
A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

DOI: 10.36244/ICJ.2019.4.4

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2019 • VOLUME XI • NUMBER 4 23

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

Pavol Zajac, and Peter Špaček

Abstract—We propose a new concept of (post-quantum) digital
signature algorithm derived from a symmetric cipher. Key deriva-
tion is based on a system of Multiple-Right-Hand-Sides equations.
The source of the equations is the encryption algorithm. Our
trapdoor is based on the difficulty of creating a valid transcript
of the encryption algorithm for a given plaintext (derived from
the signed message): the signer can use the encryption algorithm,
because he knows the secret key, and the verifier can only
check that the solution of the equation system is correct. To
further facilitate the verification, we use techniques from coding
theory. Security of the system is based on the difficulty of solving
MRHS equations, or equivalently on the difficulty of the decoding
problem (both are NP hard).

Index Terms—Signature scheme, Substitution-Permutation
Network, MRHS equation system, post-quantum.

I. INTRODUCTION

We propose a new concept of (post-quantum) digital sig-
nature algorithm derived from a symmetric cipher. There
are already some signature algorithms that use symmetric
primitives as their basis: hash-based signatures, that use one-
way property of the underlying hash function (e.g.,SPHINGS+
[1]), and generic schemes based on non-interactive proofs and
multiparty computation (e.g., Picnic [2]).

Main innovation of our design is that it does not use
underlying cipher as a black-box, but instead as a white-box.
This might seem similar to white-box cryptography [3], but
our goal is different. While white-box cryptography models
the user as a potential attacker, we use white-box version of
the cipher to provide a secret algorithm for signatures for a
legitimate owner of a secret key. The recipient that verifies
the signature does not have access to the white-box, but is
instead provided a public key that is created from the cipher
representation.

Our design is mostly related to multivariate signatures [4]:
Public key is essentially a system of equations, that only the
signer can solve (with the help of the secret key). Unlike
multivariate case, we use a different representation of equa-
tion systems, so called Multiple-Right-Hand-Sides equations
(MRHS, [5]). The source of our equations is the encryption
algorithm. Our trapdoor is based on the difficulty of creating
a valid transcript of the encryption algorithm for a given
plaintext (derived from the signed message): the signer can
use the encryption algorithm, because he knows the secret

Slovak University of Technology in Bratislava, Slovakia. e-mail: pavol.
zajac@stuba.sk

This research was sponsored in parts by the NATO Science for Peace and
Security Programme under grant G5448, and by Slovak Republic under grant
VEGA 1/0159/17.

key, and the verifier can only check that the solution of the
equation system is correct. To further facilitate the verification,
we use techniques from coding theory.

In Section II, we summarize the notation, basic definitions
and notions required to understand the proposed scheme.
The scheme itself is specified in Section III. We provide a
simplified example of some steps of the algorithm in Section
IV. In Section V we discuss the correctness of the scheme,
as well as its efficiency. Finally, in Section VI we analyse the
security of the proposed scheme. The security of the system
is based on the difficulty of solving MRHS equations, or
equivalently on the difficulty of special decoding problem.
Both of the problems are NP-hard (in generic version), and
should be difficult to solve with quantum computer as well.

Our original goal was to base the signature scheme directly
on the symmetric encryption standard AES. Main advantage
would be prevalent existence of hardware and software imple-
mentations of AES on essentially any platform. As our security
analysis shows, it is not clear, whether the scheme can be made
secure with the underlying design of AES, which is strongly
structured, and this structure might leak the used trapdoor.
A more suitable underlying cipher might be LowMC [6] or
similar designs. We believe that to construct a fully secure
signature scheme, a new type of symmetric cipher should be
designed in a way that will facilitate our trapdoor type. We
leave these questions open for further research.

II. DEFINITIONS

We presume that the reader is acquainted with basic crypto-
graphic definitions such as cryptosystem, (symmetric) cipher,
public-key encryption, signature scheme, hash function, etc.,
as well as the related security notions. We also suppose that
the reader is familiar with basic notions of coding theory, such
as generator and parity-check matrix.

A. Notation

In this article we will use the following notation:
• All bit operations are represented in algebraic way over

field GF (2), shortened to F2. Note that standard operator
+ in this field corresponds to a logic operation XOR.

• Sets are denoted by block form, e.g. R ⊂ Fm
2 .

• Integers are represented by simple notation i, j, n ∈ Z.
• Vectors of bits are denoted by bold variables such as u,x.

The dimension of the vector depends on the context, and
is introduced when defining the vector, e.g., x ∈ Fn

2 . In
our paper, all vectors are always row vectors.

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

Pavol Zajac, and Peter Špaček

Abstract— We propose a new concept of (post-quantum)
digital signature algorithm derived from a symmetric cipher.
Key derivation is based on a system of Multiple-Right-Hand-
Sides equations. The source of the equations is the encryption
algorithm. Our trapdoor is based on the difficulty of creating
a valid transcript of the encryption algorithm for a given
plaintext (derived from the signed message): the signer can
use the encryption algorithm, because he knows the secret key,
and the verifier can only check that the solution of the equation
system is correct. To further facilitate the verification, we use
techniques from coding theory. Security of the system is based on
the difficulty of solving MRHS equations, or equivalently on the
difficulty of the decoding problem (both are NP hard).

Index Terms—Signature scheme, Substitution-Permutation
Network, MRHS equation system, post-quantum.

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

Pavol Zajac, and Peter Špaček

Abstract—We propose a new concept of (post-quantum) digital
signature algorithm derived from a symmetric cipher. Key deriva-
tion is based on a system of Multiple-Right-Hand-Sides equations.
The source of the equations is the encryption algorithm. Our
trapdoor is based on the difficulty of creating a valid transcript
of the encryption algorithm for a given plaintext (derived from
the signed message): the signer can use the encryption algorithm,
because he knows the secret key, and the verifier can only
check that the solution of the equation system is correct. To
further facilitate the verification, we use techniques from coding
theory. Security of the system is based on the difficulty of solving
MRHS equations, or equivalently on the difficulty of the decoding
problem (both are NP hard).

Index Terms—Signature scheme, Substitution-Permutation
Network, MRHS equation system, post-quantum.

I. INTRODUCTION

We propose a new concept of (post-quantum) digital sig-
nature algorithm derived from a symmetric cipher. There
are already some signature algorithms that use symmetric
primitives as their basis: hash-based signatures, that use one-
way property of the underlying hash function (e.g.,SPHINGS+
[1]), and generic schemes based on non-interactive proofs and
multiparty computation (e.g., Picnic [2]).

Main innovation of our design is that it does not use
underlying cipher as a black-box, but instead as a white-box.
This might seem similar to white-box cryptography [3], but
our goal is different. While white-box cryptography models
the user as a potential attacker, we use white-box version of
the cipher to provide a secret algorithm for signatures for a
legitimate owner of a secret key. The recipient that verifies
the signature does not have access to the white-box, but is
instead provided a public key that is created from the cipher
representation.

Our design is mostly related to multivariate signatures [4]:
Public key is essentially a system of equations, that only the
signer can solve (with the help of the secret key). Unlike
multivariate case, we use a different representation of equa-
tion systems, so called Multiple-Right-Hand-Sides equations
(MRHS, [5]). The source of our equations is the encryption
algorithm. Our trapdoor is based on the difficulty of creating
a valid transcript of the encryption algorithm for a given
plaintext (derived from the signed message): the signer can
use the encryption algorithm, because he knows the secret

Slovak University of Technology in Bratislava, Slovakia. e-mail: pavol.
zajac@stuba.sk

This research was sponsored in parts by the NATO Science for Peace and
Security Programme under grant G5448, and by Slovak Republic under grant
VEGA 1/0159/17.

key, and the verifier can only check that the solution of the
equation system is correct. To further facilitate the verification,
we use techniques from coding theory.

In Section II, we summarize the notation, basic definitions
and notions required to understand the proposed scheme.
The scheme itself is specified in Section III. We provide a
simplified example of some steps of the algorithm in Section
IV. In Section V we discuss the correctness of the scheme,
as well as its efficiency. Finally, in Section VI we analyse the
security of the proposed scheme. The security of the system
is based on the difficulty of solving MRHS equations, or
equivalently on the difficulty of special decoding problem.
Both of the problems are NP-hard (in generic version), and
should be difficult to solve with quantum computer as well.

Our original goal was to base the signature scheme directly
on the symmetric encryption standard AES. Main advantage
would be prevalent existence of hardware and software imple-
mentations of AES on essentially any platform. As our security
analysis shows, it is not clear, whether the scheme can be made
secure with the underlying design of AES, which is strongly
structured, and this structure might leak the used trapdoor.
A more suitable underlying cipher might be LowMC [6] or
similar designs. We believe that to construct a fully secure
signature scheme, a new type of symmetric cipher should be
designed in a way that will facilitate our trapdoor type. We
leave these questions open for further research.

II. DEFINITIONS

We presume that the reader is acquainted with basic crypto-
graphic definitions such as cryptosystem, (symmetric) cipher,
public-key encryption, signature scheme, hash function, etc.,
as well as the related security notions. We also suppose that
the reader is familiar with basic notions of coding theory, such
as generator and parity-check matrix.

A. Notation

In this article we will use the following notation:
• All bit operations are represented in algebraic way over

field GF (2), shortened to F2. Note that standard operator
+ in this field corresponds to a logic operation XOR.

• Sets are denoted by block form, e.g. R ⊂ Fm
2 .

• Integers are represented by simple notation i, j, n ∈ Z.
• Vectors of bits are denoted by bold variables such as u,x.

The dimension of the vector depends on the context, and
is introduced when defining the vector, e.g., x ∈ Fn

2 . In
our paper, all vectors are always row vectors.

Slovak University of Technology in Bratislava, Slovakia.
e-mail: pavol.zajac@stuba.sk
This research was sponsored in parts by the NATO Science for Peace and

Security Programme under grant G5448, and by Slovak Republic under grant
VEGA 1/0159/17.

http://doi.org/10.36244/ICJ.2019.3.2
http://doi.org/10.36244/ICJ.2019.4.4

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

DECEMBER 2019 • VOLUME XI • NUMBER 424

INFOCOMMUNICATIONS JOURNAL

III. ALGORITHM DESCRIPTION

Let us have a symmetric block cipher with encryption
algorithm defined by function Enc : Fn

2 × K → Fn
2 , which

is itself an SPN network with r rounds. Let S : Fk
2 → Fk

2 be
an S-box of the SPN network. We suppose that non-linear part
of each of the r rounds of SPN consists of n/k applications of
the same S-box S (in parallel). The condition that each S-box
is the same is important for the security of the scheme. We will
denote the total number of S-box applications by m = rn/k.
Let KS : K → Fn(r+1)

2 be a key schedule algorithm.
We define a signature scheme derived from this SPN with

the following algorithms: KeyGen, Sign, and V erify.

A. Key generation algorithm

Let k ∈ K be a randomly selected secret key (both of
the symmetric cipher, and as a part of a private key of our
signature scheme). Furthermore, let π be a randomly selected
secret permutation of numbers 1, 2, . . . ,m, which does not
change the order of the initial n/k elements. Private key for
creating signatures consists of the pair (k, π).

To construct the public key, we must do the following:
1) Expand the key. Given k ∈ K, we compute the SPN’s

key schedule: k̂ = (k1,k2, . . . ,k(r+1)) = KS(k).
2) Prepare the MRHS system. Let x ∈ Fn(r+1)

2 denote a
vector of unknowns corresponding to the inputs of the
S-boxes during the SPN evaluation plus one set of S-box
outputs in the last round. Inner outputs of the S-boxes
can be expressed as linear combinations of variables
from x, cipher constants, and constants based on the
expanded key k̂. Given linear expressions for the inputs
and outputs of the S-boxes, we can construct a MRHS
system (as described in section II-C) in the form

xM+ c ∈
⊗{

(u, S(u)) ;u ∈ Fk
2

}
. (1)

Constant c is derived from the constants of the algo-
rithm and bits of the expanded key k̂. Matrix M has
dimensions n(r + 1)× 2mk.
Note that this step can be precomputed up to computa-
tion of the final constant c that depends on k.

