key schedules can have an adverse effect
on the security. In AES (and many other ciphers), main encryp-
tion key can be derived from any single subkey (by running
the key schedule algorithm in reverse). This means that the
attacker only needs to find matching S-box outputs/inputs
between arbitrary rounds i − 1 and i. The easiest case is to
find the correct inputs to S-boxes in round 2 (as round 1 is
known, due to fixed part of π). This means that attacker needs
to correctly place a sequence of b = n/k blocks out of (r−1)b
blocks. Complexity of exhaustive search in this case is

N =
((r − 1) b)!

((r − 2) b)!
.

In case of AES-128, we get N ≈ 2113, which is much higher
than expected security of 64 bits. Similarly for Rijndael-256-
256, we get N ≈ 2289, which is again much higher than
security level of 128 bits.

On the other hand, attacker is not limited to an exhaustive
search. In the first version of the signature scheme, message
m (of fixed length given by the block size) was used directly
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(complex/random) linear layer for signatures with secret
linear layer. Note that while this eliminates some of the
sparsity from the system, the block structure related to
cipher rounds remains the same.

• Decompose larger S-boxes to individual AND gates, and
call these AND gates new S-boxes. In this case we
create a MRHS system with right-hand sides consist-
ing of sets related to AND gates, consisting of triples:
{000, 010, 100, 111}. Signer produces a vector of bits of
length 2m, and verifier just appends bits, that are products
of successive pairs, and verifies the coset. System matrix
in this case is more complex, as individual I/O bits on
individual AND gates need to be expressed as linear com-
binations of variables. This is also the main disadvantage
of the system: system matrix becomes excessively large,
increasing the size of the public key.

• Use a different cipher design. E.g., a wide cipher with a
large branch number could have a complex enough linear
layer in each round. If we study Figure 4, we can see that
the main problem is that S-box inputs from one round
are only connected to S-box outputs from the previous
rounds. If we do not need the encryption algorithm to
be reversible (e.g. for a use in stream cipher mode), we
can propagate some internal bits to multiple rounds. Note
that this must be done carefully to avoid enabling linear
or differential attacks on the underlying cipher.

• Would it be possible to hide some information? E.g., we
might consider, what would happen if we only include
odd numbered rounds in the signature. The MRHS system
is still present, and the signature system works correctly.
Main difference is that here are now fewer blocks of
M, and parity check matrix has smaller dimension (if
we remove half of blocks, dimension becomes zero!).
This means there would be false solutions, and multiple
signatures per message hash. It is not clear whether there
is a suitable trade-off when removing selected blocks
would actually improve the security.

Implementing some of these solutions can also solve prob-
lems with structural attacks based on known signatures. How-
ever, we believe that provably secure scheme can only be
obtained with a carefully designed block cipher with a goal of
providing signatures (through our general scheme) along with
symmetric encryption.

VII. CONCLUSIONS

In this paper we have presented a new concept of signature
scheme based on symmetric cipher design, whose signature
and verification algorithm are comparable in complexity to
symmetric encryption. Parameters of the system, and its con-
nection to symmetric ciphers, are quite favourable to consider
it for future use.

The proposed design should be not be considered a secure
signature scheme, as our assumptions are heuristic. The sig-
nature scheme relies on hardness of the decoding problem
/ MRHS problem. Moreover, if the signature system, as
presented here, is instantiated by current cipher designs (such
as AES), it would presumably not attain the required security

due to structural attacks. We have proposed some options
on how to further hide the inner structure of the encryption
system, but all of these options require further research. We
believe that the most promising direction is to design a specific
symmetric cipher that will support solid security arguments for
the proposed scheme.
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Abstract—The explosive spread of the devices connected to the
Internet has increased the need for efficient and portable cryp-
tographic routines. Despite this fact, truly platform-independent
implementations are still hard to find. In this paper, an Identity-
based Cryptography library, called CryptID is introduced. The
main goal of this library is to provide an efficient and open-
source IBC implementation for the desktop, the mobile, and the
IoT platforms. Powered by WebAssembly, which is a specification
aiming to securely speed up code execution in various embedding
environments, CryptID can be utilized on both the client and the
server-side. The second novelty of CrpytID is the use of structured
public keys, opening up a wide range of domain-specific use cases
via arbitrary metadata embedded into the public key. Embedded
metadata can include, for example, a geolocation value when
working with geolocation-based Identity-based Cryptography, or
a timestamp, enabling simple and efficient generation of single-
use keypairs. Thanks to these characteristics, we think, that
CryptID could serve as a real alternative to the current Identity-
based Cryptography implementations.

Index Terms—Pairing-based Cryptography, Identity-based
Cryptography, WebAssembly

I. INTRODUCTION

Identity-based cryptography (IBC) is an important branch
of public-key cryptography. Although its foundations were
established in 1985 by Shamir [1], who managed to build an
identity-based signature (IBS) scheme, identity-based encryp-
tion (IBE) remained an open problem until Boneh and Franklin
[2] created their pairing-based scheme in 2001, which was fast
enough for practical use.

IBC’s uniqueness lies in the fact that its public key is a
string clearly identifying an individual or organization in a
certain domain. Such a string can be an email address or a
username. The core purpose behind the IBC was to simplify
the certificate management and eliminate the need for certifi-
cation authorities. In a standard scenario, when employing the
public key infrastructure (PKI), the key is bound to its user’s
identity with a public key certificate, however with IBC the
user’s identity is the public key itself, thus there is no need for
a certificate. Despite this advantage, IBC still requires trusted
third-party servers as private key generation and distribution
can only be done by a so-called private key generator (PKG).
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One can find several IBC implementations on the Internet
[3], [4], [5], [6]. However, most of these libraries are focused
on a single platform as their target. Unfortunately, applications
developed for one specific platform can not be directly adapted
for different use. In our opinion, this is a disadvantage of these
libraries, because nowadays there is an increasing number
of mobile devices connecting to the Internet making use of
apps or web-based services. Our motivation was to create a
cross-platform, portable IBC solution targeting a large pool
of diverse devices that are capable to maintain an internet
connection.

One popular technology for development with such goals
is JavaScript. One early library of IBC is WebIBC [3], which
was developed in 2008 using JavaScript. The authors of the
paper concluded that the web browsers and the JavaScript
environment were not powerful enough, to implement a stan-
dard IBC library, which is based on pairing, because it is
”too complex and overkill”. Instead, they built a combined
scheme, which requires much less computation-power and yet,
the performance on a desktop was barely satisfying (1.5-2.5
seconds on average for encryption, using a 192-bit integer as
the key).

Of course, since 2008, the performance of JavaScript en-
gines significantly increased. An article written by a developer
of the V8 JavaScript engine [7] points out that the performance
of V8 quadrupled over the last ten years, which may inspire
us to give a chance to implement a standard IBC library with
the listed goals, using JavaScript. However, over the years a
new technology, called WebAssembly came into the picture,
which seems even more promising.

Developed by the W3C WebAssembly Community Group
since 2015, WebAssembly is a virtual instruction set architec-
ture, aiming to provide a basis for fast computations on the
web, while also giving a solution which is embeddable into
any environment [8]. Albeit being a quite young technology,
already 86% of the internet users have a compatible browser
enjoying its benefits [9]. Therefore, we can consider this
technology as a promising choice for the development of a
cross-platform IBC solution.

In this paper, we will introduce our open source solution
for a cross-platform IBC implementation using WebAssembly.
The source code is available at https://github.com/cryptid-org,
while a consumable NPM package can be downloaded from
https://www.npmjs.com/package/@cryptid/cryptid-js. Our so-
lution, called CryptID, is on the one hand small enough to
be stored on devices with limited storage capacity, while, on
the other hand, its performance is acceptable even on devices
with limited computational power. Our experiments proved
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(complex/random) linear layer for signatures with secret
linear layer. Note that while this eliminates some of the
sparsity from the system, the block structure related to
cipher rounds remains the same.

• Decompose larger S-boxes to individual AND gates, and
call these AND gates new S-boxes. In this case we
create a MRHS system with right-hand sides consist-
ing of sets related to AND gates, consisting of triples:
{000, 010, 100, 111}. Signer produces a vector of bits of
length 2m, and verifier just appends bits, that are products
of successive pairs, and verifies the coset. System matrix
in this case is more complex, as individual I/O bits on
individual AND gates need to be expressed as linear com-
binations of variables. This is also the main disadvantage
of the system: system matrix becomes excessively large,
increasing the size of the public key.

• Use a different cipher design. E.g., a wide cipher with a
large branch number could have a complex enough linear
layer in each round. If we study Figure 4, we can see that
the main problem is that S-box inputs from one round
are only connected to S-box outputs from the previous
rounds. If we do not need the encryption algorithm to
be reversible (e.g. for a use in stream cipher mode), we
can propagate some internal bits to multiple rounds. Note
that this must be done carefully to avoid enabling linear
or differential attacks on the underlying cipher.

• Would it be possible to hide some information? E.g., we
might consider, what would happen if we only include
odd numbered rounds in the signature. The MRHS system
is still present, and the signature system works correctly.
Main difference is that here are now fewer blocks of
M, and parity check matrix has smaller dimension (if
we remove half of blocks, dimension becomes zero!).
This means there would be false solutions, and multiple
signatures per message hash. It is not clear whether there
is a suitable trade-off when removing selected blocks
would actually improve the security.

Implementing some of these solutions can also solve prob-
lems with structural attacks based on known signatures. How-
ever, we believe that provably secure scheme can only be
obtained with a carefully designed block cipher with a goal of
providing signatures (through our general scheme) along with
symmetric encryption.

VII. CONCLUSIONS

In this paper we have presented a new concept of signature
scheme based on symmetric cipher design, whose signature
and verification algorithm are comparable in complexity to
symmetric encryption. Parameters of the system, and its con-
nection to symmetric ciphers, are quite favourable to consider
it for future use.

The proposed design should be not be considered a secure
signature scheme, as our assumptions are heuristic. The sig-
nature scheme relies on hardness of the decoding problem
/ MRHS problem. Moreover, if the signature system, as
presented here, is instantiated by current cipher designs (such
as AES), it would presumably not attain the required security

due to structural attacks. We have proposed some options
on how to further hide the inner structure of the encryption
system, but all of these options require further research. We
believe that the most promising direction is to design a specific
symmetric cipher that will support solid security arguments for
the proposed scheme.
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[2] created their pairing-based scheme in 2001, which was fast
enough for practical use.

IBC’s uniqueness lies in the fact that its public key is a
string clearly identifying an individual or organization in a
certain domain. Such a string can be an email address or a
username. The core purpose behind the IBC was to simplify
the certificate management and eliminate the need for certifi-
cation authorities. In a standard scenario, when employing the
public key infrastructure (PKI), the key is bound to its user’s
identity with a public key certificate, however with IBC the
user’s identity is the public key itself, thus there is no need for
a certificate. Despite this advantage, IBC still requires trusted
third-party servers as private key generation and distribution
can only be done by a so-called private key generator (PKG).
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One can find several IBC implementations on the Internet
[3], [4], [5], [6]. However, most of these libraries are focused
on a single platform as their target. Unfortunately, applications
developed for one specific platform can not be directly adapted
for different use. In our opinion, this is a disadvantage of these
libraries, because nowadays there is an increasing number
of mobile devices connecting to the Internet making use of
apps or web-based services. Our motivation was to create a
cross-platform, portable IBC solution targeting a large pool
of diverse devices that are capable to maintain an internet
connection.

One popular technology for development with such goals
is JavaScript. One early library of IBC is WebIBC [3], which
was developed in 2008 using JavaScript. The authors of the
paper concluded that the web browsers and the JavaScript
environment were not powerful enough, to implement a stan-
dard IBC library, which is based on pairing, because it is
”too complex and overkill”. Instead, they built a combined
scheme, which requires much less computation-power and yet,
the performance on a desktop was barely satisfying (1.5-2.5
seconds on average for encryption, using a 192-bit integer as
the key).

Of course, since 2008, the performance of JavaScript en-
gines significantly increased. An article written by a developer
of the V8 JavaScript engine [7] points out that the performance
of V8 quadrupled over the last ten years, which may inspire
us to give a chance to implement a standard IBC library with
the listed goals, using JavaScript. However, over the years a
new technology, called WebAssembly came into the picture,
which seems even more promising.

Developed by the W3C WebAssembly Community Group
since 2015, WebAssembly is a virtual instruction set architec-
ture, aiming to provide a basis for fast computations on the
web, while also giving a solution which is embeddable into
any environment [8]. Albeit being a quite young technology,
already 86% of the internet users have a compatible browser
enjoying its benefits [9]. Therefore, we can consider this
technology as a promising choice for the development of a
cross-platform IBC solution.

In this paper, we will introduce our open source solution
for a cross-platform IBC implementation using WebAssembly.
The source code is available at https://github.com/cryptid-org,
while a consumable NPM package can be downloaded from
https://www.npmjs.com/package/@cryptid/cryptid-js. Our so-
lution, called CryptID, is on the one hand small enough to
be stored on devices with limited storage capacity, while, on
the other hand, its performance is acceptable even on devices
with limited computational power. Our experiments proved

(complex/random) linear layer for signatures with secret
linear layer. Note that while this eliminates some of the
sparsity from the system, the block structure related to
cipher rounds remains the same.

• Decompose larger S-boxes to individual AND gates, and
call these AND gates new S-boxes. In this case we
create a MRHS system with right-hand sides consist-
ing of sets related to AND gates, consisting of triples:
{000, 010, 100, 111}. Signer produces a vector of bits of
length 2m, and verifier just appends bits, that are products
of successive pairs, and verifies the coset. System matrix
in this case is more complex, as individual I/O bits on
individual AND gates need to be expressed as linear com-
binations of variables. This is also the main disadvantage
of the system: system matrix becomes excessively large,
increasing the size of the public key.

• Use a different cipher design. E.g., a wide cipher with a
large branch number could have a complex enough linear
layer in each round. If we study Figure 4, we can see that
the main problem is that S-box inputs from one round
are only connected to S-box outputs from the previous
rounds. If we do not need the encryption algorithm to
be reversible (e.g. for a use in stream cipher mode), we
can propagate some internal bits to multiple rounds. Note
that this must be done carefully to avoid enabling linear
or differential attacks on the underlying cipher.

• Would it be possible to hide some information? E.g., we
might consider, what would happen if we only include
odd numbered rounds in the signature. The MRHS system
is still present, and the signature system works correctly.
Main difference is that here are now fewer blocks of
M, and parity check matrix has smaller dimension (if
we remove half of blocks, dimension becomes zero!).
This means there would be false solutions, and multiple
signatures per message hash. It is not clear whether there
is a suitable trade-off when removing selected blocks
would actually improve the security.

Implementing some of these solutions can also solve prob-
lems with structural attacks based on known signatures. How-
ever, we believe that provably secure scheme can only be
obtained with a carefully designed block cipher with a goal of
providing signatures (through our general scheme) along with
symmetric encryption.

VII. CONCLUSIONS

In this paper we have presented a new concept of signature
scheme based on symmetric cipher design, whose signature
and verification algorithm are comparable in complexity to
symmetric encryption. Parameters of the system, and its con-
nection to symmetric ciphers, are quite favourable to consider
it for future use.

The proposed design should be not be considered a secure
signature scheme, as our assumptions are heuristic. The sig-
nature scheme relies on hardness of the decoding problem
/ MRHS problem. Moreover, if the signature system, as
presented here, is instantiated by current cipher designs (such
as AES), it would presumably not attain the required security

due to structural attacks. We have proposed some options
on how to further hide the inner structure of the encryption
system, but all of these options require further research. We
believe that the most promising direction is to design a specific
symmetric cipher that will support solid security arguments for
the proposed scheme.
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I. INTRODUCTION

Identity-based cryptography (IBC) is an important branch
of public-key cryptography. Although its foundations were
established in 1985 by Shamir [1], who managed to build an
identity-based signature (IBS) scheme, identity-based encryp-
tion (IBE) remained an open problem until Boneh and Franklin
[2] created their pairing-based scheme in 2001, which was fast
enough for practical use.

IBC’s uniqueness lies in the fact that its public key is a
string clearly identifying an individual or organization in a
certain domain. Such a string can be an email address or a
username. The core purpose behind the IBC was to simplify
the certificate management and eliminate the need for certifi-
cation authorities. In a standard scenario, when employing the
public key infrastructure (PKI), the key is bound to its user’s
identity with a public key certificate, however with IBC the
user’s identity is the public key itself, thus there is no need for
a certificate. Despite this advantage, IBC still requires trusted
third-party servers as private key generation and distribution
can only be done by a so-called private key generator (PKG).
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One can find several IBC implementations on the Internet
[3], [4], [5], [6]. However, most of these libraries are focused
on a single platform as their target. Unfortunately, applications
developed for one specific platform can not be directly adapted
for different use. In our opinion, this is a disadvantage of these
libraries, because nowadays there is an increasing number
of mobile devices connecting to the Internet making use of
apps or web-based services. Our motivation was to create a
cross-platform, portable IBC solution targeting a large pool
of diverse devices that are capable to maintain an internet
connection.

One popular technology for development with such goals
is JavaScript. One early library of IBC is WebIBC [3], which
was developed in 2008 using JavaScript. The authors of the
paper concluded that the web browsers and the JavaScript
environment were not powerful enough, to implement a stan-
dard IBC library, which is based on pairing, because it is
”too complex and overkill”. Instead, they built a combined
scheme, which requires much less computation-power and yet,
the performance on a desktop was barely satisfying (1.5-2.5
seconds on average for encryption, using a 192-bit integer as
the key).

Of course, since 2008, the performance of JavaScript en-
gines significantly increased. An article written by a developer
of the V8 JavaScript engine [7] points out that the performance
of V8 quadrupled over the last ten years, which may inspire
us to give a chance to implement a standard IBC library with
the listed goals, using JavaScript. However, over the years a
new technology, called WebAssembly came into the picture,
which seems even more promising.

Developed by the W3C WebAssembly Community Group
since 2015, WebAssembly is a virtual instruction set architec-
ture, aiming to provide a basis for fast computations on the
web, while also giving a solution which is embeddable into
any environment [8]. Albeit being a quite young technology,
already 86% of the internet users have a compatible browser
enjoying its benefits [9]. Therefore, we can consider this
technology as a promising choice for the development of a
cross-platform IBC solution.

In this paper, we will introduce our open source solution
for a cross-platform IBC implementation using WebAssembly.
The source code is available at https://github.com/cryptid-org,
while a consumable NPM package can be downloaded from
https://www.npmjs.com/package/@cryptid/cryptid-js. Our so-
lution, called CryptID, is on the one hand small enough to
be stored on devices with limited storage capacity, while, on
the other hand, its performance is acceptable even on devices
with limited computational power. Our experiments proved
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[3], [4], [5], [6]. However, most of these libraries are focused
on a single platform as their target. Unfortunately, applications
developed for one specific platform can not be directly adapted
for different use. In our opinion, this is a disadvantage of these
libraries, because nowadays there is an increasing number
of mobile devices connecting to the Internet making use of
apps or web-based services. Our motivation was to create a
cross-platform, portable IBC solution targeting a large pool
of diverse devices that are capable to maintain an internet
connection.

One popular technology for development with such goals
is JavaScript. One early library of IBC is WebIBC [3], which
was developed in 2008 using JavaScript. The authors of the
paper concluded that the web browsers and the JavaScript
environment were not powerful enough, to implement a stan-
dard IBC library, which is based on pairing, because it is
”too complex and overkill”. Instead, they built a combined
scheme, which requires much less computation-power and yet,
the performance on a desktop was barely satisfying (1.5-2.5
seconds on average for encryption, using a 192-bit integer as
the key).

Of course, since 2008, the performance of JavaScript en-
gines significantly increased. An article written by a developer
of the V8 JavaScript engine [7] points out that the performance
of V8 quadrupled over the last ten years, which may inspire
us to give a chance to implement a standard IBC library with
the listed goals, using JavaScript. However, over the years a
new technology, called WebAssembly came into the picture,
which seems even more promising.

Developed by the W3C WebAssembly Community Group
since 2015, WebAssembly is a virtual instruction set architec-
ture, aiming to provide a basis for fast computations on the
web, while also giving a solution which is embeddable into
any environment [8]. Albeit being a quite young technology,
already 86% of the internet users have a compatible browser
enjoying its benefits [9]. Therefore, we can consider this
technology as a promising choice for the development of a
cross-platform IBC solution.

In this paper, we will introduce our open source solution
for a cross-platform IBC implementation using WebAssembly.
The source code is available at https://github.com/cryptid-org,
while a consumable NPM package can be downloaded from
https://www.npmjs.com/package/@cryptid/cryptid-js. Our so-
lution, called CryptID, is on the one hand small enough to
be stored on devices with limited storage capacity, while, on
the other hand, its performance is acceptable even on devices
with limited computational power. Our experiments proved

(complex/random) linear layer for signatures with secret
linear layer. Note that while this eliminates some of the
sparsity from the system, the block structure related to
cipher rounds remains the same.

