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Abstract — In modern synthetic-aperture radars, signals with 

the linear frequency modulation (LFM) have found the practical 
application as probing signals. Utilization of LFM-signals was 
formed historically since they were the first wideband signals, 
which found application in radar technology, and their 
properties have studied a long time ago and in detail. However, 
the LFM-signals have the “splay” ambiguity function, which 
results the ambiguity in range. The question of the probing signal 
choice is also relevant in connection with the problem of weak 
echoes detection, which are closed by the side lobes of ACF of the 
strong echoes. In this paper, the polyphase (p-phase, where p is 
the prime integer number) radar signal, which has an area of 
zero side lobes in a vicinity of the central peak of autocorrelation 
function, has been synthesized. It is shown that this signal 
represents a train from p coherent phase-code-shift keyed pulses, 
which are coded by complementary sequences of the p-ary D-
code. The method of ensemble set formation of the p-ary D-code 
for signal synthesis is suggested. Correlation characteristics of 
the synthesized signal are discussed. The compression algorithm 
of this signal is considered including in its structure the combined 
algorithm of Vilenkin-Chrestenson and Fourier fast transform. 
 

Index Terms — Autocorrelation function, complementary 
sequences, polyphase signal, pulse train, Vilenkin-Chrestenson 
functions, zero autocorrelation zone. 

I. INTRODUCTION 
or accurate determination of the distance (range) and 
speed of a variety of small-size space objects on the near-
Earth orbit, for resolution of separate elements of complex 

space objects and also for resolution of small-size objects on 
the Earth surface, it is necessary to use the wideband probing 
signals, which have high resolution on the slant range 

( )s2r c F∆ = , where sF  is the signal spectrum width, and с is 
the radial speed. To obtain the high angular resolution ∆θ  of 
Earth surface elements and targets located on this surface, 
radars are used, which are installed on the quickly-moved 
aircraft-space carriers with the direct aperture synthesis. High 
resolutions on the slant and transverse 0r r⊥∆ = ∆θ  ranges, 
where 0r  is the slant range to observing resolution element, 
permit to obtained of two-dimensional target patterns in 
distance. Ensuring of the high angular resolution of small-size 
space objects or elements of complex space objects is based 
on the effect of the inverse synthesis of the antenna aperture 
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[1]. For resolution on the Doppler frequency equaled to 
D s1F T∆ = , where sT  is the probing signal duration (time of 

coherent accumulation), the angular resolution 
( )0 D2 sinV F∆ = ∆θ λ θ  is provided, where V is the ground 

speed of object motion, 0θ  is the angle between the ground 
speed vector and the pointing direction. The transverse 
resolution is provided by turning of the target velocity vector 
with regard to the pointing direction and is realized by 
processing of the sequence of complex samples, which arrive 
from each target element resolved on the slant range. 

It follows from the above-mentioned that for providing 
of high resolutions on the slant r∆  and transverse r⊥∆  ranges, 
it is necessary to use the probing signals with the wide 
spectrum and the long duration. 

As research shows, for these purposes can use the train 
of linear-frequency-modulated (LFM) pulses with the high 
repetition frequency [2, 6]. Nevertheless, as we know, the 
LFM signals have the “splay” ambiguity function, which 
results the ambiguity in range. The ambiguity peaks are 
appeared on autocorrelation function (ACF) of the train of 
LFM pulses. 

The question of the probing signal choice is also relevant 
in connection with the problem of weak echoes detection, 
which are closed by the side lobes of ACF of the strong 
echoes. To suppress the side lobes of ACF echoes, one can 
apply the intra-pulse and inter-pulse weighting [3, 4]. 
However, at that, the spreading of the main ACF lobe occurs 
together with the loss in SNR. 

To solve the stated tasks, we can use the phase-code-shift 
keyed (PCSK) signals, which are free from shortcomings of 
FM and FSK signals. In [4 - 7], the radar PCSK signals are 
considered, which have the zero correlation zone in the region 
of the central peak of aperiodic ACF (Zero Autocorrelation 
Zone - ZACZ). These signals represent the periodic sequence 
from 1M   coherent pulses coding (or phase-shift keyed) by 
the ensembles of complementary or orthogonal sequences. 
PCSK signals with ZACZ solve the problem of weak echo 
detection on the background of strong echoes. However, the 
relative ZACZ width of these signals is 
 

( ) ( )( )1 1 1 1.Z L q q Mε = = − − +   (1) 
 
where Z is the ZACZ width; L is the signal duration [8]. 

In addition, at formation and processing of the PCSK 
signal with the large number of pulses in the train, it is 
difficult enough to keep their coherence. The polyphase PCSK 
signals discussed in [4 - 7] (Frank or P4), also have the large 
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alphabet of phases equaled to the number of contiguous time 
slices (each of duration 0T ) in the pulse. 

Recently there were considerably great attention attracted 
to reduction of the detection possibility of radar stations (RS) 
by the means of the radio-electronic reconnaissance and by the 
self-guided anti-radar missiles [9 - 11]. In RS with low 
probability of emission detection, the special measures are 
anticipated to increase of the RS operation secrecy. Among 
them: the low spectral density of emission, variation of 
probing signal parameters according the random law, 
operation in the wide frequency band, control of the emission 
power. Applied wideband probing signals – LFM signals or 
bi-phase PCSK signals – do not provide the RS operation 
secrecy. So, LFM signals can be easily recognized by means 
of reconnaissance on the phase variation speed; while bi-phase 
PCSK signals – with the help of quadratic detection circuits. 
The emission secrecy can be increased by a great extent 
through the utilization of the polyphase PCSM signals [11]. 
Polyphase pulse signals can be formed by the wide set of p-ary 
codes and differ by the low spectral density and the low level 
of ACF side lobes. 

In this paper, to solve problems of high resolution of the 
variety of small-size space objects on the near-Earth orbit, the 
separate elements of the complicated space object, as well as 
the small-size objects on the Earth surface, the polyphase (p-
phase, where p is the prime integer number) radar signal is 
synthesized, which has ZACZ. This signal represented the 
train from p coherent PCSK pulses coding by complementary 
sequences of the p-ary D-code [13, 14]. It has low pulse 
number p in the train, the small alphabet of phases equaled to 
p, and an approach to code formation allows usage of the fast 
transform algorithm for its compression in the matched filter. 

