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Abstract—This paper deals with the efficient parallel search of
square m-sequences on both modern CPUs and GPUs. The key
idea is based on applying particular vector processor instructions
with a view to maximizing the advantage of Single Instruction
Multiple Data (SIMD) and Single Instruction Multiple Threads
(SIMT) execution patterns. The developed implementation was
adjusted to testing for the maximum-period of m-sequences of
some particular forms. Furthermore, the early abort sieving
strategy based on the application of SAT-solvers were presented.
With this solution, it is possible to search m-sequences up to
degree 32 exhaustively.

I. INTRODUCTION

Feedback Shift Registers (FSR) are used to generate cryp-
tographically applicable binary sequences. They have many
proponents due to their simplicity, both software and hardware
effectiveness and well-known properties. In particular, stream
ciphers designers use them to construct invertible mappings
with internal state. The strongly desirable property of stream
ciphers is their long period. Therefore, the FSR used in
them should also have this feature. Informally, the period of
mapping is the length of the most extended cycle in its state
transition graph.

In recent years, many cryptographic algorithms such as
stream ciphers (for example GRAIN which is NIST standard
[9], Trivium [3] or Achterbahn [2]), lightweight block ciphers
and sponge-based generators [4, 10] have used NLFSR for
providing both security and efficiency. In most cases, NLF-
SRs have much greater linear-complexity than LFSRs of the
same period, which is directly connected with the security of
cryptographic algorithms [12].

Computationally efficient methods for construction of cryp-
tographically strong NLFSRs remains unknown. The most
critical NLFSR related problem is finding a systematic proce-
dure for constructing NLFSRs with a long confirmed period.
Available algorithms either consider some individual cases
or apply to low order NLFSRs only [7, 14, 16]. Nikolay
Poluyanenko developed the most efficient method. However, it
was not sufficient to obtain applicable NLFSR of degree 30 or
higher [13]. Moreover, it requires the usage of special-purpose
Field-Programmable Gate Arrays (FPGA) hardware, which is
not commonly available.

If we look at the above-mentioned subject from another
point of view, NLFSRs are also known as de Bruijn sequences.

In a de Bruijn series of order n, all 2n different binary n-
tuples appear precisely once. A modified de Bruijn sequence
is obtained from a proper de Bruijn sequence by removing
tuple containing zero elements only.

Another essential sequence type, which statistical and struc-
tural properties were examined, are so-called m-sequences.
Boolean functions that generate the m-sequence can by con-
structed by introducing nonlinear disturbances into linear
functions[11]. Unfortunately, complexity of this approach is
extremely high for orders greater than 8. As a result in this
paper we address the problem of efficient searching for m-
sequences with a guaranteed full period by exhaustively search
for the NLFSR with the following form of feedback function:

f(x0, x1, . . . , xn−1) = g(x0, x1, . . . , xn−1) + xi + xi · xj

for which i �= j, 1 ≤ i, j ≤ n − 1 and g(x0, x1, . . . , xn−1)
is defined by a primitive polynomial over F2. Owing to the
large number of candidate feedback functions, the search was
conducted on GPUs and special strategy of early abort via
SAT solvers’ detection of short cycles were applied.

The aforementioned computational experiment allows ob-
taining an extensive, complete list of n-bit NLFSR (n < 31)
with a maximum period for the considered form of feedback
functions. The previous research in the investigated area has
resulted in maximum period NLFSR up to degree 27 [6]
on Central Processing Units (CPU) and up to degree 29
on FPGA [13]. We have enumerated all m-sequences up to
degree 31. Obtained results suggest the dependency between
the Hamming weight of feedback functions and the period of
NLFSR generated by that function was observed (see Table
VII).

II. BASIC NOTATIONS AND DEFINITIONS

Definition 1: Binary Feedback Shift Register of order n is
a mapping Fn

2 → Fn
2 of the form:

(x0, x1, ..., xn−1) → (x1, x2, ..., xn−1, f(x0, x1, ..., xn−1)),

where:
• f is a boolean function of n variables;
• xn−1 is an output bit.
Depending on the type of feedback function two main types

of shift registers are concerned:

The search of square m-sequences with maximum
period via GPU and CPU

Paweł Augustynowicz
Military University of Technology

Institute of Cybernetics
gen. Sylwestra Kaliskiego 2, 00-908 Warsaw

Email: pawel.augustynowicz@wat.edu.pl

Krzysztof Kanciak
Military University of Technology

Institute of Cybernetics
gen. Sylwestra Kaliskiego 2, 00-908 Warsaw

Email: krzysztof.kanciak@wat.edu.pl

Abstract—This paper deals with the efficient parallel search of
square m-sequences on both modern CPUs and GPUs. The key
idea is based on applying particular vector processor instructions
with a view to maximizing the advantage of Single Instruction
Multiple Data (SIMD) and Single Instruction Multiple Threads
(SIMT) execution patterns. The developed implementation was
adjusted to testing for the maximum-period of m-sequences of
some particular forms. Furthermore, the early abort sieving
strategy based on the application of SAT-solvers were presented.
With this solution, it is possible to search m-sequences up to
degree 32 exhaustively.