3) Apply masking permutation. Matrix M from equation
(1) can be written as M = (M1|M2| · · ·Mm). Blocks
Mi of dimension (n(r + 1)× 2k) correspond to linear
functions that construct inputs and outputs of S-boxes
from variables x. Similarly, split c into blocks of size
2k denoted by (c1, c2, . . . , cm).
Apply the secret permutation π on the order of blocks
of M and c. A permuted form of the system is given
as:

x · (Mπ(1)|Mπ(2)| · · ·Mπ(m))

+ (cπ(1), cπ(2), . . . , cπ(m)) ∈⊗{
(u, S(u)) ;u ∈ Fk

2

}
.

(2)

Let us denote the joint matrix of system (2) by Mπ , and
similarly let us denote be permuted vector c by cπ .

Fig. 2. An overview of the signature algorithm.

4) Parity check matrix. Compute systematic1 parity check
matrix H = (I|Q), such that MπH

T = 0.
5) Syndrome. Compute q = cπH

T .
6) Final public key The public key consist of the pair

(Q,q).

When applicable, public key should be augmented by ”do-
main parameters” describing the used SPN. These consist of
a triplet (n,m, k, S), in order: the block size, the number of
S-boxes, the S-box size, and the S-box itself.

B. Signature algorithm

Let m ∈ F∗
2 be a message we want to sign. Let H :

F∗
2 → Fn

2 be a cryptographically secure hash function2. To
sign message m do the following:

1) Generate random (nonce) r ∈ Fn
2 .

2) Let p = H(r|m) + k1. Here k1 is the first subkey
derived by KS. Note that value p is constructed in such
a way that H(r|m) is the vector of inputs to the first
layer of S-boxes in the first round of the SPN.

3) Compute c = Enc(p,k) using SPN algorithm. During
encryption, store a sequence of S-box inputs as vector
u = (u1,u2, . . . ,um).

4) Apply secret permutation π to the order of blocks of u,
and compute vector w = (uπ(1),uπ(2), . . . ,uπ(m)).

5) Signature of m is pair of vectors (r,w).

1We can compute systematic parity check matrix by linear algebra. Simple
algorithm is to use (modified) Gaussian elimination to get Mπ to form
(QT |I). Note that we cannot change the order of columns during the Gaussian
elimination (if no pivots are available, we need to restart the algorithm, or
change π to swap blocks as required).

2We require that H is one-way and collision resistant.

Fig. 1. An example of a subsitution-permutation network.

• Matrix is represented by a bold uppercase letter, with
dimensions either depended on the context, or directly
defined in the definition of the matrix: M ∈ F(n×m)

2 .
• Functions are denoted by uppercase letters, such as

F,H,R, S, e.g., F : Fn
2 → Fm

2 .
• Greek notation, such as π, is reserved for permutations of

numbers 1, 2, . . . , n (for some n defined in the context).

B. Substitution-permutation network

Let F : Fn
2 → Fm

2 be a vectorial Boolean function. In
cryptographic context, F is called an S-box, if n is relatively
small, and F is a highly non-linear function used in cipher
design. In our paper, we will denote S-boxes always with S,
or Si if we need to number them.

Substitution-permutation network (SPN) is a type of sym-
metric cipher, in which the encryption algorithm consists of
multiple rounds (number of rounds will be denoted by r). Each
round consists of three basic steps:

1) key addition: y = x+ ki, where ki is a round subkey;
2) non-linear layer of S-boxes: yi···j = S(xi···j);
3) a linear diffusion layer (in basic case just a permutation

of bits): y = xM.
In the last round of SPN, linear layer is typically replaced
by another key addition. Round subkeys are derived from the
main key k by a specific algorithm call a key schedule, i.e.,
(k1,k2, . . . ,k(r+1)) = KS(k).

Sequence of internal bits that is used during the encryption
(of required granularity, e.g., inputs to S-boxes) is denoted as
a transcript of the encryption. If we know the encryption key
and the cipher input, the whole transcript can be reproduced by
following the computation steps of the SPN. For the attacker,
the knowledge of the transcript is typically equivalent to the
knowledge of the key. In SPN, if the attacker knows the
transcript, he can easily compute round keys (using inverse
of the key addition operation), and use the round keys instead
of the original key (or the attacker can derive the original key
if the key schedule allows it).

Advanced Encryption Standard (AES) is a specific instance
of SPN-like cipher Rijndael [7], with linear layer defined by
two operations (ShiftRows, MixColumns, with a specific
last round). In our concrete instantiation of the signature

scheme, we will use version AES-128, which has 128-bit
key and block size, 10 rounds. Each round uses 16 bijective
S-boxes on groups of 8 bits. Further details of the AES
encryption process are not required to understand the paper.

C. MRHS equations

In our system, we create a non-linear Boolean equation
system derived from the selected SPN. While such a system
can be written in multiple forms (such as ANF for Gröbner
basis method, or CNF for SAT solvers), for our purpose a
specific form of a MRHS system [5] is preferable.

Definition 1: [8] Let F be a finite field. Let M ∈ F(n×m)

be an (n × m) matrix. Let R be a set of vectors from Fm.
MRHS equation is defined by an inclusion:

xM ∈ R.

Vector x ∈ Fn is a solution of MRHS equation, if the inclusion
holds for this particular value of x.

MRHS equations related to SPN are centered on S-boxes.
Let x be a vector of variables (e.g. selected unknown transcript
bits during encryption with SPN). Suppose that each vector
of input bits of an S-box S can be expressed as a linear
combination of unknown transcript bits: u = xU. Similarly
let v = xV be the output vector of the same S-box S. We
can then write an MRHS equation for S-box S as

x (U|V) ∈
{
(u, S(u));u ∈ Fk

2

}
.

MRHS (equation) system is a set of MRHS equations, each
of which must be satisfied simultaneously for some x (the
particular x is then a solution of the MRHS system). MRHS
system can be written in a similar form to a simple MRHS
equation by using a Cartesian product:

xM ∈ R1 × R2 × · · · × Rl,

where system matrix M = (M1|M2| · · · |Ml) is composed of
matrices of individual MRHS equations.

MRHS system for an SPN is then a set of MRHS equations
for each S-box in the system. Unknowns x in the system must
be selected in such a way, that each input and output of the
S-box can be expressed as a linear combination of bits of x.
Note that we can create a virtual ”variable” 1 that can express
the addition of a constant (0 or 1) when creating the system.
After transcribing the system with variable 1:

(x,1) ·
(

M
c

)
∈ R1 × R2 × · · · × Rl,

we can rewrite it in extended form as follows:

xM+ c ∈ R1 × R2 × · · · × Rl.

Constant c can be transferred to the right-hand side by adding
corresponding parts of c to each vector in Ri.

If MRHS equation has a small number of right-hand sides
(members of R), it is easy to solve such a system by repeatedly
solving a linear system of equations. Unlike individual equa-
tions, an MRHS system has exponentially many right-hand
sides (if we try to express the Cartesian product directly). For
a general MRHS system, a question of existence of a solution
(MRHS problem) is an NP-hard problem [9].

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2019 • VOLUME XI • NUMBER 4 25

III. ALGORITHM DESCRIPTION

Let us have a symmetric block cipher with encryption
algorithm defined by function Enc : Fn

2 × K → Fn
2 , which

is itself an SPN network with r rounds. Let S : Fk
2 → Fk

2 be
an S-box of the SPN network. We suppose that non-linear part
of each of the r rounds of SPN consists of n/k applications of
the same S-box S (in parallel). The condition that each S-box
is the same is important for the security of the scheme. We will
denote the total number of S-box applications by m = rn/k.
Let KS : K → Fn(r+1)

2 be a key schedule algorithm.
We define a signature scheme derived from this SPN with

the following algorithms: KeyGen, Sign, and V erify.

A. Key generation algorithm

Let k ∈ K be a randomly selected secret key (both of
the symmetric cipher, and as a part of a private key of our
signature scheme). Furthermore, let π be a randomly selected
secret permutation of numbers 1, 2, . . . ,m, which does not
change the order of the initial n/k elements. Private key for
creating signatures consists of the pair (k, π).

To construct the public key, we must do the following:
1) Expand the key. Given k ∈ K, we compute the SPN’s

key schedule: k̂ = (k1,k2, . . . ,k(r+1)) = KS(k).
2) Prepare the MRHS system. Let x ∈ Fn(r+1)

2 denote a
vector of unknowns corresponding to the inputs of the
S-boxes during the SPN evaluation plus one set of S-box
outputs in the last round. Inner outputs of the S-boxes
can be expressed as linear combinations of variables
from x, cipher constants, and constants based on the
expanded key k̂. Given linear expressions for the inputs
and outputs of the S-boxes, we can construct a MRHS
system (as described in section II-C) in the form

xM+ c ∈
⊗{

(u, S(u)) ;u ∈ Fk
2

}
. (1)

Constant c is derived from the constants of the algo-
rithm and bits of the expanded key k̂. Matrix M has
dimensions n(r + 1)× 2mk.
Note that this step can be precomputed up to computa-
tion of the final constant c that depends on k.

3) Apply masking permutation. Matrix M from equation
(1) can be written as M = (M1|M2| · · ·Mm). Blocks
Mi of dimension (n(r + 1)× 2k) correspond to linear
functions that construct inputs and outputs of S-boxes
from variables x. Similarly, split c into blocks of size
2k denoted by (c1, c2, . . . , cm).
Apply the secret permutation π on the order of blocks
of M and c. A permuted form of the system is given
as:

x · (Mπ(1)|Mπ(2)| · · ·Mπ(m))

+ (cπ(1), cπ(2), . . . , cπ(m)) ∈⊗{
(u, S(u)) ;u ∈ Fk

2

}
.

(2)

Let us denote the joint matrix of system (2) by Mπ , and
similarly let us denote be permuted vector c by cπ .

Fig. 2. An overview of the signature algorithm.

4) Parity check matrix. Compute systematic1 parity check
matrix H = (I|Q), such that MπH

T = 0.
5) Syndrome. Compute q = cπH

T .
6) Final public key The public key consist of the pair

(Q,q).

When applicable, public key should be augmented by ”do-
main parameters” describing the used SPN. These consist of
a triplet (n,m, k, S), in order: the block size, the number of
S-boxes, the S-box size, and the S-box itself.

B. Signature algorithm

Let m ∈ F∗
2 be a message we want to sign. Let H :

F∗
2 → Fn

2 be a cryptographically secure hash function2. To
sign message m do the following:

1) Generate random (nonce) r ∈ Fn
2 .

2) Let p = H(r|m) + k1. Here k1 is the first subkey
derived by KS. Note that value p is constructed in such
a way that H(r|m) is the vector of inputs to the first
layer of S-boxes in the first round of the SPN.

3) Compute c = Enc(p,k) using SPN algorithm. During
encryption, store a sequence of S-box inputs as vector
u = (u1,u2, . . . ,um).

4) Apply secret permutation π to the order of blocks of u,
and compute vector w = (uπ(1),uπ(2), . . . ,uπ(m)).

5) Signature of m is pair of vectors (r,w).

1We can compute systematic parity check matrix by linear algebra. Simple
algorithm is to use (modified) Gaussian elimination to get Mπ to form
(QT |I). Note that we cannot change the order of columns during the Gaussian
elimination (if no pivots are available, we need to restart the algorithm, or
change π to swap blocks as required).

2We require that H is one-way and collision resistant.

Fig. 1. An example of a subsitution-permutation network.

• Matrix is represented by a bold uppercase letter, with
dimensions either depended on the context, or directly
defined in the definition of the matrix: M ∈ F(n×m)

2 .
• Functions are denoted by uppercase letters, such as

F,H,R, S, e.g., F : Fn
2 → Fm

2 .
• Greek notation, such as π, is reserved for permutations of

numbers 1, 2, . . . , n (for some n defined in the context).

