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Abstract—Several Traffic Engineering (TE) techniques based 
on SDN (Software-defined networking) proposed to resolve flow 
competitions for network resources. However, there is no 
comprehensive study on the probability distribution of their 
throughput. Moreover, there is no study on predicting the future 
of elephant flows. To address these issues, we propose a new 
stochastic performance evaluation model to estimate the loss rate 
of two state-of-art flow scheduling algorithms including Equal-
cost multi-path routing (ECMP), Hedera besides a flow congestion 
control algorithm which is Data Center TCP (DCTCP). Although 
these algorithms have theoretical and practical benefits, their 
effectiveness has not been statistically investigated and analyzed in 
conserving the elephant flows. Therefore, we conducted extensive 
experiments on the fat-tree data center network to examine the 
efficiency of the algorithms under different network 
circumstances based on Monte Carlo risk analysis. The results 
show that Hedera is still risky to be used to handle the elephant 
flows due to its unstable throughput achieved under stochastic 
network congestion. On the other hand, DCTCP found suffering 
under high load scenarios. These outcomes might apply to all data 
center applications, in particular, the applications that demand 
high stability and productivity. 

Index Terms— Elephant flow, SDN, Risk analysis, Value-at-
Risk, Flow scheduling, Congestion control. 

I.  INTRODUCTION 
Nowadays, many enterprises leverage data center fabrics to 

manage highly-demanded bandwidth applications. Applications 
like Hadoop [1] and MapReduce [2] rely on hundreds or 
thousands of servers to provide high availability and scalability; 
therefore large data is transferred through the data center 
network to achieve these requirements. However, other types of 
data center applications such as regular web services are hosted 
inside the data center as well, due to the guaranteed availability 
and reliability. Because of these substantial requirements, many 
data center topologies evolved like hyperx [3], flattened 
butterfly [4], and fat-tree [5]. On the other hand, many traffic 
management techniques emerged, like throughput-based 
forwarding and load balancing [6]. Typically, the applications of 
data center produce two types of flows which are mice and 
elephant flows [6]. Mice flows are known as the smallest and 
shortest-lived TCP flows in the network and more sensitive to 
the communication delay. Whereas the most massive and long-
lived TCP flows, elephant flows, are more affected by the 
residual link bandwidth [6]. 
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The number of elephant flows in data centers is fewer than 
that of mice flows, but they carry the most, e.g., 80%, of the 
transferred data [7]. Some applications, like data mining, 
machine learning, and data analysis [8] [9] generate such flows 
since they demand intensive data transmission. These flows 
must be forwarded through appropriate routes following their 
requirements. Static forwarding techniques like ECMP [10] 
could yield network congestions where bottlenecks would stem 
from collides on a specific switch port due to static hashing [11] 
[12]. Hence, enhancing flow scheduling in data center networks 
would improve throughput and Flow Completion Time (FCT). 

In today’s data centers, SDN plays a vital role in network 
resource allocation, traffic monitoring, and classification [14]. 
The paradigm has significantly employed by the research 
community for flow scheduling, and traffic load balancing [15] 
[16] since the implementation of real-time applications is 
delicate without adequate resource and traffic management [2]. 
The standard design of a data center network includes multi-
rooted trees that have multiple paths between every pair of hosts 
[12]. As a result, the challenge is to identify the suitable path for 
flows according to the current load of the paths and to avoid 
network congestion. However, most of the existing flow 
scheduling solutions like Hedera [12] forward both flow types 
on the same paths; hence, flow competitions and bottlenecks are 
inevitable [17]. Furthermore, rerouting the elephant flows might 
yield delay, packet reordering, and retransmission.  

In this paper, we evaluate and predict the performance of 
ECMP, Hedera, and DCTCP. Particularly, we empirically 
investigate the performance and efficiency of the algorithms  to 
answer the following questions: 

1. What is the predicted loss rate of elephant flows using 
different algorithms? 

2. What are the risk factors of implementing these 
algorithms regarding the elephant flow preserving?  

3. How could the FCT and throughput of mice and 
elephant flows be under different algorithms? 

Therefore, our main contributions are: 
1. Implementing a wide range of workloads to estimate the 

probability distribution of the algorithms’ performance.   
2.  Conducting stochastic performance analysis instead of 

deterministic one to explore the minimum and 
maximum value of elephant flows loss rate. 

3. Predicting the future performance of the different 
algorithms based on the stochastic evaluation and 
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demonstrate their impact on data center applications in 
terms of the expected productivity. 

The rest of the paper is organized as follows. In section II, 
we present related works. We describe the proposed model in 
section III. In section IV, we describe the simulations, results 
and, discussions. We finally conclude in Section V. 

II. RELATED WORKS 
Liu et al. [18] present a framework to enable adaptive 

multipath routing of elephant flows in data center networks 
under changing load conditions; however, this solution 
employs NOX controller which has some negative effects on 
the performance. Similar to Mahout [15], it detects elephant 
flows at end-hosts, but it monitors TCP socket buffer at end-
host to mark flows exceed a predefined threshold so that 
elephant flows are forwarded based on a weighted multipath 
routing algorithm which results in installing better paths in 
switches. Besides, like Hedera, mice flows are delivered 
based on ECMP by default. However, it employs link load as 
the only metric for rerouting decisions. Devoflow [19] 
provides a flow control mechanism in data center networks 
by rerouting elephant flows whose sizes are more significant 
than 1 MB. 

Similarly, authors in [20] employ group feature of 
OpenFlow to implement a framework for managing the 
routes in data center networks by checking links load so that 
the framework distributes flows among different paths to 
balance the loads. This framework provides no 
distinguishing between elephant and mice flows, but when 
the congestion occurs on a link, the framework selects a 
backup flow with most considerable traffic demand, which 
means in practice most probably it will be an elephant flow, 
but it does not provide any measurements about the impact 
on mice flows. Wang et al. in [21] present TSACO, which 
detects elephant flows by OpenFlow and sFlow then 
forwards them according to an adaptive multi-path algorithm 
and handles mice flows differently. TSACO computes the 
available bandwidth and delay of paths and splits an elephant 
flow over multiple paths, which have considerably enough 
free bandwidth to balance the load whereas it sends mice 
flows on the remaining computed flows whose delay 
characteristics are suitable. As a result, TSACO provides 
better throughput for elephant flows, and shorter delay for 
mice flows in comparison with ECMP and weighted ECMP. 

III. EXPERIMENTAL METHODOLOGY 
     In this section, we describe our experimental methodology, 
including our system setup, network setup, and applications 
workloads employed in our empirical study. 

A. System setup 
     K-4 fat-tree data center topology was built by using Mininet 
2.2.2 SDN emulator installed on Ubuntu 16.04 machine 
provided with Intel Core i5-8400 CPU 2.80 GHz with 16 GB of 
RAM. 

B. Flow scheduling algorithms 
1. Hedera: estimates the demand for elephant flows then 

reroute them to a path with sufficient bandwidth by 
installing new flow entries on the switches. 
Particularly, flows will be forwarded through one of the 
equal-cost paths by applying a static hashing based 
technique as in ECMP until they grow beyond the 
predefined threshold which is 10% of the link capacity 
[12]. 