I. INTRODUCTION

Feedback Shift Registers (FSR) are used to generate cryp-
tographically applicable binary sequences. They have many
proponents due to their simplicity, both software and hardware
effectiveness and well-known properties. In particular, stream
ciphers designers use them to construct invertible mappings
with internal state. The strongly desirable property of stream
ciphers is their long period. Therefore, the FSR used in
them should also have this feature. Informally, the period of
mapping is the length of the most extended cycle in its state
transition graph.

In recent years, many cryptographic algorithms such as
stream ciphers (for example GRAIN which is NIST standard
[9], Trivium [3] or Achterbahn [2]), lightweight block ciphers
and sponge-based generators [4, 10] have used NLFSR for
providing both security and efficiency. In most cases, NLF-
SRs have much greater linear-complexity than LFSRs of the
same period, which is directly connected with the security of
cryptographic algorithms [12].

Computationally efficient methods for construction of cryp-
tographically strong NLFSRs remains unknown. The most
critical NLFSR related problem is finding a systematic proce-
dure for constructing NLFSRs with a long confirmed period.
Available algorithms either consider some individual cases
or apply to low order NLFSRs only [7, 14, 16]. Nikolay
Poluyanenko developed the most efficient method. However, it
was not sufficient to obtain applicable NLFSR of degree 30 or
higher [13]. Moreover, it requires the usage of special-purpose
Field-Programmable Gate Arrays (FPGA) hardware, which is
not commonly available.

If we look at the above-mentioned subject from another
point of view, NLFSRs are also known as de Bruijn sequences.

In a de Bruijn series of order n, all 2n different binary n-
tuples appear precisely once. A modified de Bruijn sequence
is obtained from a proper de Bruijn sequence by removing
tuple containing zero elements only.

Another essential sequence type, which statistical and struc-
tural properties were examined, are so-called m-sequences.
Boolean functions that generate the m-sequence can by con-
structed by introducing nonlinear disturbances into linear
functions[11]. Unfortunately, complexity of this approach is
extremely high for orders greater than 8. As a result in this
paper we address the problem of efficient searching for m-
sequences with a guaranteed full period by exhaustively search
for the NLFSR with the following form of feedback function:

f(x0, x1, . . . , xn−1) = g(x0, x1, . . . , xn−1) + xi + xi · xj

for which i �= j, 1 ≤ i, j ≤ n − 1 and g(x0, x1, . . . , xn−1)
is defined by a primitive polynomial over F2. Owing to the
large number of candidate feedback functions, the search was
conducted on GPUs and special strategy of early abort via
SAT solvers’ detection of short cycles were applied.

The aforementioned computational experiment allows ob-
taining an extensive, complete list of n-bit NLFSR (n < 31)
with a maximum period for the considered form of feedback
functions. The previous research in the investigated area has
resulted in maximum period NLFSR up to degree 27 [6]
on Central Processing Units (CPU) and up to degree 29
on FPGA [13]. We have enumerated all m-sequences up to
degree 31. Obtained results suggest the dependency between
the Hamming weight of feedback functions and the period of
NLFSR generated by that function was observed (see Table
VII).

II. BASIC NOTATIONS AND DEFINITIONS

Definition 1: Binary Feedback Shift Register of order n is
a mapping Fn

2 → Fn
2 of the form:

(x0, x1, ..., xn−1) → (x1, x2, ..., xn−1, f(x0, x1, ..., xn−1)),

where:
• f is a boolean function of n variables;
• xn−1 is an output bit.
Depending on the type of feedback function two main types

of shift registers are concerned:

The search of square m-sequences with maximum
period via GPU and CPU

Paweł Augustynowicz
Military University of Technology

Institute of Cybernetics
gen. Sylwestra Kaliskiego 2, 00-908 Warsaw

Email: pawel.augustynowicz@wat.edu.pl

Krzysztof Kanciak
Military University of Technology

Institute of Cybernetics
gen. Sylwestra Kaliskiego 2, 00-908 Warsaw

Email: krzysztof.kanciak@wat.edu.pl

Abstract—This paper deals with the efficient parallel search of
square m-sequences on both modern CPUs and GPUs. The key
idea is based on applying particular vector processor instructions
with a view to maximizing the advantage of Single Instruction
Multiple Data (SIMD) and Single Instruction Multiple Threads
(SIMT) execution patterns. The developed implementation was
adjusted to testing for the maximum-period of m-sequences of
some particular forms. Furthermore, the early abort sieving
strategy based on the application of SAT-solvers were presented.
With this solution, it is possible to search m-sequences up to
degree 32 exhaustively.