B. Substitution-permutation network

Let F : Fn
2 → Fm

2 be a vectorial Boolean function. In
cryptographic context, F is called an S-box, if n is relatively
small, and F is a highly non-linear function used in cipher
design. In our paper, we will denote S-boxes always with S,
or Si if we need to number them.

Substitution-permutation network (SPN) is a type of sym-
metric cipher, in which the encryption algorithm consists of
multiple rounds (number of rounds will be denoted by r). Each
round consists of three basic steps:

1) key addition: y = x+ ki, where ki is a round subkey;
2) non-linear layer of S-boxes: yi···j = S(xi···j);
3) a linear diffusion layer (in basic case just a permutation

of bits): y = xM.
In the last round of SPN, linear layer is typically replaced
by another key addition. Round subkeys are derived from the
main key k by a specific algorithm call a key schedule, i.e.,
(k1,k2, . . . ,k(r+1)) = KS(k).

Sequence of internal bits that is used during the encryption
(of required granularity, e.g., inputs to S-boxes) is denoted as
a transcript of the encryption. If we know the encryption key
and the cipher input, the whole transcript can be reproduced by
following the computation steps of the SPN. For the attacker,
the knowledge of the transcript is typically equivalent to the
knowledge of the key. In SPN, if the attacker knows the
transcript, he can easily compute round keys (using inverse
of the key addition operation), and use the round keys instead
of the original key (or the attacker can derive the original key
if the key schedule allows it).

Advanced Encryption Standard (AES) is a specific instance
of SPN-like cipher Rijndael [7], with linear layer defined by
two operations (ShiftRows, MixColumns, with a specific
last round). In our concrete instantiation of the signature

scheme, we will use version AES-128, which has 128-bit
key and block size, 10 rounds. Each round uses 16 bijective
S-boxes on groups of 8 bits. Further details of the AES
encryption process are not required to understand the paper.

C. MRHS equations

In our system, we create a non-linear Boolean equation
system derived from the selected SPN. While such a system
can be written in multiple forms (such as ANF for Gröbner
basis method, or CNF for SAT solvers), for our purpose a
specific form of a MRHS system [5] is preferable.

Definition 1: [8] Let F be a finite field. Let M ∈ F(n×m)

be an (n × m) matrix. Let R be a set of vectors from Fm.
MRHS equation is defined by an inclusion:

xM ∈ R.

Vector x ∈ Fn is a solution of MRHS equation, if the inclusion
holds for this particular value of x.

MRHS equations related to SPN are centered on S-boxes.
Let x be a vector of variables (e.g. selected unknown transcript
bits during encryption with SPN). Suppose that each vector
of input bits of an S-box S can be expressed as a linear
combination of unknown transcript bits: u = xU. Similarly
let v = xV be the output vector of the same S-box S. We
can then write an MRHS equation for S-box S as

x (U|V) ∈
{
(u, S(u));u ∈ Fk

2

}
.

MRHS (equation) system is a set of MRHS equations, each
of which must be satisfied simultaneously for some x (the
particular x is then a solution of the MRHS system). MRHS
system can be written in a similar form to a simple MRHS
equation by using a Cartesian product:

xM ∈ R1 × R2 × · · · × Rl,

where system matrix M = (M1|M2| · · · |Ml) is composed of
matrices of individual MRHS equations.

MRHS system for an SPN is then a set of MRHS equations
for each S-box in the system. Unknowns x in the system must
be selected in such a way, that each input and output of the
S-box can be expressed as a linear combination of bits of x.
Note that we can create a virtual ”variable” 1 that can express
the addition of a constant (0 or 1) when creating the system.
After transcribing the system with variable 1:

(x,1) ·
(

M
c

)
∈ R1 × R2 × · · · × Rl,

we can rewrite it in extended form as follows:

xM+ c ∈ R1 × R2 × · · · × Rl.

Constant c can be transferred to the right-hand side by adding
corresponding parts of c to each vector in Ri.

If MRHS equation has a small number of right-hand sides
(members of R), it is easy to solve such a system by repeatedly
solving a linear system of equations. Unlike individual equa-
tions, an MRHS system has exponentially many right-hand
sides (if we try to express the Cartesian product directly). For
a general MRHS system, a question of existence of a solution
(MRHS problem) is an NP-hard problem [9].

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

DECEMBER 2019 • VOLUME XI • NUMBER 426

INFOCOMMUNICATIONS JOURNAL

Having constructed private and public keys for the signature
scheme, following the steps of the signature and verification
algorithms is relatively simple. We do not provide concrete
bit values, as the number of bits involved is quite large even
for the SPN-based demo. To provide a working demonstration
of the system, we have prepared a proof of concept imple-
mentation based on simple SPN with 16-bit block and 4-bit
S-boxes. The source code is available on GitHub at https:
//github.com/zajacpa/SPNsig. The demonstration code requires
SAGE linear algebra system [10] to run.

Note that for a simpler implementation we store inputs and
outputs of S-boxes in different order: first we store sequence
of all S-box inputs, and then the sequence of S-box outputs.
While not exactly corresponding to the theoretical MRHS
instance, it is easy to see that the algorithm still works
regardless of the bit order. We only need to ensure that the
corresponding columns of M (with correct H) and c are
arranged in the same way as the desired order of the bits
in the transcript of the encryption.

V. SIGNATURE SCHEME PROPERTIES

After the description of the signature scheme, we devote this
short section to the discussion of the correctness and efficiency
of the proposed scheme.

A. Correctness

Verification algorithm has two steps where it can reject the
signature: verification of the hash h, and verification of the
syndrome of v.

During the signature, inputs to SPN encryption were chosen
in such a way that h is the input to the first layer of S-boxes in
the first round of SPN. Recall that during the key generation
we require that the order of these S-boxes remains fixed by
permutation π. This means the verifier in the second step just
checks whether plaintext p was constructed from message m
and provided randomness r.

Signature process is based on SPN encryption modelled by
MRHS system (1). The pairs (ui, S(ui)) are corresponding
right-hand sides providing a valid solution of this system. They
are published in modified order, which is obtained as vector v
by the verifier. The following (overdetermined) linear equation
system thus has a solution:

xMπ + cπ = v.

If we multiply this by HT = (I|Q)T we get:

xMπH
T + cπH

T = vHT ,

or equivalently
q = v(I|Q)T .

B. Efficiency

The performance of the scheme depends on the chosen
underlying SPN. However, in comparison with number the-
oretic or other post-quantum signature schemes the algorithm
is extremely simple. In the following we consider the part
of the algorithm without message hashing (which is required
regardless of the signature algorithm).

The signature algorithm is equivalent to a single symmetric
encryption accompanied with a simple permutation of a vector
of transcript bits. Similarly, the verification algorithm requires
evaluation of S-boxes plus vector-matrix multiplication. The
number of nonlinear operations is the same as the number
of operations required during a single SPN encryption. While
the complexity of the linear part can be higher than required
in SPN encryption, this operation is quite simple and can be
efficiently implemented.

The size of the public key and signature is related to the
chosen SPN. Private key consists of an l-bit symmetric key and
a permutation of m numbers. Public key is a pair consisting
of a vector q of size 2mk − (r + 1)n bits and a matrix Q
of size (2mk− (r+ 1)n)×mk bits. Each signature is also a
sequence of mk bits.

Let us consider instantiation of the scheme with AES
algorithm. In this case, we use m = 160 S-boxes of size
k = 8 bits. This means that each signature is 1280 bits long
(160 bytes). This is comparable to a standard RSA signature.
Public key contains vector q of size 1280 bits, and matrix Q
of size 1638400 bits. Together, this is approximately 200kB.

VI. SECURITY

As mentioned in the introduction, the proposed signature
scheme is a provided as a new (and hopefully interesting)
concept. Security of the scheme is related to the difficulty of
solving MRHS equations and the decoding problem, but also
to the security of the underlying symmetric encryption scheme.
To be able to fully instantiate the (modified version of the)
scheme in a provably secure manner requires a deeper research
of the proposed scheme, and the related security questions. In
this section we focus on security aspects of the scheme and
the potential attacks that can compromise the security of the
scheme.

Informally, a signature system is secure, if no (poly-time)
attacker is able to forge signatures on new messages. To
formally prove the security we would have to provide suitable
security reduction to some computationally difficult problem.
While we believe this might be possible with a suitable
instantiation of the SPN and further tweaks of the design, the
current scheme as described is not (provably) secure.

The security level of the scheme is limited to n/2, where
n is the block size of the used SPN. This is due to the
use of initial hashing step: If the attacker can find a hash
collision in the form h(r|m1) = h(r|m2), he can use the
same signature for two different messages, breaking the non-
repudiation property of the signatures. Thus, for our scheme
instantiated with AES we can guarantee at most 64-bit security.
It is possible to use general Rijndael algorithm with 256-bit
block, and with 256-bit hash function (e.g., SHA-2) to extend
the presumed security level to 128-bits. In this case m = 448
(Rijndael with 256-bit block and 128-bit key, 14 rounds, 32 S-
boxes in each), the signature size is 3584 bits, and public key
size is 1568 kB. If we take into account Grover’s algorithm
and extend the key to 256-bits as well, we get m = 576
(18 rounds), i.e., 576B signature, and 2592kB public key,
respectively.

Fig. 3. An overview of the verification algorithm.

C. Verification algorithm

Let m′ ∈ F∗
2 be a message with a supposed signature (r,w).

Let (Q,q) be the corresponding public key of the signer. To
verify whether the signature is valid, perform the following
steps.

1) Split w into m blocks of size k, w =
(w1,w2, . . . ,wm).

2) Let h = H(r|m). Verify that h = (w1,w2, . . . ,wn/k).
If not, signature is invalid.

3) Construct m vectors vi by using specified S-box S to
compute vi = (wi, S(wi)).

4) Concatenate vi to get vector v = (v1,v2, . . . ,vm).
5) Verify that q = v(I|Q)T . If not, signature is invalid.

IV. EXAMPLE

In this section, we provide (simplified) examples for some
of the critical steps of the algorithm. In our example, we will
work with SPN introduced in Section II-B (see Figure 1).
To demonstrate MRHS equation building step, imagine first a
simple SPN with 2-bit ”S-boxes” given by permutation 1230.
Suppose we denote S-box inputs by x1, x2, and outputs by
y1, y2. MRHS equation with solutions corresponding to valid
I/O pairs for S-box can be written as

(x1, x2, y1, y2) ·

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∈

(0, 0, 0, 1),
(0, 1, 1, 0),
(1, 0, 1, 1),
(1, 1, 0, 0)

If we wanted to demonstrate an MRHS equation related to a
4-bit S-box, we would need four input variables, four output
variables, 8 × 8 identity matrix, and a set of sixteen 8-bit
vectors on the right-hand side.

Now let us construct an MRHS system for Figure 1. We
have selected that our unknowns are S-box inputs. We do not
use variables of type y1, y2, . . . as in the previous example.
Instead, we express y variables as linear combinations of x
variables and subkey bits. We use SPN network as denoted

in Figure 1. Its linear layer is represented as a multiplication
with matrix L. We can write

(x5,x6,x7,x8) = (y1,y2,y3,y4) · L+ (k5,k6,k7,k8),

which leads to

(y1,y2,y3,y4) = (x5,x6,x7,x8)·L−1+(k5,k6,k7,k8)·L−1

We can extract equations for separate yi variables (one for
each S-box) by splitting matrix L into blocks Li,j of size 4×4
bits (k×k in general). We get the following system (simplified
for the first two S-boxes only):

(x1, . . . ,x8, 1) ·

I 0 0 0 · · ·
0 0 I 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 L−1

11 0 L−1
12 · · ·

0 L−1
21 0 L−1

22 · · ·
0 L−1

31 0 L−1
32 · · ·

0 L−1
41 0 L−1

42 · · ·
0 c1 0 c2 · · ·

∈ R× R,

where R is a set of sixteen 8-bit vectors R = {(x, S(x)),x ∈
F4
2}. Constants are computed from subkeys:

(c1, c2, c3, c4) = (k5,k6,k7,k8) · L−1,

and can be extracted from MRHS equation matrix to get an
extended form x ·M+ c ∈ R, as described in Section II-C.