2. Equal-Cost Multi-Path (ECMP): switches are 
statically configured with several forwarding paths for 
different subnets. The forwarding is based on the hash 
value of specific fields of packets header modulo the 
number of paths for spreading the load across many 
paths [10]. 

3. DCTCP: employs Explicit Congestion Notification 
(ECN) to estimate the fraction of bytes that encounter 
congestion rather than directly detecting that 
congestion has occurred.  Then, DCTCP scales the size 
of the TCP congestion window accordingly. This 
method provides low latency and high throughput with 
shallow-buffered switches where they can be used in 
large data centers to reduce the capital expenditure. In 
typical DCTCP deployments, the marking threshold in 
the switches is set to a deficient value to reduce 
queueing delay, and a relatively small amount of 
congestion will cause the marking. During the 
blockage, DCTCP will use the fraction of marked 
packets to reduce the size of the congestion window 
more gradually than that in case of conventional TCP 
[22].  

      DCTCP and Hedera algorithms are implemented and tested 
as SDN applications by using Ryu controller whereas, ECMP 
is implemented statically in switches. 

C. Collecting and normalizing the data 
 In this section, we present the conducted experiment to 
evaluate the results of the proposed evaluation model. In this 
paper, fat-tree topology is used since it is considered one of the 
essential topologies for building efficient, scalable, and cost-
effective data centers. Fat-tree topology constructed from three 
main layers of connected switches located in core, aggregate, 
and edge layers. However, K-4 fat-tree data center  topology has 
been built in Mininet with 10 Mbps links for each as shown in 
Figure 1.  
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 The conducted scenarios have two patterns; the first one 
generates connections that span all topology layers while the 
second one generates connections span the switches in edge and 
aggregation layers only as depicted in Figure 2. In these patterns, 
all of the end hosts in each rack employed to generate the traffic 
for each of the proposed scenario. To generate the required 
elephant and mice flows, we employed iperf for generating 
elephant flows, whereas the traffic of mice flows was generated 
by requesting specific files whose sizes are 10 Kbyte by 
applying an Apache server repeatedly in a random fashion as 
reported in [7].  

 However, the performance of the proposed model will be 
evaluated under high load scenarios where the mice flows are 
synchronized with the elephant flows to introduce congestion in 
the network. The evaluation process includes three different 
scenarios with different workloads, a mix of elephant and mice 
flows, whose time span are varied from 1 to 15 seconds in case 
of elephant flows to evaluate the investigated algorithms with 
different sizes of elephant flows. In the first scenario, 1:1 ratio, 
we generated 120 concurrent connections, so mice and elephant 
flows have an equal proportion, e.g., 60:60, respectively. In the 
second scenario, the 1:2 ratio, where we increased the number 
of the elephant flows to 80, and reduced mice flows to 40. 
Finally, in the third scenario, 2:1 ratio, where we have 40 
elephant flows to 80 mice flows. However, each scenario has 
been executed twenty-five times, and during each repetition, the 
throughput has been measured between hosts 1 and 16 by 
creating a 20 seconds connection using iperf to reflect the impact 
of different algorithms on the throughput of a specific elephant 
flow, and we built our risk analysis based on it. To obtain the 
risk factor of the error in throughput measurements, we utilized 
the arithmetic sample standard deviation. The maximum value 
of the calculated standard deviation is considered since it 
indicates a more significant value than the sample mean for the 
worst-case evaluation. 

D. Goodness of fit 
The goodness of fit test performed to find the proper 

probability distribution functions of the throughputs and errors. 
Therefore, we adopted EasyFit professional [23], which is a 
specialized statistical tool to test the collected data. Since the 
collected data is in the discrete domain, we chose to use the 
Kolmogorov Smirnov statistic test (KS) as a hypothesis test to 
assess the distribution of the data [24]. KS test is a non-
parametric test mainly used to compare the distance between the 
empirical data samples and a specific class of well-known 
reference probability distributions as in equation 1  [25].  

               𝐷𝐷𝑛𝑛 = sup
𝑥𝑥

|𝐹𝐹𝑛𝑛(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|                   (1) 

 Where 𝐹𝐹𝑛𝑛 is the cumulative distribution function of the 
observed samples in comparison with the reference distribution 
functions 𝐹𝐹 of an ordered data. 
 A null hypothesis testing has been performed to accomplish 
this kind of testing, where H0 is identified when the tested data 
specify the distribution, and H1 is recognized when the data does 
not follow the distribution. To come up with the desired 
distribution, KS assumes a significance level α (0.01, 0.05, etc.) 
and compares the tested statistics (𝐷𝐷𝑛𝑛) with some of the critical 
values of the well-known distribution. The hypothesis of the 
measured distribution will be discarded if the value of 
𝐷𝐷𝑛𝑛 exceeds the critical value at a significant level. 
  P-value based on the KS test helps to identify the level when 
the null hypothesis is rejected. This value indicates a threshold 
for the significant level (H0) to accept all values less than the P-
value. For instance, when the P-value = 0.025, the null 
hypothesis will take all the significance levels less than the P-
value, i.e., 0.01 and 0.02, and reject the higher levels [26]. 
 Table 1 shows the results of conducting KS null hypothesis 
testing on the throughput measurements of the algorithms. The 
throughput of both Hedera and ECMP followed the Geometric 
distribution (G-D) based on P-value, and the acceptable critical 
value was 0.02. However, G-D is recognized as a discrete 
probability distribution that represents the probability of the 
success number of independent trials, i.e., Bernoulli trials [27]. 

TABLE I. KS TEST VALUES FOR THE AVAILABLE THROUGHOUT. 

Algorithm KS  accepted values 
(critical values) P-Value Distribution 

Hedera 0.05 0.07077 Geometric 

ECMP 0.02 0.03 Geometric 

DCTCP Rejected 0.008 - 

 
We got rejection as a result of DCTCP distribution testing 

for all of the significance levels, as appeared in Table 1. 
Therefore, we used another normality test called the Anderson-
Darling (AD) test. However, the AD test followed the null 
hypothesis testing and defined as A2. 

                           A2 = — N — S             (2) 
Where S: 

𝑆𝑆 =  ∑ (2𝑖𝑖—1)
𝑁𝑁

𝑁𝑁
𝑖𝑖=1 [ln𝐹𝐹(𝑌𝑌𝑖𝑖) + ln(1—𝐹𝐹(𝑌𝑌𝑁𝑁 + 1− ⅈ))]              (3) 

 Where 𝐹𝐹 is the cumulative distribution function of the 
observed samples and 𝑌𝑌𝑖𝑖  are the ordered data. 
 The testing shows that the throughput of DCTCP followed 
G-D with an acceptable critical value equals 0.02. Hence, we 
utilized probability mass function of G-D to generate samples 
required for Monte Carlo simulation model by applying equation 
4 where Hedera, ECMP, and DCTCP have different probability 
values. 
                                   𝑃𝑃𝑟𝑟(𝐴𝐴) = (1 − 𝑝𝑝)𝑟𝑟−1𝑝𝑝                          (4) 
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 Where 𝐴𝐴 is the random variable of the throughput, 𝑟𝑟 is the 
number of failures with 𝑝𝑝 probability.  
 Besides, we repeated the same procedure, to identify the 
distribution of measurement errors, i.e., error factors, as shown 
in Table 2.  