I. INTRODUCTION

Feedback Shift Registers (FSR) are used to generate cryp-
tographically applicable binary sequences. They have many
proponents due to their simplicity, both software and hardware
effectiveness and well-known properties. In particular, stream
ciphers designers use them to construct invertible mappings
with internal state. The strongly desirable property of stream
ciphers is their long period. Therefore, the FSR used in
them should also have this feature. Informally, the period of
mapping is the length of the most extended cycle in its state
transition graph.

In recent years, many cryptographic algorithms such as
stream ciphers (for example GRAIN which is NIST standard
[9], Trivium [3] or Achterbahn [2]), lightweight block ciphers
and sponge-based generators [4, 10] have used NLFSR for
providing both security and efficiency. In most cases, NLF-
SRs have much greater linear-complexity than LFSRs of the
same period, which is directly connected with the security of
cryptographic algorithms [12].

Computationally efficient methods for construction of cryp-
tographically strong NLFSRs remains unknown. The most
critical NLFSR related problem is finding a systematic proce-
dure for constructing NLFSRs with a long confirmed period.
Available algorithms either consider some individual cases
or apply to low order NLFSRs only [7, 14, 16]. Nikolay
Poluyanenko developed the most efficient method. However, it
was not sufficient to obtain applicable NLFSR of degree 30 or
higher [13]. Moreover, it requires the usage of special-purpose
Field-Programmable Gate Arrays (FPGA) hardware, which is
not commonly available.

If we look at the above-mentioned subject from another
point of view, NLFSRs are also known as de Bruijn sequences.

In a de Bruijn series of order n, all 2n different binary n-
tuples appear precisely once. A modified de Bruijn sequence
is obtained from a proper de Bruijn sequence by removing
tuple containing zero elements only.

Another essential sequence type, which statistical and struc-
tural properties were examined, are so-called m-sequences.
Boolean functions that generate the m-sequence can by con-
structed by introducing nonlinear disturbances into linear
functions[11]. Unfortunately, complexity of this approach is
extremely high for orders greater than 8. As a result in this
paper we address the problem of efficient searching for m-
sequences with a guaranteed full period by exhaustively search
for the NLFSR with the following form of feedback function:

f(x0, x1, . . . , xn−1) = g(x0, x1, . . . , xn−1) + xi + xi · xj

for which i �= j, 1 ≤ i, j ≤ n − 1 and g(x0, x1, . . . , xn−1)
is defined by a primitive polynomial over F2. Owing to the
large number of candidate feedback functions, the search was
conducted on GPUs and special strategy of early abort via
SAT solvers’ detection of short cycles were applied.

The aforementioned computational experiment allows ob-
taining an extensive, complete list of n-bit NLFSR (n < 31)
with a maximum period for the considered form of feedback
functions. The previous research in the investigated area has
resulted in maximum period NLFSR up to degree 27 [6]
on Central Processing Units (CPU) and up to degree 29
on FPGA [13]. We have enumerated all m-sequences up to
degree 31. Obtained results suggest the dependency between
the Hamming weight of feedback functions and the period of
NLFSR generated by that function was observed (see Table
VII).

II. BASIC NOTATIONS AND DEFINITIONS

Definition 1: Binary Feedback Shift Register of order n is
a mapping Fn

2 → Fn
2 of the form:

(x0, x1, ..., xn−1) → (x1, x2, ..., xn−1, f(x0, x1, ..., xn−1)),

where:
• f is a boolean function of n variables;
• xn−1 is an output bit.
Depending on the type of feedback function two main types

of shift registers are concerned:

http://doi.org/10.36244/ICJ.2019.3.2
http://doi.org/10.36244/ICJ.2019.4.3


The search of square m-sequences with maximum
period via GPU and CPU

DECEMBER 2019 • VOLUME XI • NUMBER 418

INFOCOMMUNICATIONS JOURNAL

application of SIMD vector instructions, simple calculations,
such as xor, bit shifts or counting ones in a word can be
performed even on eight words by one thread. For example the
concurrent rotation of 8 32-bits words can be realized by the
Intel processor intrinsic _mm256_mullo_epi32, whearas
xor can be computed via _mm256_xor_si256.

As far as GPU implementation and its SIMT (Single Instruc-
tion Multiple Threads) parallel model are concerned, the most
significant factor is to determine the number of ones in the
given integer effectively. It can be realized by generating ptx
code or exploiting popcntq instruction on NVIDIA graphics
cards and their CUDA (Compute Unified Device Architecture)
development tools. Nevertheless, it is impossible to achieve
similar performance on OpenCL (Open Computing Language)
implementations. Moreover we have observed that usign one
thread per one i state strategy is obviously optimal. Unluckily
performing conditional instructions on GPU is exceptionally
inefficient. Consequently, the inner if condition should be
omitted in these kind of implementations. As a result the
developed algorithm posses no early abort strategy on GPU
platform, which would allow to efficient filtration of short-
period NLFSRs. However, it can be realized on CPU by the
usage of SAT-solvers.