II. THE SYNTHESIS OF THE P-ARY D-CODE AND THE 
POLYPHASE COHERENT ADDITIONAL SIGNAL 

Sequences { } { } { } { }1 2, ,..., ,..., ,i p
n n n nd d d d  ( )1,2,...,n N=  of 

the length kN p= , where 2k ≥  is the integer number, are 
called complementary [6, 12, 13] if 
 

( )
1 2

; 0
... ...

0; 1 1 ,
i p

m m m m

pN m ,
r r r r

m ,..., N
=+ + + + + =  = ± ± −

 (2) 

 

where , *

1

N
i i i i i

m m n n m
n m

r r d d −
= +

= = ∑  is the aperiodic ACF of the 

sequence { }ind , * is the complex conjugation operation. 

N p  sets of complementary (additional) sequences with 
the N length satisfying to (2) form a matrix of p-phase 
additional sequences (MAS) with dimensions N N× . In 
publications this matrix is called the ensemble of Golay 
complimentary sequences at 2p =  [6, 12]. We introduce the 
generalized concept of the Golay sequences for 2p >  [14]. 

Let , 1

N

N i nd=D   be a matrix of p-ary D-codes [13, 14], 

, 0,1,..., 1i nd p= − ; kN p= , p is the prime number. Then 

MAS of the k-th order (dimensions N N× ) will have a form: 
 

, 1
,

N
N i nd=D  , ,

2exp .i n i nd j d
p
π 

=  
 

  (3) 

 

Let us call sequences 1, , 1

Ni
N i n n

d
=

=D  and 1, , 1

Nj
N j n n

d
=

=D  p-

paired if 
 
( ) ( ) ( )1 1 ,

p p p
i j− ⊕ − = ∆  , 1, 2, ..., ,i j N=  (4) 

 
where i, j are numbers of sequences in the D-code or numbers 
of MAS rows; ( ) p

a  is a number a in the p-ary form; ⊕  is the 

operation of adding modulo p; 1kp −∆ = . 
p-paired sequences are complimentary, i.e., for them (2) 

holds true. 

Let ND  be MAS (3), and , 1

N
N i nh=H  be a matrix of the 

system of Vilenkin-Chrestenson-Kronecker (VC-Kronecker) 
functions [15]. It is known that the system of VC-Kronecker is 
multiplicative Abelian group [16]. Since the variety consisting 
of the MAS rows is the adjacent class in the sub-group, 
elements of which are rows of the VC-Kronecker matrix, and 
the first MAS row is the leader of the adjacent class, then we 
may write: 
 

,N N N=D H d  (5) 
 
where { }1,1 1,2 1, 1,diag , ,..., ,...,N n Nd d d d=d  is the diagonal 

matrix with elements from the first row of ND . 
At 2p = , the VC-Kronecker matrix is transformed into the 

Hadamard matrix [17]. 
It follows from (5) that to construct of MAS ND , it is 

necessary to form its first row 1
1,ND . 

Elements of the MAS first row are defined as follows [18]: 
 

1

1, 1 1
1

2exp ,
i

k

y i l
i

d j y y
p
π −

+ +
=

 
=  

 
∑  (6) 

 
where 1y n+ =  is a number of the MAS column; 

( ) ( )1 1... ...k k ipy y y y y−=  is a number of the MAS 

column in the p-ary form; 0, 1, ..., 1iy p= − ; 
0,1,..., 1ky p= − ; 1, 2, ...,il i= ; 1, 2, ..., 1i k= − ; 

1 2 2k kl l l− −≠ ≠ ≠ . 
Adding in (6) is performed modulo p. This approach allows 

formation of 22k−  ensembles of the D-code of k-th order. Let 
further γ  - number of ensembles of the D-code of k-th order, 
i.e. 22k−=γ . 

A. Example formation of binary D-code 
Consider an example of the formation of a binary D-code of 

size 16 16×  [17]. The D-code of order 4k =  has 
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22 4kγ −= =  ensembles. 
At 4k = , we obtain: 

1 2 31, 2, 3 1 ; 1, 2 ; 1, 2, 3i l l l= ⇒ = = =  

1 2 3 4, , , 0, 1y y y y = ; 0, 1, ..., 15y = ; 

( ) ( )4 3 2 12y y y y y=  
In this case, the condition 3 2l l≠  must be satisfied. 

Let us write the sum from (6) for four ensembles: 
3

1, 1 1 2 1 3 1 4 2
1

iy i l
i

d y y y y y y y y+ +
=

= = + +∑ ; 

3

1, 1 1 2 1 3 1 4 3
1

iy i l
i

d y y y y y y y y+ +
=

= = + +∑ ; 

3

1, 1 1 2 1 3 2 4 1
1

iy i l
i

d y y y y y y y y+ +
=

= = + +∑ ; 

3

1, 1 1 2 1 3 2 4 3
1

iy i l
i

d y y y y y y y y+ +
=

= = + +∑ . 

Having performed additions for all columns of the CSM, 
from (6) we obtain the first sequences of four D-code 
ensembles of order 4k = . 

(0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1); 
(0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1); 
(0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1); 
(0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1). 

The remaining rows of the D-code matrix are obtained from 
the first row by element-wise modulo 2 addition with the 
corresponding rows of the Hadamard matrix. 

B. Example formation of ternary D-code 
Consider now an example of the formation of the ternary D-

code of order 3k =  with the length of code words 
33 27N = = , which allows you to form a 3 22 2γ −= =  

ensembles of D-code using method (5) - (6) [18]. 
We form the first rows of two different matrices 

(ensembles) of the D-code of order 3k = . The remaining 
rows of the D-code matrix are obtained from the first row by 
element-wise addition modulo p with the corresponding rows 
of the VC-Kronecker matrix. 

In this case, from (6) we obtain: 

( )1 2

2

1, 1 1 2 3
1

;
liy i l l

i
d y y y y y y+ +

=

= = +∑  

( ) ( )3 2 1 1 2 33 ; , , 0,1,2; 0,1,...,26;y y y y y y y y= = =  

1 21,2; 1; 1,2.i l l= = =  
From where for two ensembles we obtain: 

1, 1 2 1 3 1yd y y y y+ = +  and 1, 1 2 1 3 2yd y y y y+ = + . 
At 0,1,...,26y = , for the first ensemble we obtain the 

following first row of the matrix of the D-code: 
(0 0 0 0 1 2 0 2 1 0 1 2 0 2 1 0 0 0 0 2 1 0 0 0 0 1 2). 