• Decompose larger S-boxes to individual AND gates, and
call these AND gates new S-boxes. In this case we
create a MRHS system with right-hand sides consist-
ing of sets related to AND gates, consisting of triples:
{000, 010, 100, 111}. Signer produces a vector of bits of
length 2m, and verifier just appends bits, that are products
of successive pairs, and verifies the coset. System matrix
in this case is more complex, as individual I/O bits on
individual AND gates need to be expressed as linear com-
binations of variables. This is also the main disadvantage
of the system: system matrix becomes excessively large,
increasing the size of the public key.

• Use a different cipher design. E.g., a wide cipher with a
large branch number could have a complex enough linear
layer in each round. If we study Figure 4, we can see that
the main problem is that S-box inputs from one round
are only connected to S-box outputs from the previous
rounds. If we do not need the encryption algorithm to
be reversible (e.g. for a use in stream cipher mode), we
can propagate some internal bits to multiple rounds. Note
that this must be done carefully to avoid enabling linear
or differential attacks on the underlying cipher.

• Would it be possible to hide some information? E.g., we
might consider, what would happen if we only include
odd numbered rounds in the signature. The MRHS system
is still present, and the signature system works correctly.
Main difference is that here are now fewer blocks of
M, and parity check matrix has smaller dimension (if
we remove half of blocks, dimension becomes zero!).
This means there would be false solutions, and multiple
signatures per message hash. It is not clear whether there
is a suitable trade-off when removing selected blocks
would actually improve the security.

Implementing some of these solutions can also solve prob-
lems with structural attacks based on known signatures. How-
ever, we believe that provably secure scheme can only be
obtained with a carefully designed block cipher with a goal of
providing signatures (through our general scheme) along with
symmetric encryption.

VII. CONCLUSIONS

In this paper we have presented a new concept of signature
scheme based on symmetric cipher design, whose signature
and verification algorithm are comparable in complexity to
symmetric encryption. Parameters of the system, and its con-
nection to symmetric ciphers, are quite favourable to consider
it for future use.

The proposed design should be not be considered a secure
signature scheme, as our assumptions are heuristic. The sig-
nature scheme relies on hardness of the decoding problem
/ MRHS problem. Moreover, if the signature system, as
presented here, is instantiated by current cipher designs (such
as AES), it would presumably not attain the required security

due to structural attacks. We have proposed some options
on how to further hide the inner structure of the encryption
system, but all of these options require further research. We
believe that the most promising direction is to design a specific
symmetric cipher that will support solid security arguments for
the proposed scheme.
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ID is the user’s identity and sQID the corresponding secret
key.

There are already multiple types of implementations of
the IBE. The most popular variants are based on factoring,
discrete logarithm or pairing. The first implementation worth
mentioning is the Cocks IBE [13], which is based on integer
factorization and the quadratic residuosity problem. Unfor-
tunately, this solution produces long ciphertexts and suffers
from long runtimes, rendering it inadequate for practical use.
The real break-through came with the Boneh-Franklin IBE
[2], which is based on pairing. This scheme is appropriate for
practical use, but there exist other well-known IBE schemes
with better performance, such as the Boneh-Boyen IBE [14],
Sakai-Kasahara IBE [15] and TinyIBE [4].

The standard IBS scheme is similar to the IBE scheme by
it’s structure. The first schemes were based on factoring or
RSA [1], [16], [17], but these were not practical. Nowadays
the ones based on pairing seem to be the preferred schemes,
for instance [18], [19] to name a few.

To assess the security provided by the schemes, Bellare,
Namprempre and Neven compared most of the existing IBS
schemes with their framework [20].

C. WebAssembly

In this section, we would like to provide a short overview of
WebAssembly, which is the key technology behind our work.

During the past decades, the Web has become a ubiquitous
application platform, allowing developers to target a huge
audience of users in a platform-independent manner. Thus, one
can see more and more use cases for the Web platform, even
in computation-intensive niches such as games, computer-
aided design or audio and video manipulation software. On
the other hand, efficient and at the same time, secure code
execution remained an issue: technologies such as ActiveX
[21], PNaCl [22] or asm.js [23] failed to consistently deliver
these properties.

Therefore, a new Web specification, WebAssembly has
born, aiming to securely speed up code execution on the Web
[24]. The design goals of WebAssembly revolve around two
key points, semantics and representation [8].

1) Design Goals: Regarding semantics, WebAssembly
aims to execute code with near-native performance in a safe,
sandboxed environment, while being hardware-, language- and
platform-independent. As WebAssembly can be seen as a
compilation target, language-independence means the lack of
a privileged programming or object model.

Considering representation, WebAssembly offers a compact,
modular binary format, that can be efficiently decoded, vali-
dated and compiled. The specification also considers streaming
and parallel compilation of modules.

2) Targeting WebAssembly: Several popular programming
languages offer WebAssembly as a compilation target, such
as C/C++, Rust or C#. As our library is written in C, here we
would only cover targeting facilities for that case.

Emscripten is a compiler toolchain built on top of LLVM,
that can create WebAssembly modules from C and C++
source files [25] [26]. It should be noted, however, that

Emscripten is capable of much more than simply emitting
WebAssembly modules. As the browser (which is the main
target of Emscripten) is a vastly different environment than
the one assumed by most C applications, Emscripten offers
the Emscripten Runtime Environment including, for example,
a virtual file system, libc and libcxx implementations and
tailored input and output handling.

3) Embedding WebAssembly: Despite its name,
WebAssembly was designed considering server-side
deployments from the ground up. The specification explicitly
states openness as one of its design goals, which is achieved
by providing a small, well-defined interface between the
host environment and the WebAssembly semantics. Since the
birth of the specification, several server-side runtimes have
appeared, such as Lucet [27] or Wasmer [28].

Regarding Emscripten, we have previously highlighted, that
it provides its own runtime environment in the browser. As
the WebAssembly specification does not cover interfacing
with system resources (such as files), currently each host has
to define its own, incompatible runtime environment. In the
future, this is going to change, since the WebAssembly System
Interface (WASI) specification aims to cover this area [29].

III. CRYPTID

In most of the cases, it is not obvious how to implement a
reliable cryptosystem, even if a mathematically proved secure
cryptography protocol is available to build on. During the
implementation, it is easy to make mistakes that open vul-
nerabilities. These vulnerabilities could come from program-
ming negligence (incorrect input validation), or mathematical
inattention, ignorance (using unsafe elliptic curves).

Most of the mistakes could be prevented, by using the
standards during the implementation. In the case of IBC,
multiple standards assist and guide the implementation [30],
[31], [32], [33], [34], [35].

This section of the paper is about our solution, called
CryptID, which is, in brief, an IBC implementation based on
the RFC 5091. Nevertheless, it is not just a usual implemen-
tation, its novelty can be approached from two directions.

The novelty in the implementation is that CryptID is based
on WebAssembly. Thanks to this property, CryptID is able
to work on both the server-side and the client-side, or even
completely separated from the web, providing a truly cross-
platform and efficient IBC solution.

The novelty in the IBC scheme can be found in the public
key. CryptID uses structured public keys, which may contain
any kind of metadata with the identity string. This opens up
many kinds of domain-specific opportunities. For example, if
the current time is part of the metadata, then the keypair is
devised for one-time use.

A. Cross-platform operation

With CryptID we wanted to create a library which provides
efficient client-side IBC mainly targeting web browsers. Fur-
thermore, we intended to implement a solution that can be used
on the server-side, and even on IoT and alike. The motivation
behind this was that we did not know about any open source
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that public key solutions based on IBC are similarly efficient,
as those which are based on the PKI. However, the former
provides additional possibilities thanks to the properties of the
public key.

The rest of the paper is organized as follows. Section II
contains some discussion about the relevance of IBC and
WebAssembly and also describes Pairing-based cryptography
and the standard IBC scheme. Our IBC implementation and
its novelties are presented in Section III. Afterward, Section
IV outlines the performance of our library on multiple plat-
forms. Section V gives a conclusion and contains some future
development plans.

II. PRELIMINARIES

A. Pairing

For q = pk with a prime p denote Fq the finite field with
q elements. Let E = E(Fq) be an elliptic curve over Fq . For
the subgroup G1 ⊆ E the mapping e : G1 ×G1 �→ Fq� with
� ≥ 1 is called pairing if
bilinear: For all P,Q ∈ G1 and for all a, b ∈ Z∗

q we have
e(aP, bQ) = e(P,Q)ab.

non degenerated: If P is a non-zero element of G1 then
e(P, P ) generate Fq� .

Pairing is a rich theory and has numerous applications
in cryptography, see the book of Cohen et al [10]. Its first
celebrated application is due to Menezes, Okamoto and Van-
stone [11], who proved that for supersingular elliptic curves
the discrete elliptic logarithm problem can be reduced in
polynomial time to a discrete logarithm problem. To prove this
result they used the efficiently computable Weil pairing. To
avoid technical difficulties we do not define the Weil pairing,
but refer to the paper of Boneh and Franklin [2]. There you
may find not only the exact definition of the Weil pairing, but
also its application to the identity based cryptography.

B. Identity-based Cryptography

In a public-key cryptography system, one very important
task is key management. Nowadays, it is mostly handled by
the PKI, which seems to work well, however, it has some
shortcomings. In the white paper published by Micro Focus
International plc [12] six important requirements are specified
for enterprise key management.

• Deliver encryption keys.
• Authenticate users and deliver decryption keys.
• Jointly manage keys with partners.
• Deliver keys to trusted infrastructure components.
• Recover keys.
• Scale for growth.

The paper also clearly points out the shortcomings of the PKI.
In many ways, it is difficult to use, implement and manage.
This difficulty mainly comes from the need of maintaining
enormous databases, which can be compromised or damaged,
leading to severe data breaches or data loss. Additionally,
maintaining such databases can get very expensive.

IBC may offer an obvious solution to these problems. IBC
is a type of public-key cryptography in which the public key

is a string clearly identifying an individual or organization in
a certain domain. It is important to mention that not just the
identifier can be arbitrary, but also the domain which specifies
the scope of the identifier. This domain can be a global or
even a local one, with only a few people in it.

The attractiveness of IBC comes from the previously men-
tioned properties of the public key, making it possible to estab-
lish systems without certification authorities and with simpler
key management. Thus, IBC satisfies all six requirements in
a cost-effective and user-accessible way.

From the point of this paper, two applications of IBC
are relevant, encryption (IBE) and digital signature creation
(IBS). Figure 1 shows how a standard IBE scheme works.
The main participants are as follows: those want to exchange
encrypted messages with each other and a third party, which
handles the authentication and the private key generation. For
authentication purposes, any already deployed resource can be
reused, since this aspect is not limited by the scheme itself.
The private key generation is performed by a trusted third
party called the Private Key Generator (PKG).

Fig. 1: How IBE works

The IBE scheme is based on four algorithms.

• Setup. Responsible for the initialization of the system.
It generates the public parameters of the system and the
master secret.

• Extract. This is the algorithm for calculating the private
key from the public parameters, the user’s identity, and
the master secret.

• Encrypt. The algorithm for message encryption. It pro-
duces a ciphertext from the public parameters of the
system, the public key and the plaintext message.

• Decrypt. The algorithm for message decryption. It uses
the public parameters of the system, a private key gener-
ated by the PKG and an encrypted message.

It should be noted, that Encrypt and Decrypt are the inverse
of each other. This means, if the message space is M, then
∀M ∈ M : Decrypt(Encrypt(M , ID), sQID) = M , where
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ID is the user’s identity and sQID the corresponding secret
key.

There are already multiple types of implementations of
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[2], which is based on pairing. This scheme is appropriate for
practical use, but there exist other well-known IBE schemes
with better performance, such as the Boneh-Boyen IBE [14],
Sakai-Kasahara IBE [15] and TinyIBE [4].

The standard IBS scheme is similar to the IBE scheme by
it’s structure. The first schemes were based on factoring or
RSA [1], [16], [17], but these were not practical. Nowadays
the ones based on pairing seem to be the preferred schemes,
for instance [18], [19] to name a few.

To assess the security provided by the schemes, Bellare,
Namprempre and Neven compared most of the existing IBS
schemes with their framework [20].

C. WebAssembly

In this section, we would like to provide a short overview of
WebAssembly, which is the key technology behind our work.

During the past decades, the Web has become a ubiquitous
application platform, allowing developers to target a huge
audience of users in a platform-independent manner. Thus, one
can see more and more use cases for the Web platform, even
in computation-intensive niches such as games, computer-
aided design or audio and video manipulation software. On
the other hand, efficient and at the same time, secure code
execution remained an issue: technologies such as ActiveX
[21], PNaCl [22] or asm.js [23] failed to consistently deliver
these properties.

Therefore, a new Web specification, WebAssembly has
born, aiming to securely speed up code execution on the Web
[24]. The design goals of WebAssembly revolve around two
key points, semantics and representation [8].

1) Design Goals: Regarding semantics, WebAssembly
aims to execute code with near-native performance in a safe,
sandboxed environment, while being hardware-, language- and
platform-independent. As WebAssembly can be seen as a
compilation target, language-independence means the lack of
a privileged programming or object model.

Considering representation, WebAssembly offers a compact,
modular binary format, that can be efficiently decoded, vali-
dated and compiled. The specification also considers streaming
and parallel compilation of modules.

2) Targeting WebAssembly: Several popular programming
languages offer WebAssembly as a compilation target, such
as C/C++, Rust or C#. As our library is written in C, here we
would only cover targeting facilities for that case.

Emscripten is a compiler toolchain built on top of LLVM,
that can create WebAssembly modules from C and C++
source files [25] [26]. It should be noted, however, that

Emscripten is capable of much more than simply emitting
WebAssembly modules. As the browser (which is the main
target of Emscripten) is a vastly different environment than
the one assumed by most C applications, Emscripten offers
the Emscripten Runtime Environment including, for example,
a virtual file system, libc and libcxx implementations and
tailored input and output handling.

3) Embedding WebAssembly: Despite its name,
WebAssembly was designed considering server-side
deployments from the ground up. The specification explicitly
states openness as one of its design goals, which is achieved
by providing a small, well-defined interface between the
host environment and the WebAssembly semantics. Since the
birth of the specification, several server-side runtimes have
appeared, such as Lucet [27] or Wasmer [28].

Regarding Emscripten, we have previously highlighted, that
it provides its own runtime environment in the browser. As
the WebAssembly specification does not cover interfacing
with system resources (such as files), currently each host has
to define its own, incompatible runtime environment. In the
future, this is going to change, since the WebAssembly System
Interface (WASI) specification aims to cover this area [29].

III. CRYPTID

In most of the cases, it is not obvious how to implement a
reliable cryptosystem, even if a mathematically proved secure
cryptography protocol is available to build on. During the
implementation, it is easy to make mistakes that open vul-
nerabilities. These vulnerabilities could come from program-
ming negligence (incorrect input validation), or mathematical
inattention, ignorance (using unsafe elliptic curves).

Most of the mistakes could be prevented, by using the
standards during the implementation. In the case of IBC,
multiple standards assist and guide the implementation [30],
[31], [32], [33], [34], [35].

This section of the paper is about our solution, called
CryptID, which is, in brief, an IBC implementation based on
the RFC 5091. Nevertheless, it is not just a usual implemen-
tation, its novelty can be approached from two directions.

The novelty in the implementation is that CryptID is based
on WebAssembly. Thanks to this property, CryptID is able
to work on both the server-side and the client-side, or even
completely separated from the web, providing a truly cross-
platform and efficient IBC solution.

The novelty in the IBC scheme can be found in the public
key. CryptID uses structured public keys, which may contain
any kind of metadata with the identity string. This opens up
many kinds of domain-specific opportunities. For example, if
the current time is part of the metadata, then the keypair is
devised for one-time use.

A. Cross-platform operation

With CryptID we wanted to create a library which provides
efficient client-side IBC mainly targeting web browsers. Fur-
thermore, we intended to implement a solution that can be used
on the server-side, and even on IoT and alike. The motivation
behind this was that we did not know about any open source
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that public key solutions based on IBC are similarly efficient,
as those which are based on the PKI. However, the former
provides additional possibilities thanks to the properties of the
public key.

The rest of the paper is organized as follows. Section II
contains some discussion about the relevance of IBC and
WebAssembly and also describes Pairing-based cryptography
and the standard IBC scheme. Our IBC implementation and
its novelties are presented in Section III. Afterward, Section
IV outlines the performance of our library on multiple plat-
forms. Section V gives a conclusion and contains some future
development plans.

II. PRELIMINARIES

A. Pairing

For q = pk with a prime p denote Fq the finite field with
q elements. Let E = E(Fq) be an elliptic curve over Fq . For
the subgroup G1 ⊆ E the mapping e : G1 ×G1 �→ Fq� with
� ≥ 1 is called pairing if
bilinear: For all P,Q ∈ G1 and for all a, b ∈ Z∗

q we have
e(aP, bQ) = e(P,Q)ab.

non degenerated: If P is a non-zero element of G1 then
e(P, P ) generate Fq� .

Pairing is a rich theory and has numerous applications
in cryptography, see the book of Cohen et al [10]. Its first
celebrated application is due to Menezes, Okamoto and Van-
stone [11], who proved that for supersingular elliptic curves
the discrete elliptic logarithm problem can be reduced in
polynomial time to a discrete logarithm problem. To prove this
result they used the efficiently computable Weil pairing. To
avoid technical difficulties we do not define the Weil pairing,
but refer to the paper of Boneh and Franklin [2]. There you
may find not only the exact definition of the Weil pairing, but
also its application to the identity based cryptography.

B. Identity-based Cryptography

In a public-key cryptography system, one very important
task is key management. Nowadays, it is mostly handled by
the PKI, which seems to work well, however, it has some
shortcomings. In the white paper published by Micro Focus
International plc [12] six important requirements are specified
for enterprise key management.

• Deliver encryption keys.
• Authenticate users and deliver decryption keys.
• Jointly manage keys with partners.
• Deliver keys to trusted infrastructure components.
• Recover keys.
• Scale for growth.

The paper also clearly points out the shortcomings of the PKI.
In many ways, it is difficult to use, implement and manage.
This difficulty mainly comes from the need of maintaining
enormous databases, which can be compromised or damaged,
leading to severe data breaches or data loss. Additionally,
maintaining such databases can get very expensive.

IBC may offer an obvious solution to these problems. IBC
is a type of public-key cryptography in which the public key

is a string clearly identifying an individual or organization in
a certain domain. It is important to mention that not just the
identifier can be arbitrary, but also the domain which specifies
the scope of the identifier. This domain can be a global or
even a local one, with only a few people in it.

The attractiveness of IBC comes from the previously men-
tioned properties of the public key, making it possible to estab-
lish systems without certification authorities and with simpler
key management. Thus, IBC satisfies all six requirements in
a cost-effective and user-accessible way.

From the point of this paper, two applications of IBC
are relevant, encryption (IBE) and digital signature creation
(IBS). Figure 1 shows how a standard IBE scheme works.
The main participants are as follows: those want to exchange
encrypted messages with each other and a third party, which
handles the authentication and the private key generation. For
authentication purposes, any already deployed resource can be
reused, since this aspect is not limited by the scheme itself.
The private key generation is performed by a trusted third
party called the Private Key Generator (PKG).

Fig. 1: How IBE works

The IBE scheme is based on four algorithms.

• Setup. Responsible for the initialization of the system.
It generates the public parameters of the system and the
master secret.

• Extract. This is the algorithm for calculating the private
key from the public parameters, the user’s identity, and
the master secret.

• Encrypt. The algorithm for message encryption. It pro-
duces a ciphertext from the public parameters of the
system, the public key and the plaintext message.

• Decrypt. The algorithm for message decryption. It uses
the public parameters of the system, a private key gener-
ated by the PKG and an encrypted message.

It should be noted, that Encrypt and Decrypt are the inverse
of each other. This means, if the message space is M, then
∀M ∈ M : Decrypt(Encrypt(M , ID), sQID) = M , where
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an element of Fp2 . The implementation is based on Lynn’s
dissertation [42] and Martin’s book [43].

Identity-based cryptography: The IBC routines are em-
bedded into this layer. It includes the implementation of
the Boneh-Franklin IBE [2] and the Hess IBS [18]. It also
contains some miscellaneous helper functions, like an SHA
implementation based on the RFC 6234 standard [44], and
other hash functions based on SHA.

Wasm/JavaScript interoperability: The previous three lay-
ers together form an IBC implementation, which can even
be consumed by native applications, without the need for
WebAssembly compilation. However, when targeting the Web,
these layers are hidden behind a JavaScript interface, as a
WebAssembly module.

This abstraction is not absolutely necessary, because the
WebAssembly embedding environment allows to call the func-
tions of the module directly. However, CryptID is designed for
those embedding environments, which grant the WebAssembly
module calls via JavaScript. Such environments include web
browsers or Node.js. This way CryptID can be called like
any other JavaScript library rendering WebAssembly a simple
implementation detail for clients.

To support this approach, it is crucial to implement an
interoperability layer, which is responsible for the following
tasks.

• Wrapping the C functions. To make the C functions
callable from JavaScript, they need to be wrapped with
the cwrap function of Emscripten’s Module object.

• Conversion between datatypes. In our case two conver-
sions were necessary, in both cases back and forth. The
first one is the converson of GMP’s mpz t big number
type to JavaScript strings. The other one is the conversion
betwen raw C byte arrays and JavaScript ArrayBuffers.