IV. APPLICATION OF SAT SOLVERS

For polynomials up to degree 31, GPU exhaustive cy-
cle verification method works well since we can examine
thousands of registers at once. For polynomials of higher
degrees, we found FPGA and CPU implementations much
more convenient. Furthermore, before full-cycle FPGA or
GPU exhaustive verification, we strongly recommend to check
for short cycle existence by solving a Boolean satisfiability
problem. It can be realized automatically with the help of
some open source tools. Firstly, it is required to translate
our for example C programming language implementation
to And-Inverter Graphs (AIG), which are intermediate states
only of Algebraic Normal Form generation (ANF). This step
can be done by usage of ABC: System for Sequential Logic
Synthesis and Formal Verification and SAW The Software
Analysis Workbench. From ANF, there is the well-known path
to Conjunctive Normal Form (CNF), which is finally inputted
to SAT-solver (Cadical and Lingeling work well and much
better than other more popular SAT-solvers in this case [1]).
We do not know NLFSR cycles structure, but the majority
of polynomials of degree higher than 31 can be quickly
eliminated by SAT searching of cycles shorter than 16 states.
FPGA or CPU based full cycle verification is being performed
in case of UNSAT (no model found) result of prior SAT short
cycle check. SAT-based pre-phase works entirely on the CPU,
which gives us tremendous resources utilization rate of the
entire computing system. The proposed approach is inspired
by the work of Elena Dubrova and Maxim Teslenko [8], [5]. It
is worth mentioning that the first application of SAT solvers to
NLFSR was motivated by the search of short cycles in stream
ciphers [8].

V. EXAMPLE APPLICATION OF SAT-SOLVER FILTERING
RESULTS

Short cycle existence of polynomial can be checked during
filtration phase in seconds. For instance polynomial x0+x3+
x31+x1+x1x2 is being checked for consecutive cycle lenghts:

1) cycle lengths equal from 2 to 5 — gives us UNSAT
result in miliseconds which means that there is no
2,3,4,5-step cycle

2) cycle lenght equal to 6 — gives us SAT result in
less than 3 seconds and bits assignment is equal to
10011010011010011010011010011010

Next polynomial x0 + x3 + x31 + x1 + x1x3 has
2-step cycle and SAT solver returned the assignment
10101010101010101010101010101010 in less than 2 seconds.
The exact distribution of cycle lengths remains unknown.
Nevertheless, the vast majority of polynomials has cycles
shorter than 32-steps and can be easily eliminated in seconds
without using extensive computing power. It is estimated that
the rejection ratio is approximately about 70% of rejected
polynomials for NLFSR degree 31 and checking time less than
60 seconds. Further extension of checking time or the length
of the short cycles probably will not result in a performance
gain.

VI. PERFORMANCE EVALUATION

A fair comparison of the efficiency of various computing
platforms is a very troublesome task due to their completely
diverse characteristic. Therefore we simplify the comparison
by analyzing only the most important efficiency indicators
such as:

• the time of one n-bit full-cycle NLFSR enumeration
Tcycle,

• the number of simultaneously tested NLFSRs,
• the estimated time of enumeration of 1 GB pack of n-bit

NLFSRs excluding memory transactions T1GB .
The time of one n-bit full-cycle NLFSR enumeration Tcycle

is based on the measurement of search time of 105 possible
NLFSRs for CPU and GPU. The computations were conducted
on following computing platforms:

• Intel Core i7 6700K, 4.0 GHz CPU, MSI GeForce GTX
1080 8GB GDDR5 with 32 GB of RAM,

• 2 x Xeon 2699 v3, Tesla K80 with 32 GB of RAM,
• Xeon2699 v4, Tesla P100 with 32 GB of RAM.
As it can be seen from the Tables III and IV GPUs are very

efficient for small NLFSRs, but they tend to lose efficiency
with the growth of NLFSR order. Consequently, as it can be
concluded from Figure 2 and Tables III and IV for degrees
higher than 31, it is inefficient to take advantage of GPU
computing platform.

i7-6700 Xeon2699v4 Tesla P100 Tesla K80 1080GTX
8 44 3584 2496 2560

TABLE II: The number of parallel computing units for differ-
ent platforms.

xn−1xn−2. . .. . .. . .. . .. . .x1x0
out

+++

Fig. 1: A structure of Feedback Shift Register.

• linear if the feedback function is linear;
• nonlinear if the feedback functions has degree equal two

or higher.

The period of an FSR is the length of the longest cyclic
output sequence it generates.