TABLE II. KS TEST VALUES FOR ERROR FACTOR. 

Algorithm KS  accepted values 
(critical values) P-Value Distribution 

Hedera 0.05 0.86674 Discrete uniform 

ECMP 0.05 0.2179 Negative binomial 

DCTCP 0.05 0.76964 Poisson 

  
 In the case of Hedera, the testing of Hedera algorithm 
showed that it was following the Discrete Uniform distribution 
(D-U). Therefore, to generate the required samples of the error 
factor, we used equation 5. 

                                   𝑃𝑃𝑟𝑟(𝐸𝐸𝑟𝑟𝑟𝑟) = 1
𝑛𝑛                                        (5) 

 Where 𝐸𝐸𝑟𝑟𝑟𝑟  is the random variable of the error factor for 
Hedera algorithm and 𝑛𝑛 is the number of samples generated for 
the error factor.  
 On the other hand, the error factor of the ECMP algorithm 
followed Negative binomial distribution (N-B). N-B is a discrete 
probability distribution mainly describes the number of 
successes in a series of independent Bernoulli trials until arriving 
the defined number of non-random failures occurs. Hence, to 
generate its sample values for error factor, we utilized equation 
6.  

               𝑃𝑃𝑟𝑟(𝐸𝐸𝑟𝑟𝑟𝑟) = (𝑟𝑟 + 𝑐𝑐 − 1
𝑐𝑐 )𝑝𝑝𝑐𝑐(1− 𝑝𝑝)𝑟𝑟                    (6) 

 Where 𝐸𝐸𝑟𝑟𝑟𝑟  is the random variable of the error, 𝑟𝑟 is the 
number of failures with 1 − 𝑝𝑝 probability, 𝑐𝑐 is the number of 
success or failure and, 𝑝𝑝 is the probability of success. 
 Similarly, the error factor for DCTCP followed a Poisson 
distribution (P-D) function. However, P-D mostly used to 
express the probability of occurring certain events within the 
sample space or fixed interval of time [28]. The probability mass 
function of the P-D, i.e., equation 7, was used to generate its 
required samples of the error factor.  

                                   𝑃𝑃𝑟𝑟(𝐸𝐸𝑟𝑟𝑟𝑟) = 𝑒𝑒−𝑘𝑘 𝜆𝜆𝑘𝑘

𝑘𝑘!                                  (7) 

 Where 𝐸𝐸𝑟𝑟𝑟𝑟  is the random variable of the error factor, 𝜆𝜆 is the 
average number of errors recorded per the whole sample, 𝑒𝑒 is the 
Euler’s number 2.71828, and 𝑘𝑘 is the number actually observed 
occurrences. 

E. Monte Carlo Simulation 
 Monte Carlo approach is a technique used to reproduce the 
stochastic behavior of a system or to assess a set of uncertainty 
input of a deterministic model. Typically, it is not possible to 
predict and determine all possible outcomes of a black box 
system [29]. Hence, the Monte Carlo simulation process utilized 
to generate multiple predicted scenarios by estimating the 
probability distribution of the stochastic input parameters. 

Consequently, this process recurred hundreds or thousands of 
times to produce possible scenarios or solutions with different 
probabilities.  
 However, we address the impact of the algorithms by 
calculating the value at risk of the elephant flows. For this 
purpose, we used the generated samples of throughput and error 
factor as inputs of the Monte Carlo simulation model. Our 
fundamental equation, i.e., equation 8 that forms Monte Carlo 
simulation based on simulating various sizes and volumes of 
elephant flows along with the risk values. 
     𝑃𝑃𝑃𝑃𝑒𝑒 (𝑉𝑉, 𝑆𝑆, 𝐴𝐴, 𝐸𝐸) = 𝐵𝐵𝑚𝑚 = 𝑉𝑉𝑖𝑖 × (𝑆𝑆𝑗𝑗 − (𝐴𝐴𝑘𝑘 + 𝐸𝐸𝑙𝑙))                    (8) 

 Where 𝐵𝐵𝑚𝑚 is the predicted loss rate, 𝑉𝑉𝑖𝑖 is the different 
volumes of the evaluated elephant flows, 𝑆𝑆𝑗𝑗 is the sizes of the 
elephant flows, as shown in Table 3, 𝐴𝐴𝑘𝑘 is the available 
throughput factor, and 𝐸𝐸𝑙𝑙  is the error factor variables. 

TABLE III. ELEPHANT FLOW PARAMETERS. 
Elephant flow Size S Volume V 

Large 1.25 MByte 100 

Normal 1 0.75 MByte 85 

Normal 2 0.5 MByte 65 

Small 0.12 MByte 45 

 
 The assumed values for the size S varies from the maximum 
bandwidth the physical link can handle, i.e., 10 Mbps, to the 
minimum elephant flow size, i.e., 10% of link capacity, as 
defined by Al-Fares et al. [12]. The volume parameter V 
represents the amount of the flow within a specific path. 

IV.  RESULTS AND DISCUSSIONS 
 The proposed model performed on the algorithms to 

investigate how they will preserve the elephant flows. The 
primary expected outcome from this analysis is a histogram 
represents the probability distribution of the predicted loss rate 
of elephant flows resulted from employing each algorithm. 
Therefore, equation 8 repeated one million times. On the 
upcoming subsections, we will address and compare the results 
of the investigated algorithms. 

A. Throughput of the elephant flow 
In Figure 3, we compare the achieved throughput of the 

algorithms under different scenarios by tracking the connection 
between hosts 1 and 16. Furthermore, to measure the stability 
of each algorithm, we calculated the second central moment, 
e.g., error variance. Results show that Hedera achieved the 
highest variance, 25.5, in comparison with ECMP, 21.74, while 
DCTCP had 17.17. 

B. Loss rate distribution 
Monte Carlo simulation provided the whole estimation for 

the tested data, as shown in Table 4. However, it is clear that the 
DCTCP algorithm achieved the worst loss rate due to the fact 
that DCTCP does not provide any special handling for elephant 
flows. Furthermore, Hedera and ECMP have layer-4 flow 
control mechanisms and scheduling capabilities as well. 
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showed that it was following the Discrete Uniform distribution 
(D-U). Therefore, to generate the required samples of the error 
factor, we used equation 5. 

                                   𝑃𝑃𝑟𝑟(𝐸𝐸𝑟𝑟𝑟𝑟) = 1
𝑛𝑛                                        (5) 

 Where 𝐸𝐸𝑟𝑟𝑟𝑟  is the random variable of the error factor for 
Hedera algorithm and 𝑛𝑛 is the number of samples generated for 
the error factor.  
 On the other hand, the error factor of the ECMP algorithm 
followed Negative binomial distribution (N-B). N-B is a discrete 
probability distribution mainly describes the number of 
successes in a series of independent Bernoulli trials until arriving 
the defined number of non-random failures occurs. Hence, to 
generate its sample values for error factor, we utilized equation 
6.  

