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I. INTRODUCTION

Block ciphers are the essential elements in communica-
tion security, providing secrecy of exchanged information at
expected security level. From time to time, a new cipher
is proposed, usually offering some new functionality. For
example, authenticated encryption, or a new property like
smaller hardware requirements. The lightweight cryptography
is a recently growing area of research. It’-s aim is to deliver
secure ciphers suitable for embedded device development,
especially Internet of Things (IoT) devices. Due to hardware
limitations, lightweight cipher usually consists mostly of basic
logic operations.

The proper cipher cryptanalysis is a key part of cipher
development, as well as vital for proving the targeted security
strength of the cipher. To date, many techniques for crypt-
analysis have been introduced. Thus, it takes time to prove
the security of the cipher, since every new cipher must resist
against all known attacks.

Previously, several ciphers were broken by a new kind of at-
tack, which was not known at the time of cipher development.
For example, Data Encryption Standard (DES) was broken by
algebraic cryptanalysis with SAT solvers [1]. Thus, effort put
into searching for new methods and accelerations to known
ones may be beneficial.

The recent development and improvements in SAT solvers
have led to a new algebraic attack on block ciphers. The
current state of SAT solvers lowers the total time of the key
recovery attack for a new set of ciphers directly affecting
cipher’s security, especially the lightweight ones.

This work was not supported by any organization.

A. Contribution

In this paper we present our novel approach to constructing
an SAT attack on lightweight block ciphers. We report the
results for an SAT attack with our method on ARX ciphers:
SIMON and SPECK [2]. The method for obtaining equations
for describing the cipher, which are required for an algebraic
attack is presented with several sources of equations being
listed. We describe our attack approach, considering many
factors influencing the time of the attack — several equations,
the form of equations, the number of known and used plaintex-
ciphertext pairs and the used SAT solver [3]. By analyzing
our results, we propose the best approach to break SIMON
and SPECK with algebraic cryptanalysis. This approach can
be also applied to other ciphers.

II. PREVIOUS WORK

SIMON and SPECK resistance against differential and
linear cryptanalysis has been thoroughly investigated in [4],
[5] and [6]. SAT attacks are widely used in cryptography, often
as a supporting method for other classical attacks like linear
or differential cryptanalysis.

SIMON and SPECK have gained cryptanalyst’s attention
and as a result, several papers about security of the mentioned
ciphers were published. In 2014, Curtois et.al [7] presented
an algebraic attack combined with a truncated differentials
attack on SIMON. They were able to conduct a practical
and successful attack on nine rounds of SIMON. However,
the attack is more distinguished and requires additional time
spent on searching for proper truncated differentials. Found
differentials are provided to a system of equations as a
plaintext-ciphertext pairs. In the next step, an SAT attack is
conducted.

The most recent results have been published by Ren and
Chen [8]. They report the first zero-correlation linear attack
and integral attack on 11 rounds of SPECK. To conduct the
attack, they have used an SAT-based model to search for
impossible differentials and zero-correlation linear hulls.

III. ALGEBRAIC CRYPTANALYSIS

Algebraic cryptanalysis is an attack method on a large
subset of ciphers [9]. It consist of two main steps. The
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III. ALGEBRAIC CRYPTANALYSIS

Algebraic cryptanalysis is an attack method on a large
subset of ciphers [9]. It consist of two main steps. The

first step relies on converting the cipher into a system of
polynomial equations, usually over GF (2), but not limited
to this particular ring. In the second step, the system of
equations is being solved to obtain a proper secret key used
for encrypting the provided plaintext-ciphertext pair. There
are several approaches for solving the system of equations,
ranging from XL algorithm and Gröbner basis [10] to SAT-
solvers. A brief overview of algebraic cryptanalysis is provided
by Bard [11]. This technique is also used for cryptanalysis of
the hash function [12].

IV. SIMON AND SPECK CIPHERS

SIMON and SPECK [2] ciphers are members of the ARX
ciphers family. The only operations used in ARX ciphers are
simple logic operations: AND, rotate and XOR. The ciphers
are lightweight and suitable for implementation on constrained
devices. SIMON and SPECK both are Feistel type ciphers.

A. SIMON
SIMON’s round function is as follows. For a round key k,

the round function is a two stage Feistel map Rk : GF (2)n×
GF (2)n ← GF (2)n ×GF (2)n defined as:

Rk(x, y) = (y ⊕ f(x)⊕ k, x), (1)

where f(x) = (Sx&S8x) ⊕ S2x, and Sj is a left circular
shift by j elements. The SIMON cipher family has several
possible data block and key sizes. For each possible combi-
nation the number of rounds also varies. All versions with
parameters of SIMON ciphers are listed in Tab. I.

B. SPECK
The SPECK family of block ciphers is constructed only

from bitwise XOR, addition modulo 2n and similar to SIMON
family, left circular shift Sj by j positions. The round function
is the map Rk : GF (2)n × GF (2)n ← GF (2)n × GF (2)n

defined as:

Rk(x, y) = ((S−αx+ y)⊕ k, Sβy ⊕ (S−α + y)⊕ k), (2)

where k is a round key and α = 7 and β = 2 for block size
n = 32 and α = 8 and β = 3 otherwise. The specification of
all block ciphers from SPECK family is presented in Tab. I

TABLE I
POSSIBLE VARIANTS OF SIMON AND SPECK BLOCK CIPHER

block key word # of SIMON # of SPECK
size size size rounds rounds
32 64 16 32 22
48 72 24 36 22

96 36 23
64 96 32 42 26

128 44 27
96 128 48 52 28

144 54 29
128 128 64 68 32

192 69 33
256 72 34

SIMON and SPECK have a low multiplicative complexity,
which is a one of the measurement units of non-linearity [13].
Thus, algebraic cryptanalysis seems to be promising.