Definition 2: A de Bruijn sequence of order n is a cyclic
sequence of length 2n of elements of F2 in which all different
n-tuples appear exactly once.

Definition 3: A modified de Bruijn sequence of order n
is a sequence of length 2n − 1 obtained from a de Bruijn
sequence of order n by removing one zero from the tuple of
n consecutive zeros.

From the cryptographic or random number generation per-
spective, it is strongly desirable that NLFSR of order n should
generate a de Bruijn sequence of order n. Furthermore, due to
practical reasons, the following conditions should be fulfilled:

• the number of feedback function’s linear and nonlinear
terms should remain as small as possible;

• the algebraic degree of feedback function should be the
lowest possible;

• the feedback function should be easy to generate.

So-called square m-sequences achieve all the considered
restrictions.

Definition 4: A square m-sequence is a bit sequence gen-
erated by a shift register with a feedback function with the
following form:

f(x0, x1, . . . , xn−1) =
∑

0≤i≤j≤n−1

ai,jxixj .

Moreover, square m-sequences can be described by a very
concise form of the recurrence, which can by formulated as:

∀k≥0 : sn+k =
∑

0≤i≤j≤n−1

ai,jsisj ,

where si denotes the i-th position in the sequence s. It is
well-known, that square m-sequences can be algorithmically
generated by introducing nonlinear disturbances into linear
functions, for example by the following form:

f(x0, x1, . . . , xn−1) = g(x0, x1, . . . , xn−1) + xi + xi · xj ,

where i �= j, 0 ≤ i ≤ j ≤ n − 1, and g(x0, x1, . . . , xn−1)
is linear functions whose LFSR generates maximum-period
sequence. From the theory of de Bruijn sequences [15], it can
be concluded that g(x0, x1, . . . , xn−1) must be defined by a
primitive polynomial in F2[x].

III. MASSIVELY PARALLEL ALGORITHM

Due to overhelming number of possible feedback functions
(see Table I), we have constructed massively parallel algorithm
for the search of square m-sequences. It examines the provided
functions’ period completeness by enumerating the following
states and checking for their uniqueness. In practice, it satisfies
to prove that their initial states will be generated after exactly
2n − 1 steps.

Degree 26 27 28 29 30
log2(#Candidates) 29,05 30,45 30,73 32,79 32,85

TABLE I: The number of square m-sequences candidates to
be examined by computational experiment.

For accurate description and outline of the feedback func-
tion examining algorithm, consider the subsequent data labels:

LFSR – bit representation of the linear component of the
feedback function;

NLFSR– bit representation of the nonlinear component of
the feedback function;

N – the order of the shift register;
For example for the primitive polynomial of form x9+x4+1

and nonlinear part of function with the form x3 · x2, its bit
representation of the linear component has following form in
hex: 0x211 whereas the nonlinear one: 0x00c. Its length N
is naturally equal 9.

Input : LFSR , NLFSR - ,N - length of register;
i state = 0x01;
for i = 1, . . . , 2n − 1 do

b LFSR = (popcount(i state and LFSR)) mod 2;
b NLFSR = (popcount(i state and NLFSR)) mod 2;
bit = b LFSR xor b NLFSR;
i state = (i state rot left 1) xor bit;
if i state == 0x01 then

return false;
end

end
if i state == 0x01 then

return true;
else

return false;
end

Algorithm 1: The period examination algorithm of NLFSR’s
feedback function.

For the sake of completeness of the specifications consid-
ered in the algorithm 1, it should be completed that popcount
indicates an operation of returning the number of ones in
the given integer and mod – an instruction of a division
with the remainder. The algorithm 1 considered above can
be implemented on all kinds of Graphical Processing Units
(GPU) resulting in efficiency advantage over modern CPUs. It
is strongly recommended to take advantage of SIMD (Single
Instruction Multiple Data), a parallel execution model of mod-
ern CPUs, to achieve maximum possible efficiency. With the
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ent platforms.

xn−1xn−2. . .. . .. . .. . .. . .x1x0
out

+++

Fig. 1: A structure of Feedback Shift Register.

• linear if the feedback function is linear;
• nonlinear if the feedback functions has degree equal two

or higher.

The period of an FSR is the length of the longest cyclic
output sequence it generates.

Definition 2: A de Bruijn sequence of order n is a cyclic
sequence of length 2n of elements of F2 in which all different
n-tuples appear exactly once.

Definition 3: A modified de Bruijn sequence of order n
is a sequence of length 2n − 1 obtained from a de Bruijn
sequence of order n by removing one zero from the tuple of
n consecutive zeros.

From the cryptographic or random number generation per-
spective, it is strongly desirable that NLFSR of order n should
generate a de Bruijn sequence of order n. Furthermore, due to
practical reasons, the following conditions should be fulfilled:

• the number of feedback function’s linear and nonlinear
terms should remain as small as possible;

• the algebraic degree of feedback function should be the
lowest possible;

• the feedback function should be easy to generate.