               𝑃𝑃𝑟𝑟(𝐸𝐸𝑟𝑟𝑟𝑟) = (𝑟𝑟 + 𝑐𝑐 − 1
𝑐𝑐 )𝑝𝑝𝑐𝑐(1− 𝑝𝑝)𝑟𝑟                    (6) 

 Where 𝐸𝐸𝑟𝑟𝑟𝑟  is the random variable of the error, 𝑟𝑟 is the 
number of failures with 1 − 𝑝𝑝 probability, 𝑐𝑐 is the number of 
success or failure and, 𝑝𝑝 is the probability of success. 
 Similarly, the error factor for DCTCP followed a Poisson 
distribution (P-D) function. However, P-D mostly used to 
express the probability of occurring certain events within the 
sample space or fixed interval of time [28]. The probability mass 
function of the P-D, i.e., equation 7, was used to generate its 
required samples of the error factor.  

                                   𝑃𝑃𝑟𝑟(𝐸𝐸𝑟𝑟𝑟𝑟) = 𝑒𝑒−𝑘𝑘 𝜆𝜆𝑘𝑘

𝑘𝑘!                                  (7) 

 Where 𝐸𝐸𝑟𝑟𝑟𝑟  is the random variable of the error factor, 𝜆𝜆 is the 
average number of errors recorded per the whole sample, 𝑒𝑒 is the 
Euler’s number 2.71828, and 𝑘𝑘 is the number actually observed 
occurrences. 

E. Monte Carlo Simulation 
 Monte Carlo approach is a technique used to reproduce the 
stochastic behavior of a system or to assess a set of uncertainty 
input of a deterministic model. Typically, it is not possible to 
predict and determine all possible outcomes of a black box 
system [29]. Hence, the Monte Carlo simulation process utilized 
to generate multiple predicted scenarios by estimating the 
probability distribution of the stochastic input parameters. 

Consequently, this process recurred hundreds or thousands of 
times to produce possible scenarios or solutions with different 
probabilities.  
 However, we address the impact of the algorithms by 
calculating the value at risk of the elephant flows. For this 
purpose, we used the generated samples of throughput and error 
factor as inputs of the Monte Carlo simulation model. Our 
fundamental equation, i.e., equation 8 that forms Monte Carlo 
simulation based on simulating various sizes and volumes of 
elephant flows along with the risk values. 
     𝑃𝑃𝑃𝑃𝑒𝑒 (𝑉𝑉, 𝑆𝑆, 𝐴𝐴, 𝐸𝐸) = 𝐵𝐵𝑚𝑚 = 𝑉𝑉𝑖𝑖 × (𝑆𝑆𝑗𝑗 − (𝐴𝐴𝑘𝑘 + 𝐸𝐸𝑙𝑙))                    (8) 

 Where 𝐵𝐵𝑚𝑚 is the predicted loss rate, 𝑉𝑉𝑖𝑖 is the different 
volumes of the evaluated elephant flows, 𝑆𝑆𝑗𝑗 is the sizes of the 
elephant flows, as shown in Table 3, 𝐴𝐴𝑘𝑘 is the available 
throughput factor, and 𝐸𝐸𝑙𝑙  is the error factor variables. 

TABLE III. ELEPHANT FLOW PARAMETERS. 
Elephant flow Size S Volume V 

Large 1.25 MByte 100 

Normal 1 0.75 MByte 85 

Normal 2 0.5 MByte 65 

Small 0.12 MByte 45 

 
 The assumed values for the size S varies from the maximum 
bandwidth the physical link can handle, i.e., 10 Mbps, to the 
minimum elephant flow size, i.e., 10% of link capacity, as 
defined by Al-Fares et al. [12]. The volume parameter V 
represents the amount of the flow within a specific path. 

IV.  RESULTS AND DISCUSSIONS 
 The proposed model performed on the algorithms to 

investigate how they will preserve the elephant flows. The 
primary expected outcome from this analysis is a histogram 
represents the probability distribution of the predicted loss rate 
of elephant flows resulted from employing each algorithm. 
Therefore, equation 8 repeated one million times. On the 
upcoming subsections, we will address and compare the results 
of the investigated algorithms. 

A. Throughput of the elephant flow 
In Figure 3, we compare the achieved throughput of the 

algorithms under different scenarios by tracking the connection 
between hosts 1 and 16. Furthermore, to measure the stability 
of each algorithm, we calculated the second central moment, 
e.g., error variance. Results show that Hedera achieved the 
highest variance, 25.5, in comparison with ECMP, 21.74, while 
DCTCP had 17.17. 

B. Loss rate distribution 
Monte Carlo simulation provided the whole estimation for 

the tested data, as shown in Table 4. However, it is clear that the 
DCTCP algorithm achieved the worst loss rate due to the fact 
that DCTCP does not provide any special handling for elephant 
flows. Furthermore, Hedera and ECMP have layer-4 flow 
control mechanisms and scheduling capabilities as well. 
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TABLE IV. DISTRIBUTION STATISTICS OF THE TESTED ALGORITHMS. 

Algorithm Loss rate 

Hedera 64% 

ECMP 68% 

DCTCP 77% 

   

C. Distribution shape analysis 
To implement the value at risk (VaR) analysis for the 

obtained result, we should present the histogram of loss rate for 
each algorithm to figure out the variations of the values. Figures 
4, 5, and 6 depict the histograms for Hedera, ECMP, and 
DCTCP, respectively. The current histograms do not follow a 
particular type of known probability distributions, but we can 
indicate that they have a heavy left-hand tail and unsteady 
proceed to the long right-hand tail. Nevertheless, the yielded 
histograms may plot almost the same behavior regarding the 
shape, since the input values (S and V) are the same. Considering 
the first raw moment of the mean value, blue line, and median 
value, red line, for such samples may not present the exact 
expected value of the loss rate [30] since the prediction depends 
on the merging of the risk values of different samples. 
Consequently, since we have the sufficient number of samples 
and for better understanding of the behavior of the loss rate, 
common distribution shape measurements were calculated, like 
skewness and kurtosis, as shown in Table 5.  

Skewness is the third central moment, and it used for 
measuring the symmetry of the distribution, and it has two 
values; positive and negative. The positive value, i.e., right 
skew, indicates that the mean value is higher than the median 
value, while the negative value, left skew, suggests the opposite. 

Equation 9 describes the skewness degree calculation for the 
observed distributions. 

TABLE V. MEAN, MEDIAN, SKEWNESS, KURTOSIS, AND 
NUMBER OF SAMPLES FOR THE ALGORITHMS. 

 

Fig. 4. Histogram of Hedera for the blocked rate. 

Fig. 5. Histogram of ECMP the blocked rate. 

Fig. 6. Histogram of DCTCP for the blocked rate. 
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Where xi holds n observations and 𝑥̅𝑥 is the mean values of 
the observations. 

Kurtosis, as shown in equation 10, is the fourth central 
moment, and it is another essential shape measurement utilized 
for describing the distribution tail thickness compared to the 
Normal distribution. Typically, there are three types of Kurtosis, 
which are mesokurtic, leptokurtic, and platykurtic distributions. 
Mesokurtic distribution has the same characteristics of the 
Normal distribution concerning the extreme tail values, while 
leptokurtic has higher tail values due to the long tail, as for the 
platykurtic type, it has a precise tail with fewer outliers [31].  
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Where 𝐵𝐵𝑚𝑚 holds n observations of the predicted blocked rate 
and 𝐵𝐵𝑚𝑚̅̅ ̅̅   is the mean values of the observations. 