V. SAT ATTACK ON SIMON AND SPECK

We present a known plaintext attack for lightweight block
ciphers. The attack partially belongs to the algebraic crypt-
analysis family. The proposed attack starts with obtaining
proper algebraic equations describing a chosen cipher, which
is necessary for a key recovery attack. Classical algebraic
cryptanalysis methods try to solve given equations with XL
algorithm [14] or Grobner basis [10]. There are also attempts
to minimize the number of variables by using external tools
[15] [16]. In these algorithms, the attacker usually tries to
gather some additional information from equations or tries
to decrease the degree of equations and number of variables
before solving the system of equations. In our approach, we
do not solve the equations directly. Instead, we convert the
equations to a satisfiability problem and we try to find a
key’s values that are valid for used pairs of plaintext and
ciphertext. There are several factors affecting the execution
time and probability of success. We consider them to find the
best approach for attacking SIMON and SPECK with SAT—
solvers. Compared with other SAT attacks on SIMON and
SPECK our method does not require puting an additional
effort into selecting a proper plaintext and does not require
any additional tools for minimizing the number of variables.
Used pairs are picked up at random and the equations are
taken as they were produced by different compilers.

A. Attack model

In our attack we use two different approaches for construct-
ing the attack model.

In the first scenario, equations for the cipher and key
expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.

For the second scenario, equations for the key expansion al-
gorithm are not included in the system of equations converted
to a satisfiability problem. With this approach, the round keys
are found in reduced time, compared to the first scenario, but
the round keys might be unrelated. The unrelated keys are not
valid, and they are a random keys that can not be a result of a
key expansion algorithm. The probability of finding a valid key
depends mostly on the number of plaintext-ciphertext pairs.

B. Number of pairs

The solution found by an SAT-solver in the second sce-
nario is not always the valid key, used for encryption. The
probability of success depends mostly on the number of used
pairs. In theory, only one pair should be needed to solve the
equations. This is true, the solution for an SAT-problem is
found even for one pair and it is done very quickly. However,
without equations for a key expansion included to the model,
it is possible to find invalid unrelated round keys that solve
the satisfiability problem. The probability of finding a valid
key increases with the number of used pairs.

The number of pairs also affects the execution time. In
Fig. 1 , Fig. 2 and Fig. 3 the time required for solving an
SAT problem depens on the number of used pairs. For simplefirst step relies on converting the cipher into a system of
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equations. This is true, the solution for an SAT-problem is
found even for one pair and it is done very quickly. However,
without equations for a key expansion included to the model,
it is possible to find invalid unrelated round keys that solve
the satisfiability problem. The probability of finding a valid
key increases with the number of used pairs.

The number of pairs also affects the execution time. In
Fig. 1 , Fig. 2 and Fig. 3 the time required for solving an
SAT problem depens on the number of used pairs. For simple
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first step relies on converting the cipher into a system of
polynomial equations, usually over GF (2), but not limited
to this particular ring. In the second step, the system of
equations is being solved to obtain a proper secret key used
for encrypting the provided plaintext-ciphertext pair. There
are several approaches for solving the system of equations,
ranging from XL algorithm and Gröbner basis [10] to SAT-
solvers. A brief overview of algebraic cryptanalysis is provided
by Bard [11]. This technique is also used for cryptanalysis of
the hash function [12].

IV. SIMON AND SPECK CIPHERS

SIMON and SPECK [2] ciphers are members of the ARX
ciphers family. The only operations used in ARX ciphers are
simple logic operations: AND, rotate and XOR. The ciphers
are lightweight and suitable for implementation on constrained
devices. SIMON and SPECK both are Feistel type ciphers.

A. SIMON
SIMON’s round function is as follows. For a round key k,

the round function is a two stage Feistel map Rk : GF (2)n×
GF (2)n ← GF (2)n ×GF (2)n defined as:

Rk(x, y) = (y ⊕ f(x)⊕ k, x), (1)

where f(x) = (Sx&S8x) ⊕ S2x, and Sj is a left circular
shift by j elements. The SIMON cipher family has several
possible data block and key sizes. For each possible combi-
nation the number of rounds also varies. All versions with
parameters of SIMON ciphers are listed in Tab. I.

B. SPECK
The SPECK family of block ciphers is constructed only

from bitwise XOR, addition modulo 2n and similar to SIMON
family, left circular shift Sj by j positions. The round function
is the map Rk : GF (2)n × GF (2)n ← GF (2)n × GF (2)n

defined as:

Rk(x, y) = ((S−αx+ y)⊕ k, Sβy ⊕ (S−α + y)⊕ k), (2)

where k is a round key and α = 7 and β = 2 for block size
n = 32 and α = 8 and β = 3 otherwise. The specification of
all block ciphers from SPECK family is presented in Tab. I

TABLE I
POSSIBLE VARIANTS OF SIMON AND SPECK BLOCK CIPHER

block key word # of SIMON # of SPECK
size size size rounds rounds
32 64 16 32 22
48 72 24 36 22

96 36 23
64 96 32 42 26

128 44 27
96 128 48 52 28

144 54 29
128 128 64 68 32

192 69 33
256 72 34

SIMON and SPECK have a low multiplicative complexity,
which is a one of the measurement units of non-linearity [13].
Thus, algebraic cryptanalysis seems to be promising.