For the second ensemble, the first row of the D-code matrix 
is as follows: 

(0 0 0 0 1 2 0 2 1 0 0 0 1 2 0 2 1 0 0 0 0 2 0 1 1 0 2). 

C. Determination of coherent additional signal 
Let us refer as the polyphase coherent additional signal 

(CAS) of the train of p PCSK pulses encoded by p-paired 

sequences of the D-code [14]. We call this signal “coherent” 
because the coherence of PCSK pulses must be maintained in 
the train. In addition, we call it “additional” because the pulses 
are encoded by complementary (additional) sequences. 

The analytical expression of the complex envelope (CE) of 
CAS has a form: 
 

( ) ( )( )( )0 0 ,
1 1

1 1 ,
p N

i n
i n

S t S t n i Nq T d
= =

= − + − −∑∑  (7) 

 

where ( )( ) ( ) 0 0
0 0

1, 1
1

0, at other 
n T t nT

S t n T
t

 − ≤ ≤− − = 


 is the 

envelope of the n–th slice of CAS; 0T  is the slice duration; 

2q ≥  is the off-duty factor; , 1,1

N i
i n Nd = D  are elements of i-th 

p-paired sequence. 
CE of CAS in the vector form will have the following form: 

 

( )( ) ( ) ( )(
( ) )

1 2
1, 1,1, 1 1, 11, 1 1

1, 1,1, 1

...

... ... ,

N NN q N qN p q

i p
N NN q

− −− +

−

=S D 0 D 0

D 0 D
 (8) 

 
where ( ) ( )( )1 21, 1 10 0 ... 0 ... 0nN q N q− −=0  is the zero 

vector- row with length ( )1N q − . 

III. CORRELATION CHARACTERISTICS OF POLYPHASE 
COHERENT ADDITIONAL SIGNALS 

An analysis of CAS correlation characteristics is performed 
in [14, 17]. 

The aperiodic cross-correlation function (CCF) of 
sequences { }ind  and { }jnd  is defined as: 
 

, *

1

N
i j i j

m n n m
n m

r d d −
= +

= ∑  at ;i j≠  ( )0, 1 1 ,m ,..., N= ± ± −  (9) 

 
where , 0i j

mr =  at 0,m =  because complimentary sequences 
built according to (5) – (6), are orthogonal. 

In the vector form, ACF of the polyphase CAS will have a 
form [14]: 
 

( )( )

( )

( )

( )

( )

1
1,

1,2 11,2 1 1 1
1

1
, 1

1,2 1 1,2 11, 2
1 1

1
, , 1

1,2 1 1,2 11, 2
1 1

....

... 0 ...

... 0 ... ,

p p
s i p i

NN p q
i

p p
i i i

N NN q
i i

p pp j
i i j i i p

N NN q
i i

− −
+ −

−− + −
=

−
+

− −−
= =

− −−
+ + −

− −−
= =


= 






∑

∑ ∑

∑ ∑

R R

R 0 R

R 0 R

 (10) 

 
where ( ) ( )( )1 21, 2 20 0 ... 0 ... 0nN q N q− −=0  is the zero 

vector-row with the length ( )2N q − ; 
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Abstract — In modern synthetic-aperture radars, signals with 

the linear frequency modulation (LFM) have found the practical 
application as probing signals. Utilization of LFM-signals was 
formed historically since they were the first wideband signals, 
which found application in radar technology, and their 
properties have studied a long time ago and in detail. However, 
the LFM-signals have the “splay” ambiguity function, which 
results the ambiguity in range. The question of the probing signal 
choice is also relevant in connection with the problem of weak 
echoes detection, which are closed by the side lobes of ACF of the 
strong echoes. In this paper, the polyphase (p-phase, where p is 
the prime integer number) radar signal, which has an area of 
zero side lobes in a vicinity of the central peak of autocorrelation 
function, has been synthesized. It is shown that this signal 
represents a train from p coherent phase-code-shift keyed pulses, 
which are coded by complementary sequences of the p-ary D-
code. The method of ensemble set formation of the p-ary D-code 
for signal synthesis is suggested. Correlation characteristics of 
the synthesized signal are discussed. The compression algorithm 
of this signal is considered including in its structure the combined 
algorithm of Vilenkin-Chrestenson and Fourier fast transform. 
 

Index Terms — Autocorrelation function, complementary 
sequences, polyphase signal, pulse train, Vilenkin-Chrestenson 
functions, zero autocorrelation zone. 

I. INTRODUCTION 
or accurate determination of the distance (range) and 
speed of a variety of small-size space objects on the near-
Earth orbit, for resolution of separate elements of complex 

space objects and also for resolution of small-size objects on 
the Earth surface, it is necessary to use the wideband probing 
signals, which have high resolution on the slant range 

( )s2r c F∆ = , where sF  is the signal spectrum width, and с is 
the radial speed. To obtain the high angular resolution ∆θ  of 
Earth surface elements and targets located on this surface, 
radars are used, which are installed on the quickly-moved 
aircraft-space carriers with the direct aperture synthesis. High 
resolutions on the slant and transverse 0r r⊥∆ = ∆θ  ranges, 
where 0r  is the slant range to observing resolution element, 
permit to obtained of two-dimensional target patterns in 
distance. Ensuring of the high angular resolution of small-size 
space objects or elements of complex space objects is based 
on the effect of the inverse synthesis of the antenna aperture 
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[1]. For resolution on the Doppler frequency equaled to 
D s1F T∆ = , where sT  is the probing signal duration (time of 

coherent accumulation), the angular resolution 
( )0 D2 sinV F∆ = ∆θ λ θ  is provided, where V is the ground 

speed of object motion, 0θ  is the angle between the ground 
speed vector and the pointing direction. The transverse 
resolution is provided by turning of the target velocity vector 
with regard to the pointing direction and is realized by 
processing of the sequence of complex samples, which arrive 
from each target element resolved on the slant range. 

It follows from the above-mentioned that for providing 
of high resolutions on the slant r∆  and transverse r⊥∆  ranges, 
it is necessary to use the probing signals with the wide 
spectrum and the long duration. 

As research shows, for these purposes can use the train 
of linear-frequency-modulated (LFM) pulses with the high 
repetition frequency [2, 6]. Nevertheless, as we know, the 
LFM signals have the “splay” ambiguity function, which 
results the ambiguity in range. The ambiguity peaks are 
appeared on autocorrelation function (ACF) of the train of 
LFM pulses. 