The system is expanded for each round in a similar way.
However, for the last round, we need to add variables that
denote S-box outputs, as there are no other S-box inputs. In
four round SPN, we get a system in form

(x1, . . . ,x20) ·

A1 0 0 0
A2 A3 0 0
0 A4 A5 0
0 0 A6 A7

0 0 0 A8

+ c ∈ R× · · · ×R,

where each matrix Ai is 16 × 16 bit matrix, each xi is an
unknown 4-bit vector (x1 to x16 are S-box inputs, x17 to x20

are last-round S-box outputs). Constant c is an 80-bit vector
(computed from subkeys), and there are 16 (identical) right-
hand side sets R in the Cartesian product.

The system matrix and the constant c can be rewritten into
16 blocks of 8 bits, corresponding to each S-box used during
the encryption. I.e., we understand the system to be

x · (M1| · · · |M16) + (c1, . . . , c16) ∈ R× · · · × R.

Select a secret 16-element permutation with first 4 elements
fixed, e.g. π = (1, 2, 3, 4, 12, · · · , 7). To get the public key,
we construct

Mπ = (M1| · · · |M4|M12| · · · |M7) ,

and compute the corresponding systematic parity check matrix
H. Size of the matrix Mπ is 80 × 128 bits, thus H has
dimensions 48×128. Finally, we compute 48-bit public vector

q = (c1, . . . , c4, c12, . . . , c7) ·HT .

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2019 • VOLUME XI • NUMBER 4 27

Having constructed private and public keys for the signature
scheme, following the steps of the signature and verification
algorithms is relatively simple. We do not provide concrete
bit values, as the number of bits involved is quite large even
for the SPN-based demo. To provide a working demonstration
of the system, we have prepared a proof of concept imple-
mentation based on simple SPN with 16-bit block and 4-bit
S-boxes. The source code is available on GitHub at https:
//github.com/zajacpa/SPNsig. The demonstration code requires
SAGE linear algebra system [10] to run.

Note that for a simpler implementation we store inputs and
outputs of S-boxes in different order: first we store sequence
of all S-box inputs, and then the sequence of S-box outputs.
While not exactly corresponding to the theoretical MRHS
instance, it is easy to see that the algorithm still works
regardless of the bit order. We only need to ensure that the
corresponding columns of M (with correct H) and c are
arranged in the same way as the desired order of the bits
in the transcript of the encryption.

V. SIGNATURE SCHEME PROPERTIES

After the description of the signature scheme, we devote this
short section to the discussion of the correctness and efficiency
of the proposed scheme.

A. Correctness

Verification algorithm has two steps where it can reject the
signature: verification of the hash h, and verification of the
syndrome of v.

During the signature, inputs to SPN encryption were chosen
in such a way that h is the input to the first layer of S-boxes in
the first round of SPN. Recall that during the key generation
we require that the order of these S-boxes remains fixed by
permutation π. This means the verifier in the second step just
checks whether plaintext p was constructed from message m
and provided randomness r.

Signature process is based on SPN encryption modelled by
MRHS system (1). The pairs (ui, S(ui)) are corresponding
right-hand sides providing a valid solution of this system. They
are published in modified order, which is obtained as vector v
by the verifier. The following (overdetermined) linear equation
system thus has a solution:

xMπ + cπ = v.

If we multiply this by HT = (I|Q)T we get:

xMπH
T + cπH

T = vHT ,

or equivalently
q = v(I|Q)T .

B. Efficiency

The performance of the scheme depends on the chosen
underlying SPN. However, in comparison with number the-
oretic or other post-quantum signature schemes the algorithm
is extremely simple. In the following we consider the part
of the algorithm without message hashing (which is required
regardless of the signature algorithm).

The signature algorithm is equivalent to a single symmetric
encryption accompanied with a simple permutation of a vector
of transcript bits. Similarly, the verification algorithm requires
evaluation of S-boxes plus vector-matrix multiplication. The
number of nonlinear operations is the same as the number
of operations required during a single SPN encryption. While
the complexity of the linear part can be higher than required
in SPN encryption, this operation is quite simple and can be
efficiently implemented.

The size of the public key and signature is related to the
chosen SPN. Private key consists of an l-bit symmetric key and
a permutation of m numbers. Public key is a pair consisting
of a vector q of size 2mk − (r + 1)n bits and a matrix Q
of size (2mk− (r+ 1)n)×mk bits. Each signature is also a
sequence of mk bits.

Let us consider instantiation of the scheme with AES
algorithm. In this case, we use m = 160 S-boxes of size
k = 8 bits. This means that each signature is 1280 bits long
(160 bytes). This is comparable to a standard RSA signature.
Public key contains vector q of size 1280 bits, and matrix Q
of size 1638400 bits. Together, this is approximately 200kB.

VI. SECURITY

As mentioned in the introduction, the proposed signature
scheme is a provided as a new (and hopefully interesting)
concept. Security of the scheme is related to the difficulty of
solving MRHS equations and the decoding problem, but also
to the security of the underlying symmetric encryption scheme.
To be able to fully instantiate the (modified version of the)
scheme in a provably secure manner requires a deeper research
of the proposed scheme, and the related security questions. In
this section we focus on security aspects of the scheme and
the potential attacks that can compromise the security of the
scheme.

Informally, a signature system is secure, if no (poly-time)
attacker is able to forge signatures on new messages. To
formally prove the security we would have to provide suitable
security reduction to some computationally difficult problem.
While we believe this might be possible with a suitable
instantiation of the SPN and further tweaks of the design, the
current scheme as described is not (provably) secure.

The security level of the scheme is limited to n/2, where
n is the block size of the used SPN. This is due to the
use of initial hashing step: If the attacker can find a hash
collision in the form h(r|m1) = h(r|m2), he can use the
same signature for two different messages, breaking the non-
repudiation property of the signatures. Thus, for our scheme
instantiated with AES we can guarantee at most 64-bit security.
It is possible to use general Rijndael algorithm with 256-bit
block, and with 256-bit hash function (e.g., SHA-2) to extend
the presumed security level to 128-bits. In this case m = 448
(Rijndael with 256-bit block and 128-bit key, 14 rounds, 32 S-
boxes in each), the signature size is 3584 bits, and public key
size is 1568 kB. If we take into account Grover’s algorithm
and extend the key to 256-bits as well, we get m = 576
(18 rounds), i.e., 576B signature, and 2592kB public key,
respectively.

Fig. 3. An overview of the verification algorithm.

C. Verification algorithm

Let m′ ∈ F∗
2 be a message with a supposed signature (r,w).

Let (Q,q) be the corresponding public key of the signer. To
verify whether the signature is valid, perform the following
steps.

1) Split w into m blocks of size k, w =
(w1,w2, . . . ,wm).

2) Let h = H(r|m). Verify that h = (w1,w2, . . . ,wn/k).
If not, signature is invalid.

3) Construct m vectors vi by using specified S-box S to
compute vi = (wi, S(wi)).

4) Concatenate vi to get vector v = (v1,v2, . . . ,vm).
5) Verify that q = v(I|Q)T . If not, signature is invalid.

IV. EXAMPLE

In this section, we provide (simplified) examples for some
of the critical steps of the algorithm. In our example, we will
work with SPN introduced in Section II-B (see Figure 1).
To demonstrate MRHS equation building step, imagine first a
simple SPN with 2-bit ”S-boxes” given by permutation 1230.
Suppose we denote S-box inputs by x1, x2, and outputs by
y1, y2. MRHS equation with solutions corresponding to valid
I/O pairs for S-box can be written as

(x1, x2, y1, y2) ·

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∈

(0, 0, 0, 1),
(0, 1, 1, 0),
(1, 0, 1, 1),
(1, 1, 0, 0)

If we wanted to demonstrate an MRHS equation related to a
4-bit S-box, we would need four input variables, four output
variables, 8 × 8 identity matrix, and a set of sixteen 8-bit
vectors on the right-hand side.

Now let us construct an MRHS system for Figure 1. We
have selected that our unknowns are S-box inputs. We do not
use variables of type y1, y2, . . . as in the previous example.
Instead, we express y variables as linear combinations of x
variables and subkey bits. We use SPN network as denoted

in Figure 1. Its linear layer is represented as a multiplication
with matrix L. We can write

(x5,x6,x7,x8) = (y1,y2,y3,y4) · L+ (k5,k6,k7,k8),

which leads to

(y1,y2,y3,y4) = (x5,x6,x7,x8)·L−1+(k5,k6,k7,k8)·L−1

We can extract equations for separate yi variables (one for
each S-box) by splitting matrix L into blocks Li,j of size 4×4
bits (k×k in general). We get the following system (simplified
for the first two S-boxes only):

(x1, . . . ,x8, 1) ·

I 0 0 0 · · ·
0 0 I 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 L−1

11 0 L−1
12 · · ·

0 L−1
21 0 L−1

22 · · ·
0 L−1

31 0 L−1
32 · · ·

0 L−1
41 0 L−1

42 · · ·
0 c1 0 c2 · · ·

∈ R× R,

where R is a set of sixteen 8-bit vectors R = {(x, S(x)),x ∈
F4
2}. Constants are computed from subkeys:

(c1, c2, c3, c4) = (k5,k6,k7,k8) · L−1,

and can be extracted from MRHS equation matrix to get an
extended form x ·M+ c ∈ R, as described in Section II-C.

The system is expanded for each round in a similar way.
However, for the last round, we need to add variables that
denote S-box outputs, as there are no other S-box inputs. In
four round SPN, we get a system in form

(x1, . . . ,x20) ·

A1 0 0 0
A2 A3 0 0
0 A4 A5 0
0 0 A6 A7

0 0 0 A8

+ c ∈ R× · · · ×R,

where each matrix Ai is 16 × 16 bit matrix, each xi is an
unknown 4-bit vector (x1 to x16 are S-box inputs, x17 to x20

are last-round S-box outputs). Constant c is an 80-bit vector
(computed from subkeys), and there are 16 (identical) right-
hand side sets R in the Cartesian product.

The system matrix and the constant c can be rewritten into
16 blocks of 8 bits, corresponding to each S-box used during
the encryption. I.e., we understand the system to be

x · (M1| · · · |M16) + (c1, . . . , c16) ∈ R× · · · × R.

Select a secret 16-element permutation with first 4 elements
fixed, e.g. π = (1, 2, 3, 4, 12, · · · , 7). To get the public key,
we construct

Mπ = (M1| · · · |M4|M12| · · · |M7) ,

and compute the corresponding systematic parity check matrix
H. Size of the matrix Mπ is 80 × 128 bits, thus H has
dimensions 48×128. Finally, we compute 48-bit public vector

q = (c1, . . . , c4, c12, . . . , c7) ·HT .

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

DECEMBER 2019 • VOLUME XI • NUMBER 428

INFOCOMMUNICATIONS JOURNAL

as an input of the first layer of S-boxes. Suppose that SPN was
AES-128, and attacker used some signature oracle to obtain
signatures for two messages that differ in a single byte. From
the properties of AES diffusion layer we know that in second
round there are exactly 4 non-zero differences and 12 zero
differences. Attacker marks those bytes that are unchanged
between signatures. Repeating this with different bytes, he can
disclose the positions of the round-2 S-box inputs (in 4 byte
groups, whose order can be quickly searched to completly
disclose the subkey).

To prevent the class of chosen plaintext attacks on SPN,
we have added a randomized hashing3 as the first step of the
algorithm. The attacker still knows the inputs to the first layer
of S-boxes, but cannot select them in arbitrary way. E.g., if the
attacker was to reproduce the previous attack, he requires two
hashes that coincide in each byte except one. This is slightly
easier than the security level (in AES-128 expected complexity
is 260 hashes), but it is then followed by an attack with a
difficulty higher than the reduction obtained while looking for
collisions.