So-called square m-sequences achieve all the considered
restrictions.

Definition 4: A square m-sequence is a bit sequence gen-
erated by a shift register with a feedback function with the
following form:

f(x0, x1, . . . , xn−1) =
∑

0≤i≤j≤n−1

ai,jxixj .

Moreover, square m-sequences can be described by a very
concise form of the recurrence, which can by formulated as:

∀k≥0 : sn+k =
∑

0≤i≤j≤n−1

ai,jsisj ,

where si denotes the i-th position in the sequence s. It is
well-known, that square m-sequences can be algorithmically
generated by introducing nonlinear disturbances into linear
functions, for example by the following form:

f(x0, x1, . . . , xn−1) = g(x0, x1, . . . , xn−1) + xi + xi · xj ,

where i �= j, 0 ≤ i ≤ j ≤ n − 1, and g(x0, x1, . . . , xn−1)
is linear functions whose LFSR generates maximum-period
sequence. From the theory of de Bruijn sequences [15], it can
be concluded that g(x0, x1, . . . , xn−1) must be defined by a
primitive polynomial in F2[x].

III. MASSIVELY PARALLEL ALGORITHM

Due to overhelming number of possible feedback functions
(see Table I), we have constructed massively parallel algorithm
for the search of square m-sequences. It examines the provided
functions’ period completeness by enumerating the following
states and checking for their uniqueness. In practice, it satisfies
to prove that their initial states will be generated after exactly
2n − 1 steps.

Degree 26 27 28 29 30
log2(#Candidates) 29,05 30,45 30,73 32,79 32,85

TABLE I: The number of square m-sequences candidates to
be examined by computational experiment.

For accurate description and outline of the feedback func-
tion examining algorithm, consider the subsequent data labels:

LFSR – bit representation of the linear component of the
feedback function;

NLFSR– bit representation of the nonlinear component of
the feedback function;

N – the order of the shift register;
For example for the primitive polynomial of form x9+x4+1

and nonlinear part of function with the form x3 · x2, its bit
representation of the linear component has following form in
hex: 0x211 whereas the nonlinear one: 0x00c. Its length N
is naturally equal 9.

Input : LFSR , NLFSR - ,N - length of register;
i state = 0x01;
for i = 1, . . . , 2n − 1 do

b LFSR = (popcount(i state and LFSR)) mod 2;
b NLFSR = (popcount(i state and NLFSR)) mod 2;
bit = b LFSR xor b NLFSR;
i state = (i state rot left 1) xor bit;
if i state == 0x01 then

return false;
end

end
if i state == 0x01 then

return true;
else

return false;
end

Algorithm 1: The period examination algorithm of NLFSR’s
feedback function.

For the sake of completeness of the specifications consid-
ered in the algorithm 1, it should be completed that popcount
indicates an operation of returning the number of ones in
the given integer and mod – an instruction of a division
with the remainder. The algorithm 1 considered above can
be implemented on all kinds of Graphical Processing Units
(GPU) resulting in efficiency advantage over modern CPUs. It
is strongly recommended to take advantage of SIMD (Single
Instruction Multiple Data), a parallel execution model of mod-
ern CPUs, to achieve maximum possible efficiency. With the
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n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular

n Tesla P100 Tesla K80 1080GTX
23 0,0012 0,0021 0,0010
24 0,0029 0,0074 0,0022
25 0,0068 0,0117 0,0051
26 0,0149 0,0242 0,0102
27 0,0286 0,0519 0,0200
28 0,0551 0,1399 0,0410
29 0,1087 0,1870 0,0813
30 0,2244 — 0,1644
31 0,9736 — —

TABLE III: The time of one n-bit full-cycle NLFSR enumera-
tion Tcycle for different GPU.

n Tesla P100 Tesla K80 1080GTX
23 124 314 139
24 287 1059 304
25 648 1607 688
26 1371 3197 1316
27 2541 6612 2486
28 4719 17194 4910
29 8987 22192 9401
30 17926 — 18387
31 75272 — —

TABLE IV: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for GPUs.

n i7-6700 Xeon2699v3 Xeon2699v4
23 0,0001 0,0001 0,0002
24 0,0002 0,0002 0,0003
25 0,0004 0,0004 0,0007
26 0,0008 0,0008 0,0014
27 0,0016 0,0017 0,0027
28 0,0033 0,0033 0,0055
29 0,0065 0,0066 0,0110
30 0,0130 0,0132 0,0220
31 0,0261 0,0263 0,0439
32 0,0546 0,0527 0,0877

TABLE V: The time of one n-bit full-cycle NLFSR enumeration
Tcycle for different CPU.

n i7-6700 2×Xeon2699v3 Xeon2699v4
23 1140 380 363
24 2458 667 695
25 4456 1165 1335
26 8570 2073 2566
27 16263 3884 4943
28 31364 7230 9575
29 60564 13760 18490
30 116873 26409 35707
31 225571 50972 69188
32 437658 98532 133976

TABLE VI: The estimated time of enumeration of 1 GB pack
of n-bit NLFSRs for CPUs.