V. SAT ATTACK ON SIMON AND SPECK

We present a known plaintext attack for lightweight block
ciphers. The attack partially belongs to the algebraic crypt-
analysis family. The proposed attack starts with obtaining
proper algebraic equations describing a chosen cipher, which
is necessary for a key recovery attack. Classical algebraic
cryptanalysis methods try to solve given equations with XL
algorithm [14] or Grobner basis [10]. There are also attempts
to minimize the number of variables by using external tools
[15] [16]. In these algorithms, the attacker usually tries to
gather some additional information from equations or tries
to decrease the degree of equations and number of variables
before solving the system of equations. In our approach, we
do not solve the equations directly. Instead, we convert the
equations to a satisfiability problem and we try to find a
key’s values that are valid for used pairs of plaintext and
ciphertext. There are several factors affecting the execution
time and probability of success. We consider them to find the
best approach for attacking SIMON and SPECK with SAT—
solvers. Compared with other SAT attacks on SIMON and
SPECK our method does not require puting an additional
effort into selecting a proper plaintext and does not require
any additional tools for minimizing the number of variables.
Used pairs are picked up at random and the equations are
taken as they were produced by different compilers.

A. Attack model

In our attack we use two different approaches for construct-
ing the attack model.

In the first scenario, equations for the cipher and key
expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.

For the second scenario, equations for the key expansion al-
gorithm are not included in the system of equations converted
to a satisfiability problem. With this approach, the round keys
are found in reduced time, compared to the first scenario, but
the round keys might be unrelated. The unrelated keys are not
valid, and they are a random keys that can not be a result of a
key expansion algorithm. The probability of finding a valid key
depends mostly on the number of plaintext-ciphertext pairs.

B. Number of pairs

The solution found by an SAT-solver in the second sce-
nario is not always the valid key, used for encryption. The
probability of success depends mostly on the number of used
pairs. In theory, only one pair should be needed to solve the
equations. This is true, the solution for an SAT-problem is
found even for one pair and it is done very quickly. However,
without equations for a key expansion included to the model,
it is possible to find invalid unrelated round keys that solve
the satisfiability problem. The probability of finding a valid
key increases with the number of used pairs.

The number of pairs also affects the execution time. In
Fig. 1 , Fig. 2 and Fig. 3 the time required for solving an
SAT problem depens on the number of used pairs. For simple
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I. INTRODUCTION

Block ciphers are the essential elements in communica-
tion security, providing secrecy of exchanged information at
expected security level. From time to time, a new cipher
is proposed, usually offering some new functionality. For
example, authenticated encryption, or a new property like
smaller hardware requirements. The lightweight cryptography
is a recently growing area of research. It’-s aim is to deliver
secure ciphers suitable for embedded device development,
especially Internet of Things (IoT) devices. Due to hardware
limitations, lightweight cipher usually consists mostly of basic
logic operations.

The proper cipher cryptanalysis is a key part of cipher
development, as well as vital for proving the targeted security
strength of the cipher. To date, many techniques for crypt-
analysis have been introduced. Thus, it takes time to prove
the security of the cipher, since every new cipher must resist
against all known attacks.

Previously, several ciphers were broken by a new kind of at-
tack, which was not known at the time of cipher development.
For example, Data Encryption Standard (DES) was broken by
algebraic cryptanalysis with SAT solvers [1]. Thus, effort put
into searching for new methods and accelerations to known
ones may be beneficial.

The recent development and improvements in SAT solvers
have led to a new algebraic attack on block ciphers. The
current state of SAT solvers lowers the total time of the key
recovery attack for a new set of ciphers directly affecting
cipher’s security, especially the lightweight ones.

This work was not supported by any organization.

A. Contribution

In this paper we present our novel approach to constructing
an SAT attack on lightweight block ciphers. We report the
results for an SAT attack with our method on ARX ciphers:
SIMON and SPECK [2]. The method for obtaining equations
for describing the cipher, which are required for an algebraic
attack is presented with several sources of equations being
listed. We describe our attack approach, considering many
factors influencing the time of the attack — several equations,
the form of equations, the number of known and used plaintex-
ciphertext pairs and the used SAT solver [3]. By analyzing
our results, we propose the best approach to break SIMON
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first step relies on converting the cipher into a system of
polynomial equations, usually over GF (2), but not limited
to this particular ring. In the second step, the system of
equations is being solved to obtain a proper secret key used
for encrypting the provided plaintext-ciphertext pair. There
are several approaches for solving the system of equations,
ranging from XL algorithm and Gröbner basis [10] to SAT-
solvers. A brief overview of algebraic cryptanalysis is provided
by Bard [11]. This technique is also used for cryptanalysis of
the hash function [12].

IV. SIMON AND SPECK CIPHERS

SIMON and SPECK [2] ciphers are members of the ARX
ciphers family. The only operations used in ARX ciphers are
simple logic operations: AND, rotate and XOR. The ciphers
are lightweight and suitable for implementation on constrained
devices. SIMON and SPECK both are Feistel type ciphers.

A. SIMON
SIMON’s round function is as follows. For a round key k,

the round function is a two stage Feistel map Rk : GF (2)n×
GF (2)n ← GF (2)n ×GF (2)n defined as:

Rk(x, y) = (y ⊕ f(x)⊕ k, x), (1)

where f(x) = (Sx&S8x) ⊕ S2x, and Sj is a left circular
shift by j elements. The SIMON cipher family has several
possible data block and key sizes. For each possible combi-
nation the number of rounds also varies. All versions with
parameters of SIMON ciphers are listed in Tab. I.