• Bidirectional dataflow. It is not possible to use complex
types like structs as parameters or return values, so the
only way to exchange values is to copy between the
isolated memory spaces accessible to JavaScript and to
WebAssembly.

JavaScript interface: The JavaScript interface is a group of
functions and datatypes which are public for outside clients.
While previous layers can all be seen as implementation
details, this layer is the actual interface that clients may
consume.

Besides being a facade to lower layers, this layer has further
responsibilities.

• Input validation. Being the public interface of the library,
this is the only point where invalid input may enter into
the system. Such values include null values or objects and
strings with incorrect structure. Thanks to the validation
performed by this layer, malformed values cannot form
the basis of any computation.

• Key conversion. One of CryptID’s novelties was the
structured public key, which is able to contain any kind of
metadata. Currently, structured public keys are handled in
the interoperability layer, as JSON values. As there can be
multiple JSON representations of the semantically same
information, it is an important task to always convert
JSON strings with the same content to the same bitstream.

Our solution is to first create a new JavaScript object
from the JSON string, with keys added in alphabet-
ical order. Afterwards, JSON.stringify is called
on this object to produce a new JSON string. Since
JSON.stringify is guaranteed to preserve the origi-
nal key addition order when producing JSON documents,
we will always get the same bitstream from documents
with the same keys. Thanks to this solution the lower
layers do not need to know anything about the structure
of the public key.

IV. PERFORMANCE

In the next section, the performance of the CryptID library
is covered. We ran several benchmarks in multiple different
environments while exercising the most performance-critical
parts of the codebase. Where appropriate, we also compared
the performance of our solution with the native version of
other, well-established libraries. The IBS scheme is based on
the same algorithms as the IBE protocol, so it’s performance
evaluation is not included in the paper, but the main results
are identical.

First, we briefly outline the benchmark environments, which
is followed by a detailed description of the performed exper-
iments and their results.

A. Environments

Proving the platform-independent nature of our library,
we aimed to benchmark it on a variety of platforms and
WebAssembly embedders. On the desktop, we performed
experiments in three different embedders (Mozilla Firefox,
Google Chrome, Node.js), and we also included the perfor-
mance of the native version of the library as a baseline result.
The exact hardware and software specifications can be seen in
Table I. Regarding the mobile, we executed measurements in
a single embedder (Google Chrome). Detailed specifications
are available in Table II.

On all platforms, we used the Google Benchmark library
[45] for our experiments. An experiment comprises twenty
performance tests, where each test contains multiple execu-
tions of the same code on the same input. The result of the
experiment is calculated as the average of the execution times.
Inputs were chosen randomly for the four RFC defined security
levels shown in Table III. Here, p is the order of the base finite
field, the elliptic curve is defined over, while k stands for the
RSA keylength providing comparable security [46].

Parameter Value
Model Dell Inspiron 5567 (2017)
CPU i7-7500U, 2,7 GHz
OS Ubuntu 16.04.4 LTS
emscripten 1.38.8
gcc 5.4.0 20160609
Node.js v8.9.1
Firefox Quantum 62.0.3

TABLE I: Desktop hardware and software configuration.
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IBC implementation which is out-of-the-box compatible with
these platforms.

Earlier, the only technology which was able to serve
these needs, was JavaScript. Unfortunately, JavaScript is far
from ideal regarding the performance of computation-intensive
tasks, which is just made worse by the fact that every browser
has different optimizations, meaning, if something runs fast
in one browser, it may be slow in the other. One solution
for this problem is asm.js [23], which is a carefully chosen,
easy-to-optimize subset of JavaScript. However, asm.js is not
a well-established standard.

WebAssembly, on the other hand, is a great choice for
projects like CryptID, because it is designed from the ground
up as a performance and secure target platform. Moreover,
WebAssembly made it possible for us to use GMP [36] as
our arbitrary-precision arithmetic library, providing a stable,
thoroughly tested foundation to our library.

B. Structured public key

As was written earlier, the essence of IBC is that the
public key clearly identifies an individual in a certain domain.
Furthermore, Boneh and Franklin in their work [2] mentioned
that the public keys are expandable with any kind of metadata.
It can be, for example, a year, which assigns a limited period
of validity to the public and private keys. In that paper they
simply concatenate the metadata to the identifier:

”bob@company.com ‖ current-year”

In our opinion, this is a brilliant idea, with one serious flaw.
By using concatenation, flexibility suffers greatly: everything
needs to be in a fixed order. Of course, this cannot be changed,
as the public key needs to be the same on the bit-level both
at encryption and extraction time. This could be a possible
point of failure, especially if there are plenty of metadata
concatenated.

One solution to this is to add an extra step to the protocol
before we use the public key. If we convert the public key to
JSON, we can accept arbitrary-ordered JSON documents from
the clients. The idea is simple: as the order of keys in a JSON
object does not carry any meaning, we are free to reorder them.
When given a public key, we always use the same key-sorting
algorithm, making it possible to feed bit-accurate public keys
to the rest of the protocol. Thus, the clients of CryptID do not
need to worry about the way they structure the public key.

Of course, this solution is only applicable to standard IBC
protocols. There are schemes, that are using more flexible
public keys and do not require complete bit-accuracy. The
first work related to this idea was presented by Sahai and
Waters [37]. This idea opened an entire branch of protocols,
which are focusing on the idea, that decryption should be
possible for users who own a public key, that is not bit-
accurate to the key used for encryption, but satisfies some
kind of rules. This way, it is possible to target a group of users
with single encryption. The branch is called Attribute-based
Encryption, which has two papers containing the fundamentals
and both approaches the problem from different ways. One
is Key Policy Attribute-based Encryption [38] and the other

is Ciphertext Policy Attribute-based Encryption [39]. Besides,
there are some IBC protocols too, with the same essentials
[40], [41].

Unfortunately, most of the protocols that are targeting
multiple users with a single encryption suffer from the same
problem. The more flexibility the encryption provides, the
more computation is required by the clients, which results in
slower encryption and/or decryption.

C. Library structure

CryptID can be divided into two main components:
CryptID.wasm, which is a WebAssembly module, containing
the IBC routines. The source code is written in C and is
compiled to WebAssembly via Emscripten. The second part
of the library is CryptID.js, which is a wrapper on top of the
WebAssembly module, written in JavaScript. It provides an
easy to use interface for the developers.

The library formed by these parts can, in turn, be divided
into five smaller layers, shown in Figure 2.

Fig. 2: The structure of CryptID.

Elliptic-curve arithmetics: Most of the popular IBC
schemes are based on elliptic-curve cryptography, so the core
part of our library is the elliptic-curve arithmetics. The reason
behind writing our own implementation is that we could not
find a third-party solution that is well-tested and compilable
to WebAssembly. As our routines were designed and tested
with WebAssembly in mind, we could be sure that they would
operate correctly in this environment.

This layer is optimized to Type-1 curves, as recommended
in the RFC 5091. The class of curves of Type-1 is defined as
the class of all elliptic curves of equation E(Fp) : y

2 = x3+1
for all primes p ≡ 11(mod 12). This class forms a subclass
of the class of supersingular curves.

To represent big numbers, we are using the GMP [36]
arithmetic library. The elliptic-curve points are represented
on the affine plane. The layer contains only the necessary
methods, namely point doubling, point addition and point
scalar multiplication.

Pairing-based cryptography: The majority of IBC protocols
are using the pairing operation. As the RFC 5091 recommends,
this layer provides a custom implementation of the Tate
pairing. The implementation maps two points of E(Fp) to
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an element of Fp2 . The implementation is based on Lynn’s
dissertation [42] and Martin’s book [43].

Identity-based cryptography: The IBC routines are em-
bedded into this layer. It includes the implementation of
the Boneh-Franklin IBE [2] and the Hess IBS [18]. It also
contains some miscellaneous helper functions, like an SHA
implementation based on the RFC 6234 standard [44], and
other hash functions based on SHA.

Wasm/JavaScript interoperability: The previous three lay-
ers together form an IBC implementation, which can even
be consumed by native applications, without the need for
WebAssembly compilation. However, when targeting the Web,
these layers are hidden behind a JavaScript interface, as a
WebAssembly module.

This abstraction is not absolutely necessary, because the
WebAssembly embedding environment allows to call the func-
tions of the module directly. However, CryptID is designed for
those embedding environments, which grant the WebAssembly
module calls via JavaScript. Such environments include web
browsers or Node.js. This way CryptID can be called like
any other JavaScript library rendering WebAssembly a simple
implementation detail for clients.

To support this approach, it is crucial to implement an
interoperability layer, which is responsible for the following
tasks.

• Wrapping the C functions. To make the C functions
callable from JavaScript, they need to be wrapped with
the cwrap function of Emscripten’s Module object.

• Conversion between datatypes. In our case two conver-
sions were necessary, in both cases back and forth. The
first one is the converson of GMP’s mpz t big number
type to JavaScript strings. The other one is the conversion
betwen raw C byte arrays and JavaScript ArrayBuffers.

• Bidirectional dataflow. It is not possible to use complex
types like structs as parameters or return values, so the
only way to exchange values is to copy between the
isolated memory spaces accessible to JavaScript and to
WebAssembly.

JavaScript interface: The JavaScript interface is a group of
functions and datatypes which are public for outside clients.
While previous layers can all be seen as implementation
details, this layer is the actual interface that clients may
consume.

Besides being a facade to lower layers, this layer has further
responsibilities.

• Input validation. Being the public interface of the library,
this is the only point where invalid input may enter into
the system. Such values include null values or objects and
strings with incorrect structure. Thanks to the validation
performed by this layer, malformed values cannot form
the basis of any computation.

• Key conversion. One of CryptID’s novelties was the
structured public key, which is able to contain any kind of
metadata. Currently, structured public keys are handled in
the interoperability layer, as JSON values. As there can be
multiple JSON representations of the semantically same
information, it is an important task to always convert
JSON strings with the same content to the same bitstream.

Our solution is to first create a new JavaScript object
from the JSON string, with keys added in alphabet-
ical order. Afterwards, JSON.stringify is called
on this object to produce a new JSON string. Since
JSON.stringify is guaranteed to preserve the origi-
nal key addition order when producing JSON documents,
we will always get the same bitstream from documents
with the same keys. Thanks to this solution the lower
layers do not need to know anything about the structure
of the public key.

IV. PERFORMANCE

In the next section, the performance of the CryptID library
is covered. We ran several benchmarks in multiple different
environments while exercising the most performance-critical
parts of the codebase. Where appropriate, we also compared
the performance of our solution with the native version of
other, well-established libraries. The IBS scheme is based on
the same algorithms as the IBE protocol, so it’s performance
evaluation is not included in the paper, but the main results
are identical.

First, we briefly outline the benchmark environments, which
is followed by a detailed description of the performed exper-
iments and their results.

A. Environments

Proving the platform-independent nature of our library,
we aimed to benchmark it on a variety of platforms and
WebAssembly embedders. On the desktop, we performed
experiments in three different embedders (Mozilla Firefox,
Google Chrome, Node.js), and we also included the perfor-
mance of the native version of the library as a baseline result.
The exact hardware and software specifications can be seen in
Table I. Regarding the mobile, we executed measurements in
a single embedder (Google Chrome). Detailed specifications
are available in Table II.

On all platforms, we used the Google Benchmark library
[45] for our experiments. An experiment comprises twenty
performance tests, where each test contains multiple execu-
tions of the same code on the same input. The result of the
experiment is calculated as the average of the execution times.
Inputs were chosen randomly for the four RFC defined security
levels shown in Table III. Here, p is the order of the base finite
field, the elliptic curve is defined over, while k stands for the
RSA keylength providing comparable security [46].

Parameter Value
Model Dell Inspiron 5567 (2017)
CPU i7-7500U, 2,7 GHz
OS Ubuntu 16.04.4 LTS
emscripten 1.38.8
gcc 5.4.0 20160609
Node.js v8.9.1
Firefox Quantum 62.0.3

TABLE I: Desktop hardware and software configuration.

4

IBC implementation which is out-of-the-box compatible with
these platforms.

Earlier, the only technology which was able to serve
these needs, was JavaScript. Unfortunately, JavaScript is far
from ideal regarding the performance of computation-intensive
tasks, which is just made worse by the fact that every browser
has different optimizations, meaning, if something runs fast
in one browser, it may be slow in the other. One solution
for this problem is asm.js [23], which is a carefully chosen,
easy-to-optimize subset of JavaScript. However, asm.js is not
a well-established standard.

WebAssembly, on the other hand, is a great choice for
projects like CryptID, because it is designed from the ground
up as a performance and secure target platform. Moreover,
WebAssembly made it possible for us to use GMP [36] as
our arbitrary-precision arithmetic library, providing a stable,
thoroughly tested foundation to our library.

B. Structured public key

As was written earlier, the essence of IBC is that the
public key clearly identifies an individual in a certain domain.
Furthermore, Boneh and Franklin in their work [2] mentioned
that the public keys are expandable with any kind of metadata.
It can be, for example, a year, which assigns a limited period
of validity to the public and private keys. In that paper they
simply concatenate the metadata to the identifier:

”bob@company.com ‖ current-year”

In our opinion, this is a brilliant idea, with one serious flaw.
By using concatenation, flexibility suffers greatly: everything
needs to be in a fixed order. Of course, this cannot be changed,
as the public key needs to be the same on the bit-level both
at encryption and extraction time. This could be a possible
point of failure, especially if there are plenty of metadata
concatenated.

One solution to this is to add an extra step to the protocol
before we use the public key. If we convert the public key to
JSON, we can accept arbitrary-ordered JSON documents from
the clients. The idea is simple: as the order of keys in a JSON
object does not carry any meaning, we are free to reorder them.
When given a public key, we always use the same key-sorting
algorithm, making it possible to feed bit-accurate public keys
to the rest of the protocol. Thus, the clients of CryptID do not
need to worry about the way they structure the public key.

Of course, this solution is only applicable to standard IBC
protocols. There are schemes, that are using more flexible
public keys and do not require complete bit-accuracy. The
first work related to this idea was presented by Sahai and
Waters [37]. This idea opened an entire branch of protocols,
which are focusing on the idea, that decryption should be
possible for users who own a public key, that is not bit-
accurate to the key used for encryption, but satisfies some
kind of rules. This way, it is possible to target a group of users
with single encryption. The branch is called Attribute-based
Encryption, which has two papers containing the fundamentals
and both approaches the problem from different ways. One
is Key Policy Attribute-based Encryption [38] and the other

is Ciphertext Policy Attribute-based Encryption [39]. Besides,
there are some IBC protocols too, with the same essentials
[40], [41].

Unfortunately, most of the protocols that are targeting
multiple users with a single encryption suffer from the same
problem. The more flexibility the encryption provides, the
more computation is required by the clients, which results in
slower encryption and/or decryption.

C. Library structure

CryptID can be divided into two main components:
CryptID.wasm, which is a WebAssembly module, containing
the IBC routines. The source code is written in C and is
compiled to WebAssembly via Emscripten. The second part
of the library is CryptID.js, which is a wrapper on top of the
WebAssembly module, written in JavaScript. It provides an
easy to use interface for the developers.

The library formed by these parts can, in turn, be divided
into five smaller layers, shown in Figure 2.

Fig. 2: The structure of CryptID.

Elliptic-curve arithmetics: Most of the popular IBC
schemes are based on elliptic-curve cryptography, so the core
part of our library is the elliptic-curve arithmetics. The reason
behind writing our own implementation is that we could not
find a third-party solution that is well-tested and compilable
to WebAssembly. As our routines were designed and tested
with WebAssembly in mind, we could be sure that they would
operate correctly in this environment.

This layer is optimized to Type-1 curves, as recommended
in the RFC 5091. The class of curves of Type-1 is defined as
the class of all elliptic curves of equation E(Fp) : y

2 = x3+1
for all primes p ≡ 11(mod 12). This class forms a subclass
of the class of supersingular curves.

To represent big numbers, we are using the GMP [36]
arithmetic library. The elliptic-curve points are represented
on the affine plane. The layer contains only the necessary
methods, namely point doubling, point addition and point
scalar multiplication.

Pairing-based cryptography: The majority of IBC protocols
are using the pairing operation. As the RFC 5091 recommends,
this layer provides a custom implementation of the Tate
pairing. The implementation maps two points of E(Fp) to
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Parameter Value
Model Nokia 6.1 TA-1043
CPU Qualcomm Snapdragon 630, 2.2 GHz
OS Android 8.1.0 - Kernel 4.4.78-perf+
Chrome for Mobile 68.0.3440.91

TABLE II: Mobile hardware and software configuration.

Security Level p bitlength k

LOWEST 512 1024
LOW 1024 2048
MEDIUM 1536 3072
HIGH 3840 7680

TABLE III: Security levels and values for appropriate
parameters as stated in RFC 5091.

B. Benchmark Results

1) Elliptic Curve Scalar Multiplication: Considering the
elliptic curve arithmetics, the scalar multiplication of elliptic
curve points is a key operation to IBE. This operation can be
found in a vast number of libraries, from which we chose
MIRACL [5] and PARI [47] for our benchmarks because
these are well-known and thoroughly tested solutions. In our
experiments, we compared the performance of four different
configurations: native MIRACL, native PARI, native CryptID
and CryptID WebAssembly (Node.js).

In Figure 3, we graphed the benchmark results on a loga-
rithmic scale, where the vertical axis represents the runtime in
nanoseconds. It is clear that MIRACL is several magnitudes
faster than any other solution. On the other hand, we would
like to highlight, that the native version of CryptID is just
a little behind PARI, which is promising. Being this close
results from the same choice of algorithm (double-and-add)
and arithmetic library (GMP). In the case of the WebAssembly
version, a somewhat consistent performance penalty can be no-
ticed, compared to the native version. As the specification and
the implementations mature, we expect this gap to decrease
gradually.

Fig. 3: Performance comparison of elliptic curve scalar
multiplication solutions.

2) Encrypt: CryptID was primarily designed for client-side
use cases, where encryption and decryption take place on the
user’s device. Optimizing the performance of these operations
is crucial, as we expect them to executed be frequently in a
wide variety of browsers and devices. Thus, we first measured

the runtime of the encrypt method in four different config-
urations: desktop Node.js, desktop Firefox browser, desktop
Chrome browser, and again, desktop native as a baseline.

The logarithmically graphed results can be seen in Figure
4, where the vertical axis represents the runtime in millisec-
onds. On the desktop, the same sized performance gap is
present between the native and WebAssembly versions, as
in the case of elliptic curve scalar multiplication. Executing
the WebAssembly code is consistently three to four times
slower than the native program. However, we were quite
surprised to discover, that our experiments took approximately
the same time to finish in Node.js and Firefox, considering
the difference between the WebAssembly runtimes of these
environments.

Fig. 4: Performance comparison of the encrypt function in
across various environments.

Unfortunately, encryption on the mobile is around four to
five times slower than on the desktop. The difference results
from the gap between desktop and mobile computational
power. In spite of that, execution time of the low and medium
security level can still be considered acceptable in practice.

3) Components of Encrypt: After outlining and comparing
the performance of the encrypt operation in different envi-
ronments, we would also like to further break this operation
down into smaller components. The pie charts of Figure 5
show the results of profiling an experiment on a high input
in the desktop Firefox environment.

Fig. 5: Profiling results of a single encrypt execution on
HIGH input in the desktop Firefox environment.

The run time of encrypt is impacted by the performance
of the Tate pairing and the HashToPoint function. As it
can be seen on the bottom right chart, the execution time
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of the latter is approximately equivalent to that of a single
elliptic curve scalar multiplication. Regarding the Tate pairing,
modular exponentiation and multiplicative inverse have the
largest influence on the performance.

4) Decrypt: We also performed experiments on the de-
crypt function in the same configurations as in the case of
encryption. Based on the previous tests, we already had an
approximate expectation regarding the performance of this
function.

The actual results are shown in Figure 6, graphed on a
logarithmic scale. Just as expected, the native desktop version
has the best performance, while desktop Firefox is on par
with Node.js. The performance gaps are of the same size as
observed in the case of encryption.

Fig. 6: Performance comparison of the decrypt function in
across various environments.

Comparing the performance of decryption and encryption,
one can notice, that decrypt runs for two-thirds of the run time
as of encrypt. This is caused by the fact, that decrypt is equal
to a single execution of the Tate pairing.

V. CONCLUSION AND FUTURE WORK

We created a novel IBC library, which serves as a real
alternative to the current implementations. One of the li-
brary’s unique characteristics lies in its portability. Thanks to
WebAssembly’s platform-independent nature, CryptID offers
an IBC solution on desktop, mobile, and IoT. The portability
is combined with simple integrability, which makes for an
appealing application development experience. CryptID also
extends the already appealing identity-based public keys with
optional metadata, in a structured, easy-to-manage way, giving
an opportunity for many domain-specific use cases.

Several applications can be built on the above-mentioned
novelties of the library. The client-side execution of the crypto-
graphic functions provides a secure use of IBC, for example as
a secure e-mail service. Besides the domain-specific options,
structured public keys can also be used for the creation of
single-use public keys, which is another important potential
application of the library.