The algorithm 1 scales well on CPUs (see Tables V and
VI), which means that we can search for NLFSR’s of degrees
higher than 32 without any performance drop (this is a
currently ongoing process).
GPU devices have a significant advantage in NLFSR’s search-
ing up to degree 30. For higher degrees, we can see the
performance drop. It is caused by switching the arithmetic
of integers from 32-bit word length to 64-bit one and cannot
be avoided. One of the possible solutions to the problem

mentioned above is applying a bit-slicing method to the
algorithm implementation, although it was not the case in our
application.

VII. MOST SIGNIFICANT RESULTS

With the usage of algorithm 1 all the NLFSR with feedback
function of considered form up to degree 31 were enumerated.
Examples of aforementioned feedback functions are given
below:

• n = 30:
x0 + x1 + x3 + x5 + x7 + x8 + x9 + x15 + x16 + x17 +
x18 + x22 + x27 + x29 + x4 · x20;
x0+x1+x3+x10+x12+x15+x16+x17+x20+x22+
x23 + x25 + x29 + x24 · x8;
x0+x1+x2+x3+x10+x11+x16+x18+x19+x23+
x24 + x25 + x27 + x5 · x28

• n = 29:
x0+x6+x7+x13+x21+x22+x23+x24+x25+x27+
x28 + x1 · x17;
x0+x4+x6+x7+x9+x10+x11+x12+x16+x17+x21+
x25 + x26 + x17 · x21;
x0+x1+x3+x9+x10+x11+x14+x16+x18+x19+
x20 + x21 + x22 + x26 + x28 + x6 · x3;

• n = 28:
x0+x2+x5+x15+x16+x17+x19+x22+x27+x8 ·x18;
x0+x1+x2+x3+x4+x5+x8+x10+x11+x16+x17+
x19+x20+x21+x22+x24+x6 ·x26; x0+x3+x4+x5+
x7 +x8 +x11 +x15 +x19 +x20 +x26 +x27 +x10 ·x24;

• n = 27:
x0 + x2 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 +
x16 + x17 + x18 + x21 + x22 + x24 + x26 + x1 · x8;
x0 +x4 +x6 +x7 +x9 +x10 +x12 +x13 +x14 +x15 +
x18 + x22 + x23 + x1 · x25;
x0 + x4 + x11 + x12 + x13 + x14 + x15 + x16 + x17 +
x22 + x23 + x25 + x2 · x21;

• n = 26:
x0 + x3 + x4 + x6 + x7 + x8 + x9 + x12 + x15 + x17 +
x19 + x21 + x22 + x23 + x25 + x1 · x15;
x0 + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x11 + x12 +
x21 + x24 + x1 · x5;
x0 +x2 +x5 +x7 +x9 +x11 +x12 +x14 +x16 +x18 +
x19 + x20 + x24 + x25 + x1 · x16.

Moreover, it has been observed that the feedback functions
with around half of non-zero coefficients are more likely
to occur than the others. What is more, the most desirable
polynomials with the low number of non-zero coefficients
are extremely rare in practice or even impossible to find for
high degrees. This observation has been illustrated in Table
VII. Taking all of the above into consideration, it can be
concluded that the construction of ideal cryptographic NLFSR
with maximum-period and very concise form is still an open
problem.

VIII. CONCLUSION AND FUTURE WORK

In this article, the problem of construction of applicable
NLFSR was addressed. The exhaustive search of particular
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Fig. 2: Comparison of the estimated enumeration time of 1 GB pack of n-bit NLFSRs.

deg <7 9 11 13 15 17 19 21 23
26 0 24 26 32 48 22 2 0 0
27 0 6 28 58 56 36 4 0 0
28 0 4 10 26 42 32 12 0 2
29 0 4 24 49 72 32 24 8 0
30 0 0 17 37 32 27 13 5 2

TABLE VII: The number of feedback functions with certain
number of non-zero coefficients.

form of NLFSRs was conducted, and the results were dis-
cussed. Following conclusions can be drawn:

1) the search of NLFSR can be realized both on modern
CPU and GPU by adjusting the enumeration algorithm
to SIMD and SIMT parallel execution models;

2) square m-sequences have certain cryptographic and
practical properties, that are desirable, especially very
concise form and lowest possible algebraic degree;

3) the number of square m-sequences with lesser number
of terms decreases with the degree of the NLFSR.

4) the GPU implementation should be altered for the 31-
degree NLFSR due to the efficiency decrease. One
possible solution is to apply the bit-slicing methodology
in order to avoid a costly switch to 64-bit arithmetic.