    The calculated values indicate that all of the algorithms 
follow positive and semi-identical symmetry, but they are right-

Algorithm Mean Median Skewness Kurtosis Samples 

Hedera 48.11 39.95 0.55 -0.97 640385 
ECMP 48.96 40.80 0.55 -0.97 678761 
DCTCP 51.14 43.35 0.49 -1.09 770154 

 
Fig. 3 Throughput achievement of the different scenarios. 

 

 

 

 

 

skewed since the mean values precede the median values. 
However, the degree of the skewness shows that the skews are 
moderate, which are between 0.5 and 1 [32].  In this case, the 
right-hand tail of the histograms will be longer than the left-
hand tail, which means most of the data will be on the left-hand 
tail. But the length of the tail may affect the considering of the 
average value as the expected value of the loss rate [30]. 
However, we obtained kurtosis degrees for each algorithm to 
identify which one has the propensity to produce more outlier 
results. We found that the prediction distribution for the 
algorithms follows the platykurtic distribution since the 
kurtosis is negative compared with the Normal distribution. 
Therefore, the expected behavior for the algorithms is to 
produce fewer extreme values for the outliers at their tails, but 
it is clear that Hedera and ECMP have a higher degree of 
kurtosis, i.e., 0.79, in comparison with DCTCP what makes 
their highest loss rate not so trusted. Back to the histograms of 
ECMP and DCTCP in Figures 5 and 6, we noticed that the error 
rate to present its lowest values in the rage of 65 – 75 MB/s. 
However, these centrally located values may happen due to the 
throughput outliers’ effects achieved from scenario 1:1 and 1:2 
for both algorithms (Figure 3).     

D. Value at Risk (VaR) analysis 
Even though, the histogram and the statistics provide 

comparative information about the behavior of the model and 
the loss rate prediction, Value at Risk (VaR) analysis could 
provide more deep analysis based on some confidence [33]. The 
Monte Carlo simulation model considered as one of the three 
common types of VaR. In this research and for better 
generalizability, the chosen confidence level was 95%, since 
outlier results would appear with a more significant percentage, 
especially for Hedera and ECMP. Note that we calculated the 
probability of the confidence level by considering the quantile 
function, as in equation 11 [33]. 

                   𝑉𝑉𝑉𝑉𝑉𝑉 = −𝜇𝜇𝑛𝑛 + ∅−1(1 − 𝑢𝑢)𝜎𝜎𝑛𝑛                      (11) 

Where 𝜇𝜇𝑛𝑛 is the mean of the values of the prediction, ∅ is the 
function of the standard Normal distribution, 𝜎𝜎𝑛𝑛 is the standard 
deviation of the values and (1 − 𝑢𝑢) used for the chosen 
confidence level.  

This kind of investigation presents a dynamic interpretation 
of how the elephant flows will be handled while employing such 
flow scheduling or congestion control algorithms. However, we 
depicted a broad examination of various confidence levels for 
the analysis in Figure 7. The loss rate in the case of Hedera is 
lowest with 112 MB/s for the total number of tested elephant 
flows appeared in Table 3.  The loss of the others, i.e., ECMP 
and DCTCP, were 116 and 117 MB/s, respectively. Mainly, 
these values represent the maximum value that will be under risk 
of losing.   

5. The probability distribution of the whole overload 
In this section, we present the probability distribution of the 

entire workload, i.e., 120 connections of each scenario for all 

algorithms. We evaluate the performance of DCTCP, ECMP, 
and Hedera in terms of throughput of elephant flows and flow 
completion time of mice flows. All figures show the fact that 
Hedera and ECMP have very similar performance regarding 
flow completion time of mice flows and the throughput of 
elephant flows. Where Hedera employs ECMP for forwarding 
the mice flows, and ECMP performs well when there are no 
collide on switch ports what makes its performance in terms of 
elephant flows throughput closely approaches that of Hedera as 
shown in Figure 8(a), 8(b), 8(c). On the other hand, figures 9(a), 
9(b), 9(c) depict the performance of DCTCP where its FCT of 
mice flows is more significant than that of Hedera and ECMP 
because of that DCTCP employs shallow threshold to trigger the 
marking event. Consequently, the transmission rate will be 
mitigated by sources where mice flow is delay-sensitive traffic, 
as well as elephant flows, have worse throughput than that of 
ECMP and Hedera where DCTCP provides flow control 
mechanisms, but it does not provide scheduling technique. 

 
 In a nutshell, Hedera achieved a lower loss rate than ECMP 
as expected, but with higher variance for the error factor. We can 
infer that this factor makes the Hedera does not much 
outperform over ECMP. As for the response time, Hedera and 
ECMP achieved better flow completion time due to the static 
hashing between every source and destination on the network. 
In the case of flow congestion control in DCTCP, it has achieved 
its best in the 2:1 scenario whereas it has many outlier results in 
the 1:1 scenario as depicted in Figure 3. This indicates that the 
algorithm suffers in case of high elephant flow loads. Regarding 
data center applications that demand high bandwidth and low 
latency, every TCP loss causes bursty retransmission and that 
what makes queues length of the data center switches bloat 
frequently. Therefore, applications like MapReduce cannot 
make incremental progress without limiting the number of 
contending flows. 
 Therefore, we suggest that some fairness should be 
considered by providing a balance between link utilization,  

 
 

 
Fig. 7 Different confidence levels of VaR analysis. 

 

 
TABLE IV. DISTRIBUTION STATISTICS OF THE TESTED ALGORITHMS. 

Algorithm Loss rate 
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C. Distribution shape analysis 
To implement the value at risk (VaR) analysis for the 

obtained result, we should present the histogram of loss rate for 
each algorithm to figure out the variations of the values. Figures 
4, 5, and 6 depict the histograms for Hedera, ECMP, and 
DCTCP, respectively. The current histograms do not follow a 
particular type of known probability distributions, but we can 
indicate that they have a heavy left-hand tail and unsteady 
proceed to the long right-hand tail. Nevertheless, the yielded 
histograms may plot almost the same behavior regarding the 
shape, since the input values (S and V) are the same. Considering 
the first raw moment of the mean value, blue line, and median 
value, red line, for such samples may not present the exact 
expected value of the loss rate [30] since the prediction depends 
on the merging of the risk values of different samples. 
Consequently, since we have the sufficient number of samples 
and for better understanding of the behavior of the loss rate, 
common distribution shape measurements were calculated, like 
skewness and kurtosis, as shown in Table 5.  

Skewness is the third central moment, and it used for 
measuring the symmetry of the distribution, and it has two 
values; positive and negative. The positive value, i.e., right 
skew, indicates that the mean value is higher than the median 
value, while the negative value, left skew, suggests the opposite. 

Equation 9 describes the skewness degree calculation for the 
observed distributions. 

TABLE V. MEAN, MEDIAN, SKEWNESS, KURTOSIS, AND 
NUMBER OF SAMPLES FOR THE ALGORITHMS. 
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Where xi holds n observations and 𝑥̅𝑥 is the mean values of 
the observations. 