Considering future work, there are multiple possibilities to
improve the performance of the library. With the implementa-
tion of better-performing arithmetic functions, we can optimize
CryptID. Our main goal is to improve the elliptic-curve arith-
metic layer, with the implementation of the Heuberger-Mazzoli

scalar multiplication [48], and with some useful tricks, like
precalculations.

Furthermore, another direction is the binary size reduction.
Even though our bare library itself is lightweight, our de-
pendency on GMP increases the linked binary size to a few
hundred kilobytes. Unfortunately, dropping this dependency
would cost us a lot of work, thus we are thinking of dif-
ferent approaches. Such an approach, for example, is called
tree-shaking, which means the disposal of the unused code,
potentially reducing the size of the linked binary even further.
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Parameter Value
Model Nokia 6.1 TA-1043
CPU Qualcomm Snapdragon 630, 2.2 GHz
OS Android 8.1.0 - Kernel 4.4.78-perf+
Chrome for Mobile 68.0.3440.91

TABLE II: Mobile hardware and software configuration.

Security Level p bitlength k

LOWEST 512 1024
LOW 1024 2048
MEDIUM 1536 3072
HIGH 3840 7680

TABLE III: Security levels and values for appropriate
parameters as stated in RFC 5091.

B. Benchmark Results

1) Elliptic Curve Scalar Multiplication: Considering the
elliptic curve arithmetics, the scalar multiplication of elliptic
curve points is a key operation to IBE. This operation can be
found in a vast number of libraries, from which we chose
MIRACL [5] and PARI [47] for our benchmarks because
these are well-known and thoroughly tested solutions. In our
experiments, we compared the performance of four different
configurations: native MIRACL, native PARI, native CryptID
and CryptID WebAssembly (Node.js).

In Figure 3, we graphed the benchmark results on a loga-
rithmic scale, where the vertical axis represents the runtime in
nanoseconds. It is clear that MIRACL is several magnitudes
faster than any other solution. On the other hand, we would
like to highlight, that the native version of CryptID is just
a little behind PARI, which is promising. Being this close
results from the same choice of algorithm (double-and-add)
and arithmetic library (GMP). In the case of the WebAssembly
version, a somewhat consistent performance penalty can be no-
ticed, compared to the native version. As the specification and
the implementations mature, we expect this gap to decrease
gradually.

Fig. 3: Performance comparison of elliptic curve scalar
multiplication solutions.

2) Encrypt: CryptID was primarily designed for client-side
use cases, where encryption and decryption take place on the
user’s device. Optimizing the performance of these operations
is crucial, as we expect them to executed be frequently in a
wide variety of browsers and devices. Thus, we first measured

the runtime of the encrypt method in four different config-
urations: desktop Node.js, desktop Firefox browser, desktop
Chrome browser, and again, desktop native as a baseline.

The logarithmically graphed results can be seen in Figure
4, where the vertical axis represents the runtime in millisec-
onds. On the desktop, the same sized performance gap is
present between the native and WebAssembly versions, as
in the case of elliptic curve scalar multiplication. Executing
the WebAssembly code is consistently three to four times
slower than the native program. However, we were quite
surprised to discover, that our experiments took approximately
the same time to finish in Node.js and Firefox, considering
the difference between the WebAssembly runtimes of these
environments.

Fig. 4: Performance comparison of the encrypt function in
across various environments.

Unfortunately, encryption on the mobile is around four to
five times slower than on the desktop. The difference results
from the gap between desktop and mobile computational
power. In spite of that, execution time of the low and medium
security level can still be considered acceptable in practice.

3) Components of Encrypt: After outlining and comparing
the performance of the encrypt operation in different envi-
ronments, we would also like to further break this operation
down into smaller components. The pie charts of Figure 5
show the results of profiling an experiment on a high input
in the desktop Firefox environment.

Fig. 5: Profiling results of a single encrypt execution on
HIGH input in the desktop Firefox environment.

The run time of encrypt is impacted by the performance
of the Tate pairing and the HashToPoint function. As it
can be seen on the bottom right chart, the execution time
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of the latter is approximately equivalent to that of a single
elliptic curve scalar multiplication. Regarding the Tate pairing,
modular exponentiation and multiplicative inverse have the
largest influence on the performance.

4) Decrypt: We also performed experiments on the de-
crypt function in the same configurations as in the case of
encryption. Based on the previous tests, we already had an
approximate expectation regarding the performance of this
function.

The actual results are shown in Figure 6, graphed on a
logarithmic scale. Just as expected, the native desktop version
has the best performance, while desktop Firefox is on par
with Node.js. The performance gaps are of the same size as
observed in the case of encryption.

Fig. 6: Performance comparison of the decrypt function in
across various environments.

Comparing the performance of decryption and encryption,
one can notice, that decrypt runs for two-thirds of the run time
as of encrypt. This is caused by the fact, that decrypt is equal
to a single execution of the Tate pairing.

V. CONCLUSION AND FUTURE WORK

We created a novel IBC library, which serves as a real
alternative to the current implementations. One of the li-
brary’s unique characteristics lies in its portability. Thanks to
WebAssembly’s platform-independent nature, CryptID offers
an IBC solution on desktop, mobile, and IoT. The portability
is combined with simple integrability, which makes for an
appealing application development experience. CryptID also
extends the already appealing identity-based public keys with
optional metadata, in a structured, easy-to-manage way, giving
an opportunity for many domain-specific use cases.

Several applications can be built on the above-mentioned
novelties of the library. The client-side execution of the crypto-
graphic functions provides a secure use of IBC, for example as
a secure e-mail service. Besides the domain-specific options,
structured public keys can also be used for the creation of
single-use public keys, which is another important potential
application of the library.

Considering future work, there are multiple possibilities to
improve the performance of the library. With the implementa-
tion of better-performing arithmetic functions, we can optimize
CryptID. Our main goal is to improve the elliptic-curve arith-
metic layer, with the implementation of the Heuberger-Mazzoli

scalar multiplication [48], and with some useful tricks, like
precalculations.

Furthermore, another direction is the binary size reduction.
Even though our bare library itself is lightweight, our de-
pendency on GMP increases the linked binary size to a few
hundred kilobytes. Unfortunately, dropping this dependency
would cost us a lot of work, thus we are thinking of dif-
ferent approaches. Such an approach, for example, is called
tree-shaking, which means the disposal of the unused code,
potentially reducing the size of the linked binary even further.
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 
Abstract— In this paper, performance of device-to-device (D2D) 

communication system over Fluctuating Beckmann (FB) fading 
channels is analyzed. FB fading model is a novel generalized fading 
model that unifies various fading models such as Rayleigh, 
Nakagami, one-sided Gaussian, Rician, Rician shadowed, κ-μ, κ-μ 
shadowed, η-μ and Beckmann. The considered D2D system is 
assumed to be affected by various FB faded co-channel interferers. 
Using the characteristic function (CF) approach outage 
probability and success probability expressions are given. These 
expressions are functions of D2D and interference path-loss 
exponents, distance between the D2D devices, distances between 
interferers and the D2D receiver and, interference and D2D fading 
channel conditions. Maximum ratio combining (MRC) and 
selection combining (SC) based diversity schemes are considered 
to mitigate channel fading effects. D2D communication system 
under various conditions of channel fading and interference is 
numerically analyzed and discussed. 
 

Index Terms— Co-channel Interference, Device-to-Device, 
Fluctuating Beckmann, Outage Probability, Success Probability 
 

I. INTRODUCTION 
An explosive growth in high data rate demand on cellular 

communication systems is expected in near future. This demand 
is due to the popularity of online gaming, HD video streaming 
and other social media services. Device-to-device (D2D) 
communication system has emerged as one of the promising 
technologies to overcome this problem [1-2]. It is considered to 
be one of the dynamic techniques of the 5th generation (5G) 
cellular communication standard. D2D communication is 
defined as the direct communication of devices with each other, 
when are in proximity, without involvement of base station 
(BS). D2D system can enhance the data rate, spectrum 
utilization and, the energy efficiency of the user devices and the 
networks [3-4]. Despite many advantages, D2D communication 
brings some challenges as well. Due to insufficient wireless 
channel bandwidth and the loss of coordination between 
wireless devices, co-channel interference (CCI) problem arises 
[5]. Therefore, effects of CCI should be considered for the 
analysis of D2D systems. In this paper, performance of the D2D 
communication system is analyzed with the help of outage 
probability and success probability. Outage probability 
performance of D2D communication system using stochastic 
geometry is studied by authors in [6]. Authors in [6], have not 

 
 

 

considered any diversity scheme for the system. In [7], authors 
studied outage performance of D2D system under optimal 
spectrum allocation strategy. Authors has discussed resource 
sharing method for user in the system. Authors in [8], discussed 
outage probability of D2D communication in a cellular network 
from a general threshold-based perspective. Success probability 
of D2D communication system over Rician fading channel 
under the distributed random-access control scheme is analyzed 
by authors in [9]. 
Outage and success performance analysis of D2D system in the 
presence of CCI is the aim of this work. The co-channel 
interference signals are considered to originate from any 
wireless device with which the system has lost coordination. 
The channel for the D2D and CCI signals are assumed to follow 
Fluctuating Beckmann (FB) distribution. FB fading model is a 
generalized fading model which includes many fading models 
as special case [10]. The one-sided Gaussian, Rayleigh, 
Nakagami, η-μ, κ-μ, κ-μ shadowed, Rician, Rician Shadowed 
and the Beckmann distribution are the special cases of FB 
model [10]. The κ-μ shadowed fading model [11] manages to 
capture propagation conditions like clustering and LoS 
fluctuation. However, it fails when there is power imbalance in 
the LoS and NLoS components. Fluctuating Beckmann (FB) 
fading model which is an extended κ-μ shadowed model is 
introduced in [10].  FB model effectively captures such 
scenarios. FB model is a generalization of Beckmann fading 
model by considering the effects of line-of-sight (LoS) 
fluctuation and clustering. It also takes into account the effects 
of power imbalance in the LoS and non-LoS components [10]. 
CCI effects on the performance of D2D communication system 
is analyzed. Use of generalized FB model has enabled us to 
present analytical expressions that can be used to analyze 
various fading conditions. The SC and MRC based diversity 
schemes are also considered to combat fading effects. Path loss 
conditions are also included in the analysis. Outage and success 
probability expressions for the non-identically distributed D2D 
and CCI signals are presented. Numerical analysis under 
various channel and CCI conditions are presented and 
discussed. Numerical results from these expressions are 
obtained with the help of MATLAB. The rest of paper is 
structured as follows: the system model is discussed in Section 
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II. Also analytical expressions for outage probability and 
success probability are presented in Section II. In Section III, 
numerical results are presented and discussed. Finally, paper is 
concluded in Section IV.  

II. SYSTEM MODEL 
A device-to-device (D2D) communication system in an 

interference limited environment is considered here. The 
system model is illustrated in Fig. 1. There are N co-channel 
interferers that are affecting the D2D communication system. 
The D2D signals and co-channel interference (CCI) signals are 
considered to be independent and non-identically distributed. 
The co-channel interferers are assumed to be at different 
distances from the receiver of the D2D pair. The channels for 
D2D and CCI signals are assumed to be Fluctuating Beckmann 
(FB) distributed. Path-loss is a significant factor in performance 
degradation of any communication system. In this paper, a 
simplified path-loss model is considered [12]. To reduce the 
effects of fading maximal ratio combining (MRC) and selection 
combining (SC) based diversity techniques with D branches are 
considered in the system. 
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where SS-SC,d is the received power at the d-th diversity branch 
of D2D receiver,  P1 is the power of the D2D signal, x is the 
distance between desired D2D devices, u is path-loss exponent 
for the D2D signal, x0 is the reference distance and hd is an 
independent FB fading variable in the d-th diversity branch. 
Similarly, SI is the received power of CCI signals, PI,n is the 
power of the n-th CCI signal which is originated from a device 
at a distance yn from the D2D receiver, y0,n is the reference 
distance, vn is the path-loss exponent of the n-th co-channel 
interferer and βn is an independent FB fading variable of the n-
th CCI signal. The outage probability is defined as the 
probability that the instantaneous SIR of the communication 
system falls below a predefined threshold R. The outage 
probability for the D2D system is 
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  and Pr(.) is probability. 

Based on (2), a decision variable    is defined as 
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II. Also analytical expressions for outage probability and 
success probability are presented in Section II. In Section III, 
numerical results are presented and discussed. Finally, paper is 
concluded in Section IV.  

II. SYSTEM MODEL 
A device-to-device (D2D) communication system in an 

interference limited environment is considered here. The 
system model is illustrated in Fig. 1. There are N co-channel 
interferers that are affecting the D2D communication system. 
The D2D signals and co-channel interference (CCI) signals are 
considered to be independent and non-identically distributed. 
The co-channel interferers are assumed to be at different 
distances from the receiver of the D2D pair. The channels for 
D2D and CCI signals are assumed to be Fluctuating Beckmann 
(FB) distributed. Path-loss is a significant factor in performance 
degradation of any communication system. In this paper, a 
simplified path-loss model is considered [12]. To reduce the 
effects of fading maximal ratio combining (MRC) and selection 
combining (SC) based diversity techniques with D branches are 
considered in the system. 
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numerical results are presented and discussed. Finally, paper is 
concluded in Section IV.  
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system model is illustrated in Fig. 1. There are N co-channel 
interferers that are affecting the D2D communication system. 
The D2D signals and co-channel interference (CCI) signals are 
considered to be independent and non-identically distributed. 
The co-channel interferers are assumed to be at different 
distances from the receiver of the D2D pair. The channels for 
D2D and CCI signals are assumed to be Fluctuating Beckmann 
(FB) distributed. Path-loss is a significant factor in performance 
degradation of any communication system. In this paper, a 
simplified path-loss model is considered [12]. To reduce the 
effects of fading maximal ratio combining (MRC) and selection 
combining (SC) based diversity techniques with D branches are 
considered in the system. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. System Model 

 
 

D2D device  

Desired D2D Signal  

Distance between D2D devices x 

n-th Co-channel Interferer  

Co-channel Interference Signal  

Distance between the n-th Co-channel Interferer and 

the D2D Receiver 

yn 

 

A. Selection Combining (SC) Scheme 
The signal-to-interference ratio (SIR) at the d-th diversity 

branch of the selection combining (SC) based D2D system is 
 

2
0

1
,

2
0,

,
1

n

n

u

du
S SC d

vNI n
I n nv

n n

xP h
S x

S y
P

y









 
 
 
 
  
 


                                                     (1) 

 
where SS-SC,d is the received power at the d-th diversity branch 
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concluded in Section IV.  
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system model is illustrated in Fig. 1. There are N co-channel 
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The D2D signals and co-channel interference (CCI) signals are 
considered to be independent and non-identically distributed. 
The co-channel interferers are assumed to be at different 
distances from the receiver of the D2D pair. The channels for 
D2D and CCI signals are assumed to be Fluctuating Beckmann 
(FB) distributed. Path-loss is a significant factor in performance 
degradation of any communication system. In this paper, a 
simplified path-loss model is considered [12]. To reduce the 
effects of fading maximal ratio combining (MRC) and selection 
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where SS-SC,d is the received power at the d-th diversity branch 
of D2D receiver,  P1 is the power of the D2D signal, x is the 
distance between desired D2D devices, u is path-loss exponent 
for the D2D signal, x0 is the reference distance and hd is an 
independent FB fading variable in the d-th diversity branch. 
Similarly, SI is the received power of CCI signals, PI,n is the 
power of the n-th CCI signal which is originated from a device 
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distance, vn is the path-loss exponent of the n-th co-channel 
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D2D and CCI signals are assumed to be Fluctuating Beckmann 
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where SS,MRC is the received power of the D2D signal. The 
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II. Also analytical expressions for outage probability and 
success probability are presented in Section II. In Section III, 
numerical results are presented and discussed. Finally, paper is 
concluded in Section IV.  

II. SYSTEM MODEL 
A device-to-device (D2D) communication system in an 

interference limited environment is considered here. The 
system model is illustrated in Fig. 1. There are N co-channel 
interferers that are affecting the D2D communication system. 
The D2D signals and co-channel interference (CCI) signals are 
considered to be independent and non-identically distributed. 
The co-channel interferers are assumed to be at different 
distances from the receiver of the D2D pair. The channels for 
D2D and CCI signals are assumed to be Fluctuating Beckmann 
(FB) distributed. Path-loss is a significant factor in performance 
degradation of any communication system. In this paper, a 
simplified path-loss model is considered [12]. To reduce the 
effects of fading maximal ratio combining (MRC) and selection 
combining (SC) based diversity techniques with D branches are 
considered in the system. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. System Model 
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A. Selection Combining (SC) Scheme 
The signal-to-interference ratio (SIR) at the d-th diversity 

branch of the selection combining (SC) based D2D system is 
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where SS-SC,d is the received power at the d-th diversity branch 
of D2D receiver,  P1 is the power of the D2D signal, x is the 
distance between desired D2D devices, u is path-loss exponent 
for the D2D signal, x0 is the reference distance and hd is an 
independent FB fading variable in the d-th diversity branch. 
Similarly, SI is the received power of CCI signals, PI,n is the 
power of the n-th CCI signal which is originated from a device 
at a distance yn from the D2D receiver, y0,n is the reference 
distance, vn is the path-loss exponent of the n-th co-channel 
interferer and βn is an independent FB fading variable of the n-
th CCI signal. The outage probability is defined as the 
probability that the instantaneous SIR of the communication 
system falls below a predefined threshold R. The outage 
probability for the D2D system is 
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Based on (2), a decision variable    is defined as 
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The outage expression in (6) is for the independent but non-
identically distributed D2D and CCI signals. The outage 
probability for independent and identically distributed case is 
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Success probability is defined as the probability that the SIR of 
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threshold R. The expression for the success probability of SC 
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The success probability expression presented in (8) is for the 
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B. Maximal Ratio Combining (MRC) Scheme 
The SIR of the D2D system at the output of D branches MRC 
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where SS,MRC is the received power of the D2D signal. The 
outage probability for the MRC based D2D system is 
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Using the expression given in (11), a decision variable    is 
defined as 
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has to be negative. Otherwise, outage will happen. 
Mathematically, 
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The CF of the decision variable    is given as 
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II. Also analytical expressions for outage probability and 
success probability are presented in Section II. In Section III, 
numerical results are presented and discussed. Finally, paper is 
concluded in Section IV.  

II. SYSTEM MODEL 
A device-to-device (D2D) communication system in an 

interference limited environment is considered here. The 
system model is illustrated in Fig. 1. There are N co-channel 
interferers that are affecting the D2D communication system. 
The D2D signals and co-channel interference (CCI) signals are 
considered to be independent and non-identically distributed. 
The co-channel interferers are assumed to be at different 
distances from the receiver of the D2D pair. The channels for 
D2D and CCI signals are assumed to be Fluctuating Beckmann 
(FB) distributed. Path-loss is a significant factor in performance 
degradation of any communication system. In this paper, a 
simplified path-loss model is considered [12]. To reduce the 
effects of fading maximal ratio combining (MRC) and selection 
combining (SC) based diversity techniques with D branches are 
considered in the system. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. System Model 
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A. Selection Combining (SC) Scheme 
The signal-to-interference ratio (SIR) at the d-th diversity 

branch of the selection combining (SC) based D2D system is 
 

2
0

1
,

2
0,

,
1

n

n

u

du
S SC d

vNI n
I n nv

n n

xP h
S x

S y
P

y









 
 
 
 
  
 


                                                     (1) 

 
where SS-SC,d is the received power at the d-th diversity branch 
of D2D receiver,  P1 is the power of the D2D signal, x is the 
distance between desired D2D devices, u is path-loss exponent 
for the D2D signal, x0 is the reference distance and hd is an 
independent FB fading variable in the d-th diversity branch. 
Similarly, SI is the received power of CCI signals, PI,n is the 
power of the n-th CCI signal which is originated from a device 
at a distance yn from the D2D receiver, y0,n is the reference 
distance, vn is the path-loss exponent of the n-th co-channel 
interferer and βn is an independent FB fading variable of the n-
th CCI signal. The outage probability is defined as the 
probability that the instantaneous SIR of the communication 
system falls below a predefined threshold R. The outage 
probability for the D2D system is 
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  and Pr(.) is probability. 