While the randomized hashing restricts the efficiency of
some of the structural attacks, it is not clear whether it is
sufficient to prevent all attacks of this type (and how serious
is the security level reduction). Efficiency of these types
of attacks are related to the concrete structure of the used
SPN. It is not sufficient that the cipher under consideration
has a sufficient number of rounds to resist some type of
cryptanalysis: as we have seen the goal of the attacker can
be different, as in some cases he only needs to distinguish
which blocks are used in some specific round.

C. Structural attacks on public key

In previous section we have discussed some ways that the
attacker can try to recover secret permutation π from some
known or chosen signatures. There is still another attack vector
related to the public key, namely parity check matrix H =
(I|Q).

System matrix M reflects the structure of the used SPN, and
is very sparse. Essentially, each block Mi can be expressed
as

0 0
I 0
0 L
0 0

 ,

where I is an identity matrix corresponding to S-box inputs
in round i. Matrix L, along with constant c reflects the linear
layer of SPN, and represent the affine transformation applied
to S-box inputs in round i + 1 to compute S-box outputs in
round i.

This structure of the matrix is in essence preserved when
π is applied. It is however not clear, whether this structure
is always present in matrix H. Note that there are multiple
possible matrices H: any base of the dual space is suitable for
signature verification. For efficiency reasons, we have chosen
to restrict H to have a systematic form (so we only need to

3We thank one of the anonymous reviewers of the Central European
Conference on Cryptology 2019 for the general idea.

Fig. 4. Graphical depiction of the systematic parity check matrix obtained in
one of the experiments with small 16-bit SPN.

store Q). Another advantage of the systematic form is that
during the computation of systematic H we hope to hide the
sparsity and structure of the original M, similarly to LDPC-
and MDPC-based cryptosystems [13].

Our experiments with the small SPN show that in this case
a computation of the systematic parity check matrix is not
enough to mask the structure of the system. In Figure 4, we
show an example of the matrix H obtained from the SPN
demo. Structure of the original Mπ is clearly preserved, and
by matching ones on corresponding lines attacker can obtain
permutation π.

We have not implemented a full version of AES-based
scheme, thus it is not clear whether this problem is also
affecting this larger scheme. While AES-based matrix is less
sparse due to MixColumns operations, it is still significantly
structured. We believe that in this case, systematic form of H
would still not be enough to hide the structure sufficiently.

We might ask, whether the signature scheme be ever made
secure in view of this structural attack? Unfortunately, we do
not have a definitive answer, but we propose some possible
solutions to hide the system structure:

• Change the basis of variables in the system. Instead of
defining x as a vector of S-box inputs, define x as a
vector of arbitrary linearly independent variables y, from
which S-box inputs can be computed with linear algebra
as x = yA. In the key generation, we get modified
system yAM, and we compute parity check matrix for
the code generated by AMπ . Note that this is actually
the same code as the one generated by Mπ . Our hope
is to obtain different matrix H that is less sparse and
structured as before. It is not clear whether this matrix
can really be obtained, and even if it is obtained, whether
attacker cannot find different H that will show him the
system structure.

• Use SPN with secret random linear layer. We are inspired
by cipher family LowMC [6], but in the signature scheme
we do not publish the linear layer, but make it part of
the secret key. In this case we lose some efficiency and
flexibility in symmetric encryption: linear layer is now
asymmetric secret, thus the cipher cannot be reused for
symmetric encryption between network participants. This
can be remedied by using two versions of the cipher: one
for encryption, with fixed (simple) linear layer, and one

Regardless of generic attacks on the hash function, there are
multiple other ways that attacker can try to attack the signature
algorithm:

1) Try to submit false vector w′ that will satisfy the
verification algorithm. First part of the verification (hash
of message with nonce r should be the prefix of w′) is
easily satisfied. Thus the attacker is only concerned with
providing false w′ that will satisfy q = v(I|Q)T .

2) Try to derive the private key from the public key.
3) Try to derive the private key, or a new signature from

the public key and (chosen) signatures.
To prevent these attacks we rely on the following (presum-

ably) difficult problems:
1) Decoding problem/MRHS problem. These problems are

in general NP-hard, and both are related as discussed in
[11]. Parameters of the proposed scheme (if instantiated
by AES/Rijndael) are comparable (or even stronger) to
parameters of proposed code-based cryptosystems with
the same expected security level. Main concern for our
scheme is whether our specific type of decoding/MRHS
instances derived from SPN representation by MRHS
system are still sufficiently hard (in relation to random
instances of the problem).

2) Given a set of permuted transcripts of the SPN en-
cryption (with known, but not chosen, input to the first
layer of S-boxes), can the attacker find the key, or
at least provide any new transcript (permuted in the
same way)? This question is related to the security of
the underlying SPN, and the efficiency of the proposed
masking (random permutation of S-box inputs).

We will now discuss these attack vectors in more details.

A. Decoding/MRHS attacks

Verification algorithm consists of verifying the identity
v · HT = q. There is an exponentially large number of
solutions v′, but only some of them represent a valid signature.
Given valid signature v, such that vHT = q, attacker can
compute any other valid v′ by adding a codeword u of the
code generated by Mπ (which can be computed from public
Q). If our signature system was just based on the Niederreiter-
like code-based system [12], attacker could just use any prefix
h(m′, r′) and find a valid v′ · HT = q by solving a linear
system of equations.

However, our scheme has an additional property: only one
half of the vector v is provided in the signature, second half
is computed using SPN’s non-linear S-boxes. This means that
valid signatures form only a (very small and non-linear) subset
of the code coset. Each valid signature is a solution of the
MRHS system given by equation 2. If the attacker can forge
signatures, he can solve this non-linear MRHS system, and
vice-versa.

Note that underlying SPN is a block cipher, and thus a
permutation for each secret key. This means that there is a
unique transcript of the encryption and thus a unique signature
for each message hash.

As mentioned, the MRHS problem problem is related to the
decoding problem. We can use a specific decoding algorithm

to solve MRHS problem [11]. In our system there is also
a specific case where the attacker can apply the decoding
algorithm: given public key (q,Q), attacker tries to find the
original constant cπ which was used to define code coset
defined by syndrome q. If the attacker obtains cπ it might
be possible to reconstruct the original key: Attacker knowns
a permuted set of subkeys (except the first and the last one),
how difficult it is obtain original key?

However, to get c attacker needs to solve the decoding
problem first. Depending on the structure of the cipher he can
presume that cπ is a sparse vector (in contrast to signatures v)
with a specific structure (i.e., subkeys are only used to compute
outputs of S-boxes from the S-box inputs of the next round).
It is not clear whether this information can be sufficient to
simplify the decoding problem, as the expected weight of c is
still too large (compared to expected minimum code weight).

B. Structural attacks on signatures

We believe that the security of the signature scheme with
respect to decoding/MRHS problem is sufficient with respect
to generic solving methods. However, there are more critical
attacks that exploit the internal structure of the used MRHS
problem to circumvent the need to apply generic solution
methods, or to assist the generic methods. We will call these
attacks structural attacks (similar to terminology used in code-
based crypto).

First, let us note that it is necessary that attacker cannot
recover permutation π. If the attacker knowns π and a single
signature w, he can reconstruct the exact sequence of S-box
inputs in SPN. As S-boxes are public, he also knows the
corresponding S-box outputs. Let x denote a vector of outputs
of S-boxes in round i− 1, and let y denote a vector of inputs
of S-boxes in round i. Let L represent a (known) matrix of the
linear diffusion layer of SPN. Then ki = y+L(x). This means
that knowledge of π leads to a knowledge of the sequence
of subkeys. This sequence is sufficient to forge signatures
(regardless of the key schedule).

Note that specific key schedules can have an adverse effect
on the security. In AES (and many other ciphers), main encryp-
tion key can be derived from any single subkey (by running
the key schedule algorithm in reverse). This means that the
attacker only needs to find matching S-box outputs/inputs
between arbitrary rounds i − 1 and i. The easiest case is to
find the correct inputs to S-boxes in round 2 (as round 1 is
known, due to fixed part of π). This means that attacker needs
to correctly place a sequence of b = n/k blocks out of (r−1)b
blocks. Complexity of exhaustive search in this case is

N =
((r − 1) b)!

((r − 2) b)!
.

In case of AES-128, we get N ≈ 2113, which is much higher
than expected security of 64 bits. Similarly for Rijndael-256-
256, we get N ≈ 2289, which is again much higher than
security level of 128 bits.

On the other hand, attacker is not limited to an exhaustive
search. In the first version of the signature scheme, message
m (of fixed length given by the block size) was used directly

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2019 • VOLUME XI • NUMBER 4 29

as an input of the first layer of S-boxes. Suppose that SPN was
AES-128, and attacker used some signature oracle to obtain
signatures for two messages that differ in a single byte. From
the properties of AES diffusion layer we know that in second
round there are exactly 4 non-zero differences and 12 zero
differences. Attacker marks those bytes that are unchanged
between signatures. Repeating this with different bytes, he can
disclose the positions of the round-2 S-box inputs (in 4 byte
groups, whose order can be quickly searched to completly
disclose the subkey).

To prevent the class of chosen plaintext attacks on SPN,
we have added a randomized hashing3 as the first step of the
algorithm. The attacker still knows the inputs to the first layer
of S-boxes, but cannot select them in arbitrary way. E.g., if the
attacker was to reproduce the previous attack, he requires two
hashes that coincide in each byte except one. This is slightly
easier than the security level (in AES-128 expected complexity
is 260 hashes), but it is then followed by an attack with a
difficulty higher than the reduction obtained while looking for
collisions.

While the randomized hashing restricts the efficiency of
some of the structural attacks, it is not clear whether it is
sufficient to prevent all attacks of this type (and how serious
is the security level reduction). Efficiency of these types
of attacks are related to the concrete structure of the used
SPN. It is not sufficient that the cipher under consideration
has a sufficient number of rounds to resist some type of
cryptanalysis: as we have seen the goal of the attacker can
be different, as in some cases he only needs to distinguish
which blocks are used in some specific round.

C. Structural attacks on public key

In previous section we have discussed some ways that the
attacker can try to recover secret permutation π from some
known or chosen signatures. There is still another attack vector
related to the public key, namely parity check matrix H =
(I|Q).

System matrix M reflects the structure of the used SPN, and
is very sparse. Essentially, each block Mi can be expressed
as

0 0
I 0
0 L
0 0

 ,

where I is an identity matrix corresponding to S-box inputs
in round i. Matrix L, along with constant c reflects the linear
layer of SPN, and represent the affine transformation applied
to S-box inputs in round i + 1 to compute S-box outputs in
round i.

This structure of the matrix is in essence preserved when
π is applied. It is however not clear, whether this structure
is always present in matrix H. Note that there are multiple
possible matrices H: any base of the dual space is suitable for
signature verification. For efficiency reasons, we have chosen
to restrict H to have a systematic form (so we only need to

3We thank one of the anonymous reviewers of the Central European
Conference on Cryptology 2019 for the general idea.

Fig. 4. Graphical depiction of the systematic parity check matrix obtained in
one of the experiments with small 16-bit SPN.

store Q). Another advantage of the systematic form is that
during the computation of systematic H we hope to hide the
sparsity and structure of the original M, similarly to LDPC-
and MDPC-based cryptosystems [13].

Our experiments with the small SPN show that in this case
a computation of the systematic parity check matrix is not
enough to mask the structure of the system. In Figure 4, we
show an example of the matrix H obtained from the SPN
demo. Structure of the original Mπ is clearly preserved, and
by matching ones on corresponding lines attacker can obtain
permutation π.

We have not implemented a full version of AES-based
scheme, thus it is not clear whether this problem is also
affecting this larger scheme. While AES-based matrix is less
sparse due to MixColumns operations, it is still significantly
structured. We believe that in this case, systematic form of H
would still not be enough to hide the structure sufficiently.