The question of the probing signal choice is also relevant 
in connection with the problem of weak echoes detection, 
which are closed by the side lobes of ACF of the strong 
echoes. To suppress the side lobes of ACF echoes, one can 
apply the intra-pulse and inter-pulse weighting [3, 4]. 
However, at that, the spreading of the main ACF lobe occurs 
together with the loss in SNR. 

To solve the stated tasks, we can use the phase-code-shift 
keyed (PCSK) signals, which are free from shortcomings of 
FM and FSK signals. In [4 - 7], the radar PCSK signals are 
considered, which have the zero correlation zone in the region 
of the central peak of aperiodic ACF (Zero Autocorrelation 
Zone - ZACZ). These signals represent the periodic sequence 
from 1M   coherent pulses coding (or phase-shift keyed) by 
the ensembles of complementary or orthogonal sequences. 
PCSK signals with ZACZ solve the problem of weak echo 
detection on the background of strong echoes. However, the 
relative ZACZ width of these signals is 
 

( ) ( )( )1 1 1 1.Z L q q Mε = = − − +   (1) 
 
where Z is the ZACZ width; L is the signal duration [8]. 

In addition, at formation and processing of the PCSK 
signal with the large number of pulses in the train, it is 
difficult enough to keep their coherence. The polyphase PCSK 
signals discussed in [4 - 7] (Frank or P4), also have the large 
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alphabet of phases equaled to the number of contiguous time 
slices (each of duration 0T ) in the pulse. 

Recently there were considerably great attention attracted 
to reduction of the detection possibility of radar stations (RS) 
by the means of the radio-electronic reconnaissance and by the 
self-guided anti-radar missiles [9 - 11]. In RS with low 
probability of emission detection, the special measures are 
anticipated to increase of the RS operation secrecy. Among 
them: the low spectral density of emission, variation of 
probing signal parameters according the random law, 
operation in the wide frequency band, control of the emission 
power. Applied wideband probing signals – LFM signals or 
bi-phase PCSK signals – do not provide the RS operation 
secrecy. So, LFM signals can be easily recognized by means 
of reconnaissance on the phase variation speed; while bi-phase 
PCSK signals – with the help of quadratic detection circuits. 
The emission secrecy can be increased by a great extent 
through the utilization of the polyphase PCSM signals [11]. 
Polyphase pulse signals can be formed by the wide set of p-ary 
codes and differ by the low spectral density and the low level 
of ACF side lobes. 

In this paper, to solve problems of high resolution of the 
variety of small-size space objects on the near-Earth orbit, the 
separate elements of the complicated space object, as well as 
the small-size objects on the Earth surface, the polyphase (p-
phase, where p is the prime integer number) radar signal is 
synthesized, which has ZACZ. This signal represented the 
train from p coherent PCSK pulses coding by complementary 
sequences of the p-ary D-code [13, 14]. It has low pulse 
number p in the train, the small alphabet of phases equaled to 
p, and an approach to code formation allows usage of the fast 
transform algorithm for its compression in the matched filter. 

II. THE SYNTHESIS OF THE P-ARY D-CODE AND THE 
POLYPHASE COHERENT ADDITIONAL SIGNAL 

Sequences { } { } { } { }1 2, ,..., ,..., ,i p
n n n nd d d d  ( )1,2,...,n N=  of 

the length kN p= , where 2k ≥  is the integer number, are 
called complementary [6, 12, 13] if 
 

( )
1 2

; 0
... ...

0; 1 1 ,
i p

m m m m

pN m ,
r r r r

m ,..., N
=+ + + + + =  = ± ± −

 (2) 

 

where , *

1

N
i i i i i

m m n n m
n m

r r d d −
= +

= = ∑  is the aperiodic ACF of the 

sequence { }ind , * is the complex conjugation operation. 

N p  sets of complementary (additional) sequences with 
the N length satisfying to (2) form a matrix of p-phase 
additional sequences (MAS) with dimensions N N× . In 
publications this matrix is called the ensemble of Golay 
complimentary sequences at 2p =  [6, 12]. We introduce the 
generalized concept of the Golay sequences for 2p >  [14]. 

Let , 1

N

N i nd=D   be a matrix of p-ary D-codes [13, 14], 

, 0,1,..., 1i nd p= − ; kN p= , p is the prime number. Then 

MAS of the k-th order (dimensions N N× ) will have a form: 
 

, 1
,

N
N i nd=D  , ,

2exp .i n i nd j d
p
π 

=  
 

  (3) 

 

Let us call sequences 1, , 1

Ni
N i n n

d
=

=D  and 1, , 1

Nj
N j n n

d
=

=D  p-

paired if 
 
( ) ( ) ( )1 1 ,

p p p
i j− ⊕ − = ∆  , 1, 2, ..., ,i j N=  (4) 

 
where i, j are numbers of sequences in the D-code or numbers 
of MAS rows; ( ) p

a  is a number a in the p-ary form; ⊕  is the 

operation of adding modulo p; 1kp −∆ = . 
p-paired sequences are complimentary, i.e., for them (2) 

holds true. 

Let ND  be MAS (3), and , 1

N
N i nh=H  be a matrix of the 

system of Vilenkin-Chrestenson-Kronecker (VC-Kronecker) 
functions [15]. It is known that the system of VC-Kronecker is 
multiplicative Abelian group [16]. Since the variety consisting 
of the MAS rows is the adjacent class in the sub-group, 
elements of which are rows of the VC-Kronecker matrix, and 
the first MAS row is the leader of the adjacent class, then we 
may write: 
 

,N N N=D H d  (5) 
 
where { }1,1 1,2 1, 1,diag , ,..., ,...,N n Nd d d d=d  is the diagonal 

matrix with elements from the first row of ND . 
At 2p = , the VC-Kronecker matrix is transformed into the 

Hadamard matrix [17]. 
It follows from (5) that to construct of MAS ND , it is 

necessary to form its first row 1
1,ND . 

Elements of the MAS first row are defined as follows [18]: 
 

1

1, 1 1
1

2exp ,
i

k

y i l
i

d j y y
p
π −

+ +
=

 
=  

 
∑  (6) 

 
where 1y n+ =  is a number of the MAS column; 

( ) ( )1 1... ...k k ipy y y y y−=  is a number of the MAS 

column in the p-ary form; 0, 1, ..., 1iy p= − ; 
0,1,..., 1ky p= − ; 1, 2, ...,il i= ; 1, 2, ..., 1i k= − ; 

1 2 2k kl l l− −≠ ≠ ≠ . 
Adding in (6) is performed modulo p. This approach allows 

formation of 22k−  ensembles of the D-code of k-th order. Let 
further γ  - number of ensembles of the D-code of k-th order, 
i.e. 22k−=γ . 