Kurtosis, as shown in equation 10, is the fourth central 
moment, and it is another essential shape measurement utilized 
for describing the distribution tail thickness compared to the 
Normal distribution. Typically, there are three types of Kurtosis, 
which are mesokurtic, leptokurtic, and platykurtic distributions. 
Mesokurtic distribution has the same characteristics of the 
Normal distribution concerning the extreme tail values, while 
leptokurtic has higher tail values due to the long tail, as for the 
platykurtic type, it has a precise tail with fewer outliers [31].  
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    The calculated values indicate that all of the algorithms 
follow positive and semi-identical symmetry, but they are right-
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on the merging of the risk values of different samples. 
Consequently, since we have the sufficient number of samples 
and for better understanding of the behavior of the loss rate, 
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values; positive and negative. The positive value, i.e., right 
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C. Distribution shape analysis 
To implement the value at risk (VaR) analysis for the 

obtained result, we should present the histogram of loss rate for 
each algorithm to figure out the variations of the values. Figures 
4, 5, and 6 depict the histograms for Hedera, ECMP, and 
DCTCP, respectively. The current histograms do not follow a 
particular type of known probability distributions, but we can 
indicate that they have a heavy left-hand tail and unsteady 
proceed to the long right-hand tail. Nevertheless, the yielded 
histograms may plot almost the same behavior regarding the 
shape, since the input values (S and V) are the same. Considering 
the first raw moment of the mean value, blue line, and median 
value, red line, for such samples may not present the exact 
expected value of the loss rate [30] since the prediction depends 
on the merging of the risk values of different samples. 
Consequently, since we have the sufficient number of samples 
and for better understanding of the behavior of the loss rate, 
common distribution shape measurements were calculated, like 
skewness and kurtosis, as shown in Table 5.  

Skewness is the third central moment, and it used for 
measuring the symmetry of the distribution, and it has two 
values; positive and negative. The positive value, i.e., right 
skew, indicates that the mean value is higher than the median 
value, while the negative value, left skew, suggests the opposite. 

Equation 9 describes the skewness degree calculation for the 
observed distributions. 
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skewed since the mean values precede the median values. 
However, the degree of the skewness shows that the skews are 
moderate, which are between 0.5 and 1 [32].  In this case, the 
right-hand tail of the histograms will be longer than the left-
hand tail, which means most of the data will be on the left-hand 
tail. But the length of the tail may affect the considering of the 
average value as the expected value of the loss rate [30]. 
However, we obtained kurtosis degrees for each algorithm to 
identify which one has the propensity to produce more outlier 
results. We found that the prediction distribution for the 
algorithms follows the platykurtic distribution since the 
kurtosis is negative compared with the Normal distribution. 
Therefore, the expected behavior for the algorithms is to 
produce fewer extreme values for the outliers at their tails, but 
it is clear that Hedera and ECMP have a higher degree of 
kurtosis, i.e., 0.79, in comparison with DCTCP what makes 
their highest loss rate not so trusted. Back to the histograms of 
ECMP and DCTCP in Figures 5 and 6, we noticed that the error 
rate to present its lowest values in the rage of 65 – 75 MB/s. 
However, these centrally located values may happen due to the 
throughput outliers’ effects achieved from scenario 1:1 and 1:2 
for both algorithms (Figure 3).     

D. Value at Risk (VaR) analysis 
Even though, the histogram and the statistics provide 

comparative information about the behavior of the model and 
the loss rate prediction, Value at Risk (VaR) analysis could 
provide more deep analysis based on some confidence [33]. The 
Monte Carlo simulation model considered as one of the three 
common types of VaR. In this research and for better 
generalizability, the chosen confidence level was 95%, since 
outlier results would appear with a more significant percentage, 
especially for Hedera and ECMP. Note that we calculated the 
probability of the confidence level by considering the quantile 
function, as in equation 11 [33]. 

                   𝑉𝑉𝑉𝑉𝑉𝑉 = −𝜇𝜇𝑛𝑛 + ∅−1(1 − 𝑢𝑢)𝜎𝜎𝑛𝑛                      (11) 

Where 𝜇𝜇𝑛𝑛 is the mean of the values of the prediction, ∅ is the 
function of the standard Normal distribution, 𝜎𝜎𝑛𝑛 is the standard 
deviation of the values and (1 − 𝑢𝑢) used for the chosen 
confidence level.  

This kind of investigation presents a dynamic interpretation 
of how the elephant flows will be handled while employing such 
flow scheduling or congestion control algorithms. However, we 
depicted a broad examination of various confidence levels for 
the analysis in Figure 7. The loss rate in the case of Hedera is 
lowest with 112 MB/s for the total number of tested elephant 
flows appeared in Table 3.  The loss of the others, i.e., ECMP 
and DCTCP, were 116 and 117 MB/s, respectively. Mainly, 
these values represent the maximum value that will be under risk 
of losing.   

5. The probability distribution of the whole overload 
In this section, we present the probability distribution of the 

entire workload, i.e., 120 connections of each scenario for all 

algorithms. We evaluate the performance of DCTCP, ECMP, 
and Hedera in terms of throughput of elephant flows and flow 
completion time of mice flows. All figures show the fact that 
Hedera and ECMP have very similar performance regarding 
flow completion time of mice flows and the throughput of 
elephant flows. Where Hedera employs ECMP for forwarding 
the mice flows, and ECMP performs well when there are no 
collide on switch ports what makes its performance in terms of 
elephant flows throughput closely approaches that of Hedera as 
shown in Figure 8(a), 8(b), 8(c). On the other hand, figures 9(a), 
9(b), 9(c) depict the performance of DCTCP where its FCT of 
mice flows is more significant than that of Hedera and ECMP 
because of that DCTCP employs shallow threshold to trigger the 
marking event. Consequently, the transmission rate will be 
mitigated by sources where mice flow is delay-sensitive traffic, 
as well as elephant flows, have worse throughput than that of 
ECMP and Hedera where DCTCP provides flow control 
mechanisms, but it does not provide scheduling technique. 

 
 In a nutshell, Hedera achieved a lower loss rate than ECMP 
as expected, but with higher variance for the error factor. We can 
infer that this factor makes the Hedera does not much 
outperform over ECMP. As for the response time, Hedera and 
ECMP achieved better flow completion time due to the static 
hashing between every source and destination on the network. 
In the case of flow congestion control in DCTCP, it has achieved 
its best in the 2:1 scenario whereas it has many outlier results in 
the 1:1 scenario as depicted in Figure 3. This indicates that the 
algorithm suffers in case of high elephant flow loads. Regarding 
data center applications that demand high bandwidth and low 
latency, every TCP loss causes bursty retransmission and that 
what makes queues length of the data center switches bloat 
frequently. Therefore, applications like MapReduce cannot 
make incremental progress without limiting the number of 
contending flows. 
 Therefore, we suggest that some fairness should be 
considered by providing a balance between link utilization,  

 
 

 
Fig. 7 Different confidence levels of VaR analysis. 