Based on (2), a decision variable    is defined as 
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For a successful reception, the value of   must be less than 
zero, otherwise outage will occur. Mathematically,  
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In this study, a characteristic function (CF) based approach is 
used for the outage analysis. The CF expression for the decision 
variable is obtained with the help of [10] and is given as, 
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components, and, d  and n  are average power of the  d-th 
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The outage expression in (6) is for the independent but non-
identically distributed D2D and CCI signals. The outage 
probability for independent and identically distributed case is 
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Success probability is defined as the probability that the SIR of 
the communication system remains above a predefined 
threshold R. The expression for the success probability of SC 
diversity based D2D system is 
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The success probability expression presented in (8) is for the 
independent but non-identically distributed D2D and CCI 
signals. The success probability expression for the independent 
and identically distributed case is 
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B. Maximal Ratio Combining (MRC) Scheme 
The SIR of the D2D system at the output of D branches MRC 
combiner is 
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where SS,MRC is the received power of the D2D signal. The 
outage probability for the MRC based D2D system is 
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Using the expression given in (11), a decision variable    is 
defined as 
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For a satisfactory desired D2D signal quality, the value of    
has to be negative. Otherwise, outage will happen. 
Mathematically, 
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The CF of the decision variable    is given as 
 

 
  1 2

1

1 1

d

d

m

d d

d d d d

d

D

d
d d

j C j F
G j E G j H

m

j A j B
 

 
 

 
 





            
  
     
     
 
 
 
  

  



Performance Analysis of Communication System  
with Fluctuating Beckmann Fading

DECEMBER 2019 • VOLUME XI • NUMBER 442

INFOCOMMUNICATIONS JOURNAL

 
 

4 

  1 2

1

1 1

n

n

m

n n

n n n n

n

N

n
n n

j C j F
G j E G j H

m

          
j A j B



 
 

 





            
  
     
     
 
 
 
  

  
 
(14) 

 
Based on (13) and (14), the outage probability expression for 
independent but non-identically distributed D2D and CCI 
signals is 
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The outage probability expression for independent and 
identically distributed system is 
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The success probability expression for the independent and 
non-identically distributed system is 
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The success probability expression for the independent and 
identically distributed case is 
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III. NUMERICAL RESULTS AND ANALYSIS 
In this section, the performance of FB faded D2D system 

based on the expressions derived in Section II is presented. The 
reference distances x0 and y0,n are assumed to be 1 meter. Fig. 2 
shows the outage performance of D2D system with the various 
number of diversity branches for both SC and MRC schemes. 
The values for D2D signals parameters for number of diversity 
branches D = 2 and 3, and CCI signals parameters are shown in 
Table 1. 

 
Table 1. 

Parameters Values Parameters Values 
u 3.4 PI,n [16.98, 17.78, 18.45, 

19.03, 20] dBm 
x 15 meters vn [2.7, 2.8, 2.9, 3.0, 

2.6] 
μd [10,7] & [10, 7, 1] yn [45, 40, 35, 30, 25] 

meters 
κd [10, 3] & [10, 3, 8] μn [1, 3, 7, 3, 4] 

2
d  [0.1, 0.01] & [0.1, 

0.01, 1] 
2

n  [0.01, 0.1, 0.001, 1, 
2]  

ηd [10, 5] & [10, 5, 6] κn [1, 5, 6, 4, 5] 
md [3, 2] & [3, 2, 7] ηn [1, 2, 7, 2, 3] 
R 16.98 mn [1, 3, 4, 2, 6] 

 
From the figure, it is clear that as the number of branches is 
increased for the SC and MRC schemes outage performance 
improves. It is because of the improved SIR conditions of the 
system. Furthermore, it is seen that the increase in power of the 
D2D signal improves the outage performance of the system. 
Analytical and simulation of Outage performance of D2D 
communication system with various values μd and x is shown in 
Fig. 3. The values for D2D signals parameters and CCI signals 
parameters are shown in Table 2. 

 
Table 2. 

Parameters Values Parameters Values 
P1 20 dBm vn [3, 3.1, 3.2, 3.3, 3] 
u 2.6 μn [1, 3, 7, 3, 4] 
κd [0, 0] κn [0, 0, 0, 0, 0] 
ηd [0, 0]  ηn [0, 0, 0, 0, 0] 
md [0, 0] mn [0, 0, 0, 0, 0]  

2
d  [0, 0]  2

n  [0, 0, 0, 0, 0] 

PI,n [20, 23.01, 24.77, 
26.02, 26.99] dBm 

yn [45, 40, 35, 30, 30] 
meters 

 
From the figure, it is observed that the outage probability of the 
system is less for higher values fading parameter μd. It is 
because of the fading condition of D2D signals which results in 
an improved outage performance of the D2D system. 
Moreover, the increase in distance between D2D devices 
degrades the outage performance of the system. It is because of 
the path-loss phenomena. Outage performance of D2D system 
for various values of vn and x is shown in Fig. 4. The values for 
the three branches of MRC based D2D signal parameters and 
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Analytical and simulation of Outage performance of D2D 
communication system with various values μd and x is shown in 
Fig. 3. The values for D2D signals parameters and CCI signals 
parameters are shown in Table 2. 
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md [0, 0] mn [0, 0, 0, 0, 0]  

2
d  [0, 0]  2

n  [0, 0, 0, 0, 0] 

PI,n [20, 23.01, 24.77, 
26.02, 26.99] dBm 

yn [45, 40, 35, 30, 30] 
meters 

 
From the figure, it is observed that the outage probability of the 
system is less for higher values fading parameter μd. It is 
because of the fading condition of D2D signals which results in 
an improved outage performance of the D2D system. 
Moreover, the increase in distance between D2D devices 
degrades the outage performance of the system. It is because of 
the path-loss phenomena. Outage performance of D2D system 
for various values of vn and x is shown in Fig. 4. The values for 
the three branches of MRC based D2D signal parameters and 
CCI signal Parameters are given in Table 3. 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
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In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
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loss exponents of CCI signals 
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u, vn, μd, μn, κd, κn, ηd, ηn, 2

d , 2
n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
figure it is observed that outage performance of the system is 
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system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
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0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 
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10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
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In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 
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are given in Table 4. 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
 

 
Fig. 4. Outage performance of MRC based D2D system with varying path-

loss exponents of CCI signals 
Fig. 6 presents outage performance of D2D communication 
system with varying values of mn. The values for P1, PI,n, x, yn, 
u, vn, μd, μn, κd, κn, ηd, ηn, 2

d , 2
n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
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figure it is observed that outage performance of the system is 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
 

 
Fig. 2. Outage probability for various numbers of SC and MRC branches 

 
Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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κd [10, 3, 8] κn [1, 5, 6, 4, 5] 
ηd [10, 5, 6]  ηn [1, 2, 7, 2, 3] 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
 

 
Fig. 4. Outage performance of MRC based D2D system with varying path-

loss exponents of CCI signals 
Fig. 6 presents outage performance of D2D communication 
system with varying values of mn. The values for P1, PI,n, x, yn, 
u, vn, μd, μn, κd, κn, ηd, ηn, 2

d , 2
n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
figure it is observed that outage performance of the system is 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
 

 
Fig. 2. Outage probability for various numbers of SC and MRC branches 

 
Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
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Fig. 6 presents outage performance of D2D communication 
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0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 
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figure it is observed that outage performance of the system is 

 
 

5 

κd [10, 3, 8] κn [1, 2, 3, 4, 1] 
ηd [10, 5, 6]  ηn [1, 2, 3, 2, 3] 
md [6, 5, 7] mn [1, 3, 4, 2, 3] 

2
d  [0.1, 0.01, 1] 2

n  [0.01, 0.1, 0.001, 0.5, 1] 

μd [10, 7, 1] yn [25, 30, 35, 40, 45] 
meters 

 
From the figure, it is observed that the outage probability of the 
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because of the weakening of CCI signals which results in an 
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the increase in distance between D2D devices degrades the 
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of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
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0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 
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n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 
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Based on (13) and (14), the outage probability expression for 
independent but non-identically distributed D2D and CCI 
signals is 
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The outage probability expression for independent and 
identically distributed system is 
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The success probability expression for the independent and 
non-identically distributed system is 
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The success probability expression for the independent and 
identically distributed case is 
 

    
,

0

Im1 1  
2

D N
d n

S MRC

X Y
P d

 



               (18) 

 
 

III. NUMERICAL RESULTS AND ANALYSIS 
In this section, the performance of FB faded D2D system 

based on the expressions derived in Section II is presented. The 
reference distances x0 and y0,n are assumed to be 1 meter. Fig. 2 
shows the outage performance of D2D system with the various 
number of diversity branches for both SC and MRC schemes. 
The values for D2D signals parameters for number of diversity 
branches D = 2 and 3, and CCI signals parameters are shown in 
Table 1. 

 
Table 1. 

Parameters Values Parameters Values 
u 3.4 PI,n [16.98, 17.78, 18.45, 

19.03, 20] dBm 
x 15 meters vn [2.7, 2.8, 2.9, 3.0, 

2.6] 
μd [10,7] & [10, 7, 1] yn [45, 40, 35, 30, 25] 

meters 
κd [10, 3] & [10, 3, 8] μn [1, 3, 7, 3, 4] 

2
d  [0.1, 0.01] & [0.1, 

0.01, 1] 
2

n  [0.01, 0.1, 0.001, 1, 
2]  

ηd [10, 5] & [10, 5, 6] κn [1, 5, 6, 4, 5] 
md [3, 2] & [3, 2, 7] ηn [1, 2, 7, 2, 3] 
R 16.98 mn [1, 3, 4, 2, 6] 

 
From the figure, it is clear that as the number of branches is 
increased for the SC and MRC schemes outage performance 
improves. It is because of the improved SIR conditions of the 
system. Furthermore, it is seen that the increase in power of the 
D2D signal improves the outage performance of the system. 
Analytical and simulation of Outage performance of D2D 
communication system with various values μd and x is shown in 
Fig. 3. The values for D2D signals parameters and CCI signals 
parameters are shown in Table 2. 

 
Table 2. 

Parameters Values Parameters Values 
P1 20 dBm vn [3, 3.1, 3.2, 3.3, 3] 
u 2.6 μn [1, 3, 7, 3, 4] 
κd [0, 0] κn [0, 0, 0, 0, 0] 
ηd [0, 0]  ηn [0, 0, 0, 0, 0] 
md [0, 0] mn [0, 0, 0, 0, 0]  

2
d  [0, 0]  2

n  [0, 0, 0, 0, 0] 

PI,n [20, 23.01, 24.77, 
26.02, 26.99] dBm 

yn [45, 40, 35, 30, 30] 
meters 

 
From the figure, it is observed that the outage probability of the 
system is less for higher values fading parameter μd. It is 
because of the fading condition of D2D signals which results in 
an improved outage performance of the D2D system. 
Moreover, the increase in distance between D2D devices 
degrades the outage performance of the system. It is because of 
the path-loss phenomena. Outage performance of D2D system 
for various values of vn and x is shown in Fig. 4. The values for 
the three branches of MRC based D2D signal parameters and 
CCI signal Parameters are given in Table 3. 

Table 3. 
Parameters Values Parameters Values 
P1 20 dBm PI,n [16.98, 17.78, 18.45, 

19.03, 20] dBm 
u 3.2 μn [1, 3, 4, 3, 2] 
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κd [10, 3, 8] κn [1, 2, 3, 4, 1] 
ηd [10, 5, 6]  ηn [1, 2, 3, 2, 3] 
md [6, 5, 7] mn [1, 3, 4, 2, 3] 

2
d  [0.1, 0.01, 1] 2

n  [0.01, 0.1, 0.001, 0.5, 1] 

μd [10, 7, 1] yn [25, 30, 35, 40, 45] 
meters 

 
From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
 

 
Fig. 2. Outage probability for various numbers of SC and MRC branches 

 
Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 

 
Table 4. 

Parameters Values Parameters Values 
P1 20 dBm PI,n [16.98, 17.78, 18.45, 

19.03, 20] dBm 
x 19 meters μn [1, 3, 7, 3, 4] 
κd [10, 3, 8] κn [1, 5, 6, 4, 5] 
ηd [10, 5, 6]  ηn [1, 2, 7, 2, 3] 
μd [10, 7, 1] mn [1, 3, 4, 2, 3] 

2
d  [0.1, 0.01, 1] 2

n  {0.01, 0.1, 0.001, 1, 2} 

vn [2.7, 2.8, 2.9, 3, 
2.6] 

yn [25, 30, 35, 40, 45] 
meters 

 
From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
 

 
Fig. 4. Outage performance of MRC based D2D system with varying path-

loss exponents of CCI signals 
Fig. 6 presents outage performance of D2D communication 
system with varying values of mn. The values for P1, PI,n, x, yn, 
u, vn, μd, μn, κd, κn, ηd, ηn, 2

d , 2
n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
figure it is observed that outage performance of the system is 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
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Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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Parameters Values Parameters Values 
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κd [10, 3, 8] κn [1, 5, 6, 4, 5] 
ηd [10, 5, 6]  ηn [1, 2, 7, 2, 3] 
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2
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n  {0.01, 0.1, 0.001, 1, 2} 

vn [2.7, 2.8, 2.9, 3, 
2.6] 

yn [25, 30, 35, 40, 45] 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
 

 
Fig. 4. Outage performance of MRC based D2D system with varying path-

loss exponents of CCI signals 
Fig. 6 presents outage performance of D2D communication 
system with varying values of mn. The values for P1, PI,n, x, yn, 
u, vn, μd, μn, κd, κn, ηd, ηn, 2

d , 2
n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
figure it is observed that outage performance of the system is 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
 

 
Fig. 2. Outage probability for various numbers of SC and MRC branches 

 
Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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n  {0.01, 0.1, 0.001, 1, 2} 

vn [2.7, 2.8, 2.9, 3, 
2.6] 

yn [25, 30, 35, 40, 45] 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
 

 
Fig. 4. Outage performance of MRC based D2D system with varying path-

loss exponents of CCI signals 
Fig. 6 presents outage performance of D2D communication 
system with varying values of mn. The values for P1, PI,n, x, yn, 
u, vn, μd, μn, κd, κn, ηd, ηn, 2

d , 2
n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
figure it is observed that outage performance of the system is 

 
 

5 

κd [10, 3, 8] κn [1, 2, 3, 4, 1] 
ηd [10, 5, 6]  ηn [1, 2, 3, 2, 3] 
md [6, 5, 7] mn [1, 3, 4, 2, 3] 

2
d  [0.1, 0.01, 1] 2

n  [0.01, 0.1, 0.001, 0.5, 1] 

μd [10, 7, 1] yn [25, 30, 35, 40, 45] 
meters 

 
From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
 

 
Fig. 2. Outage probability for various numbers of SC and MRC branches 

 
Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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n  {0.01, 0.1, 0.001, 1, 2} 

vn [2.7, 2.8, 2.9, 3, 
2.6] 

yn [25, 30, 35, 40, 45] 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
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loss exponents of CCI signals 
Fig. 6 presents outage performance of D2D communication 
system with varying values of mn. The values for P1, PI,n, x, yn, 
u, vn, μd, μn, κd, κn, ηd, ηn, 2

d , 2
n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
figure it is observed that outage performance of the system is 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
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Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
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n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
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In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
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observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 
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n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
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In Fig. 5, outage performance of D2D system for various 
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of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
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better for the higher values of ηn. Moreover, from the figure it 
can be seen that the outage performance improves as the 
number of clusters of desired D2D signal increases. 

 
Fig. 5. Outage performance of SC based D2D system for various values of 

path-loss exponent u 
 

 
Fig. 6. Outage performance of SC based D2D system for various values of mn 

 
Success probability performance of D2D system for κn and κd 
is shown in Fig. 8. The values for P1, PI,n, x, yn, u, vn, ηd, ηn, md, 
mn, μd, μn, 2

d , 2
n  and R are set to be 20 dBm, 16.98 dBm, 15 

meters, 30 meters, 3.8, 2.5, 2, 2, 3, 1, 2, 2, 0.01, 0.01 and 16.98 
dBm, respectively. From the figure it is observed that success 
probability performance of the system is better for the lower 
values κn. It is because of degraded CCI signals which results 
in an improved the SIR performance of the system, and hence 
better success probability performance of the system. It can also 
be seen that the success probability of the system increases as 

the values of κd increases. In Fig. 9, success probability 
performance of D2D communication system with varying 
values of   and   is shown. P1, PI,n, x, yn, u, vn, κd, κn, ηd, ηn, md, 
mn, μd, μn and R are fixed at 20 dBm, 16.98 dBm, 16 meters, 25 
meters, 3.5, 2.5, 1, 5, 10, 2, 1, 1, 3, 3 and 20 dBm, respectively. 
From the figure, it can be seen that the success probability does 
not show much variation when 2

n  is varied. Furthermore, it is 
also observed that the success probability performance of the 
system deteriorates as 2

d  is increased. 

 
Fig. 7. Outage performance of MRC based D2D system for various values of 

ηn and 2
n  

 

 
Fig. 8. Success probability performance of MRC based D2D system for 

various κn 

Success probability performance of the D2D system with 
varying values μn and the distance y is analyzed in Fig. 10. Here, 
the values for parameters P1, PI,n, x, u, vn, κd, κn, ηd, ηn, md, mn, 
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κd [10, 3, 8] κn [1, 2, 3, 4, 1] 
ηd [10, 5, 6]  ηn [1, 2, 3, 2, 3] 
md [6, 5, 7] mn [1, 3, 4, 2, 3] 

2
d  [0.1, 0.01, 1] 2

n  [0.01, 0.1, 0.001, 0.5, 1] 

μd [10, 7, 1] yn [25, 30, 35, 40, 45] 
meters 

 
From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
 

 
Fig. 2. Outage probability for various numbers of SC and MRC branches 

 
Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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n  {0.01, 0.1, 0.001, 1, 2} 

vn [2.7, 2.8, 2.9, 3, 
2.6] 

yn [25, 30, 35, 40, 45] 
meters 

 
From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
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n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
figure it is observed that outage performance of the system is 
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better for the higher values of ηn. Moreover, from the figure it 
can be seen that the outage performance improves as the 
number of clusters of desired D2D signal increases. 

 
Fig. 5. Outage performance of SC based D2D system for various values of 

path-loss exponent u 
 

 
Fig. 6. Outage performance of SC based D2D system for various values of mn 

 
Success probability performance of D2D system for κn and κd 
is shown in Fig. 8. The values for P1, PI,n, x, yn, u, vn, ηd, ηn, md, 
mn, μd, μn, 2

d , 2
n  and R are set to be 20 dBm, 16.98 dBm, 15 

meters, 30 meters, 3.8, 2.5, 2, 2, 3, 1, 2, 2, 0.01, 0.01 and 16.98 
dBm, respectively. From the figure it is observed that success 
probability performance of the system is better for the lower 
values κn. It is because of degraded CCI signals which results 
in an improved the SIR performance of the system, and hence 
better success probability performance of the system. It can also 
be seen that the success probability of the system increases as 

the values of κd increases. In Fig. 9, success probability 
performance of D2D communication system with varying 
values of   and   is shown. P1, PI,n, x, yn, u, vn, κd, κn, ηd, ηn, md, 
mn, μd, μn and R are fixed at 20 dBm, 16.98 dBm, 16 meters, 25 
meters, 3.5, 2.5, 1, 5, 10, 2, 1, 1, 3, 3 and 20 dBm, respectively. 
From the figure, it can be seen that the success probability does 
not show much variation when 2

n  is varied. Furthermore, it is 
also observed that the success probability performance of the 
system deteriorates as 2

d  is increased. 

 
Fig. 7. Outage performance of MRC based D2D system for various values of 

ηn and 2
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Fig. 8. Success probability performance of MRC based D2D system for 
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Success probability performance of the D2D system with 
varying values μn and the distance y is analyzed in Fig. 10. Here, 
the values for parameters P1, PI,n, x, u, vn, κd, κn, ηd, ηn, md, mn, 
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better for the higher values of ηn. Moreover, from the figure it 
can be seen that the outage performance improves as the 
number of clusters of desired D2D signal increases. 
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path-loss exponent u 
 

 
Fig. 6. Outage performance of SC based D2D system for various values of mn 
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is shown in Fig. 8. The values for P1, PI,n, x, yn, u, vn, ηd, ηn, md, 
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n  and R are set to be 20 dBm, 16.98 dBm, 15 

meters, 30 meters, 3.8, 2.5, 2, 2, 3, 1, 2, 2, 0.01, 0.01 and 16.98 
dBm, respectively. From the figure it is observed that success 
probability performance of the system is better for the lower 
values κn. It is because of degraded CCI signals which results 
in an improved the SIR performance of the system, and hence 
better success probability performance of the system. It can also 
be seen that the success probability of the system increases as 

the values of κd increases. In Fig. 9, success probability 
performance of D2D communication system with varying 
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mn, μd, μn and R are fixed at 20 dBm, 16.98 dBm, 16 meters, 25 
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From the figure, it can be seen that the success probability does 
not show much variation when 2
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also observed that the success probability performance of the 
system deteriorates as 2
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Fig. 7. Outage performance of MRC based D2D system for various values of 

ηn and 2
n  

 

 
Fig. 8. Success probability performance of MRC based D2D system for 

various κn 

Success probability performance of the D2D system with 
varying values μn and the distance y is analyzed in Fig. 10. Here, 
the values for parameters P1, PI,n, x, u, vn, κd, κn, ηd, ηn, md, mn, 

 
 

6 

better for the higher values of ηn. Moreover, from the figure it 
can be seen that the outage performance improves as the 
number of clusters of desired D2D signal increases. 