We might ask, whether the signature scheme be ever made
secure in view of this structural attack? Unfortunately, we do
not have a definitive answer, but we propose some possible
solutions to hide the system structure:

• Change the basis of variables in the system. Instead of
defining x as a vector of S-box inputs, define x as a
vector of arbitrary linearly independent variables y, from
which S-box inputs can be computed with linear algebra
as x = yA. In the key generation, we get modified
system yAM, and we compute parity check matrix for
the code generated by AMπ . Note that this is actually
the same code as the one generated by Mπ . Our hope
is to obtain different matrix H that is less sparse and
structured as before. It is not clear whether this matrix
can really be obtained, and even if it is obtained, whether
attacker cannot find different H that will show him the
system structure.

• Use SPN with secret random linear layer. We are inspired
by cipher family LowMC [6], but in the signature scheme
we do not publish the linear layer, but make it part of
the secret key. In this case we lose some efficiency and
flexibility in symmetric encryption: linear layer is now
asymmetric secret, thus the cipher cannot be reused for
symmetric encryption between network participants. This
can be remedied by using two versions of the cipher: one
for encryption, with fixed (simple) linear layer, and one

Regardless of generic attacks on the hash function, there are
multiple other ways that attacker can try to attack the signature
algorithm:

1) Try to submit false vector w′ that will satisfy the
verification algorithm. First part of the verification (hash
of message with nonce r should be the prefix of w′) is
easily satisfied. Thus the attacker is only concerned with
providing false w′ that will satisfy q = v(I|Q)T .

2) Try to derive the private key from the public key.
3) Try to derive the private key, or a new signature from

the public key and (chosen) signatures.
To prevent these attacks we rely on the following (presum-

ably) difficult problems:
1) Decoding problem/MRHS problem. These problems are

in general NP-hard, and both are related as discussed in
[11]. Parameters of the proposed scheme (if instantiated
by AES/Rijndael) are comparable (or even stronger) to
parameters of proposed code-based cryptosystems with
the same expected security level. Main concern for our
scheme is whether our specific type of decoding/MRHS
instances derived from SPN representation by MRHS
system are still sufficiently hard (in relation to random
instances of the problem).

2) Given a set of permuted transcripts of the SPN en-
cryption (with known, but not chosen, input to the first
layer of S-boxes), can the attacker find the key, or
at least provide any new transcript (permuted in the
same way)? This question is related to the security of
the underlying SPN, and the efficiency of the proposed
masking (random permutation of S-box inputs).

We will now discuss these attack vectors in more details.

A. Decoding/MRHS attacks

Verification algorithm consists of verifying the identity
v · HT = q. There is an exponentially large number of
solutions v′, but only some of them represent a valid signature.
Given valid signature v, such that vHT = q, attacker can
compute any other valid v′ by adding a codeword u of the
code generated by Mπ (which can be computed from public
Q). If our signature system was just based on the Niederreiter-
like code-based system [12], attacker could just use any prefix
h(m′, r′) and find a valid v′ · HT = q by solving a linear
system of equations.

However, our scheme has an additional property: only one
half of the vector v is provided in the signature, second half
is computed using SPN’s non-linear S-boxes. This means that
valid signatures form only a (very small and non-linear) subset
of the code coset. Each valid signature is a solution of the
MRHS system given by equation 2. If the attacker can forge
signatures, he can solve this non-linear MRHS system, and
vice-versa.

Note that underlying SPN is a block cipher, and thus a
permutation for each secret key. This means that there is a
unique transcript of the encryption and thus a unique signature
for each message hash.

As mentioned, the MRHS problem problem is related to the
decoding problem. We can use a specific decoding algorithm

to solve MRHS problem [11]. In our system there is also
a specific case where the attacker can apply the decoding
algorithm: given public key (q,Q), attacker tries to find the
original constant cπ which was used to define code coset
defined by syndrome q. If the attacker obtains cπ it might
be possible to reconstruct the original key: Attacker knowns
a permuted set of subkeys (except the first and the last one),
how difficult it is obtain original key?

However, to get c attacker needs to solve the decoding
problem first. Depending on the structure of the cipher he can
presume that cπ is a sparse vector (in contrast to signatures v)
with a specific structure (i.e., subkeys are only used to compute
outputs of S-boxes from the S-box inputs of the next round).
It is not clear whether this information can be sufficient to
simplify the decoding problem, as the expected weight of c is
still too large (compared to expected minimum code weight).

B. Structural attacks on signatures

We believe that the security of the signature scheme with
respect to decoding/MRHS problem is sufficient with respect
to generic solving methods. However, there are more critical
attacks that exploit the internal structure of the used MRHS
problem to circumvent the need to apply generic solution
methods, or to assist the generic methods. We will call these
attacks structural attacks (similar to terminology used in code-
based crypto).

First, let us note that it is necessary that attacker cannot
recover permutation π. If the attacker knowns π and a single
signature w, he can reconstruct the exact sequence of S-box
inputs in SPN. As S-boxes are public, he also knows the
corresponding S-box outputs. Let x denote a vector of outputs
of S-boxes in round i− 1, and let y denote a vector of inputs
of S-boxes in round i. Let L represent a (known) matrix of the
linear diffusion layer of SPN. Then ki = y+L(x). This means
that knowledge of π leads to a knowledge of the sequence
of subkeys. This sequence is sufficient to forge signatures
(regardless of the key schedule).

Note that specific key schedules can have an adverse effect
on the security. In AES (and many other ciphers), main encryp-
tion key can be derived from any single subkey (by running
the key schedule algorithm in reverse). This means that the
attacker only needs to find matching S-box outputs/inputs
between arbitrary rounds i − 1 and i. The easiest case is to
find the correct inputs to S-boxes in round 2 (as round 1 is
known, due to fixed part of π). This means that attacker needs
to correctly place a sequence of b = n/k blocks out of (r−1)b
blocks. Complexity of exhaustive search in this case is

N =
((r − 1) b)!

((r − 2) b)!
.

In case of AES-128, we get N ≈ 2113, which is much higher
than expected security of 64 bits. Similarly for Rijndael-256-
256, we get N ≈ 2289, which is again much higher than
security level of 128 bits.

On the other hand, attacker is not limited to an exhaustive
search. In the first version of the signature scheme, message
m (of fixed length given by the block size) was used directly

A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

DECEMBER 2019 • VOLUME XI • NUMBER 430

INFOCOMMUNICATIONS JOURNAL

(complex/random) linear layer for signatures with secret
linear layer. Note that while this eliminates some of the
sparsity from the system, the block structure related to
cipher rounds remains the same.

• Decompose larger S-boxes to individual AND gates, and
call these AND gates new S-boxes. In this case we
create a MRHS system with right-hand sides consist-
ing of sets related to AND gates, consisting of triples:
{000, 010, 100, 111}. Signer produces a vector of bits of
length 2m, and verifier just appends bits, that are products
of successive pairs, and verifies the coset. System matrix
in this case is more complex, as individual I/O bits on
individual AND gates need to be expressed as linear com-
binations of variables. This is also the main disadvantage
of the system: system matrix becomes excessively large,
increasing the size of the public key.

• Use a different cipher design. E.g., a wide cipher with a
large branch number could have a complex enough linear
layer in each round. If we study Figure 4, we can see that
the main problem is that S-box inputs from one round
are only connected to S-box outputs from the previous
rounds. If we do not need the encryption algorithm to
be reversible (e.g. for a use in stream cipher mode), we
can propagate some internal bits to multiple rounds. Note
that this must be done carefully to avoid enabling linear
or differential attacks on the underlying cipher.

• Would it be possible to hide some information? E.g., we
might consider, what would happen if we only include
odd numbered rounds in the signature. The MRHS system
is still present, and the signature system works correctly.
Main difference is that here are now fewer blocks of
M, and parity check matrix has smaller dimension (if
we remove half of blocks, dimension becomes zero!).
This means there would be false solutions, and multiple
signatures per message hash. It is not clear whether there
is a suitable trade-off when removing selected blocks
would actually improve the security.

Implementing some of these solutions can also solve prob-
lems with structural attacks based on known signatures. How-
ever, we believe that provably secure scheme can only be
obtained with a carefully designed block cipher with a goal of
providing signatures (through our general scheme) along with
symmetric encryption.

VII. CONCLUSIONS

In this paper we have presented a new concept of signature
scheme based on symmetric cipher design, whose signature
and verification algorithm are comparable in complexity to
symmetric encryption. Parameters of the system, and its con-
nection to symmetric ciphers, are quite favourable to consider
it for future use.

The proposed design should be not be considered a secure
signature scheme, as our assumptions are heuristic. The sig-
nature scheme relies on hardness of the decoding problem
/ MRHS problem. Moreover, if the signature system, as
presented here, is instantiated by current cipher designs (such
as AES), it would presumably not attain the required security

due to structural attacks. We have proposed some options
on how to further hide the inner structure of the encryption
system, but all of these options require further research. We
believe that the most promising direction is to design a specific
symmetric cipher that will support solid security arguments for
the proposed scheme.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers of the
Central European Conference on Cryptology for the comments
on the first proposal of this scheme, that led to identification
of some types of attacks on the scheme.

REFERENCES

[1] A. Hulsing, D. J. Bernstein et al., “Sphincs+,” 2018. [Online].
Available: https://sphincs.org/

[2] G. Zaverucha, M. Chase et al., “The Picnic signature algorithm,” 2018.
[Online]. Available: https://microsoft.github.io/Picnic/

[3] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, “White-box
cryptography and an aes implementation,” in International Workshop
on Selected Areas in Cryptography. Springer, 2002, pp. 250–270. doi:
10.1007/3-540-36492-7 17

[4] J. Ding and B.-Y. Yang, “Multivariate public key cryptography,” in Post-
quantum cryptography. Springer, 2009, pp. 193–241. doi: 10.1007/978-
3-540-88702-7 6

[5] H. Raddum and I. Semaev, “Solving multiple right hand sides linear
equations,” Design, Codes and Cryptography, vol. 49, no. 1, pp. 147–
160, 2008. doi: 10.1007/s10623-008-9180-z

[6] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for mpc and fhe,” in Advances in Cryptology–EUROCRYPT
2015. Springer, 2015, pp. 430–454. doi: 10.1007/978-3-662-46800-
5 17

[7] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[8] H. Raddum and P. Zajac, “MRHS solver based on linear algebra and
exhaustive search,” Journal of Mathematical Cryptology, vol. 12, no. 3,
pp. 143–157, 2018. doi: 10.1515/jmc-2017-0005

[9] P. Zajac, “MRHS equation systems that can be solved in polynomial
time,” Tatra Mountains Mathematical Publications, vol. 67, no. 1, pp.
205–219, 2016. doi: 10.1515/tmmp-2016-0040

[10] The Sage Developers, SageMath, the Sage Mathematics Software System
(Version 7.2), 2016, http://www.sagemath.org.

[11] P. Zajac, “Connecting the complexity of MQ-and code-based cryptosys-
tems,” Tatra Mountains Mathematical Publications, vol. 70, no. 1, pp.
163–177, 2017. doi: 10.1515/tmmp-2017-0025

[12] N. T. Courtois, M. Finiasz, and N. Sendrier, “How to achieve a
McEliece-based digital signature scheme,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2001, pp. 157–174. doi: 10.1007/3-540-45682-1 10

[13] M. Baldi, QC-LDPC code-based cryptography. Springer Science &
Business, 2014.

Pavol Zajac received PhD. in applied mathematics from Slovak University
of Technology in Bratislava in 2008. His research interest is mathematical
cryptography, see https://scholar.google.com/citations?user=kutD0ZsAAAAJ
for a list of publications. Currently he is a full professor at Slovak University
of technology working on problems related to post-quantum cryptography.

Peter Špaček is a PhD. student under supervision of Pavol Zajac. His research
focus is on post-quantum cryptography and its adaptation into real world
applications.