B. SPECK
The SPECK family of block ciphers is constructed only

from bitwise XOR, addition modulo 2n and similar to SIMON
family, left circular shift Sj by j positions. The round function
is the map Rk : GF (2)n × GF (2)n ← GF (2)n × GF (2)n

defined as:

Rk(x, y) = ((S−αx+ y)⊕ k, Sβy ⊕ (S−α + y)⊕ k), (2)

where k is a round key and α = 7 and β = 2 for block size
n = 32 and α = 8 and β = 3 otherwise. The specification of
all block ciphers from SPECK family is presented in Tab. I

TABLE I
POSSIBLE VARIANTS OF SIMON AND SPECK BLOCK CIPHER

block key word # of SIMON # of SPECK
size size size rounds rounds
32 64 16 32 22
48 72 24 36 22

96 36 23
64 96 32 42 26

128 44 27
96 128 48 52 28

144 54 29
128 128 64 68 32

192 69 33
256 72 34

SIMON and SPECK have a low multiplicative complexity,
which is a one of the measurement units of non-linearity [13].
Thus, algebraic cryptanalysis seems to be promising.

V. SAT ATTACK ON SIMON AND SPECK

We present a known plaintext attack for lightweight block
ciphers. The attack partially belongs to the algebraic crypt-
analysis family. The proposed attack starts with obtaining
proper algebraic equations describing a chosen cipher, which
is necessary for a key recovery attack. Classical algebraic
cryptanalysis methods try to solve given equations with XL
algorithm [14] or Grobner basis [10]. There are also attempts
to minimize the number of variables by using external tools
[15] [16]. In these algorithms, the attacker usually tries to
gather some additional information from equations or tries
to decrease the degree of equations and number of variables
before solving the system of equations. In our approach, we
do not solve the equations directly. Instead, we convert the
equations to a satisfiability problem and we try to find a
key’s values that are valid for used pairs of plaintext and
ciphertext. There are several factors affecting the execution
time and probability of success. We consider them to find the
best approach for attacking SIMON and SPECK with SAT—
solvers. Compared with other SAT attacks on SIMON and
SPECK our method does not require puting an additional
effort into selecting a proper plaintext and does not require
any additional tools for minimizing the number of variables.
Used pairs are picked up at random and the equations are
taken as they were produced by different compilers.

A. Attack model

In our attack we use two different approaches for construct-
ing the attack model.

In the first scenario, equations for the cipher and key
expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.

For the second scenario, equations for the key expansion al-
gorithm are not included in the system of equations converted
to a satisfiability problem. With this approach, the round keys
are found in reduced time, compared to the first scenario, but
the round keys might be unrelated. The unrelated keys are not
valid, and they are a random keys that can not be a result of a
key expansion algorithm. The probability of finding a valid key
depends mostly on the number of plaintext-ciphertext pairs.

B. Number of pairs

The solution found by an SAT-solver in the second sce-
nario is not always the valid key, used for encryption. The
probability of success depends mostly on the number of used
pairs. In theory, only one pair should be needed to solve the
equations. This is true, the solution for an SAT-problem is
found even for one pair and it is done very quickly. However,
without equations for a key expansion included to the model,
it is possible to find invalid unrelated round keys that solve
the satisfiability problem. The probability of finding a valid
key increases with the number of used pairs.

The number of pairs also affects the execution time. In
Fig. 1 , Fig. 2 and Fig. 3 the time required for solving an
SAT problem depens on the number of used pairs. For simple
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defined as:
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where k is a round key and α = 7 and β = 2 for block size
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which is a one of the measurement units of non-linearity [13].
Thus, algebraic cryptanalysis seems to be promising.
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We present a known plaintext attack for lightweight block
ciphers. The attack partially belongs to the algebraic crypt-
analysis family. The proposed attack starts with obtaining
proper algebraic equations describing a chosen cipher, which
is necessary for a key recovery attack. Classical algebraic
cryptanalysis methods try to solve given equations with XL
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to minimize the number of variables by using external tools
[15] [16]. In these algorithms, the attacker usually tries to
gather some additional information from equations or tries
to decrease the degree of equations and number of variables
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expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.

For the second scenario, equations for the key expansion al-
gorithm are not included in the system of equations converted
to a satisfiability problem. With this approach, the round keys
are found in reduced time, compared to the first scenario, but
the round keys might be unrelated. The unrelated keys are not
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without equations for a key expansion included to the model,
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SPECK our method does not require puting an additional
effort into selecting a proper plaintext and does not require
any additional tools for minimizing the number of variables.
Used pairs are picked up at random and the equations are
taken as they were produced by different compilers.

A. Attack model
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expansion algorithms are used by an SAT-solver. The found
keys are usually valid if the number of used pairs is larger
than two.
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gorithm are not included in the system of equations converted
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The number of pairs also affects the execution time. In
Fig. 1 , Fig. 2 and Fig. 3 the time required for solving an
SAT problem depens on the number of used pairs. For simple
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of SPECK 32/64 (with key expand algorithm and handmade equations)

Fig. 2. Average time of attack using Lingeling and different number of pairs
of SPECK 32/64 (without key expand algorithm and handmade equations)

problems, additional pairs extended the running time. There is
a visible cross point, where adding more pairs extend the time
required for finding solution. For five rounds of SPECK, the
attack works the best for only 10 pairs. For complex problems,
the situation is the opposite.

Large systems of equations can be solved more efficiently
with more pairs available. This dependency works for both
attack models.