 

congestion control. As for the performance evaluation methods 
of new algorithms that handle traffic flows, we recommend 
considering the uncertainty behaviors of the tested network and 
predict their loss rates. To the best of our knowledge, most of 
the developed heuristic algorithms for flow scheduling are 
evaluated using the average values for the obtained data without 
employing the probability distribution function. Note that the 
expected value for random variables does not exist for some 
distributions that have a long tail [30]. Consequently, 
considering the average for any sample of the data may not 
actually describe the expected value of the measured data, 
especially if the number of samples is limited. Such as in the 
case of Hedera [12] and Mahout [15] where the average value is 
taken for different performance evaluation objectives without 
identifying the proper probability distribution. Nevertheless, the 
essence of the prediction produced by independent and random 
variables relies on current observations to predict future 
performance. Accordingly, the model and assumptions need to 
be accurate enough. 

V. CONCLUSIONS 
 In this paper, we empirically designed, implemented, and 
analyzed a new performance evaluation model for flow 
scheduling and flow congestion control algorithms used in data 
center networks based on multiple stochastic workloads to 
predict the value at risk of the elephant flows loss rate. The 

evaluation considers the proper probability distribution 
functions for the proposed risk factors of the loss rate for  
Hedera, ECMP, and DCTCP. The proposed evaluation model 
has been built based on Monte Carlo simulation as a value at risk 
analysis model. The evaluation included an estimation of the 
probability distribution for risk factors based on Kolmogorov 
Smirnov and Anderson-Darling tests. Finding the probability 
distribution of such algorithms helps further mathematical 
analysis regarding elephant flow handling without conducting 
more practical experiments. The results of Hedera show that 
64% of the evaluated TCP elephant flows are exhibited to be lost 
112 MB/s with 95% of the confidence level, while ECMP lost 
67.8% with 116 MB/s at risk, and DCTCP lost 77% with 117 
MB/s. However, the throughput achieved by Hedera is not 
permanent due to the stochastic behavior of the traffic 
congestion. These risks have a direct influence on the status of 
data center applications in terms of flow completion time and 
throughput. However, the development of the flow scheduling 
techniques needs to have proper awareness in terms of flow risk 
analysis instead of accepting the simple average values of the 
results, especially when the samples are not large enough.  
Finally, further study is needed to evaluate more complicated 
data center workloads with real traces from data center 
applications to analyze more complex bottlenecks cases. 
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lowest with 112 MB/s for the total number of tested elephant 
flows appeared in Table 3.  The loss of the others, i.e., ECMP 
and DCTCP, were 116 and 117 MB/s, respectively. Mainly, 
these values represent the maximum value that will be under risk 
of losing.   

5. The probability distribution of the whole overload 
In this section, we present the probability distribution of the 

entire workload, i.e., 120 connections of each scenario for all 

algorithms. We evaluate the performance of DCTCP, ECMP, 
and Hedera in terms of throughput of elephant flows and flow 
completion time of mice flows. All figures show the fact that 
Hedera and ECMP have very similar performance regarding 
flow completion time of mice flows and the throughput of 
elephant flows. Where Hedera employs ECMP for forwarding 
the mice flows, and ECMP performs well when there are no 
collide on switch ports what makes its performance in terms of 
elephant flows throughput closely approaches that of Hedera as 
shown in Figure 8(a), 8(b), 8(c). On the other hand, figures 9(a), 
9(b), 9(c) depict the performance of DCTCP where its FCT of 
mice flows is more significant than that of Hedera and ECMP 
because of that DCTCP employs shallow threshold to trigger the 
marking event. Consequently, the transmission rate will be 
mitigated by sources where mice flow is delay-sensitive traffic, 
as well as elephant flows, have worse throughput than that of 
ECMP and Hedera where DCTCP provides flow control 
mechanisms, but it does not provide scheduling technique. 

 
 In a nutshell, Hedera achieved a lower loss rate than ECMP 
as expected, but with higher variance for the error factor. We can 
infer that this factor makes the Hedera does not much 
outperform over ECMP. As for the response time, Hedera and 
ECMP achieved better flow completion time due to the static 
hashing between every source and destination on the network. 
In the case of flow congestion control in DCTCP, it has achieved 
its best in the 2:1 scenario whereas it has many outlier results in 
the 1:1 scenario as depicted in Figure 3. This indicates that the 
algorithm suffers in case of high elephant flow loads. Regarding 
data center applications that demand high bandwidth and low 
latency, every TCP loss causes bursty retransmission and that 
what makes queues length of the data center switches bloat 
frequently. Therefore, applications like MapReduce cannot 
make incremental progress without limiting the number of 
contending flows. 
 Therefore, we suggest that some fairness should be 
considered by providing a balance between link utilization,  
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congestion control. As for the performance evaluation methods 
of new algorithms that handle traffic flows, we recommend 
considering the uncertainty behaviors of the tested network and 
predict their loss rates. To the best of our knowledge, most of 
the developed heuristic algorithms for flow scheduling are 
evaluated using the average values for the obtained data without 
employing the probability distribution function. Note that the 
expected value for random variables does not exist for some 
distributions that have a long tail [30]. Consequently, 
considering the average for any sample of the data may not 
actually describe the expected value of the measured data, 
especially if the number of samples is limited. Such as in the 
case of Hedera [12] and Mahout [15] where the average value is 
taken for different performance evaluation objectives without 
identifying the proper probability distribution. Nevertheless, the 
essence of the prediction produced by independent and random 
variables relies on current observations to predict future 
performance. Accordingly, the model and assumptions need to 
be accurate enough. 

V. CONCLUSIONS 
 In this paper, we empirically designed, implemented, and 
analyzed a new performance evaluation model for flow 
scheduling and flow congestion control algorithms used in data 
center networks based on multiple stochastic workloads to 
predict the value at risk of the elephant flows loss rate. The 

evaluation considers the proper probability distribution 
functions for the proposed risk factors of the loss rate for  
Hedera, ECMP, and DCTCP. The proposed evaluation model 
has been built based on Monte Carlo simulation as a value at risk 
analysis model. The evaluation included an estimation of the 
probability distribution for risk factors based on Kolmogorov 
Smirnov and Anderson-Darling tests. Finding the probability 
distribution of such algorithms helps further mathematical 
analysis regarding elephant flow handling without conducting 
more practical experiments. The results of Hedera show that 
64% of the evaluated TCP elephant flows are exhibited to be lost 
112 MB/s with 95% of the confidence level, while ECMP lost 
67.8% with 116 MB/s at risk, and DCTCP lost 77% with 117 
MB/s. However, the throughput achieved by Hedera is not 
permanent due to the stochastic behavior of the traffic 
congestion. These risks have a direct influence on the status of 
data center applications in terms of flow completion time and 
throughput. However, the development of the flow scheduling 
techniques needs to have proper awareness in terms of flow risk 
analysis instead of accepting the simple average values of the 
results, especially when the samples are not large enough.  
Finally, further study is needed to evaluate more complicated 
data center workloads with real traces from data center 
applications to analyze more complex bottlenecks cases. 

References 
[1] ‘Apache Hadoop’. [Online]. Available: http://hadoop.apache.org/.  

Fig. a Scenario 1:1 Fig. a Scenario 1:2 

 

Fig. 9 Flow Completion Time. 
of Mice Flows 

 

Fig. c Scenario 2:1 
Fig. a Scenario 1:1 Fig. b Scenario 1:2 

 
 

 Fig. 8 Throughput of elephant flows. 