 
Fig. 5. Outage performance of SC based D2D system for various values of 

path-loss exponent u 
 

 
Fig. 6. Outage performance of SC based D2D system for various values of mn 

 
Success probability performance of D2D system for κn and κd 
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meters, 30 meters, 3.8, 2.5, 2, 2, 3, 1, 2, 2, 0.01, 0.01 and 16.98 
dBm, respectively. From the figure it is observed that success 
probability performance of the system is better for the lower 
values κn. It is because of degraded CCI signals which results 
in an improved the SIR performance of the system, and hence 
better success probability performance of the system. It can also 
be seen that the success probability of the system increases as 

the values of κd increases. In Fig. 9, success probability 
performance of D2D communication system with varying 
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From the figure, it can be seen that the success probability does 
not show much variation when 2

n  is varied. Furthermore, it is 
also observed that the success probability performance of the 
system deteriorates as 2

d  is increased. 
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better for the higher values of ηn. Moreover, from the figure it 
can be seen that the outage performance improves as the 
number of clusters of desired D2D signal increases. 
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path-loss exponent u 
 

 
Fig. 6. Outage performance of SC based D2D system for various values of mn 

 
Success probability performance of D2D system for κn and κd 
is shown in Fig. 8. The values for P1, PI,n, x, yn, u, vn, ηd, ηn, md, 
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d , 2
n  and R are set to be 20 dBm, 16.98 dBm, 15 

meters, 30 meters, 3.8, 2.5, 2, 2, 3, 1, 2, 2, 0.01, 0.01 and 16.98 
dBm, respectively. From the figure it is observed that success 
probability performance of the system is better for the lower 
values κn. It is because of degraded CCI signals which results 
in an improved the SIR performance of the system, and hence 
better success probability performance of the system. It can also 
be seen that the success probability of the system increases as 

the values of κd increases. In Fig. 9, success probability 
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From the figure, it can be seen that the success probability does 
not show much variation when 2

n  is varied. Furthermore, it is 
also observed that the success probability performance of the 
system deteriorates as 2

d  is increased. 
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better for the higher values of ηn. Moreover, from the figure it 
can be seen that the outage performance improves as the 
number of clusters of desired D2D signal increases. 
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Fig. 6. Outage performance of SC based D2D system for various values of mn 

 
Success probability performance of D2D system for κn and κd 
is shown in Fig. 8. The values for P1, PI,n, x, yn, u, vn, ηd, ηn, md, 
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d , 2
n  and R are set to be 20 dBm, 16.98 dBm, 15 

meters, 30 meters, 3.8, 2.5, 2, 2, 3, 1, 2, 2, 0.01, 0.01 and 16.98 
dBm, respectively. From the figure it is observed that success 
probability performance of the system is better for the lower 
values κn. It is because of degraded CCI signals which results 
in an improved the SIR performance of the system, and hence 
better success probability performance of the system. It can also 
be seen that the success probability of the system increases as 

the values of κd increases. In Fig. 9, success probability 
performance of D2D communication system with varying 
values of   and   is shown. P1, PI,n, x, yn, u, vn, κd, κn, ηd, ηn, md, 
mn, μd, μn and R are fixed at 20 dBm, 16.98 dBm, 16 meters, 25 
meters, 3.5, 2.5, 1, 5, 10, 2, 1, 1, 3, 3 and 20 dBm, respectively. 
From the figure, it can be seen that the success probability does 
not show much variation when 2

n  is varied. Furthermore, it is 
also observed that the success probability performance of the 
system deteriorates as 2

d  is increased. 
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Success probability performance of the D2D system with 
varying values μn and the distance y is analyzed in Fig. 10. Here, 
the values for parameters P1, PI,n, x, u, vn, κd, κn, ηd, ηn, md, mn, 
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κd [10, 3, 8] κn [1, 2, 3, 4, 1] 
ηd [10, 5, 6]  ηn [1, 2, 3, 2, 3] 
md [6, 5, 7] mn [1, 3, 4, 2, 3] 

2
d  [0.1, 0.01, 1] 2

n  [0.01, 0.1, 0.001, 0.5, 1] 
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meters 

 
From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
 

 
Fig. 2. Outage probability for various numbers of SC and MRC branches 

 
Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 

 
Table 4. 

Parameters Values Parameters Values 
P1 20 dBm PI,n [16.98, 17.78, 18.45, 

19.03, 20] dBm 
x 19 meters μn [1, 3, 7, 3, 4] 
κd [10, 3, 8] κn [1, 5, 6, 4, 5] 
ηd [10, 5, 6]  ηn [1, 2, 7, 2, 3] 
μd [10, 7, 1] mn [1, 3, 4, 2, 3] 

2
d  [0.1, 0.01, 1] 2

n  {0.01, 0.1, 0.001, 1, 2} 

vn [2.7, 2.8, 2.9, 3, 
2.6] 

yn [25, 30, 35, 40, 45] 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
 

 
Fig. 4. Outage performance of MRC based D2D system with varying path-

loss exponents of CCI signals 
Fig. 6 presents outage performance of D2D communication 
system with varying values of mn. The values for P1, PI,n, x, yn, 
u, vn, μd, μn, κd, κn, ηd, ηn, 2

d , 2
n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
figure it is observed that outage performance of the system is 
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n  [0.01, 0.1, 0.001, 0.5, 1] 
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From the figure, it is observed that the outage probability of the 
system is less for higher values CCI path-loss exponents. It is 
because of the weakening of CCI signals which results in an 
improved outage performance of the D2D system. Moreover, 
the increase in distance between D2D devices degrades the 
outage performance of the system.  
 

 
Fig. 2. Outage probability for various numbers of SC and MRC branches 

 
Fig. 3. Outage Probability for various values of fading parameter  

 
In Fig. 5, outage performance of D2D system for various 

values of u and md is shown. The values for the three branches 

of SC based D2D signal parameters and CCI signal parameters 
are given in Table 4. 
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Parameters Values Parameters Values 
P1 20 dBm PI,n [16.98, 17.78, 18.45, 
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κd [10, 3, 8] κn [1, 5, 6, 4, 5] 
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From the figure, it is observed that the outage probability of the 
system is worse for the higher values of the u. It is due to the 
weakened D2D signal due to the path-loss effects. Moreover, 
from the figure it can also be seen that the outage performance 
of the system improves as the values of md is increased. It is 
because of the better shadowing conditions of the D2D 
communication channel.  
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loss exponents of CCI signals 
Fig. 6 presents outage performance of D2D communication 
system with varying values of mn. The values for P1, PI,n, x, yn, 
u, vn, μd, μn, κd, κn, ηd, ηn, 2

d , 2
n  and R are considered to be 20 

dBm, 16.98 dBm, 15 meters, 35 meters, 3.3, 2.7, 2, 2, 5, 4, 0.1, 
0.1, 0.01, 0.01 and  20 dBm, respectively. From the figure it is 
observed that the outage performance is almost insensitive to 
the variations of mn. Furthermore, it is also observed that the 
outage performance improves as the values of md is increased. 
Outage performance of D2D system for the varying values of 

2
n  and  ηn in a scenario with μn = 1 and μd is shown in Fig. 7. 

The values for P1, PI,n, x, yn, u, vn, κd, κn, ηd, md, mn, 2
d  and R 

are set to be 20 dBm, 16.98 dBm, 15 meters, 40 meters, 3.5, 2.5, 
10, 1, 10, 3, 5, 0.1, and 16.98 dBm, respectively. From the 
figure it is observed that outage performance of the system is 
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better for the higher values of ηn. Moreover, from the figure it 
can be seen that the outage performance improves as the 
number of clusters of desired D2D signal increases. 

 
Fig. 5. Outage performance of SC based D2D system for various values of 

path-loss exponent u 
 

 
Fig. 6. Outage performance of SC based D2D system for various values of mn 

 
Success probability performance of D2D system for κn and κd 
is shown in Fig. 8. The values for P1, PI,n, x, yn, u, vn, ηd, ηn, md, 
mn, μd, μn, 2

d , 2
n  and R are set to be 20 dBm, 16.98 dBm, 15 

meters, 30 meters, 3.8, 2.5, 2, 2, 3, 1, 2, 2, 0.01, 0.01 and 16.98 
dBm, respectively. From the figure it is observed that success 
probability performance of the system is better for the lower 
values κn. It is because of degraded CCI signals which results 
in an improved the SIR performance of the system, and hence 
better success probability performance of the system. It can also 
be seen that the success probability of the system increases as 

the values of κd increases. In Fig. 9, success probability 
performance of D2D communication system with varying 
values of   and   is shown. P1, PI,n, x, yn, u, vn, κd, κn, ηd, ηn, md, 
mn, μd, μn and R are fixed at 20 dBm, 16.98 dBm, 16 meters, 25 
meters, 3.5, 2.5, 1, 5, 10, 2, 1, 1, 3, 3 and 20 dBm, respectively. 
From the figure, it can be seen that the success probability does 
not show much variation when 2

n  is varied. Furthermore, it is 
also observed that the success probability performance of the 
system deteriorates as 2

d  is increased. 

 
Fig. 7. Outage performance of MRC based D2D system for various values of 

ηn and 2
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Fig. 8. Success probability performance of MRC based D2D system for 

various κn 

Success probability performance of the D2D system with 
varying values μn and the distance y is analyzed in Fig. 10. Here, 
the values for parameters P1, PI,n, x, u, vn, κd, κn, ηd, ηn, md, mn, 
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n  and μn are fixed at 20 dBm, 17.78 dBm, 16 meters, 3.5, 
2.5, 1, 5, 10, 5, 1, 10, 10, 0.1 and 2, respectively. From the 
figure, it is evident that the success probability performance of 
the system is almost insensitive to the change in the values of 
μn. Moreover, from the figure it is also seen that the success 
probability of the system improves as the distance y is 
increased. It is because of the improved SIR conditions of the 
system due to weakening of CCI signals by the path-loss. 

 
Fig. 9. Success probability performance of MRC based D2D system with 

varying values of 2
n  

 
Fig. 10. Success Probability of MRC based D2D system with varying values 

of μn 

IV. CONCLUSION 

In this paper, outage and success performances of a D2D 
communication system over a Fluctuating Beckmann (FB) 
fading channel in an interference limited scenario is analyzed. 

The FB distribution generalizes various distributions. 
Expressions of outage and success probabilities using 
characteristic function (CF) based approach is presented. 
Effects of co-channel interference, FB channel conditions and 
the path-loss on the outage and success probabilities of the 
system are presented and discussed. MRC and SC diversity 
schemes are also incorporated to mitigate fading conditions. It 
is observed that path-loss significantly effects performance of 
D2D system. It is also observed that the system performance 
improves as the number of clusters in the D2D signal is 
increased. However, system performance is almost insensitive 
to the variations in the number of clusters of CCI.  
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n  and μn are fixed at 20 dBm, 17.78 dBm, 16 meters, 3.5, 
2.5, 1, 5, 10, 5, 1, 10, 10, 0.1 and 2, respectively. From the 
figure, it is evident that the success probability performance of 
the system is almost insensitive to the change in the values of 
μn. Moreover, from the figure it is also seen that the success 
probability of the system improves as the distance y is 
increased. It is because of the improved SIR conditions of the 
system due to weakening of CCI signals by the path-loss. 
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better for the higher values of ηn. Moreover, from the figure it 
can be seen that the outage performance improves as the 
number of clusters of desired D2D signal increases. 

 
Fig. 5. Outage performance of SC based D2D system for various values of 

path-loss exponent u 
 

 
Fig. 6. Outage performance of SC based D2D system for various values of mn 

 
Success probability performance of D2D system for κn and κd 
is shown in Fig. 8. The values for P1, PI,n, x, yn, u, vn, ηd, ηn, md, 
mn, μd, μn, 2

d , 2
n  and R are set to be 20 dBm, 16.98 dBm, 15 

meters, 30 meters, 3.8, 2.5, 2, 2, 3, 1, 2, 2, 0.01, 0.01 and 16.98 
dBm, respectively. From the figure it is observed that success 
probability performance of the system is better for the lower 
values κn. It is because of degraded CCI signals which results 
in an improved the SIR performance of the system, and hence 
better success probability performance of the system. It can also 
be seen that the success probability of the system increases as 

the values of κd increases. In Fig. 9, success probability 
performance of D2D communication system with varying 
values of   and   is shown. P1, PI,n, x, yn, u, vn, κd, κn, ηd, ηn, md, 
mn, μd, μn and R are fixed at 20 dBm, 16.98 dBm, 16 meters, 25 
meters, 3.5, 2.5, 1, 5, 10, 2, 1, 1, 3, 3 and 20 dBm, respectively. 
From the figure, it can be seen that the success probability does 
not show much variation when 2

n  is varied. Furthermore, it is 
also observed that the success probability performance of the 
system deteriorates as 2

d  is increased. 

 
Fig. 7. Outage performance of MRC based D2D system for various values of 

ηn and 2
n  

 

 
Fig. 8. Success probability performance of MRC based D2D system for 

various κn 

Success probability performance of the D2D system with 
varying values μn and the distance y is analyzed in Fig. 10. Here, 
the values for parameters P1, PI,n, x, u, vn, κd, κn, ηd, ηn, md, mn,  
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Effects of co-channel interference, FB channel conditions and 
the path-loss on the outage and success probabilities of the 
system are presented and discussed. MRC and SC diversity 
schemes are also incorporated to mitigate fading conditions. It 
is observed that path-loss significantly effects performance of 
D2D system. It is also observed that the system performance 
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to the variations in the number of clusters of CCI.  
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2
d , 2

n  and μn are fixed at 20 dBm, 17.78 dBm, 16 meters, 3.5, 
2.5, 1, 5, 10, 5, 1, 10, 10, 0.1 and 2, respectively. From the 
figure, it is evident that the success probability performance of 
the system is almost insensitive to the change in the values of 
μn. Moreover, from the figure it is also seen that the success 
probability of the system improves as the distance y is 
increased. It is because of the improved SIR conditions of the 
system due to weakening of CCI signals by the path-loss. 

 
Fig. 9. Success probability performance of MRC based D2D system with 

varying values of 2
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Fig. 10. Success Probability of MRC based D2D system with varying values 

of μn 
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The FB distribution generalizes various distributions. 
Expressions of outage and success probabilities using 
characteristic function (CF) based approach is presented. 
Effects of co-channel interference, FB channel conditions and 
the path-loss on the outage and success probabilities of the 
system are presented and discussed. MRC and SC diversity 
schemes are also incorporated to mitigate fading conditions. It 
is observed that path-loss significantly effects performance of 
D2D system. It is also observed that the system performance 
improves as the number of clusters in the D2D signal is 
increased. However, system performance is almost insensitive 
to the variations in the number of clusters of CCI.  
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n  and μn are fixed at 20 dBm, 17.78 dBm, 16 meters, 3.5, 
2.5, 1, 5, 10, 5, 1, 10, 10, 0.1 and 2, respectively. From the 
figure, it is evident that the success probability performance of 
the system is almost insensitive to the change in the values of 
μn. Moreover, from the figure it is also seen that the success 
probability of the system improves as the distance y is 
increased. It is because of the improved SIR conditions of the 
system due to weakening of CCI signals by the path-loss. 
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is observed that path-loss significantly effects performance of 
D2D system. It is also observed that the system performance 
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2
d , 2

n  and μn are fixed at 20 dBm, 17.78 dBm, 16 meters, 3.5, 
2.5, 1, 5, 10, 5, 1, 10, 10, 0.1 and 2, respectively. From the 
figure, it is evident that the success probability performance of 
the system is almost insensitive to the change in the values of 
μn. Moreover, from the figure it is also seen that the success 
probability of the system improves as the distance y is 
increased. It is because of the improved SIR conditions of the 
system due to weakening of CCI signals by the path-loss. 

 
Fig. 9. Success probability performance of MRC based D2D system with 

varying values of 2
n  

 
Fig. 10. Success Probability of MRC based D2D system with varying values 

of μn 

IV. CONCLUSION 

In this paper, outage and success performances of a D2D 
communication system over a Fluctuating Beckmann (FB) 
fading channel in an interference limited scenario is analyzed. 

The FB distribution generalizes various distributions. 
Expressions of outage and success probabilities using 
characteristic function (CF) based approach is presented. 
Effects of co-channel interference, FB channel conditions and 
the path-loss on the outage and success probabilities of the 
system are presented and discussed. MRC and SC diversity 
schemes are also incorporated to mitigate fading conditions. It 
is observed that path-loss significantly effects performance of 
D2D system. It is also observed that the system performance 
improves as the number of clusters in the D2D signal is 
increased. However, system performance is almost insensitive 
to the variations in the number of clusters of CCI.  
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Abstract— This paper proposes a new optimization strategy for 
resource distribution management based on a quantum algorithm, 
as a way to reduce the computational complexity in finding the 
optimum deployment scenario, taking into consideration the 
required conditions and constraints of the resource distribution 
system. We show that the quantum method computes the results 
in minimum time and outperforms on the other classical 
algorithms in terms of computational complexity. 

Index Terms —quantum computing; resource distribution 
management; quantum extreme value searching algorithm; 
quantum existence testing; computational complexity. 

I. INTRODUCTION 

A. Motivation 
The first question that comes to the mind of the reader is how 

the quantum optimization methods may increase the 
performance system of resource distribution management 
process and how it will be used in resource management as a 
way to reduce the computational complexity in finding the 
optimum deployment scenario. What are the fundamental 
differences between a classical computer and quantum computer 
which can lead to choosing the quantum strategy as a future 
alternative solution for the resource distribution management 
model? 

B.    Quantum Computing Overview 
In fact, quantum computer’s functionality and conception 

work based on the laws of quantum mechanics. There is a large 
list of differences between the quantum computer and classical 
computer. First of all, classical computer functionality works 
based on the laws of classical mechanics, it performs 
calculations relying on the basic unit of information zeros and 
ones (0 and 1), while quantum computer uses qubits which can 
take superposition of states at the same time [1], furthermore, 
quantum computer outperforms with high speed than the binary 
computer, as well as it can solve computational problems with 

A preliminary version of this paper has been presented at the 2019 42nd 
International Conference on Telecommunications and Signal Processing (TSP) 
[15]. 
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low computational complexity, maximum accuracy, and short 
circumstance).  

If we assume that a large number of binary computers can 
combine their efforts and overcome this gap, they cannot reach 
the performance level of a quantum computer. Quantum 
computing and information have important quantum algorithms 
that solve important computational problems which do not seem 
to be possibly solved by a classical method, for example, the 
most known actually are the quantum Fourier transform which 
is used to solve factoring and discrete logarithm problems, and 
its fascinating advantage to make the communication over a 
quantum channel more secure, and the quantum search 
algorithm [1][2] the so-called Grover’s algorithm [3][4] which 
uses fewer steps than its classical counterpart to find a certain 
entry in an unsorted data with more accuracy, speed and less 
time. 

C. Establishing context and the importance of the research 
topic 
Resource distribution management must be designed to be 

highly reacting fast with maximum accuracy performance to any 
unpredictable task workload, as it is known, for tasks with fixed 
running time require more computation in a real-time system, 
since they are executed at a constant rate. In order to rationally 
use resource computing as a way to reduce the computational 
complexity in finding the best optimum deployment scenarios 
under the imposed constraints, we resorted to handling this 
problem by using an approach based on the quantum method. 
This study provides an important opportunity to improve the 
efficiency of using system resources by exploiting quantum 
computing methods and concepts. 

Suppose all classical machines that are working on classical 
laws of classical physics will disappear from our world and be 
replaced by quantum computers, so there will be an intensive 
need for developing new adaptive models. From a resource 
distribution management point of view, if the real-time decision-
maker will be replaced by a quantum method, so, the way 
becomes open to think how to implement a resource distribution 
management model with the new device since new hardware 
technique requires a new resource distribution process 
modeling.  

D. A Brief Synopsis of the Relevant Literature 
It is difficult to relate the proposed strategy to other work in 

the literature because the proposed resource distribution 
management based on quantum optimization is a new 
contribution. So, we will try to give approximately and generally 
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the recent works that have been proposed in this field. Periodic 
activities have the major computational demand in many real-
time applications since they provide a simple way to enforce 
timing constraints through rate control [5], there has been a 
greater interest in proposing new techniques appropriate in using 
system resources of fixed real-time tasks. In [6], the Quality of 
service-based resource distribution which addresses the problem 
of distributing a bandwidth portion among services merged with 
the distribution algorithm in order to decrease computational 
complexity. In [7], a proposed solution for finding the optimal 
task periods for practical problems with a remarkable speedup 
by exploiting the concept of the exact feasibility region of the 
space. In [5]-[8], the elastic task model (ETM) was taken as an 
efficient mechanism for controlling the quality of service of the 
system as a function of the current load, the ETM is extremely 
useful for supporting both multimedia systems and control 
applications in which the execution rate of some computational 
activities have to be tuned as a function of the current system 
state. On the other hand, some recent works were using the 
Hungarian combinatorial algorithm as a tool for assigning tasks, 
for example, in [9] for multi-task to multi-worker allocation 
based on the demand distribution model, or, in [10], a 
decentralized task allocation algorithm based on the Hungarian 
approach. In [11], for channel allocation problem over a 
frequency-selective channel. Moreover, for a multicasting 
problem, two heuristics algorithms [12], Farthest First and 
Nearest First based were applied to minimize the number of used 
wavelengths. In [13], the orchestration algorithm was used in a 
heterogonous cloud environment to minimize the usage of 
computing resources. 