This is probably the case where some of the SAT-solvers
are able to utilize additional information taken from a larger
number of pairs, which results in finding the solution in a
shorter timeframe. There are also solvers not able to utilize
this additional information and their running time increases
with the number of pairs

C. Equations type

The same cipher can be described by sets of a different
algebraic equations. The main differences between two sets

Fig. 3. Average time of attack using Lingeling and different number of pairs
of SIMON 32/64 (without key expand algorithm and handmade equations)

are: the number of equations, the maximal algebraic degree
and the number of clauses. The equations can be obtained
automatically by proper software tools. We have developed
a method for extracting algebraic equations from software
and hardware implementations. Thus, we are able to pro-
cess different equations describing the same cipher. In the
experiments we used equations from several sources including:
handwritten, generated by hardware synthesis tools, generated
by C compiler and generated by Cryptol. Handwritten equa-
tions seems to be the most natural and readable for human.
The hardware equations are describing every logic cell in
the implementation of the cipher in FPGAs, so the structure
of the cipher is hidden. It is similar to equations from C
and Cryptol, where the cipher is translated by compiler to
computer readable format.

The idea of using an equation taken from hardware tools
was earlier explored by Courtois et al. [1] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-3
competition, Homsirikamol et al. [15] developed a similar
tool to obtain hardware equations describing SHA-3 final
candidates and evaluating their security margin.

D. Numbers of clauses and variables

Fig.4 presents the increase of the number of clauses for
SPECK cipher with every additional round. Fig.5 presents
the number of variables obtained from conversion tools to
describe the round reduced SPECK cipher. Both numbers have
a linear dependency on the number of rounds. The numbers
describing the hardware and software equations increase more
than handwritten ones. However, according to our experiments,
the system of equations with larger number of variables and
clauses can be solved faster than smaller ones. In some cases,
an SAT solver can utilize the additional information hidden
under the equations.
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Fig.4 presents the increase of the number of clauses for
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the number of variables obtained from conversion tools to
describe the round reduced SPECK cipher. Both numbers have
a linear dependency on the number of rounds. The numbers
describing the hardware and software equations increase more
than handwritten ones. However, according to our experiments,
the system of equations with larger number of variables and
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VI. RESULTS

We report the best results obtained among three SAT—
solvers: Cadical, Lingeling and Treengeling using AMD
FX(tm)-8300 CPU clocked with 3531 MHz. The results were
obtained by attacking the smallest ciphers from the SIMON
and SPECK families with limited computation time set to
maximum one hour. The hardware equations are taken from
synthesizing the cipher design into an FPGA board by a free-
of-charge version of Intel Quartus 18.1. For every logic cell
in the FPGA design, an appropriate equation is given. Our
targeted FPGA family was Intel Cyclone V. Equations from C
implementation are obtained by translating the and-inverted-
graphs (AIG) [17] produced by clang version 3.6.0 C compiler.
Equations from Cryptol [18] implementation are obtained in
a similar way. The reported results are taken as average of
40 runs of each experiment. To make the comparison fair, the
used key was random and the plaintext-ciphertext pairs were
the same in every experiment.

All of our experiments took less than one hour. After one
hour of computation, the tasks were terminated. With this
approach, we failed to perform a successful attack on six
round of SPECK and 8 rounds of SIMON with the first attack
model, where key expansion algorithm is included into system
of equations.

# of rounds\# of pairs 3 4 >= 5
5 ∼0,23 ∼0.62 ∼1,00
6 ∼0,05 ∼0.47 ∼1,00
7 ∼0,00 ∼0.62 ∼1,00
8 ∼0,00 ∼0.59 ∼1,00
9 ∼0,00 ∼0.58 ∼1,00
10 ∼0,00 ∼0.61 ∼1,00

≥ 11 ∼0,00 ? ?
TABLE II

EXPERIMENTAL PROBABILITY OF SUCCESS ATTACK FOR SIMON 32/64
(WITHOUT KEY EXPAND ALGORITHM)

Fig. 6. Average time of attack using Lingeling for ten pairs of SIMON
(without key expand algorithm)

In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This

Fig. 1. Average time of attack using Lingeling and different number of pairs
of SPECK 32/64 (with key expand algorithm and handmade equations)

Fig. 2. Average time of attack using Lingeling and different number of pairs
of SPECK 32/64 (without key expand algorithm and handmade equations)

problems, additional pairs extended the running time. There is
a visible cross point, where adding more pairs extend the time
required for finding solution. For five rounds of SPECK, the
attack works the best for only 10 pairs. For complex problems,
the situation is the opposite.

Large systems of equations can be solved more efficiently
with more pairs available. This dependency works for both
attack models.

This is probably the case where some of the SAT-solvers
are able to utilize additional information taken from a larger
number of pairs, which results in finding the solution in a
shorter timeframe. There are also solvers not able to utilize
this additional information and their running time increases
with the number of pairs
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The same cipher can be described by sets of a different
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automatically by proper software tools. We have developed
a method for extracting algebraic equations from software
and hardware implementations. Thus, we are able to pro-
cess different equations describing the same cipher. In the
experiments we used equations from several sources including:
handwritten, generated by hardware synthesis tools, generated
by C compiler and generated by Cryptol. Handwritten equa-
tions seems to be the most natural and readable for human.
The hardware equations are describing every logic cell in
the implementation of the cipher in FPGAs, so the structure
of the cipher is hidden. It is similar to equations from C
and Cryptol, where the cipher is translated by compiler to
computer readable format.

The idea of using an equation taken from hardware tools
was earlier explored by Courtois et al. [1] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-3
competition, Homsirikamol et al. [15] developed a similar
tool to obtain hardware equations describing SHA-3 final
candidates and evaluating their security margin.