1

Cross-platform Identity-based Cryptography using
WebAssembly

Ádám Vécsi, Attila Bagossy, and Attila Pethő

Abstract—The explosive spread of the devices connected to the
Internet has increased the need for efficient and portable cryp-
tographic routines. Despite this fact, truly platform-independent
implementations are still hard to find. In this paper, an Identity-
based Cryptography library, called CryptID is introduced. The
main goal of this library is to provide an efficient and open-
source IBC implementation for the desktop, the mobile, and the
IoT platforms. Powered by WebAssembly, which is a specification
aiming to securely speed up code execution in various embedding
environments, CryptID can be utilized on both the client and the
server-side. The second novelty of CrpytID is the use of structured
public keys, opening up a wide range of domain-specific use cases
via arbitrary metadata embedded into the public key. Embedded
metadata can include, for example, a geolocation value when
working with geolocation-based Identity-based Cryptography, or
a timestamp, enabling simple and efficient generation of single-
use keypairs. Thanks to these characteristics, we think, that
CryptID could serve as a real alternative to the current Identity-
based Cryptography implementations.

Index Terms—Pairing-based Cryptography, Identity-based
Cryptography, WebAssembly

I. INTRODUCTION

Identity-based cryptography (IBC) is an important branch
of public-key cryptography. Although its foundations were
established in 1985 by Shamir [1], who managed to build an
identity-based signature (IBS) scheme, identity-based encryp-
tion (IBE) remained an open problem until Boneh and Franklin
[2] created their pairing-based scheme in 2001, which was fast
enough for practical use.

IBC’s uniqueness lies in the fact that its public key is a
string clearly identifying an individual or organization in a
certain domain. Such a string can be an email address or a
username. The core purpose behind the IBC was to simplify
the certificate management and eliminate the need for certifi-
cation authorities. In a standard scenario, when employing the
public key infrastructure (PKI), the key is bound to its user’s
identity with a public key certificate, however with IBC the
user’s identity is the public key itself, thus there is no need for
a certificate. Despite this advantage, IBC still requires trusted
third-party servers as private key generation and distribution
can only be done by a so-called private key generator (PKG).

Manuscript submitted October 30, 2019. This work was partially supported
by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project was
supported by the European Union, co-financed by the European Social Fund.
Research of Á. Vécsi and A. Pethő was partially supported by the 2018-1.2.1-
NKP-2018-00004 Security Enhancing Technologies for the Internet of Things
project.

The authors are with the Department of Computer Science,
University of Debrecen, H-4028 Debrecen, Kassai str. 26. (emails
in order: vecsi.adam@inf.unideb.hu; bagossy.attila@inf.unideb.hu;
Petho.Attila@inf.unideb.hu)

One can find several IBC implementations on the Internet
[3], [4], [5], [6]. However, most of these libraries are focused
on a single platform as their target. Unfortunately, applications
developed for one specific platform can not be directly adapted
for different use. In our opinion, this is a disadvantage of these
libraries, because nowadays there is an increasing number
of mobile devices connecting to the Internet making use of
apps or web-based services. Our motivation was to create a
cross-platform, portable IBC solution targeting a large pool
of diverse devices that are capable to maintain an internet
connection.

One popular technology for development with such goals
is JavaScript. One early library of IBC is WebIBC [3], which
was developed in 2008 using JavaScript. The authors of the
paper concluded that the web browsers and the JavaScript
environment were not powerful enough, to implement a stan-
dard IBC library, which is based on pairing, because it is
”too complex and overkill”. Instead, they built a combined
scheme, which requires much less computation-power and yet,
the performance on a desktop was barely satisfying (1.5-2.5
seconds on average for encryption, using a 192-bit integer as
the key).

Of course, since 2008, the performance of JavaScript en-
gines significantly increased. An article written by a developer
of the V8 JavaScript engine [7] points out that the performance
of V8 quadrupled over the last ten years, which may inspire
us to give a chance to implement a standard IBC library with
the listed goals, using JavaScript. However, over the years a
new technology, called WebAssembly came into the picture,
which seems even more promising.

Developed by the W3C WebAssembly Community Group
since 2015, WebAssembly is a virtual instruction set architec-
ture, aiming to provide a basis for fast computations on the
web, while also giving a solution which is embeddable into
any environment [8]. Albeit being a quite young technology,
already 86% of the internet users have a compatible browser
enjoying its benefits [9]. Therefore, we can consider this
technology as a promising choice for the development of a
cross-platform IBC solution.

In this paper, we will introduce our open source solution
for a cross-platform IBC implementation using WebAssembly.
The source code is available at https://github.com/cryptid-org,
while a consumable NPM package can be downloaded from
https://www.npmjs.com/package/@cryptid/cryptid-js. Our so-
lution, called CryptID, is on the one hand small enough to
be stored on devices with limited storage capacity, while, on
the other hand, its performance is acceptable even on devices
with limited computational power. Our experiments proved

1

Cross-platform Identity-based Cryptography using
WebAssembly

Ádám Vécsi, Attila Bagossy, and Attila Pethő

Abstract—The explosive spread of the devices connected to the
Internet has increased the need for efficient and portable cryp-
tographic routines. Despite this fact, truly platform-independent
implementations are still hard to find. In this paper, an Identity-
based Cryptography library, called CryptID is introduced. The
main goal of this library is to provide an efficient and open-
source IBC implementation for the desktop, the mobile, and the
IoT platforms. Powered by WebAssembly, which is a specification
aiming to securely speed up code execution in various embedding
environments, CryptID can be utilized on both the client and the
server-side. The second novelty of CrpytID is the use of structured
public keys, opening up a wide range of domain-specific use cases
via arbitrary metadata embedded into the public key. Embedded
metadata can include, for example, a geolocation value when
working with geolocation-based Identity-based Cryptography, or
a timestamp, enabling simple and efficient generation of single-
use keypairs. Thanks to these characteristics, we think, that
CryptID could serve as a real alternative to the current Identity-
based Cryptography implementations.

Index Terms—Pairing-based Cryptography, Identity-based
Cryptography, WebAssembly

I. INTRODUCTION

Identity-based cryptography (IBC) is an important branch
of public-key cryptography. Although its foundations were
established in 1985 by Shamir [1], who managed to build an
identity-based signature (IBS) scheme, identity-based encryp-
tion (IBE) remained an open problem until Boneh and Franklin
[2] created their pairing-based scheme in 2001, which was fast
enough for practical use.

IBC’s uniqueness lies in the fact that its public key is a
string clearly identifying an individual or organization in a
certain domain. Such a string can be an email address or a
username. The core purpose behind the IBC was to simplify
the certificate management and eliminate the need for certifi-
cation authorities. In a standard scenario, when employing the
public key infrastructure (PKI), the key is bound to its user’s
identity with a public key certificate, however with IBC the
user’s identity is the public key itself, thus there is no need for
a certificate. Despite this advantage, IBC still requires trusted
third-party servers as private key generation and distribution
can only be done by a so-called private key generator (PKG).

Manuscript submitted October 30, 2019. This work was partially supported
by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project was
supported by the European Union, co-financed by the European Social Fund.
Research of Á. Vécsi and A. Pethő was partially supported by the 2018-1.2.1-
NKP-2018-00004 Security Enhancing Technologies for the Internet of Things
project.

The authors are with the Department of Computer Science,
University of Debrecen, H-4028 Debrecen, Kassai str. 26. (emails
in order: vecsi.adam@inf.unideb.hu; bagossy.attila@inf.unideb.hu;
Petho.Attila@inf.unideb.hu)

One can find several IBC implementations on the Internet
[3], [4], [5], [6]. However, most of these libraries are focused
on a single platform as their target. Unfortunately, applications
developed for one specific platform can not be directly adapted
for different use. In our opinion, this is a disadvantage of these
libraries, because nowadays there is an increasing number
of mobile devices connecting to the Internet making use of
apps or web-based services. Our motivation was to create a
cross-platform, portable IBC solution targeting a large pool
of diverse devices that are capable to maintain an internet
connection.

One popular technology for development with such goals
is JavaScript. One early library of IBC is WebIBC [3], which
was developed in 2008 using JavaScript. The authors of the
paper concluded that the web browsers and the JavaScript
environment were not powerful enough, to implement a stan-
dard IBC library, which is based on pairing, because it is
”too complex and overkill”. Instead, they built a combined
scheme, which requires much less computation-power and yet,
the performance on a desktop was barely satisfying (1.5-2.5
seconds on average for encryption, using a 192-bit integer as
the key).

Of course, since 2008, the performance of JavaScript en-
gines significantly increased. An article written by a developer
of the V8 JavaScript engine [7] points out that the performance
of V8 quadrupled over the last ten years, which may inspire
us to give a chance to implement a standard IBC library with
the listed goals, using JavaScript. However, over the years a
new technology, called WebAssembly came into the picture,
which seems even more promising.

Developed by the W3C WebAssembly Community Group
since 2015, WebAssembly is a virtual instruction set architec-
ture, aiming to provide a basis for fast computations on the
web, while also giving a solution which is embeddable into
any environment [8]. Albeit being a quite young technology,
already 86% of the internet users have a compatible browser
enjoying its benefits [9]. Therefore, we can consider this
technology as a promising choice for the development of a
cross-platform IBC solution.

In this paper, we will introduce our open source solution
for a cross-platform IBC implementation using WebAssembly.
The source code is available at https://github.com/cryptid-org,
while a consumable NPM package can be downloaded from
https://www.npmjs.com/package/@cryptid/cryptid-js. Our so-
lution, called CryptID, is on the one hand small enough to
be stored on devices with limited storage capacity, while, on
the other hand, its performance is acceptable even on devices
with limited computational power. Our experiments proved

Pavol Zajac received PhD. in applied mathematics from
Slovak University of Technology in Bratislava in 2008.
His research interest is mathematical cryptography, see
https://scholar.google.com/citations?user=kutD0ZsAAAAJ
for a list of publications. Currently he is a full professor at
Slovak University of technology working on problems
related to post-quantum cryptography.

Peter Špaček is a PhD. student under supervision of
Pavol Zajac. His research focus is on post-quantum
cryptography and its adaptation into real world
applications.

RefeRences

 [1] A. Hulsing, D. J. Bernstein et al., “Sphincs+,” 2018. [Online]. Available:
https://sphincs.org/

 [2] G. Zaverucha, M. Chase et al., “The Picnic signature algorithm,” 2018.
[Online]. Available: https://microsoft.github.io/Picnic/

 [3] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, “White-box
cryptography and an aes implementation,” in International Workshop on
Selected Areas in Cryptography. Springer, 2002, pp. 250–270.

 doi: 10.1007/3-540-36492-7_17
 [4] J. Ding and B.-Y. Yang, “Multivariate public key cryptography,” in

Postquantum cryptography. Springer, 2009, pp. 193–241.
 doi: 10.1007/978-3-540-88702-7_6
 [5] H. Raddum and I. Semaev, “Solving multiple right hand sides linear

equations,” Design, Codes and Cryptography, vol. 49, no. 1, pp. 147–
160, 2008. doi: 10.1007/s10623-008-9180-z

 [6] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for mpc and fhe,” in Advances in Cryptology–EUROCRYPT
2015. Springer, 2015, pp. 430–454. doi: 10.1007/978-3-662-46800-5_17

 [7] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

 [8] H. Raddum and P. Zajac, “MRHS solver based on linear algebra and
exhaustive search,” Journal of Mathematical Cryptology, vol. 12, no. 3,
pp. 143–157, 2018. doi: 10.1515/jmc-2017-0005

 [9] P. Zajac, “MRHS equation systems that can be solved in polynomial
time,” Tatra Mountains Mathematical Publications, vol. 67, no. 1, pp.
205–219, 2016. doi: 10.1515/tmmp-2016-0040

 [10] The Sage Developers, SageMath, the Sage Mathematics Software
System (Version 7.2), 2016, http://www.sagemath.org.