5) SAT solvers sieving can contribute to the fast rejection
of short period NLFSR and in consequence, reduce the
reasonable time of computational experiments.

It is planned to continue the search of square m-sequences
up to degree 32 on FPGA platform and GPU after modification
of algorithm 1 via bit-slicing methodology. Moreover, it is
necessary to improve the sieving ratio of short period NLFSR
due to numerous possible m-sequences of degrees 31 and 32

(approximately 234,9 and 235 respectively).
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A New Type of Signature Scheme Derived from a
MRHS Representation of a Symmetric Cipher

Pavol Zajac, and Peter Špaček

Abstract—We propose a new concept of (post-quantum) digital
signature algorithm derived from a symmetric cipher. Key deriva-
tion is based on a system of Multiple-Right-Hand-Sides equations.
The source of the equations is the encryption algorithm. Our
trapdoor is based on the difficulty of creating a valid transcript
of the encryption algorithm for a given plaintext (derived from
the signed message): the signer can use the encryption algorithm,
because he knows the secret key, and the verifier can only
check that the solution of the equation system is correct. To
further facilitate the verification, we use techniques from coding
theory. Security of the system is based on the difficulty of solving
MRHS equations, or equivalently on the difficulty of the decoding
problem (both are NP hard).

Index Terms—Signature scheme, Substitution-Permutation
Network, MRHS equation system, post-quantum.

I. INTRODUCTION

We propose a new concept of (post-quantum) digital sig-
nature algorithm derived from a symmetric cipher. There
are already some signature algorithms that use symmetric
primitives as their basis: hash-based signatures, that use one-
way property of the underlying hash function (e.g.,SPHINGS+
[1]), and generic schemes based on non-interactive proofs and
multiparty computation (e.g., Picnic [2]).

Main innovation of our design is that it does not use
underlying cipher as a black-box, but instead as a white-box.
This might seem similar to white-box cryptography [3], but
our goal is different. While white-box cryptography models
the user as a potential attacker, we use white-box version of
the cipher to provide a secret algorithm for signatures for a
legitimate owner of a secret key. The recipient that verifies
the signature does not have access to the white-box, but is
instead provided a public key that is created from the cipher
representation.

Our design is mostly related to multivariate signatures [4]:
Public key is essentially a system of equations, that only the
signer can solve (with the help of the secret key). Unlike
multivariate case, we use a different representation of equa-
tion systems, so called Multiple-Right-Hand-Sides equations
(MRHS, [5]). The source of our equations is the encryption
algorithm. Our trapdoor is based on the difficulty of creating
a valid transcript of the encryption algorithm for a given
plaintext (derived from the signed message): the signer can
use the encryption algorithm, because he knows the secret
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key, and the verifier can only check that the solution of the
equation system is correct. To further facilitate the verification,
we use techniques from coding theory.

In Section II, we summarize the notation, basic definitions
and notions required to understand the proposed scheme.
The scheme itself is specified in Section III. We provide a
simplified example of some steps of the algorithm in Section
IV. In Section V we discuss the correctness of the scheme,
as well as its efficiency. Finally, in Section VI we analyse the
security of the proposed scheme. The security of the system
is based on the difficulty of solving MRHS equations, or
equivalently on the difficulty of special decoding problem.
Both of the problems are NP-hard (in generic version), and
should be difficult to solve with quantum computer as well.

Our original goal was to base the signature scheme directly
on the symmetric encryption standard AES. Main advantage
would be prevalent existence of hardware and software imple-
mentations of AES on essentially any platform. As our security
analysis shows, it is not clear, whether the scheme can be made
secure with the underlying design of AES, which is strongly
structured, and this structure might leak the used trapdoor.
A more suitable underlying cipher might be LowMC [6] or
similar designs. We believe that to construct a fully secure
signature scheme, a new type of symmetric cipher should be
designed in a way that will facilitate our trapdoor type. We
leave these questions open for further research.

II. DEFINITIONS

We presume that the reader is acquainted with basic crypto-
graphic definitions such as cryptosystem, (symmetric) cipher,
public-key encryption, signature scheme, hash function, etc.,
as well as the related security notions. We also suppose that
the reader is familiar with basic notions of coding theory, such
as generator and parity-check matrix.

A. Notation

In this article we will use the following notation:
• All bit operations are represented in algebraic way over

field GF (2), shortened to F2. Note that standard operator
+ in this field corresponds to a logic operation XOR.

• Sets are denoted by block form, e.g. R ⊂ Fm
2 .

• Integers are represented by simple notation i, j, n ∈ Z.
• Vectors of bits are denoted by bold variables such as u,x.

The dimension of the vector depends on the context, and
is introduced when defining the vector, e.g., x ∈ Fn

2 . In
our paper, all vectors are always row vectors.
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