This study is an extension of the previously published work, 
in [14] we have been started from a simple resource distribution 
management model, for one task generator: (a) demonstrating 
analytically that the quantum solution is more efficient by 
comparing the computational complexity and distribution 
uniformity of the quantum solution with the randomized, 
exhaustive and sequence methods, (b)  showing the importance 
of the quantum solution, a simulation environment of the 
proposed optimization of distribution system was constructed 
and compared to two reference distribution systems which 
follow the randomized and sequence strategies. In [15], we have 
set up carefully the system parameters of the quantum algorithm 
with respect to the proposed resource distribution model (it 
contains one task generator). Furthermore, we discussed the 
most important parameters and derived the appropriate 
approximation formulas if different computation units are 
allowed in the system. 

E. Contribution  
This paper provides a new and comprehensive study on 

reducing the computational complexity of a distribution 
problem, using a system of multiple task generators which 
dissociate each task to several subtasks, integrating resource 
distribution model in the quantum system-level framework is not 
straight-forward and may need to a careful configuration of its 
parameters. The quantum approach will improve the speed of 
computation as well as the accuracy in selecting the best result, 
allowing the movement from an O(𝑑𝑑) computational complexity 
to 𝑂𝑂 (𝑙𝑙𝑙𝑙𝑙𝑙2(𝑇𝑇)𝑙𝑙𝑙𝑙𝑙𝑙23(√𝑑𝑑)). 

The main questions addressed in this paper are: 

 From a computational complexity point of view, how can we 
use the quantum searching method in resource distribution 
management? And how much is it efficient? 

 From an engineering point of view, how can we set up the 
stochastic parameters of the quantum logarithm search 
according to the given resource distribution model? 

F. Organization 
The remaining part of this paper is organized as follows: 

Section II begins by describing a resource distribution 
management model with multi-task and multi-subtasks handling 
with one optimization metric. Then we will discuss how can we 
apply the quantum optimization algorithm to improve the 
efficiency of system resources from a computational complexity 
point of view, after that, we will demonstrate how the quantum 
approach is an efficient computational infrastructure tool by 
comparing it with the classical approach method, finally we will 
set up the system parameters of the quantum algorithm of the 
resource distribution management model. Section III concludes 
the paper. 

II. QUANTUM RESOURCE DISTRIBUTION MANAGEMENT 
OPTIMIZATION IN MULTI-TASK AND MULTI-SUBTASKS 

In the resource distribution model, the uniformity distribution 
metric is a perfect standard measurement for checking whether 
resource utilization is balanced or not, in our study, we will rely 
fundamentally on the relative load variance of the system for 
measuring the uniformity distribution degree. For a large 
number of resources, it is difficult to compute classically the 
overall possible deployments which fit the optimum 
distribution, the solution is to exploit the power of quantum 
approach which will guarantee a high result in computational 
complexity reduction as well as accuracy performance. 
In order to not confuse the reader, before explaining how the 
quantum method works in the resource distribution 
management model, first, we will give an overview of the 
quantum algorithm. 

A. Quantum Extreme Value Searching Algorithm 
Optimization 

The quantum extreme value searching algorithm QEVSA [16] 
combines the well-known logarithmic binary search algorithm 
which is originally intended for searching a given item in a 
sorted database [17] with the quantum existence testing, it is 
represented in the algorithm as QET [18]-[19]. Quantum 
existence testing is a special case of quantum counting, it 
focuses on checking the existence of a given entry in the 
database rather than in determining the number of existent 
entries. The QEVSA aims to find the extreme value (minimum 
or maximum point) of a point called cost function or database. 
Moreover, the power of quantum existence testing is derived 
from the quantum phase estimation which makes it outperforms 
better than the other algorithms, this technique produces an 
algorithm which keeps the efficiency of the binary search while 
processing an unsorted database. The proposed algorithm is 
introduced in [16]. 
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B. Resource Distribution Management Model with multi-task 
and multi-subtasks 

 
For a fixed reservation requirement, i.e., the contracted 

capacity amount used for the task, any available capacity left 
unreserved cannot be reused by other tasks. maximizing and 
improving the resource utilization requires using multi-subtask 
model, i.e., any task has subtasks. As aforementioned, the high 
utilization of computing resources and huge demand for 
computation leads to a search for efficient and less operational 
costs with respect to the required quality of service, for this 
purpose, we proposed a resource allocation model for running 
the workload. In order to model the general resource 
distribution management system, we divided the functionalities 
into three main blocks: 
Multiple task generator: Let u denote the number of task type 
generators, each task generator has its own task arrival time 
distribution and produce identical tasks, let the number of 
subtasks generated by the 𝑙𝑙𝑡𝑡ℎ task generator be denoted by 𝑔𝑔𝑙𝑙 
and the total number of subtasks type generated by all the task 
generators is denoted by 𝑊𝑊. Note that every subtask type 𝑣𝑣 has 
a fixed running time 𝑝𝑝𝑣𝑣 and the memory requirement for the 
subtask type 𝑣𝑣 is ∆𝑣𝑣. 
Decision maker: It is responsible for the deployment of the 
subtasks among the computing units, later we will explain the 
role of the quantum approach in reducing the computational 
complexity of the task deployment. 
Computing units: Let 𝑐𝑐 be the number of computing units used 
to serve the subtasks, the computing units may have different 
theoretical capacities, such as the 𝑖𝑖𝑡𝑡ℎ unit which has 𝑠𝑠𝑖𝑖 as a 
theoretical capacity, let the number of running subtasks from 
type 𝑣𝑣 on-the 𝑖𝑖𝑡𝑡ℎ unit is denoted by 𝑁𝑁𝑖𝑖𝑖𝑖

𝑏𝑏 . Fig.1 represents the 
resource distribution management structure. 

In compliance with what has been already discussed, we 
have chosen to distribute uniformly the tasks among the 
computing units, the variance of the relative load in the system 
is used as a measurement metric for uniformity performance. In 
the case of optimal task distribution, if the variance of the 
relative load tends to zero, then the resources are distributed 
uniformly, otherwise, they are not, the formula of the relative 
variance is as follows, 

 𝜎𝜎2 = 1
𝑐𝑐 ∑ (𝑏̅𝑏 −

∑ 𝑁𝑁𝑖𝑖𝑖𝑖∆𝑣𝑣
𝑊𝑊
𝑣𝑣=1

𝑠𝑠𝑖𝑖
)

2𝑐𝑐

𝑖𝑖=1
, (1) 

 
Where 𝑏̅𝑏 is the average of the relative load of the system. Later, 
we will see how the variance is employed in the quantum 
algorithm for searching the optimum deployment scenario. 

C. How to Use Quantum Extreme Value Searching in 
Resource Distribution Management 
The reader should bear in mind that for the proposed 

distribution model, this study did not discuss the resource 
requirement scheme implementation because the quantum 
existing testing is a special form of quantum phase estimation 
and quantum gate circuit structure is well known, in this paper, 

the modification will be only in the quantum extreme value 
searching algorithm.  

Fig.1: Resource distribution management architecture 
Conserving the uniformity load of the system implies finding 

the optimum scenario that corresponds to the minimum 
variance, thus, in this case, we use the quantum extreme value 
searching algorithm as a minimum searching algorithm. What 
makes this proposed quantum approach special, is that it handles 
the database as a function, i.e., variance. The corresponding 
quantum algorithm according to the desired resource 
distribution model is given as follows, 

1.   We start with S = 0 : 𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 1 = 𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 0 , 𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 1 =

𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 0, and ∆𝜎𝜎2 = 𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 0 − 𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 0 

 
2.    S = S + 1 
 

3.    𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 = 𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 + [𝜎𝜎2𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 −𝜎𝜎2𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆
2 ] 

 
4.   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑄𝑄𝑄𝑄𝑄𝑄 (𝜎𝜎2

𝑚𝑚𝑚𝑚𝑑𝑑 𝑆𝑆): 
 

 If  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑌𝑌𝑌𝑌𝑌𝑌, then 𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆+1 = 𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆, 𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆+1 = 𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 
 Else   𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆+1 = 𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 , 𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆+1 = 𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 

 
5. If S < 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑇𝑇), then go to 2, else stop and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆 
 

The maximum number of the necessary steps to run the 
logarithm search 𝑇𝑇 depends on two parameters which are the 
step size of the search which is according to the proposed 
distribution model is the minimum distance between variances 
of two scenarios 𝛼𝛼 as presented in (2) and the size of the region 
of the variance’s values ∆𝜎𝜎2 = 𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚 , the expression 

of T is illustrated in (3),  

 

 
𝛼𝛼 = min

∀ 𝑽𝑽𝒊𝒊,𝑽𝑽𝒋𝒋
|(𝝈𝝈𝑽𝑽𝒊𝒊

𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋
𝟐𝟐 )| , (2) 

 

 
𝑇𝑇 = 𝜎𝜎2

𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜎𝜎2
𝑚𝑚𝑚𝑚𝑚𝑚

𝛼𝛼 , (3) 
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Where 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 referred to two different assignment 
scenarios. Note that the stochastic variable 𝛼𝛼 depends on many 
parameters such as the number of presented subtasks, processing 
time of each arrival task type distribution, the number of 
presented computing resources, etc. 

Note that, integrating the resource distribution model in the 
framework of quantum system-level is not straight-forward and 
may need a careful configuration to its parameters.  We are 
interested in providing a rigorous mathematical demonstration 
for bounding 𝛼𝛼 based on the performance specifications of the 
proposed resource distribution model, as it is required in real 
physical implementation. 

In the current subsection, we answered the fundamental 
question on how to apply the quantum method in the resource 
deployment system. In the next subsection, we will present an 
analytical comparison between the proposed quantum strategy 
and the classical counterpart.  

D. Analytical comparison between the computational 
complexity of the quantum and the classical strategy. 
The quantum minimum searching algorithm is used as a 

tool to reduce the computational complexity for selecting the
optimum deployment scenario, the time complexity of the 
quantum method of the entire system is 𝑂𝑂 (𝑙𝑙𝑙𝑙𝑙𝑙2(𝑇𝑇)𝑙𝑙𝑙𝑙𝑙𝑙2

3(√𝑑𝑑)), 
it depends on the computational complexity of the quantum 
existence testing function 𝑙𝑙𝑙𝑙𝑙𝑙2

3(√𝑑𝑑) and the logarithm search 
of the quantum algorithm 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑇𝑇), where d refers to the number 
of possible deployment scenarios, this quantum technique uses 
fewer steps than the other searching methods like heuristic and 
randomized algorithms [20][21], etc. 

To calculate the maximum number of steps 𝑇𝑇 which are 
necessary to run the logarithm search of the quantum algorithm 
for every bunch of new coming subtasks to the system, the real 
problem lies in calculating properly the value 𝛼𝛼 at every task 
arrival (which means that the value of 𝛼𝛼 changes for every new 
coming task), so in order to not confuse the reader we will 
denote this repeatedly computed value of 𝛼𝛼 by 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . Finding 
the value of 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  requires determining the minimum distance 
for any two different load distributions, mathematically 
expressed as 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) = min

∀ 𝑽𝑽𝒊𝒊,𝑽𝑽𝒋𝒋
|(𝝈𝝈𝑽𝑽𝒊𝒊

𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋
𝟐𝟐 )|. The 

computational complexity for finding 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is 𝑂𝑂 (𝑑𝑑(𝑑𝑑−1)
2 ), in the 

worst case, 𝑑𝑑 = 𝑐𝑐𝑔𝑔𝑙𝑙 , where g is the number of subtasks in the 
arrived task from type l, it is noticeable that computing the value 
of 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is computationally hard. 

Instead of calculating 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  at each arrival task, the 
alternative solution is to compute in advance the global non-
zero minimum of 𝛼𝛼, denoted by 𝛼𝛼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙, before starting the 
operation of the system, such that 𝛼𝛼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =

min
∀ 𝑆𝑆𝑐𝑐ℎ

𝑖𝑖 ,𝑆𝑆𝑐𝑐ℎ
𝑗𝑗

 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆𝑐𝑐ℎ
𝑖𝑖 , 𝑆𝑆𝑐𝑐ℎ

𝑗𝑗 ), where 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  means  minimization 

over all possible load configurations of changed unit sets 𝑆𝑆𝑐𝑐ℎ
𝑖𝑖  

and 𝑆𝑆𝑐𝑐ℎ
𝑗𝑗   belonging to the distributions 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗. Because a 

certainly changed unit set fits many distributions, it is enough 
to define the previous formula with i and j. The expression of 
the value of 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is influenced only by a load of changed 

computing units, as we will see the proof later in the next 
subsection E, while unchanged computing units have no effects 
on  𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 .  

Investigating all unit set pairs to calculate 𝛼𝛼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 we need 
to compute all 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 which are related to unit sets, assuming 
that the number of computing unit types is 𝜃𝜃, taking advantage 
of the previous statement of 𝛼𝛼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, we conclude that the 
number of possible distributions 𝑑𝑑′ is less or equal than 
𝜃𝜃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 where 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 is the number of arrival subtasks, which 
means that the computational complexity at this stage is 
𝑂𝑂 (𝑑𝑑′(𝑑𝑑′−1)

2 ), this computation complexity is significantly less than 
the computation complexity of 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, the disadvantage of this 
minimization will create an increase in the maximum number of 
steps, but the quantum approach can handle the logarithm 
complexity of a large number of scale values because it will not 
increase significantly the complexity of the system. 

The present subsection covers a comparison between the 
classical and the quantum approach. The question was how to 
reduce the computational complexity for the setup of the 
repeated changing value of 𝛼𝛼 for any coming task, The 
alternative solution was to compute the global value 𝛼𝛼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 by 
exploiting the value of 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. The next subsection addresses the 
formulation of 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 taking into consideration the resource 
distribution parameters. 

E. Setting up the system parameter of the resource 
distribution management model with multi-task and multi-
subtasks 
As already mentioned, in order to fully exploit the potential 

of the quantum minimum searching algorithm, it is necessary to 
configure properly the parameters of the quantum method 
according to the characteristics of the resource allocation 
model. As aforementioned, the parameter T depends on ∆𝜎𝜎2, in 
the worst case, the value of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

2 is 0.25 and the value of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
2 

will be always 0. Thus ∆𝜎𝜎2 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
2. 

A more interesting approach addressed in this paper consist 
of providing concrete configuration of the quantum algorithm 
according to the mathematical formula given in (2), for the sake 
of the minimum distance between variances of two scenarios 
𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, so, it is necessary to find a manageable expression of 
(𝝈𝝈𝑽𝑽𝒊𝒊

𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋
𝟐𝟐 ). 

Let 𝑥𝑥𝑘𝑘, 𝑏𝑏𝑘𝑘 and 𝑏̅𝑏 be respectively the total of the kth unit load 
before receiving new subtask types, the relative load of the kth 
unit, and relative load average as it is shown respectively in (4), 
(5) and (6), 
 

𝒙𝒙𝒌𝒌 = ∑ 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏

𝑾𝑾

𝒗𝒗=𝟏𝟏
∆𝒗𝒗, 

 
(4) 

 
where 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏  refers to the number of subtask type 𝑣𝑣 in the kth 
computing unit, 

 𝒃𝒃𝒌𝒌 = 𝒙𝒙𝒌𝒌
𝒔𝒔𝒌𝒌

, (5) 
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 𝒃̅𝒃 =  𝟏𝟏𝒄𝒄  ∑ 𝒃𝒃𝒌𝒌

𝒄𝒄

𝒌𝒌=𝟏𝟏
. (6) 

 
The problem was in formulating a general expression of the 
minimum distance between variances of two scenarios (𝝈𝝈𝑽𝑽𝒊𝒊

𝟐𝟐 −
𝝈𝝈𝑽𝑽𝒋𝒋

𝟐𝟐 ), i.e., for a given distribution scenario which fits to 
assigning only one subtask to a given unit. For this purpose, we 
considered that the load status of the computing units before 
and after the task deployment is given respectively by the 𝑉𝑉𝑏𝑏 
(7) and 𝑉𝑉𝑎𝑎 matrices, their rows represent the computing units 
and the columns denote the subtasks type (8). In order to find 
the expression of the minimum variance between two different 
scenarios, the load of the new subtasks type should be taken into 
account, let’s denote the set of computing units receiving the 
new subtasks by 𝑆𝑆𝑐𝑐ℎ and the remaining set of computing units 
by 𝑆𝑆𝑢𝑢𝑢𝑢, such that 𝑆𝑆𝑐𝑐ℎ ∪ 𝑆𝑆𝑢𝑢𝑢𝑢 = 𝑆𝑆𝑇𝑇. For the sake of a simple 
notation that describes all the possible deployment scenarios of 
the new subtasks, we use 𝑉𝑉𝑖𝑖 matrix, its rows represent the 
computing units and the columns denote the subtask types as it 
is expressed in (8), 

 𝑉𝑉𝑏𝑏 =

[
 
 
 
 
 𝑁𝑁11

𝑏𝑏 ⋯ ⋯
⋮ ⋱ ⋱
⋮ ⋱ ⋱

⋯ ⋯ 𝑁𝑁1𝑊𝑊
𝑏𝑏

⋯ ⋯ ⋮
⋱ ⋯ ⋮

⋮ ⋯ ⋱
⋮ ⋯ ⋯

𝑁𝑁𝑐𝑐1
𝑏𝑏 ⋯ ⋯

⋱ ⋱ ⋮
⋱ ⋱ ⋮
⋯ ⋯ 𝑁𝑁𝑐𝑐𝑐𝑐

𝑏𝑏 ]
 
 
 
 
 

, 

 

(7) 

 

 𝑉𝑉𝑖𝑖 =

[
 
 
 
 
 𝑁𝑁11

𝑉𝑉𝑖𝑖 ⋯ ⋯
⋮ ⋱ ⋱
⋮ ⋱ ⋱

⋯ ⋯ 𝑁𝑁1𝑊𝑊
𝑉𝑉𝑖𝑖

⋯ ⋯ ⋮
⋱ ⋯ ⋮

⋮ ⋯ ⋱
⋮ ⋯ ⋯

𝑁𝑁𝑐𝑐1
𝑉𝑉𝑖𝑖 ⋯ ⋯

⋱ ⋱ ⋮
⋱ ⋱ ⋮
⋯ ⋯ 𝑁𝑁𝑐𝑐𝑐𝑐

𝑉𝑉𝑖𝑖 ]
 
 
 
 
 

. (8) 

 
The relation between the load status of the computing units 
before and after the task deployment is 𝑉𝑉𝑏𝑏 + 𝑉𝑉𝑖𝑖 =  𝑉𝑉𝑎𝑎.  
The relative load of the set of computing units receiving the new 
subtasks 𝑆𝑆𝑐𝑐 is denoted by 𝒃𝒃𝑘𝑘∈𝑆𝑆𝑐𝑐ℎ

𝑽𝑽𝒊𝒊  and the relative load of the 
remaining computing units 𝒃𝒃𝑘𝑘∈𝑆𝑆𝑢𝑢𝑢𝑢  is formulated as follows, 
 

 {𝑏𝑏𝑘𝑘∈𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑖𝑖 =  𝑏𝑏𝑘𝑘∈𝑆𝑆𝑐𝑐ℎ + 𝑽𝑽𝒊𝒊∆

𝑏𝑏𝑘𝑘∈𝑆𝑆𝑢𝑢𝑢𝑢 =  𝑏𝑏𝑘𝑘                  
 

Taking into consideration the new deployment subtasks, the 
average of the relative load of the resource model is expressed 
by the formula (10), note that 𝑷𝑷 = [𝑠𝑠1 … 𝑠𝑠𝑊𝑊] and ∆=
[∆1 … ∆𝑊𝑊]𝑡𝑡, 

 𝑏𝑏𝑉𝑉𝑖𝑖
̅̅̅̅ = 1

𝑐𝑐 ∑ 𝑏𝑏𝑘𝑘

𝑐𝑐

𝑘𝑘=1
+ 1

𝑐𝑐  𝑷𝑷𝑽𝑽𝒊𝒊∆.

 
 

 The relative load of the variance of the new deployment 
scenario is given as follows, 

 𝝈𝝈𝑽𝑽𝒊𝒊
𝟐𝟐 =  𝟏𝟏𝒄𝒄 ∑(𝒃𝒃𝑽𝑽𝒊𝒊

̅̅ ̅̅ − 𝒃𝒃𝒌𝒌
𝑽𝑽𝒊𝒊)𝟐𝟐

𝒄𝒄

𝒌𝒌=𝟏𝟏
.

In the end, we end up with the corresponding formula, 
which is expressed as follows,  

𝝈𝝈𝑽𝑽𝒊𝒊
𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋

𝟐𝟐

=  𝟏𝟏𝒄𝒄
[
 
 
 
 

∑ (
∑ 𝑁𝑁𝑘𝑘𝑘𝑘

𝑉𝑉𝑖𝑖𝑊𝑊𝑣𝑣
𝑆𝑆𝑘𝑘

)
2

𝑘𝑘∈𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑖𝑖

− ∑ (
∑ 𝑁𝑁𝑘𝑘𝑘𝑘

𝑉𝑉𝑗𝑗𝑊𝑊𝑣𝑣
𝑆𝑆𝑘𝑘

)
2

𝑘𝑘∈𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑗𝑗

+ 2

(

 
 ∑ (∑ 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏
𝑊𝑊

𝑣𝑣=1
)

𝑘𝑘∈𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑖𝑖

(
∑ 𝑁𝑁𝑘𝑘𝑘𝑘

𝑉𝑉𝑖𝑖𝑊𝑊𝑣𝑣
𝑆𝑆𝑘𝑘

2 )

− ∑ (∑ 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏

𝑊𝑊

𝑣𝑣=1
)

𝑘𝑘∈𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑗𝑗

(
∑ 𝑁𝑁𝑘𝑘𝑘𝑘

𝑉𝑉𝑗𝑗𝑊𝑊𝑣𝑣
𝑆𝑆𝑘𝑘

2 )

)

 
 

]
 
 
 
 
 

(12) 

The value of 𝛼𝛼 denotes the smallest distance between two 
different scenarios among all the possible scenarios in a 
database. 𝛼𝛼 is illustrated in Fig.2 

 

 
Fig.2: The horizontal axis presents all the possible deployment scenarios, while 
the vertical axis presents the borders of the variance square function (different 
results), each possible scenario corresponds to a variance value. Computing the 
value of 𝛼𝛼 requires selecting the minimum distance between variances of two 
deployment scenarios 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗.  