[11] P. Zajac, “Connecting the complexity of MQ-and code-based
cryptosystems,” Tatra Mountains Mathematical Publications, vol. 70,
no. 1, pp. 163–177, 2017. doi: 10.1515/tmmp-2017-0025

 [12] N. T. Courtois, M. Finiasz, and N. Sendrier, “How to achieve a
McEliece-based digital signature scheme,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2001, pp. 157–174. doi: 10.1007/3-540-45682-1_10

 [13] M. Baldi, QC-LDPC code-based cryptography. Springer Science &
Business, 2014.

(complex/random) linear layer for signatures with secret
linear layer. Note that while this eliminates some of the
sparsity from the system, the block structure related to
cipher rounds remains the same.

• Decompose larger S-boxes to individual AND gates, and
call these AND gates new S-boxes. In this case we
create a MRHS system with right-hand sides consist-
ing of sets related to AND gates, consisting of triples:
{000, 010, 100, 111}. Signer produces a vector of bits of
length 2m, and verifier just appends bits, that are products
of successive pairs, and verifies the coset. System matrix
in this case is more complex, as individual I/O bits on
individual AND gates need to be expressed as linear com-
binations of variables. This is also the main disadvantage
of the system: system matrix becomes excessively large,
increasing the size of the public key.

• Use a different cipher design. E.g., a wide cipher with a
large branch number could have a complex enough linear
layer in each round. If we study Figure 4, we can see that
the main problem is that S-box inputs from one round
are only connected to S-box outputs from the previous
rounds. If we do not need the encryption algorithm to
be reversible (e.g. for a use in stream cipher mode), we
can propagate some internal bits to multiple rounds. Note
that this must be done carefully to avoid enabling linear
or differential attacks on the underlying cipher.

• Would it be possible to hide some information? E.g., we
might consider, what would happen if we only include
odd numbered rounds in the signature. The MRHS system
is still present, and the signature system works correctly.
Main difference is that here are now fewer blocks of
M, and parity check matrix has smaller dimension (if
we remove half of blocks, dimension becomes zero!).
This means there would be false solutions, and multiple
signatures per message hash. It is not clear whether there
is a suitable trade-off when removing selected blocks
would actually improve the security.

Implementing some of these solutions can also solve prob-
lems with structural attacks based on known signatures. How-
ever, we believe that provably secure scheme can only be
obtained with a carefully designed block cipher with a goal of
providing signatures (through our general scheme) along with
symmetric encryption.

VII. CONCLUSIONS

In this paper we have presented a new concept of signature
scheme based on symmetric cipher design, whose signature
and verification algorithm are comparable in complexity to
symmetric encryption. Parameters of the system, and its con-
nection to symmetric ciphers, are quite favourable to consider
it for future use.

The proposed design should be not be considered a secure
signature scheme, as our assumptions are heuristic. The sig-
nature scheme relies on hardness of the decoding problem
/ MRHS problem. Moreover, if the signature system, as
presented here, is instantiated by current cipher designs (such
as AES), it would presumably not attain the required security

due to structural attacks. We have proposed some options
on how to further hide the inner structure of the encryption
system, but all of these options require further research. We
believe that the most promising direction is to design a specific
symmetric cipher that will support solid security arguments for
the proposed scheme.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers of the
Central European Conference on Cryptology for the comments
on the first proposal of this scheme, that led to identification
of some types of attacks on the scheme.

REFERENCES

[1] A. Hulsing, D. J. Bernstein et al., “Sphincs+,” 2018. [Online].
Available: https://sphincs.org/

[2] G. Zaverucha, M. Chase et al., “The Picnic signature algorithm,” 2018.
[Online]. Available: https://microsoft.github.io/Picnic/

[3] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, “White-box
cryptography and an aes implementation,” in International Workshop
on Selected Areas in Cryptography. Springer, 2002, pp. 250–270. doi:
10.1007/3-540-36492-7 17

[4] J. Ding and B.-Y. Yang, “Multivariate public key cryptography,” in Post-
quantum cryptography. Springer, 2009, pp. 193–241. doi: 10.1007/978-
3-540-88702-7 6

[5] H. Raddum and I. Semaev, “Solving multiple right hand sides linear
equations,” Design, Codes and Cryptography, vol. 49, no. 1, pp. 147–
160, 2008. doi: 10.1007/s10623-008-9180-z

[6] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for mpc and fhe,” in Advances in Cryptology–EUROCRYPT
2015. Springer, 2015, pp. 430–454. doi: 10.1007/978-3-662-46800-
5 17

[7] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[8] H. Raddum and P. Zajac, “MRHS solver based on linear algebra and
exhaustive search,” Journal of Mathematical Cryptology, vol. 12, no. 3,
pp. 143–157, 2018. doi: 10.1515/jmc-2017-0005

[9] P. Zajac, “MRHS equation systems that can be solved in polynomial
time,” Tatra Mountains Mathematical Publications, vol. 67, no. 1, pp.
205–219, 2016. doi: 10.1515/tmmp-2016-0040

[10] The Sage Developers, SageMath, the Sage Mathematics Software System
(Version 7.2), 2016, http://www.sagemath.org.

[11] P. Zajac, “Connecting the complexity of MQ-and code-based cryptosys-
tems,” Tatra Mountains Mathematical Publications, vol. 70, no. 1, pp.
163–177, 2017. doi: 10.1515/tmmp-2017-0025

[12] N. T. Courtois, M. Finiasz, and N. Sendrier, “How to achieve a
McEliece-based digital signature scheme,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2001, pp. 157–174. doi: 10.1007/3-540-45682-1 10

[13] M. Baldi, QC-LDPC code-based cryptography. Springer Science &
Business, 2014.

Pavol Zajac received PhD. in applied mathematics from Slovak University
of Technology in Bratislava in 2008. His research interest is mathematical
cryptography, see https://scholar.google.com/citations?user=kutD0ZsAAAAJ
for a list of publications. Currently he is a full professor at Slovak University
of technology working on problems related to post-quantum cryptography.

Peter Špaček is a PhD. student under supervision of Pavol Zajac. His research
focus is on post-quantum cryptography and its adaptation into real world
applications.

(complex/random) linear layer for signatures with secret
linear layer. Note that while this eliminates some of the
sparsity from the system, the block structure related to
cipher rounds remains the same.

• Decompose larger S-boxes to individual AND gates, and
call these AND gates new S-boxes. In this case we
create a MRHS system with right-hand sides consist-
ing of sets related to AND gates, consisting of triples:
{000, 010, 100, 111}. Signer produces a vector of bits of
length 2m, and verifier just appends bits, that are products
of successive pairs, and verifies the coset. System matrix
in this case is more complex, as individual I/O bits on
individual AND gates need to be expressed as linear com-
binations of variables. This is also the main disadvantage
of the system: system matrix becomes excessively large,
increasing the size of the public key.

• Use a different cipher design. E.g., a wide cipher with a
large branch number could have a complex enough linear
layer in each round. If we study Figure 4, we can see that
the main problem is that S-box inputs from one round
are only connected to S-box outputs from the previous
rounds. If we do not need the encryption algorithm to
be reversible (e.g. for a use in stream cipher mode), we
can propagate some internal bits to multiple rounds. Note
that this must be done carefully to avoid enabling linear
or differential attacks on the underlying cipher.

• Would it be possible to hide some information? E.g., we
might consider, what would happen if we only include
odd numbered rounds in the signature. The MRHS system
is still present, and the signature system works correctly.
Main difference is that here are now fewer blocks of
M, and parity check matrix has smaller dimension (if
we remove half of blocks, dimension becomes zero!).
This means there would be false solutions, and multiple
signatures per message hash. It is not clear whether there
is a suitable trade-off when removing selected blocks
would actually improve the security.

Implementing some of these solutions can also solve prob-
lems with structural attacks based on known signatures. How-
ever, we believe that provably secure scheme can only be
obtained with a carefully designed block cipher with a goal of
providing signatures (through our general scheme) along with
symmetric encryption.

VII. CONCLUSIONS

In this paper we have presented a new concept of signature
scheme based on symmetric cipher design, whose signature
and verification algorithm are comparable in complexity to
symmetric encryption. Parameters of the system, and its con-
nection to symmetric ciphers, are quite favourable to consider
it for future use.

The proposed design should be not be considered a secure
signature scheme, as our assumptions are heuristic. The sig-
nature scheme relies on hardness of the decoding problem
/ MRHS problem. Moreover, if the signature system, as
presented here, is instantiated by current cipher designs (such
as AES), it would presumably not attain the required security

due to structural attacks. We have proposed some options
on how to further hide the inner structure of the encryption
system, but all of these options require further research. We
believe that the most promising direction is to design a specific
symmetric cipher that will support solid security arguments for
the proposed scheme.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers of the
Central European Conference on Cryptology for the comments
on the first proposal of this scheme, that led to identification
of some types of attacks on the scheme.

REFERENCES

[1] A. Hulsing, D. J. Bernstein et al., “Sphincs+,” 2018. [Online].
Available: https://sphincs.org/

[2] G. Zaverucha, M. Chase et al., “The Picnic signature algorithm,” 2018.
[Online]. Available: https://microsoft.github.io/Picnic/

[3] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, “White-box
cryptography and an aes implementation,” in International Workshop
on Selected Areas in Cryptography. Springer, 2002, pp. 250–270. doi:
10.1007/3-540-36492-7 17

[4] J. Ding and B.-Y. Yang, “Multivariate public key cryptography,” in Post-
quantum cryptography. Springer, 2009, pp. 193–241. doi: 10.1007/978-
3-540-88702-7 6

[5] H. Raddum and I. Semaev, “Solving multiple right hand sides linear
equations,” Design, Codes and Cryptography, vol. 49, no. 1, pp. 147–
160, 2008. doi: 10.1007/s10623-008-9180-z

[6] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for mpc and fhe,” in Advances in Cryptology–EUROCRYPT
2015. Springer, 2015, pp. 430–454. doi: 10.1007/978-3-662-46800-
5 17

[7] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[8] H. Raddum and P. Zajac, “MRHS solver based on linear algebra and
exhaustive search,” Journal of Mathematical Cryptology, vol. 12, no. 3,
pp. 143–157, 2018. doi: 10.1515/jmc-2017-0005

[9] P. Zajac, “MRHS equation systems that can be solved in polynomial
time,” Tatra Mountains Mathematical Publications, vol. 67, no. 1, pp.
205–219, 2016. doi: 10.1515/tmmp-2016-0040

[10] The Sage Developers, SageMath, the Sage Mathematics Software System
(Version 7.2), 2016, http://www.sagemath.org.

[11] P. Zajac, “Connecting the complexity of MQ-and code-based cryptosys-
tems,” Tatra Mountains Mathematical Publications, vol. 70, no. 1, pp.
163–177, 2017. doi: 10.1515/tmmp-2017-0025

[12] N. T. Courtois, M. Finiasz, and N. Sendrier, “How to achieve a
McEliece-based digital signature scheme,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2001, pp. 157–174. doi: 10.1007/3-540-45682-1 10

[13] M. Baldi, QC-LDPC code-based cryptography. Springer Science &
Business, 2014.

Pavol Zajac received PhD. in applied mathematics from Slovak University
of Technology in Bratislava in 2008. His research interest is mathematical
cryptography, see https://scholar.google.com/citations?user=kutD0ZsAAAAJ
for a list of publications. Currently he is a full professor at Slovak University
of technology working on problems related to post-quantum cryptography.

Peter Špaček is a PhD. student under supervision of Pavol Zajac. His research
focus is on post-quantum cryptography and its adaptation into real world
applications.

https://scholar.google.com/citations?user=kutD0ZsAAAAJ
https://sphincs.org/
https://microsoft.github.io/Picnic/
http://doi.org/10.1007/3-540-36492-7_17
http://doi.org/10.1007/978-3-540-88702-7_6
http://doi.org/10.1007/s10623-008-9180-z
http://doi.org/10.1007/978-3-662-46800-5_17
http://doi.org/10.1515/jmc-2017-0005
http://doi.org/10.1515/tmmp-2016-0040
http://www.sagemath.org/
http://doi.org/10.1515/tmmp-2017-0025
http://doi.org/10.1007/3-540-45682-1_10