D. Numbers of clauses and variables
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SPECK cipher with every additional round. Fig.5 presents
the number of variables obtained from conversion tools to
describe the round reduced SPECK cipher. Both numbers have
a linear dependency on the number of rounds. The numbers
describing the hardware and software equations increase more
than handwritten ones. However, according to our experiments,
the system of equations with larger number of variables and
clauses can be solved faster than smaller ones. In some cases,
an SAT solver can utilize the additional information hidden
under the equations.
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VI. RESULTS

We report the best results obtained among three SAT—
solvers: Cadical, Lingeling and Treengeling using AMD
FX(tm)-8300 CPU clocked with 3531 MHz. The results were
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All of our experiments took less than one hour. After one
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In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This
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success. Moreover, only 5 pairs are required to find the valid
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observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.
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obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This
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problems, additional pairs extended the running time. There is
a visible cross point, where adding more pairs extend the time
required for finding solution. For five rounds of SPECK, the
attack works the best for only 10 pairs. For complex problems,
the situation is the opposite.

Large systems of equations can be solved more efficiently
with more pairs available. This dependency works for both
attack models.

This is probably the case where some of the SAT-solvers
are able to utilize additional information taken from a larger
number of pairs, which results in finding the solution in a
shorter timeframe. There are also solvers not able to utilize
this additional information and their running time increases
with the number of pairs
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The same cipher can be described by sets of a different
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are: the number of equations, the maximal algebraic degree
and the number of clauses. The equations can be obtained
automatically by proper software tools. We have developed
a method for extracting algebraic equations from software
and hardware implementations. Thus, we are able to pro-
cess different equations describing the same cipher. In the
experiments we used equations from several sources including:
handwritten, generated by hardware synthesis tools, generated
by C compiler and generated by Cryptol. Handwritten equa-
tions seems to be the most natural and readable for human.
The hardware equations are describing every logic cell in
the implementation of the cipher in FPGAs, so the structure
of the cipher is hidden. It is similar to equations from C
and Cryptol, where the cipher is translated by compiler to
computer readable format.

The idea of using an equation taken from hardware tools
was earlier explored by Courtois et al. [1] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-3
competition, Homsirikamol et al. [15] developed a similar
tool to obtain hardware equations describing SHA-3 final
candidates and evaluating their security margin.

D. Numbers of clauses and variables

Fig.4 presents the increase of the number of clauses for
SPECK cipher with every additional round. Fig.5 presents
the number of variables obtained from conversion tools to
describe the round reduced SPECK cipher. Both numbers have
a linear dependency on the number of rounds. The numbers
describing the hardware and software equations increase more
than handwritten ones. However, according to our experiments,
the system of equations with larger number of variables and
clauses can be solved faster than smaller ones. In some cases,
an SAT solver can utilize the additional information hidden
under the equations.
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VI. RESULTS

We report the best results obtained among three SAT—
solvers: Cadical, Lingeling and Treengeling using AMD
FX(tm)-8300 CPU clocked with 3531 MHz. The results were
obtained by attacking the smallest ciphers from the SIMON
and SPECK families with limited computation time set to
maximum one hour. The hardware equations are taken from
synthesizing the cipher design into an FPGA board by a free-
of-charge version of Intel Quartus 18.1. For every logic cell
in the FPGA design, an appropriate equation is given. Our
targeted FPGA family was Intel Cyclone V. Equations from C
implementation are obtained by translating the and-inverted-
graphs (AIG) [17] produced by clang version 3.6.0 C compiler.
Equations from Cryptol [18] implementation are obtained in
a similar way. The reported results are taken as average of
40 runs of each experiment. To make the comparison fair, the
used key was random and the plaintext-ciphertext pairs were
the same in every experiment.

All of our experiments took less than one hour. After one
hour of computation, the tasks were terminated. With this
approach, we failed to perform a successful attack on six
round of SPECK and 8 rounds of SIMON with the first attack
model, where key expansion algorithm is included into system
of equations.
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5 ∼0,23 ∼0.62 ∼1,00
6 ∼0,05 ∼0.47 ∼1,00
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In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This
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In Tab. II and Tab. IV we report probability of success
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additional round of encryption and becomes negligible even
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observation that allows for the successful execution of a known
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three times higher.
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where only several pins of input can be mapped to up to two
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Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
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the hand written equations provided the worst results. This
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problems, additional pairs extended the running time. There is
a visible cross point, where adding more pairs extend the time
required for finding solution. For five rounds of SPECK, the
attack works the best for only 10 pairs. For complex problems,
the situation is the opposite.

Large systems of equations can be solved more efficiently
with more pairs available. This dependency works for both
attack models.

This is probably the case where some of the SAT-solvers
are able to utilize additional information taken from a larger
number of pairs, which results in finding the solution in a
shorter timeframe. There are also solvers not able to utilize
this additional information and their running time increases
with the number of pairs
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The same cipher can be described by sets of a different
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a method for extracting algebraic equations from software
and hardware implementations. Thus, we are able to pro-
cess different equations describing the same cipher. In the
experiments we used equations from several sources including:
handwritten, generated by hardware synthesis tools, generated
by C compiler and generated by Cryptol. Handwritten equa-
tions seems to be the most natural and readable for human.
The hardware equations are describing every logic cell in
the implementation of the cipher in FPGAs, so the structure
of the cipher is hidden. It is similar to equations from C
and Cryptol, where the cipher is translated by compiler to
computer readable format.