A. Example formation of binary D-code 
Consider an example of the formation of a binary D-code of 

size 16 16×  [17]. The D-code of order 4k =  has 
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alphabet of phases equaled to the number of contiguous time 
slices (each of duration 0T ) in the pulse. 

Recently there were considerably great attention attracted 
to reduction of the detection possibility of radar stations (RS) 
by the means of the radio-electronic reconnaissance and by the 
self-guided anti-radar missiles [9 - 11]. In RS with low 
probability of emission detection, the special measures are 
anticipated to increase of the RS operation secrecy. Among 
them: the low spectral density of emission, variation of 
probing signal parameters according the random law, 
operation in the wide frequency band, control of the emission 
power. Applied wideband probing signals – LFM signals or 
bi-phase PCSK signals – do not provide the RS operation 
secrecy. So, LFM signals can be easily recognized by means 
of reconnaissance on the phase variation speed; while bi-phase 
PCSK signals – with the help of quadratic detection circuits. 
The emission secrecy can be increased by a great extent 
through the utilization of the polyphase PCSM signals [11]. 
Polyphase pulse signals can be formed by the wide set of p-ary 
codes and differ by the low spectral density and the low level 
of ACF side lobes. 

In this paper, to solve problems of high resolution of the 
variety of small-size space objects on the near-Earth orbit, the 
separate elements of the complicated space object, as well as 
the small-size objects on the Earth surface, the polyphase (p-
phase, where p is the prime integer number) radar signal is 
synthesized, which has ZACZ. This signal represented the 
train from p coherent PCSK pulses coding by complementary 
sequences of the p-ary D-code [13, 14]. It has low pulse 
number p in the train, the small alphabet of phases equaled to 
p, and an approach to code formation allows usage of the fast 
transform algorithm for its compression in the matched filter. 

II. THE SYNTHESIS OF THE P-ARY D-CODE AND THE 
POLYPHASE COHERENT ADDITIONAL SIGNAL 

Sequences { } { } { } { }1 2, ,..., ,..., ,i p
n n n nd d d d  ( )1,2,...,n N=  of 

the length kN p= , where 2k ≥  is the integer number, are 
called complementary [6, 12, 13] if 
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sequence { }ind , * is the complex conjugation operation. 

N p  sets of complementary (additional) sequences with 
the N length satisfying to (2) form a matrix of p-phase 
additional sequences (MAS) with dimensions N N× . In 
publications this matrix is called the ensemble of Golay 
complimentary sequences at 2p =  [6, 12]. We introduce the 
generalized concept of the Golay sequences for 2p >  [14]. 

Let , 1

N

N i nd=D   be a matrix of p-ary D-codes [13, 14], 
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where i, j are numbers of sequences in the D-code or numbers 
of MAS rows; ( ) p

a  is a number a in the p-ary form; ⊕  is the 

operation of adding modulo p; 1kp −∆ = . 
p-paired sequences are complimentary, i.e., for them (2) 

holds true. 

Let ND  be MAS (3), and , 1

N
N i nh=H  be a matrix of the 

system of Vilenkin-Chrestenson-Kronecker (VC-Kronecker) 
functions [15]. It is known that the system of VC-Kronecker is 
multiplicative Abelian group [16]. Since the variety consisting 
of the MAS rows is the adjacent class in the sub-group, 
elements of which are rows of the VC-Kronecker matrix, and 
the first MAS row is the leader of the adjacent class, then we 
may write: 
 

,N N N=D H d  (5) 
 
where { }1,1 1,2 1, 1,diag , ,..., ,...,N n Nd d d d=d  is the diagonal 

matrix with elements from the first row of ND . 
At 2p = , the VC-Kronecker matrix is transformed into the 

Hadamard matrix [17]. 
It follows from (5) that to construct of MAS ND , it is 

necessary to form its first row 1
1,ND . 

Elements of the MAS first row are defined as follows [18]: 
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where 1y n+ =  is a number of the MAS column; 

( ) ( )1 1... ...k k ipy y y y y−=  is a number of the MAS 

column in the p-ary form; 0, 1, ..., 1iy p= − ; 
0,1,..., 1ky p= − ; 1, 2, ...,il i= ; 1, 2, ..., 1i k= − ; 

1 2 2k kl l l− −≠ ≠ ≠ . 
Adding in (6) is performed modulo p. This approach allows 

formation of 22k−  ensembles of the D-code of k-th order. Let 
further γ  - number of ensembles of the D-code of k-th order, 
i.e. 22k−=γ . 

A. Example formation of binary D-code 
Consider an example of the formation of a binary D-code of 

size 16 16×  [17]. The D-code of order 4k =  has 
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alphabet of phases equaled to the number of contiguous time 
slices (each of duration 0T ) in the pulse. 

Recently there were considerably great attention attracted 
to reduction of the detection possibility of radar stations (RS) 
by the means of the radio-electronic reconnaissance and by the 
self-guided anti-radar missiles [9 - 11]. In RS with low 
probability of emission detection, the special measures are 
anticipated to increase of the RS operation secrecy. Among 
them: the low spectral density of emission, variation of 
probing signal parameters according the random law, 
operation in the wide frequency band, control of the emission 
power. Applied wideband probing signals – LFM signals or 
bi-phase PCSK signals – do not provide the RS operation 
secrecy. So, LFM signals can be easily recognized by means 
of reconnaissance on the phase variation speed; while bi-phase 
PCSK signals – with the help of quadratic detection circuits. 
The emission secrecy can be increased by a great extent 
through the utilization of the polyphase PCSM signals [11]. 
Polyphase pulse signals can be formed by the wide set of p-ary 
codes and differ by the low spectral density and the low level 
of ACF side lobes. 

In this paper, to solve problems of high resolution of the 
variety of small-size space objects on the near-Earth orbit, the 
separate elements of the complicated space object, as well as 
the small-size objects on the Earth surface, the polyphase (p-
phase, where p is the prime integer number) radar signal is 
synthesized, which has ZACZ. This signal represented the 
train from p coherent PCSK pulses coding by complementary 
sequences of the p-ary D-code [13, 14]. It has low pulse 
number p in the train, the small alphabet of phases equaled to 
p, and an approach to code formation allows usage of the fast 
transform algorithm for its compression in the matched filter. 