It is important to mention that for any distribution, the 
difference between variances of two different scenarios 
depends only on the set of the computing units 𝑆𝑆𝑐𝑐ℎ that have 
been assigned a workload, not on all computing units. 

Note that we considered that the number of incoming 
subtasks for both scenarios 𝑉𝑉𝑖𝑖 and  𝑉𝑉𝑗𝑗 are considered as fixed 
parameters for the system distribution, another important 
remark that we want to investigate is the non-zero 𝛼𝛼. 
Furthermore, it is clearly noticeable that  (𝝈𝝈𝑽𝑽𝒊𝒊

𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋
𝟐𝟐 )2 ≥ 0, in 

order to find the minimum places, it is enough to investigate 
(𝝈𝝈𝑽𝑽𝒊𝒊

𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋
𝟐𝟐 )2 = 0, this expression derives an important 

property of the minimum points (i.e., the variables 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏 , 𝑣𝑣 ∈

{1, … ,𝑊𝑊} are linearly dependent), in compliance with this 
result we conclude that the minimum places of the function 
(𝝈𝝈𝑽𝑽𝒊𝒊

𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋
𝟐𝟐 )2 are situated in a hyperplane. 

In the general case, to determine the desired α, it is needed to 
fulfill a certain number of restrictions determined by choosing 
the suitable range of the variables 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏 , 𝑣𝑣 ∈ {1, … ,𝑊𝑊}. The 
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function (𝝈𝝈𝑽𝑽𝒊𝒊
𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋

𝟐𝟐 ) is continuous, however,  from resource 

distribution management point of view the variables 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏 , 𝑣𝑣 ∈

{1, … , 𝑊𝑊} must be integers. The first step is to assign an integer 
number different than zero to all the variables except one value, 
which corresponds to the subtask 𝒗𝒗 = 𝜔𝜔, this value could be 
𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏  / 𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑖𝑖 (or  𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ

𝑉𝑉𝑗𝑗), then computing the value of 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏  / 

𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑖𝑖 (or  𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ

𝑉𝑉𝑗𝑗), that corresponds to the remaining 
variables, here, at this stage, we have two options whether the 
value of 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏  / 𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑖𝑖 (or  𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ

𝑉𝑉𝑗𝑗) is an integer or not. 

1st case: if 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏  / 𝑅𝑅 ∈ 𝑆𝑆𝑐𝑐ℎ

𝑉𝑉𝑖𝑖 (or  𝑅𝑅 ∈ 𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑗𝑗) is an integer 

The minimum distance between the variances of two 
scenarios α equals to zero and the values of the variables 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏 , 
𝑣𝑣 ∈ {1, … , 𝑊𝑊} are not appropriate solutions for α, so, in this 
case, we can modify 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏  / 𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑖𝑖 (or  𝑅𝑅 ∈ 𝑆𝑆𝑐𝑐ℎ

𝑉𝑉𝑗𝑗), by increasing 
or decreasing 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏 , and assigning the value of 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏 + 𝟏𝟏  or 

𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏 − 𝟏𝟏  to 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏  / 𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑖𝑖

, (or assigning the value of 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏 + 𝟏𝟏  

or 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏 − 𝟏𝟏  to 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏  / 𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑗𝑗

).  
The most important thing is to choose only one assignment 

which results in the minimum value of 𝜶𝜶, let us investigate the 
value of 𝑓𝑓 = (𝝈𝝈𝑽𝑽𝒊𝒊

𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋
𝟐𝟐 )2 when we assign the value of 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏 +
𝟏𝟏  or 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏  − 𝟏𝟏  to 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏  , (or assigning the value of 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏 + 𝟏𝟏 or 
𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏 − 𝟏𝟏 𝐭𝐭𝐭𝐭 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏  / 𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ

𝑉𝑉𝑗𝑗), using the previous result which 
stated that (𝝈𝝈𝑽𝑽𝒊𝒊

𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋
𝟐𝟐 )2 ≥ 0, we get to the following result, 

𝑓𝑓𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏 +1 = 𝑓𝑓𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏 −1.

The above expression states that the cross-section of the 
hyperplane is symmetric on the minimum places of (𝜎𝜎𝑉𝑉𝑖𝑖

2 −
𝜎𝜎𝑉𝑉𝑗𝑗

2 )2 in its dimensional space. 

2nd case: if 𝑁𝑁𝑘𝑘𝑘𝑘
𝑏𝑏   / 𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ

𝑉𝑉𝑖𝑖 (or  𝑅𝑅 ∈ 𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑗𝑗) is not an integer 

The function (𝝈𝝈𝑽𝑽𝒊𝒊
𝟐𝟐 − 𝝈𝝈𝑽𝑽𝒋𝒋

𝟐𝟐 ) has monotonous nature, 
consequently, the solution is to assign to 𝑁𝑁𝑘𝑘𝑘𝑘

𝑏𝑏   / 𝑘𝑘 ∈ 𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑖𝑖 (or  𝑘𝑘 ∈

𝑆𝑆𝑐𝑐ℎ
𝑉𝑉𝑗𝑗) the nearest integer, in this case, 𝛼𝛼 does not equal to zero. 

In this section, a mathematical framework was developed, 
which jointly determines the minimum distance between the 
variances of two scenarios 𝛼𝛼.  

F. Simulation 
We have developed a simulator to show the efficiency of the 

quantum method compared to the randomized method. We will 
apply the optimized strategy for two metrics independently, the 
resource distribution system contains three elements; they are 
defined as follows: 
One task generator: The tasks are exponentially generated, all 
the tasks have the same memory and energy requirement. 
Decision-Maker: This component is responsible for selecting 
the best placement of the task, so, we will have two simulations, 
the first one is to assign tasks randomly to the computing units 
and the second one is to use the quantum algorithm. 

Resources: The system contains 30 computing units, there are 
3 types of these computing units, the following table presents 
the initial energy consumption of every computing unit type and 
their theoretical capacity, i.e., the energy consumed from 
computing units when it is working and not serving any task. 
The service time of each task is fixed, it equals 5s and its 
memory requirement is also fixed, it equals 2 Kbit, the amount 
of the necessary power consumption to complete the serving of 
each task is 10 Watts.  

          Units type 
            

 Characteristics 
Type 1 Type 2 Type 3 

Initial Energy 150 300 450 
Theoretical 

capacity 10 20 30 

Number of 
computing units 30 40 30 

Table.1: the characteristics of computing units 

 
Fig.3: The overall energy consumption curves of the optimized (red line) and 
the randomized strategies (blue line), in case setting up the following 
parameters, the mean = 0.05.    

 
Fig.4: The variances curves of the optimized (red line) and the randomized 
strategies (blue line), in case setting up the following parameters, the mean = 
0.05.    

 
Fig.5: The average load curve of the optimized and the randomized strategies, 
in case setting up the following parameters, the mean = 0.05.    

According to Fig.3 and Fig.4, the curves representing the 
total power consumption of the randomized algorithm are larger 
than the optimized method. As a conclusion, the optimized 
strategy has better results in finding the minimum overall power 
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consumption and the best uniformity distribution than the 
randomized method during the whole simulation process. 

III. CONCLUSION 
This work addresses the problem of distributing task 

portions, i.e., subtasks, among different resource computing as a 
means to alleviate the computational complexity of selecting the 
optimum distribution scenarios, the main objective was to 
conserve the uniformity distribution load. The quantum 
minimum searching was our best choice for achieving optimal 
deployment results, which is dramatically influences in reducing 
the computational complexity of the system.  

Also, we handled a general case that handles multi-
optimization metrics, as well as testing the proposed quantum 
approach by the simulation environment. 

In the future work, the quantum algorithm will treat a model 
which handle more general case, multi-optimization metrics, as 
well as testing the proposed quantum approach by simulation 
environment, at the same time increasing the complexity 
problem by defining its nonlinear combination function, 
furthermore, we will try to implement constraints to our 
quantum algorithm.  
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CALL FOR PAPERS
IEEE SENSORS 2020 is intended to provide a forum for research 
scientists, engineers, and practitioners throughout the world to 
present their latest research findings, ideas, and applications in the 
area of sensors and sensing technology.

IEEE SENSORS 2020 will include keynote addresses and invited presentations by eminent 
scientists and engineers. The conference solicits original state-of-the-art contributions 
as well as review papers.

Topics for IEEE SENSORS 2020 include

ieee-sensors2020.org

Organizers
General Co-Chair
Paddy French
TU Delft

General Co-Chair
Troy Nagle
NC State University

Technical Program 
Co-Chair
Gijs Krijnen
University of Twente

Technical Program 
Co-Chair
Rolland Vida
Budapest University of 
Technology and Economics

Please visit
ieee-sensors2020.org

 » Sensor Phenomenology, Modeling and 
Evaluation
 » Sensor Materials, Processing and 
Fabrication (including Printing)
 » Chemical, Electrochemical and Gas 
Sensors
 » Microfluidics and Biosensors
 » Optical Sensors
 » Physical Sensors - Temperature, 
Mechanical, Magnetic and Others
 » Acoustic and Ultrasonic Sensors
 » Sensor Packaging (including on Flexible 
Materials)
 » Emerging Sensor Applications

 » Sensor Networks (including IoT and 
related areas)
 » Sensor Systems: Signals, Processing and 
Interfaces
 » Actuators and Sensor Power Systems
 » Sensors in Industrial Practices 
This track is for traditional papers where 
the focus is on the industrial applications 
of different sensors. This track is only for 
industry, i.e. first author must be from 
industry.

 » Live Demonstration of Sensors and 
Sensing Technologies

Focused Sessions
IEEE SENSORS 2019 will have focused sessions 
on emerging sensor-related topics. Details 
related to the Call For Focused Sessions is 
on the conference website.

Publication of Papers
Presented papers will be included in the 
Proceedings of IEEE SENSORS 2020 and in 
IEEE Xplore pending author requirements 
being met. Authors may submit extended 
versions of their paper to the IEEE Sensors 
Journal.

Exhibition Opportunities
The Conference exhibit area will provide 
your company or organization with the 
opportunity to inform and display your 
latest products, services, equipment, books, 
journals, and publications to attendees 
from around the world.
For further information,  
contact Rachel Brockhoff,  
rbrockhoff@conferencecatalysts.com

Industry Day
A special track designed to encourage 
industry participation will include industry 
showcase, industry networking, and an 
industry panel discussion. Special flexible 
one-day registration will be available to 
facilitate industry participation.
Visit the website for the most up to date 
information relating to abstract submission, 
tutorials, and special sessions information 
and deadlines.

Special Issue in the IEEE Sensors 
Journal
If your paper is accepted for publication 
at this conference, you may receive an 
invitation to submit an extended manuscript 
to be considered for publication in the IEEE 
Sensors Journal. Best papers presented at 
the conference will be invited to participate 
via the call for papers for this special issue 
of the journal.

SENSORS
October 25-28, 2020
2020

WTC, Rotterdam, The Netherlands
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Format of the manuscripts

Original manuscripts and final versions of papers 
should be submitted in IEEE format according to the
formatting instructions available on
  https://journals.ieeeauthorcenter.ieee.org/
  Then click: "IEEE Author Tools for Journals"
  - "Article Templates"
  - "Templates for Transactions".

Length of the manuscripts

The length of papers in the aforementioned format 
should be 6-8 journal pages.
Wherever appropriate, include 1-2 figures or tables 
per journal page.

Paper structure

Papers should follow the standard structure, consist-
ing of Introduction (the part of paper numbered by 
“1”), and Conclusion (the last numbered part) and 
several Sections in between.
The Introduction should introduce the topic, tell why 
the subject of the paper is important, summarize the 
state of the art with references to existing works and 
underline the main innovative results of the paper. 
The Introduction should conclude with outlining the 
structure of the paper.

Accompanying parts

Papers should be accompanied by an Abstract and a
few index terms (Keywords). For the final version of ac-
cepted papers, please send the short cvs and photos  
of the authors as well.

Authors

In the title of the paper, authors are listed in the or- 
der given in the submitted manuscript. Their full affili- 
ations and e-mail addresses will be given in a footnote
on the first page as shown in the template. No  
degrees or other titles of the authors are given. Mem-
berships of IEEE, HTE and other professional socie-
ties will be indicated so please supply this information.
When submitting the manuscript, one of the authors 
should be indicated as corresponding author provid-
ing his/her postal address, fax number and telephone
number for eventual correspondence and communi-
cation with the Editorial Board.

References

References should be listed at the end of the paper  
in the IEEE format, see below:

a)  Last name of author or authors and first name or 
	    initials, or name of organization
b)  Title of article in quotation marks
c)  Title of periodical in full and set in italics
d)  Volume, number, and, if available, part
e)  First and last pages of article
 f)  Date of issue
g)  Document Object Identifier (DOI)

[11] Boggs, S.A. and Fujimoto, N., “Techniques and
instrumentation for measurement of transients in
gas-insulated switchgear,” IEEE Transactions on
Electrical Installation, vol. ET-19, no. 2, pp.87–92,
April 1984. DOI: 10.1109/TEI.1984.298778
Format of a book reference:
[26] Peck, R.B., Hanson, W.E., and Thornburn,
T.H., Foundation Engineering, 2nd ed. New York:
McGraw-Hill, 1972, pp.230–292.
All references should be referred by the correspond-
ing numbers in the text.

Figures

Figures should be black-and-white, clear, and drawn
by the authors. Do not use figures or pictures down-
loaded from the Internet. Figures and pictures should
be submitted also as separate files. Captions are ob-
ligatory. Within the text, references should be made
by figure numbers, e.g. “see Fig. 2.”
When using figures from other printed materials, ex-
act references and note on copyright should be in-
cluded. Obtaining the copyright is the responsibility 
of authors.

Contact address

Authors are requested to submit their papers elec-
tronically via the EasyChair system. The link for sub-
mission can be found on the journal’s website:
www.infocommunications.hu/for-our-authors
If you have any question about the journal or the 
submission process, please do not hesitate to con- 
tact us via e-mail:
Pál Varga – Editor-in-Chief:
pvarga@tmit.bme.hu
Rolland Vida – Associate Editor-in-Chief: 
vida@tmit.bme.hu



On behalf of the European Association for Signal Processing (EURASIP), it is a
great pleasure of the organizing committee to invite you to the 28th European
Signal Processing Conference, EUSIPCO 2020, to be held in Amsterdam, The
Netherlands.
 
EUSIPCO is the flagship conference of EURASIP and offers a comprehensive
technical program addressing all the latest developments in research and
technology for signal processing. EUSIPCO 2020 will feature worldclass
speakers, oral and poster sessions, plenaries, exhibitions, demonstrations,
tutorials, and satellite workshops, and is expected to attract many leading
academic researchers and people from industry from all over the world.

COMMITTEES

Audio and acoustic signal processing
Speech and language processing
Image and video processing
Multimedia signal processing
Signal processing theory and
methods
Sensor array and multichannel signal
processing
Signal processing for
communications
Radar and sonar signal processing
Signal processing over graphs and
networks
Nonlinear signal processing
Statistical signal processing
Compressed sensing and sparse
modelling

We invite the submission of original, unpublished technical
papers on topics including but not limited to:

GENERAL CO-CHAIRS
Richard Heusdens, TU Delft, The Netherlands
Cédric Richard, University of Nice Sophia-Antipolis,
France
 
TECHNICAL PROGRAM CO-CHAIRS
Alle-Jan van der Veen, TU Delft, The Netherlands
Pina Marzilano, EPFL, Switzerland
Toon van Waterschoot, KU Leuven, Belgium
 
FINANCIAL CHAIR
Richard C. Hendriks, TU Delft, The Netherlands
 
TUTORIALS CO-CHAIRS
Béatrice Pesquet, Thales LAS, France
Sundeep Chepuri, Indian Institute of Science, India
 
SPECIAL SESSIONS CO-CHAIRS
Helmut Bölcskei, ETH Zürich, Switzerland
Tulay Adali, UMBC, USA
Sharon Gannot, Bar-Ilan University, Israel
 
PLENARY CO-CHAIRS
Geert Leus, TU Delft, The Netherlands
Mario A.T. Figueiredo, University of Lisboa, Portugal
 
SPONSOR CHAIR
Ton Kalker, Xperi Corporation, USA
 
AWARDS CO-CHAIRS
Mads G. Christensen, Aalborg University, Denmark
Timo Gerkmann, Hamburg University, Germany
 
PUBLICITY CHAIR
Elvin Isufi, TU Delft, The Netherlands
 
STUDENT ACTIVITIES CO-CHAIRs
Andreas Jakobsson, Lund University, Sweden 
Jesper Rindom Jensen, Aalborg University, Denmark
 
SATELLITE WORKSHOPS CO-CHAIRS
Zekeriya Erkin, TU Delft, The Netherlands
Odette Scharenborg, TU Delft, The Netherlands
 
PUBLICATIONS CO-CHAIRS
Antonio Marques, King Juan Carlos University, Spain
Borbala Hunyadi, TU Delft, The Netherlands
 
PCO
Nicole Fontein, BleuBoxEvents, The Netherlands

Optimization methods
Machine learning
Bio-medical image and signal
processing
Signal processing for computer vision
and robotics
Computational imaging / spectral
imaging
Information forensics and security
Signal processing for power systems
Signal processing for education
Bioinformatics and genomics
Signal processing for big data
Signal processing for the internet of
things
Design/implementation of signal
processing systems

 
Special Session Proposals— December 6, 2019
Tutorial Proposals — January 17, 2020
Satellite Workshop Proposals — January 24, 2020
Full Paper Submission — February 21, 2020
Notification of Acceptance — May 29, 2020
Final Manuscript Submission — June 12, 2020
 

IMPORTANT DATES

TECHNICAL SCOPE

CALL FOR PAPERS

Accepted papers will be included in IEEE Xplore©. EURASIP enforces a “no-
show” policy. Procedures to submit papers, proposals for special sessions,
tutorials and satellite workshops can be found on the website.



SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS

Who we are
Founded in 1949, the Scientific Association for Info-
communications (formerly known as Scientific Society 
for Telecommunications) is a voluntary and autono-
mous professional society of engineers and econo-
mists, researchers and businessmen, managers and 
educational, regulatory and other professionals work-
ing in the fields of telecommunications, broadcast-
ing, electronics, information and media technologies 
in Hungary.

Besides its 1000 individual members, the Scientific 
Association for Infocommunications (in Hungarian:  
HÍRKÖZLÉSI ÉS INFORMATIKAI TUDOMÁNYOS EGYESÜLET, HTE) 
has more than 60 corporate members as well. Among 
them there are large companies and small-and-medi-
um enterprises with industrial, trade, service-providing, 
research and development activities, as well as educa-
tional institutions and research centers.

HTE is a Sister Society of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE) and the IEEE Communi-
cations Society.

What we do
HTE has a broad range of activities that aim to pro-
mote the convergence of information and communi-
cation technologies and the deployment of synergic
applications and services, to broaden the knowledge
and skills of our members, to facilitate the exchange
of ideas and experiences, as well as to integrate and

harmonize the professional opinions and standpoints
derived from various group interests and market dy-
namics.

To achieve these goals, we…

•	 contribute to the analysis of technical, economic, 
and social questions related to our field of compe-
tence, and forward the synthesized opinion of our 
experts to scientific, legislative, industrial and edu-
cational organizations and institutions;

•	 follow the national and international trends and 
results related to our field of competence, foster 
the professional and business relations between 
foreign and Hungarian companies and institutes;

•	 organize an extensive range of lectures, seminars, 
debates, conferences, exhibitions, company pres-
entations, and club events in order to transfer and 
deploy scientific, technical and economic knowl-
edge and skills;

•	 promote professional secondary and higher edu-
cation and take active part in the development of 
professional education, teaching and training;

•	 establish and maintain relations with other domes-
tic and foreign fellow associations, IEEE sister soci-
eties;

•	 award prizes for outstanding scientific, education-
al, managerial, commercial and/or societal activities 
and achievements in the fields of infocommunica-
tion.

Contact information
President: GÁBOR MAGYAR, PhD • elnok@hte.hu

Secretary-General: ERZSÉBET BÁNKUTI • bankutie@ahrt.hu
Operations Director: PÉTER NAGY • nagy.peter@hte.hu

International Affairs: ROLLAND VIDA, PhD • vida@tmit.bme.hu

Address: H-1051 Budapest, Bajcsy-Zsilinszky str. 12, HUNGARY, Room: 502
Phone: +36 1 353 1027

E-mail: info@hte.hu, Web: www.hte.hu