The idea of using an equation taken from hardware tools
was earlier explored by Courtois et al. [1] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-3
competition, Homsirikamol et al. [15] developed a similar
tool to obtain hardware equations describing SHA-3 final
candidates and evaluating their security margin.
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describe the round reduced SPECK cipher. Both numbers have
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describing the hardware and software equations increase more
than handwritten ones. However, according to our experiments,
the system of equations with larger number of variables and
clauses can be solved faster than smaller ones. In some cases,
an SAT solver can utilize the additional information hidden
under the equations.
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implementation are obtained by translating the and-inverted-
graphs (AIG) [17] produced by clang version 3.6.0 C compiler.
Equations from Cryptol [18] implementation are obtained in
a similar way. The reported results are taken as average of
40 runs of each experiment. To make the comparison fair, the
used key was random and the plaintext-ciphertext pairs were
the same in every experiment.

All of our experiments took less than one hour. After one
hour of computation, the tasks were terminated. With this
approach, we failed to perform a successful attack on six
round of SPECK and 8 rounds of SIMON with the first attack
model, where key expansion algorithm is included into system
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In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This
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report probability of success for SAT attack on SPECK when
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equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
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observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.
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the key expand algorithm are not included. In Tab. III we
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success. Moreover, only 5 pairs are required to find the valid
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observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.
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three times higher.
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is the opposite to most of the other experiments. Hardware
equations were also the best for an attack on SIMON with 30
pairs. The results of this attack are presented in Fig. 7. The
common aspect of the two attacks is the Cadical SAT solver
used for finding a solution. The proper solver and equations
type selection might be crucial for obtaining the best results.

Our attack for SPECK also works the best for 10 pairs.
We were able to attack up to 6 rounds with 10 pairs using
Lingeling SAT to obtain a valid key in less than 600 seconds.

In Fig. 9 the time of attack for two pairs on full SPECK with
Cadical is presented. The same as for SIMON, the Cadical
SAT—solver was the best for two pairs and Lingeling is the
best for more than 10 pairs.

Fig. 9. Average time of attack on SPECK using Cadical for two pairs (without
key expand algorithm)

Fig. 10. Average time of attack on SPECK using Cadical for four pairs
(without key expand algorithm)

Fig. 11. Average time of attack on SPECK using Lingeling for ten pairs
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in the FPGA design, an appropriate equation is given. Our
targeted FPGA family was Intel Cyclone V. Equations from C
implementation are obtained by translating the and-inverted-
graphs (AIG) [17] produced by clang version 3.6.0 C compiler.
Equations from Cryptol [18] implementation are obtained in
a similar way. The reported results are taken as average of
40 runs of each experiment. To make the comparison fair, the
used key was random and the plaintext-ciphertext pairs were
the same in every experiment.

All of our experiments took less than one hour. After one
hour of computation, the tasks were terminated. With this
approach, we failed to perform a successful attack on six
round of SPECK and 8 rounds of SIMON with the first attack
model, where key expansion algorithm is included into system
of equations.

# of rounds\# of pairs 3 4 >= 5
5 ∼0,23 ∼0.62 ∼1,00
6 ∼0,05 ∼0.47 ∼1,00
7 ∼0,00 ∼0.62 ∼1,00
8 ∼0,00 ∼0.59 ∼1,00
9 ∼0,00 ∼0.58 ∼1,00
10 ∼0,00 ∼0.61 ∼1,00

≥ 11 ∼0,00 ? ?
TABLE II

EXPERIMENTAL PROBABILITY OF SUCCESS ATTACK FOR SIMON 32/64
(WITHOUT KEY EXPAND ALGORITHM)

Fig. 6. Average time of attack using Lingeling for ten pairs of SIMON
(without key expand algorithm)

In Tab. II and Tab. IV we report probability of success
for SAT attack on SIMON and SPECK when equations from
the key expand algorithm are not included. In Tab. III we
report probability of success for SAT attack on SPECK when
equations from key expand algorithm are included.

For the SIMON algorithm, with less than 4 pairs, the
probability of finding the valid key is decreasing with every
additional round of encryption and becomes negligible even
for a small number of rounds. Extending the system of
equations with additional pairs increases the probability of
success. Moreover, only 5 pairs are required to find the valid
key in the scenario, where equations for a key expansion are
not included into the system of equations. This is an important
observation that allows for the successful execution of a known
plaintext attack with limited access to an encryption device.

Our attack for SIMON works the best for 10 pairs. The best
obtained results were for handwritten equations. The equations
taken from software and hardware compilers were more than
three times higher.

The worst results were obtained for equations taken from
HDL implementation. This might come from a high complex-
ity of compilers and a specific form of logic element build,
where only several pins of input can be mapped to up to two
pins of output.

Similar results for SPECK are shown in Fig. 11. However,
in Fig. 10 the results for an attack on SPECK with four pairs is
presented. For a given setting, the best results were obtained
for the equations taken from hardware implementation and
the hand written equations provided the worst results. This
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Fig. 8. Average time of attack using Cadical for three pairs of SIMON
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is the opposite to most of the other experiments. Hardware
equations were also the best for an attack on SIMON with 30
pairs. The results of this attack are presented in Fig. 7. The
common aspect of the two attacks is the Cadical SAT solver
used for finding a solution. The proper solver and equations
type selection might be crucial for obtaining the best results.

Our attack for SPECK also works the best for 10 pairs.
We were able to attack up to 6 rounds with 10 pairs using
Lingeling SAT to obtain a valid key in less than 600 seconds.

In Fig. 9 the time of attack for two pairs on full SPECK with
Cadical is presented. The same as for SIMON, the Cadical
SAT—solver was the best for two pairs and Lingeling is the
best for more than 10 pairs.
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# of rounds\# of pairs 1 2 >= 3
3 ∼0,00 ∼0.05 ∼1,00
4 ∼0,00 ∼0.12 ∼1,00
5 ∼0,00 ∼0.68 ∼1,00
6 ∼0,00 ? ?
7 ∼0,00 ? ?