II. THE SYNTHESIS OF THE P-ARY D-CODE AND THE 
POLYPHASE COHERENT ADDITIONAL SIGNAL 
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the N length satisfying to (2) form a matrix of p-phase 
additional sequences (MAS) with dimensions N N× . In 
publications this matrix is called the ensemble of Golay 
complimentary sequences at 2p =  [6, 12]. We introduce the 
generalized concept of the Golay sequences for 2p >  [14]. 

Let , 1
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N i nd=D   be a matrix of p-ary D-codes [13, 14], 
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where i, j are numbers of sequences in the D-code or numbers 
of MAS rows; ( ) p

a  is a number a in the p-ary form; ⊕  is the 

operation of adding modulo p; 1kp −∆ = . 
p-paired sequences are complimentary, i.e., for them (2) 

holds true. 

Let ND  be MAS (3), and , 1
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N i nh=H  be a matrix of the 

system of Vilenkin-Chrestenson-Kronecker (VC-Kronecker) 
functions [15]. It is known that the system of VC-Kronecker is 
multiplicative Abelian group [16]. Since the variety consisting 
of the MAS rows is the adjacent class in the sub-group, 
elements of which are rows of the VC-Kronecker matrix, and 
the first MAS row is the leader of the adjacent class, then we 
may write: 
 

,N N N=D H d  (5) 
 
where { }1,1 1,2 1, 1,diag , ,..., ,...,N n Nd d d d=d  is the diagonal 

matrix with elements from the first row of ND . 
At 2p = , the VC-Kronecker matrix is transformed into the 

Hadamard matrix [17]. 
It follows from (5) that to construct of MAS ND , it is 

necessary to form its first row 1
1,ND . 

Elements of the MAS first row are defined as follows [18]: 
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where 1y n+ =  is a number of the MAS column; 

( ) ( )1 1... ...k k ipy y y y y−=  is a number of the MAS 

column in the p-ary form; 0, 1, ..., 1iy p= − ; 
0,1,..., 1ky p= − ; 1, 2, ...,il i= ; 1, 2, ..., 1i k= − ; 

1 2 2k kl l l− −≠ ≠ ≠ . 
Adding in (6) is performed modulo p. This approach allows 

formation of 22k−  ensembles of the D-code of k-th order. Let 
further γ  - number of ensembles of the D-code of k-th order, 
i.e. 22k−=γ . 

A. Example formation of binary D-code 
Consider an example of the formation of a binary D-code of 

size 16 16×  [17]. The D-code of order 4k =  has 
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Abstract — In modern synthetic-aperture radars, signals with 

the linear frequency modulation (LFM) have found the practical 
application as probing signals. Utilization of LFM-signals was 
formed historically since they were the first wideband signals, 
which found application in radar technology, and their 
properties have studied a long time ago and in detail. However, 
the LFM-signals have the “splay” ambiguity function, which 
results the ambiguity in range. The question of the probing signal 
choice is also relevant in connection with the problem of weak 
echoes detection, which are closed by the side lobes of ACF of the 
strong echoes. In this paper, the polyphase (p-phase, where p is 
the prime integer number) radar signal, which has an area of 
zero side lobes in a vicinity of the central peak of autocorrelation 
function, has been synthesized. It is shown that this signal 
represents a train from p coherent phase-code-shift keyed pulses, 
which are coded by complementary sequences of the p-ary D-
code. The method of ensemble set formation of the p-ary D-code 
for signal synthesis is suggested. Correlation characteristics of 
the synthesized signal are discussed. The compression algorithm 
of this signal is considered including in its structure the combined 
algorithm of Vilenkin-Chrestenson and Fourier fast transform. 
 

Index Terms — Autocorrelation function, complementary 
sequences, polyphase signal, pulse train, Vilenkin-Chrestenson 
functions, zero autocorrelation zone. 

I. INTRODUCTION 
or accurate determination of the distance (range) and 
speed of a variety of small-size space objects on the near-
Earth orbit, for resolution of separate elements of complex 

space objects and also for resolution of small-size objects on 
the Earth surface, it is necessary to use the wideband probing 
signals, which have high resolution on the slant range 

( )s2r c F∆ = , where sF  is the signal spectrum width, and с is 
the radial speed. To obtain the high angular resolution ∆θ  of 
Earth surface elements and targets located on this surface, 
radars are used, which are installed on the quickly-moved 
aircraft-space carriers with the direct aperture synthesis. High 
resolutions on the slant and transverse 0r r⊥∆ = ∆θ  ranges, 
where 0r  is the slant range to observing resolution element, 
permit to obtained of two-dimensional target patterns in 
distance. Ensuring of the high angular resolution of small-size 
space objects or elements of complex space objects is based 
on the effect of the inverse synthesis of the antenna aperture 
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[1]. For resolution on the Doppler frequency equaled to 
D s1F T∆ = , where sT  is the probing signal duration (time of 

coherent accumulation), the angular resolution 
( )0 D2 sinV F∆ = ∆θ λ θ  is provided, where V is the ground 

speed of object motion, 0θ  is the angle between the ground 
speed vector and the pointing direction. The transverse 
resolution is provided by turning of the target velocity vector 
with regard to the pointing direction and is realized by 
processing of the sequence of complex samples, which arrive 
from each target element resolved on the slant range. 

It follows from the above-mentioned that for providing 
of high resolutions on the slant r∆  and transverse r⊥∆  ranges, 
it is necessary to use the probing signals with the wide 
spectrum and the long duration. 

As research shows, for these purposes can use the train 
of linear-frequency-modulated (LFM) pulses with the high 
repetition frequency [2, 6]. Nevertheless, as we know, the 
LFM signals have the “splay” ambiguity function, which 
results the ambiguity in range. The ambiguity peaks are 
appeared on autocorrelation function (ACF) of the train of 
LFM pulses. 

The question of the probing signal choice is also relevant 
in connection with the problem of weak echoes detection, 
which are closed by the side lobes of ACF of the strong 
echoes. To suppress the side lobes of ACF echoes, one can 
apply the intra-pulse and inter-pulse weighting [3, 4]. 
However, at that, the spreading of the main ACF lobe occurs 
together with the loss in SNR. 