Fig. c Scenario 2:1 Fig. b Scenario 1:2 Fig. a Scenario 1:1 

Fig. a Scenario 1:1 Fig. b Scenario 1:2 Fig. c Scenario 2:1 

congestion control. As for the performance evaluation methods 
of new algorithms that handle traffic flows, we recommend 
considering the uncertainty behaviors of the tested network and 
predict their loss rates. To the best of our knowledge, most of 
the developed heuristic algorithms for flow scheduling are 
evaluated using the average values for the obtained data without 
employing the probability distribution function. Note that the 
expected value for random variables does not exist for some 
distributions that have a long tail [30]. Consequently, 
considering the average for any sample of the data may not 
actually describe the expected value of the measured data, 
especially if the number of samples is limited. Such as in the 
case of Hedera [12] and Mahout [15] where the average value is 
taken for different performance evaluation objectives without 
identifying the proper probability distribution. Nevertheless, the 
essence of the prediction produced by independent and random 
variables relies on current observations to predict future 
performance. Accordingly, the model and assumptions need to 
be accurate enough. 

V. CONCLUSIONS 
 In this paper, we empirically designed, implemented, and 
analyzed a new performance evaluation model for flow 
scheduling and flow congestion control algorithms used in data 
center networks based on multiple stochastic workloads to 
predict the value at risk of the elephant flows loss rate. The 

evaluation considers the proper probability distribution 
functions for the proposed risk factors of the loss rate for  
Hedera, ECMP, and DCTCP. The proposed evaluation model 
has been built based on Monte Carlo simulation as a value at risk 
analysis model. The evaluation included an estimation of the 
probability distribution for risk factors based on Kolmogorov 
Smirnov and Anderson-Darling tests. Finding the probability 
distribution of such algorithms helps further mathematical 
analysis regarding elephant flow handling without conducting 
more practical experiments. The results of Hedera show that 
64% of the evaluated TCP elephant flows are exhibited to be lost 
112 MB/s with 95% of the confidence level, while ECMP lost 
67.8% with 116 MB/s at risk, and DCTCP lost 77% with 117 
MB/s. However, the throughput achieved by Hedera is not 
permanent due to the stochastic behavior of the traffic 
congestion. These risks have a direct influence on the status of 
data center applications in terms of flow completion time and 
throughput. However, the development of the flow scheduling 
techniques needs to have proper awareness in terms of flow risk 
analysis instead of accepting the simple average values of the 
results, especially when the samples are not large enough.  
Finally, further study is needed to evaluate more complicated 
data center workloads with real traces from data center 
applications to analyze more complex bottlenecks cases. 

References 
[1] ‘Apache Hadoop’. [Online]. Available: http://hadoop.apache.org/.  

Fig. a Scenario 1:1 Fig. a Scenario 1:2 

 

Fig. 9 Flow Completion Time. 
of Mice Flows 

 

Fig. c Scenario 2:1 
Fig. a Scenario 1:1 Fig. b Scenario 1:2 

 
 

 Fig. 8 Throughput of elephant flows. 

Fig. c Scenario 2:1 Fig. b Scenario 1:2 Fig. a Scenario 1:1 

Fig. a Scenario 1:1 Fig. b Scenario 1:2 Fig. c Scenario 2:1 

References

	 [1]	 ‘Apache Hadoop’. [Online]. Available: http://hadoop.apache.org/.
	 [2]	 J. Dean and S. Ghemawat, ‘MapReduce: simplified data processing on 

large clusters’, Commun. ACM, vol. 53, no. 1, pp. 107–113, Jan. 2008.
	 [3]	 J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, ‘HyperX: 

topology, routing, and packaging of efficient large-scale networks’, in 
Prof. of Conf. on High Performance Computing Networking, Storage and 
Analysis, 2009, p. article no. 41. DOI: 10.21276/ijre.2018.5.5.4

	 [4]	 J. Kim, W. Dally, and D. Abts, ‘Flattened butterfly: a cost-efficient topology 
for high-radix networks’, ACM SIGARCH Comput. Archit. News, vol. 35, 
no. 2, pp. 126–137, Jun. 2007. DOI: 10.1145/1273440.1250679

	 [5]	 M. Al-Fares, A. Loukissas, and A. Vahdat, ‘A scalable, commodity data 
center network architecture’, Proc. ACM SIGCOMM 2008 Conf. Data 
Commun. - SIGCOMM ’08, p. 63, 2008. DOI: 10.1145/1402958.1402967

	 [6]	 J. A. Rashid, ‘Sorted-GFF: An efficient large flows placing mechanism in 
software defined network datacenter’, Karbala Int. J. Mod. Sci., vol. 4, no. 
3, pp. 313–331, 2018. DOI: 10.1016/j.kijoms.2018.06.003

	 [7]	 T. Benson, A. Akella, and D. A. Maltz, ‘Network traffic characteristics of 
data centers in the wild’, in Proceedings of the 10th annual conference on 
Internet measurement - IMC ’10, 2010, p. 267. 

		  DOI: 10.1145/1879141.1879175

congestion control. As for the performance evaluation methods 
of new algorithms that handle traffic flows, we recommend 
considering the uncertainty behaviors of the tested network and 
predict their loss rates. To the best of our knowledge, most of 
the developed heuristic algorithms for flow scheduling are 
evaluated using the average values for the obtained data without 
employing the probability distribution function. Note that the 
expected value for random variables does not exist for some 
distributions that have a long tail [30]. Consequently, 
considering the average for any sample of the data may not 
actually describe the expected value of the measured data, 
especially if the number of samples is limited. Such as in the 
case of Hedera [12] and Mahout [15] where the average value is 
taken for different performance evaluation objectives without 
identifying the proper probability distribution. Nevertheless, the 
essence of the prediction produced by independent and random 
variables relies on current observations to predict future 
performance. Accordingly, the model and assumptions need to 
be accurate enough. 

V. CONCLUSIONS 
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analyzed a new performance evaluation model for flow 
scheduling and flow congestion control algorithms used in data 
center networks based on multiple stochastic workloads to 
predict the value at risk of the elephant flows loss rate. The 

evaluation considers the proper probability distribution 
functions for the proposed risk factors of the loss rate for  
Hedera, ECMP, and DCTCP. The proposed evaluation model 
has been built based on Monte Carlo simulation as a value at risk 
analysis model. The evaluation included an estimation of the 
probability distribution for risk factors based on Kolmogorov 
Smirnov and Anderson-Darling tests. Finding the probability 
distribution of such algorithms helps further mathematical 
analysis regarding elephant flow handling without conducting 
more practical experiments. The results of Hedera show that 
64% of the evaluated TCP elephant flows are exhibited to be lost 
112 MB/s with 95% of the confidence level, while ECMP lost 
67.8% with 116 MB/s at risk, and DCTCP lost 77% with 117 
MB/s. However, the throughput achieved by Hedera is not 
permanent due to the stochastic behavior of the traffic 
congestion. These risks have a direct influence on the status of 
data center applications in terms of flow completion time and 
throughput. However, the development of the flow scheduling 
techniques needs to have proper awareness in terms of flow risk 
analysis instead of accepting the simple average values of the 
results, especially when the samples are not large enough.  
Finally, further study is needed to evaluate more complicated 
data center workloads with real traces from data center 
applications to analyze more complex bottlenecks cases. 
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