≥ 8 ? ? ?
TABLE III

EXPERIMENTAL PROBABILITY OF SUCCESS ATTACK FOR SPECK 32/64
(WITH KEY EXPAND ALGORITHM)

# of rounds\# of pairs 2 3 >= 4
3 ∼0,68 ∼0.95 ∼1,00
4 ∼0,07 ∼0.85 ∼1,00
5 ∼0,00 ∼0.88 ∼1,00
6 ∼0,00 ∼0.86 ∼1,00

≥ 7 ∼0,00 ? ?
TABLE IV

EXPERIMENTAL PROBABILITY OF SUCCESS ATTACK FOR SPECK 32/64
(WITHOUT KEY EXPAND ALGORITHM)

VII. CONCLUSION

As for now, we have focused on research about the best
parameters to set for an attack, rather than attacking the highest
number of rounds. We have checked the influence of several
parameters on the solving time of an satisfiability problem.

Considering all mentioned factors, we were able to suc-
cessfully break up to 6 rounds of SPECK cipher and up to
10 rounds of SIMON cipher using our novel approach on a
single-core CPU. In Tab. V we report our best results. For
aforementioned ciphers, the best approach is to use the second
attack scenario, where the key expansion algorithm is not
included.

number number equations SAT time [s]
of rounds of pairs type

SPECK 6 10 cryptol Lingeling 451,29
SPECK 6 10 vhdl Lingeling 588,74
SIMON 10 10 cryptol Lingeling 8,98
SIMON 10 10 manual Lingeling 5,78

TABLE V
OUR THE BEST RESULTS OF SAT ATTACK ON SPECK 32/64 AND SIMON

32/64 (WITHOUT KEY EXPAND ALGORITHM)

Presented results are only a fraction of those obtained from
experiments. We have shown that many factors affect the
success rate and time required for SAT attack on SPECK
and SIMON ciphers. Further exploration of mentioned factors
like source of equations, used SAT—solver, number of pairs,
number of rounds and attack model may lead to even better
results affecting the claimed security of the aforementioned
ciphers or even to a full break of these ciphers.

Our new approach to an SAT attack offers a significant
speed-up when compared to the standard method. It also
decreases the amount of work required for preparing the attack.
Moreover, the attack can be applied to other ciphers and the
preparation costs of the attack are very low. Thus, our tool
seems to be a good choice for a plug-and-play attack on the
initial security strength evaluation. Our method can be also

combined with other types of attacks as reported in [7], [19].
Using pairs selected with linear or differential cryptanalysis for
an SAT attack without key expansion algorithm is a promising
idea for further research and obtaining even better results.
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# of rounds\# of pairs 1 2 >= 3
3 ∼0,00 ∼0.05 ∼1,00
4 ∼0,00 ∼0.12 ∼1,00
5 ∼0,00 ∼0.68 ∼1,00
6 ∼0,00 ? ?
7 ∼0,00 ? ?

≥ 8 ? ? ?
TABLE III

EXPERIMENTAL PROBABILITY OF SUCCESS ATTACK FOR SPECK 32/64
(WITH KEY EXPAND ALGORITHM)

# of rounds\# of pairs 2 3 >= 4
3 ∼0,68 ∼0.95 ∼1,00
4 ∼0,07 ∼0.85 ∼1,00
5 ∼0,00 ∼0.88 ∼1,00
6 ∼0,00 ∼0.86 ∼1,00

≥ 7 ∼0,00 ? ?
TABLE IV

EXPERIMENTAL PROBABILITY OF SUCCESS ATTACK FOR SPECK 32/64
(WITHOUT KEY EXPAND ALGORITHM)

VII. CONCLUSION

As for now, we have focused on research about the best
parameters to set for an attack, rather than attacking the highest
number of rounds. We have checked the influence of several
parameters on the solving time of an satisfiability problem.

Considering all mentioned factors, we were able to suc-
cessfully break up to 6 rounds of SPECK cipher and up to
10 rounds of SIMON cipher using our novel approach on a
single-core CPU. In Tab. V we report our best results. For
aforementioned ciphers, the best approach is to use the second
attack scenario, where the key expansion algorithm is not
included.

number number equations SAT time [s]
of rounds of pairs type

SPECK 6 10 cryptol Lingeling 451,29
SPECK 6 10 vhdl Lingeling 588,74
SIMON 10 10 cryptol Lingeling 8,98
SIMON 10 10 manual Lingeling 5,78

TABLE V
OUR THE BEST RESULTS OF SAT ATTACK ON SPECK 32/64 AND SIMON

32/64 (WITHOUT KEY EXPAND ALGORITHM)

Presented results are only a fraction of those obtained from
experiments. We have shown that many factors affect the
success rate and time required for SAT attack on SPECK
and SIMON ciphers. Further exploration of mentioned factors
like source of equations, used SAT—solver, number of pairs,
number of rounds and attack model may lead to even better
results affecting the claimed security of the aforementioned
ciphers or even to a full break of these ciphers.

Our new approach to an SAT attack offers a significant
speed-up when compared to the standard method. It also
decreases the amount of work required for preparing the attack.
Moreover, the attack can be applied to other ciphers and the
preparation costs of the attack are very low. Thus, our tool
seems to be a good choice for a plug-and-play attack on the
initial security strength evaluation. Our method can be also

combined with other types of attacks as reported in [7], [19].
Using pairs selected with linear or differential cryptanalysis for
an SAT attack without key expansion algorithm is a promising
idea for further research and obtaining even better results.
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