To solve the stated tasks, we can use the phase-code-shift 
keyed (PCSK) signals, which are free from shortcomings of 
FM and FSK signals. In [4 - 7], the radar PCSK signals are 
considered, which have the zero correlation zone in the region 
of the central peak of aperiodic ACF (Zero Autocorrelation 
Zone - ZACZ). These signals represent the periodic sequence 
from 1M   coherent pulses coding (or phase-shift keyed) by 
the ensembles of complementary or orthogonal sequences. 
PCSK signals with ZACZ solve the problem of weak echo 
detection on the background of strong echoes. However, the 
relative ZACZ width of these signals is 
 

( ) ( )( )1 1 1 1.Z L q q Mε = = − − +   (1) 
 
where Z is the ZACZ width; L is the signal duration [8]. 

In addition, at formation and processing of the PCSK 
signal with the large number of pulses in the train, it is 
difficult enough to keep their coherence. The polyphase PCSK 
signals discussed in [4 - 7] (Frank or P4), also have the large 
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alphabet of phases equaled to the number of contiguous time 
slices (each of duration 0T ) in the pulse. 

Recently there were considerably great attention attracted 
to reduction of the detection possibility of radar stations (RS) 
by the means of the radio-electronic reconnaissance and by the 
self-guided anti-radar missiles [9 - 11]. In RS with low 
probability of emission detection, the special measures are 
anticipated to increase of the RS operation secrecy. Among 
them: the low spectral density of emission, variation of 
probing signal parameters according the random law, 
operation in the wide frequency band, control of the emission 
power. Applied wideband probing signals – LFM signals or 
bi-phase PCSK signals – do not provide the RS operation 
secrecy. So, LFM signals can be easily recognized by means 
of reconnaissance on the phase variation speed; while bi-phase 
PCSK signals – with the help of quadratic detection circuits. 
The emission secrecy can be increased by a great extent 
through the utilization of the polyphase PCSM signals [11]. 
Polyphase pulse signals can be formed by the wide set of p-ary 
codes and differ by the low spectral density and the low level 
of ACF side lobes. 

In this paper, to solve problems of high resolution of the 
variety of small-size space objects on the near-Earth orbit, the 
separate elements of the complicated space object, as well as 
the small-size objects on the Earth surface, the polyphase (p-
phase, where p is the prime integer number) radar signal is 
synthesized, which has ZACZ. This signal represented the 
train from p coherent PCSK pulses coding by complementary 
sequences of the p-ary D-code [13, 14]. It has low pulse 
number p in the train, the small alphabet of phases equaled to 
p, and an approach to code formation allows usage of the fast 
transform algorithm for its compression in the matched filter. 

II. THE SYNTHESIS OF THE P-ARY D-CODE AND THE 
POLYPHASE COHERENT ADDITIONAL SIGNAL 

Sequences { } { } { } { }1 2, ,..., ,..., ,i p
n n n nd d d d  ( )1,2,...,n N=  of 

the length kN p= , where 2k ≥  is the integer number, are 
called complementary [6, 12, 13] if 
 

( )
1 2

; 0
... ...

0; 1 1 ,
i p

m m m m

pN m ,
r r r r

m ,..., N
=+ + + + + =  = ± ± −

 (2) 

 

where , *

1

N
i i i i i

m m n n m
n m

r r d d −
= +

= = ∑  is the aperiodic ACF of the 

sequence { }ind , * is the complex conjugation operation. 

N p  sets of complementary (additional) sequences with 
the N length satisfying to (2) form a matrix of p-phase 
additional sequences (MAS) with dimensions N N× . In 
publications this matrix is called the ensemble of Golay 
complimentary sequences at 2p =  [6, 12]. We introduce the 
generalized concept of the Golay sequences for 2p >  [14]. 

Let , 1

N

N i nd=D   be a matrix of p-ary D-codes [13, 14], 

, 0,1,..., 1i nd p= − ; kN p= , p is the prime number. Then 

MAS of the k-th order (dimensions N N× ) will have a form: 
 

, 1
,

N
N i nd=D  , ,

2exp .i n i nd j d
p
π 

=  
 

  (3) 

 

Let us call sequences 1, , 1

Ni
N i n n

d
=

=D  and 1, , 1

Nj
N j n n

d
=

=D  p-

paired if 
 
( ) ( ) ( )1 1 ,

p p p
i j− ⊕ − = ∆  , 1, 2, ..., ,i j N=  (4) 

 
where i, j are numbers of sequences in the D-code or numbers 
of MAS rows; ( ) p

a  is a number a in the p-ary form; ⊕  is the 

operation of adding modulo p; 1kp −∆ = . 
p-paired sequences are complimentary, i.e., for them (2) 

holds true. 

Let ND  be MAS (3), and , 1

N
N i nh=H  be a matrix of the 

system of Vilenkin-Chrestenson-Kronecker (VC-Kronecker) 
functions [15]. It is known that the system of VC-Kronecker is 
multiplicative Abelian group [16]. Since the variety consisting 
of the MAS rows is the adjacent class in the sub-group, 
elements of which are rows of the VC-Kronecker matrix, and 
the first MAS row is the leader of the adjacent class, then we 
may write: 
 

,N N N=D H d  (5) 
 
where { }1,1 1,2 1, 1,diag , ,..., ,...,N n Nd d d d=d  is the diagonal 

matrix with elements from the first row of ND . 
At 2p = , the VC-Kronecker matrix is transformed into the 

Hadamard matrix [17]. 
It follows from (5) that to construct of MAS ND , it is 

necessary to form its first row 1
1,ND . 

Elements of the MAS first row are defined as follows [18]: 
 

1

1, 1 1
1

2exp ,
i

k

y i l
i

d j y y
p
π −

+ +
=

 
=  

 
∑  (6) 

 
where 1y n+ =  is a number of the MAS column; 

( ) ( )1 1... ...k k ipy y y y y−=  is a number of the MAS 

column in the p-ary form; 0, 1, ..., 1iy p= − ; 
0,1,..., 1ky p= − ; 1, 2, ...,il i= ; 1, 2, ..., 1i k= − ; 

1 2 2k kl l l− −≠ ≠ ≠ . 
Adding in (6) is performed modulo p. This approach allows 

formation of 22k−  ensembles of the D-code of k-th order. Let 
further γ  - number of ensembles of the D-code of k-th order, 
i.e. 22k−=γ . 

A. Example formation of binary D-code 
Consider an example of the formation of a binary D-code of 

size 16 16×  [17]. The D-code of order 4k =  has 
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alphabet of phases equaled to the number of contiguous time 
slices (each of duration 0T ) in the pulse. 

Recently there were considerably great attention attracted 
to reduction of the detection possibility of radar stations (RS) 
by the means of the radio-electronic reconnaissance and by the 
self-guided anti-radar missiles [9 - 11]. In RS with low 
probability of emission detection, the special measures are 
anticipated to increase of the RS operation secrecy. Among 
them: the low spectral density of emission, variation of 
probing signal parameters according the random law, 
operation in the wide frequency band, control of the emission 
power. Applied wideband probing signals – LFM signals or 
bi-phase PCSK signals – do not provide the RS operation 
secrecy. So, LFM signals can be easily recognized by means 
of reconnaissance on the phase variation speed; while bi-phase 
PCSK signals – with the help of quadratic detection circuits. 
The emission secrecy can be increased by a great extent 
through the utilization of the polyphase PCSM signals [11]. 
Polyphase pulse signals can be formed by the wide set of p-ary 
codes and differ by the low spectral density and the low level 
of ACF side lobes. 

In this paper, to solve problems of high resolution of the 
variety of small-size space objects on the near-Earth orbit, the 
separate elements of the complicated space object, as well as 
the small-size objects on the Earth surface, the polyphase (p-
phase, where p is the prime integer number) radar signal is 
synthesized, which has ZACZ. This signal represented the 
train from p coherent PCSK pulses coding by complementary 
sequences of the p-ary D-code [13, 14]. It has low pulse 
number p in the train, the small alphabet of phases equaled to 
p, and an approach to code formation allows usage of the fast 
transform algorithm for its compression in the matched filter. 

II. THE SYNTHESIS OF THE P-ARY D-CODE AND THE 
POLYPHASE COHERENT ADDITIONAL SIGNAL 

Sequences { } { } { } { }1 2, ,..., ,..., ,i p
n n n nd d d d  ( )1,2,...,n N=  of 

the length kN p= , where 2k ≥  is the integer number, are 
called complementary [6, 12, 13] if 
 

( )
1 2

; 0
... ...

0; 1 1 ,
i p

m m m m

pN m ,
r r r r

m ,..., N
=+ + + + + =  = ± ± −

 (2) 

 

where , *

1

N
i i i i i

m m n n m
n m

r r d d −
= +

= = ∑  is the aperiodic ACF of the 

sequence { }ind , * is the complex conjugation operation. 

N p  sets of complementary (additional) sequences with 
the N length satisfying to (2) form a matrix of p-phase 
additional sequences (MAS) with dimensions N N× . In 
publications this matrix is called the ensemble of Golay 
complimentary sequences at 2p =  [6, 12]. We introduce the 
generalized concept of the Golay sequences for 2p >  [14]. 

Let , 1

N

N i nd=D   be a matrix of p-ary D-codes [13, 14], 

, 0,1,..., 1i nd p= − ; kN p= , p is the prime number. Then 

MAS of the k-th order (dimensions N N× ) will have a form: 
 

, 1
,

N
N i nd=D  , ,

2exp .i n i nd j d
p
π 

=  
 

  (3) 

 

Let us call sequences 1, , 1

Ni
N i n n

d
=

=D  and 1, , 1

Nj
N j n n

d
=

=D  p-

paired if 
 
( ) ( ) ( )1 1 ,

p p p
i j− ⊕ − = ∆  , 1, 2, ..., ,i j N=  (4) 

 
where i, j are numbers of sequences in the D-code or numbers 
of MAS rows; ( ) p

a  is a number a in the p-ary form; ⊕  is the 

operation of adding modulo p; 1kp −∆ = . 
p-paired sequences are complimentary, i.e., for them (2) 

holds true. 

Let ND  be MAS (3), and , 1

N
N i nh=H  be a matrix of the 

system of Vilenkin-Chrestenson-Kronecker (VC-Kronecker) 
functions [15]. It is known that the system of VC-Kronecker is 
multiplicative Abelian group [16]. Since the variety consisting 
of the MAS rows is the adjacent class in the sub-group, 
elements of which are rows of the VC-Kronecker matrix, and 
the first MAS row is the leader of the adjacent class, then we 
may write: 
 

,N N N=D H d  (5) 
 
where { }1,1 1,2 1, 1,diag , ,..., ,...,N n Nd d d d=d  is the diagonal 

matrix with elements from the first row of ND . 
At 2p = , the VC-Kronecker matrix is transformed into the 

Hadamard matrix [17]. 
It follows from (5) that to construct of MAS ND , it is 

necessary to form its first row 1
1,ND . 

Elements of the MAS first row are defined as follows [18]: 
 

1

1, 1 1
1

2exp ,
i

k

y i l
i

d j y y
p
π −

+ +
=

 
=  

 
∑  (6) 

 
where 1y n+ =  is a number of the MAS column; 

( ) ( )1 1... ...k k ipy y y y y−=  is a number of the MAS 

column in the p-ary form; 0, 1, ..., 1iy p= − ; 
0,1,..., 1ky p= − ; 1, 2, ...,il i= ; 1, 2, ..., 1i k= − ; 

1 2 2k kl l l− −≠ ≠ ≠ . 
Adding in (6) is performed modulo p. This approach allows 

formation of 22k−  ensembles of the D-code of k-th order. Let 
further γ  - number of ensembles of the D-code of k-th order, 
i.e. 22k−=γ . 

A. Example formation of binary D-code 
Consider an example of the formation of a binary D-code of 

size 16 16×  [17]. The D-code of order 4k =  has 
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22 4kγ −= =  ensembles. 
At 4k = , we obtain: 

1 2 31, 2, 3 1 ; 1, 2 ; 1, 2, 3i l l l= ⇒ = = =  

1 2 3 4, , , 0, 1y y y y = ; 0, 1, ..., 15y = ; 

( ) ( )4 3 2 12y y y y y=  
In this case, the condition 3 2l l≠  must be satisfied. 

Let us write the sum from (6) for four ensembles: 
3

1, 1 1 2 1 3 1 4 2
1

iy i l
i

d y y y y y y y y+ +
=

= = + +∑ ; 

3

1, 1 1 2 1 3 1 4 3
1

iy i l
i

d y y y y y y y y+ +
=

= = + +∑ ; 

3

1, 1 1 2 1 3 2 4 1
1

iy i l
i

d y y y y y y y y+ +
=

= = + +∑ ; 

3

1, 1 1 2 1 3 2 4 3
1

iy i l
i

d y y y y y y y y+ +
=

= = + +∑ . 

Having performed additions for all columns of the CSM, 
from (6) we obtain the first sequences of four D-code 
ensembles of order 4k = . 

(0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1); 
(0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1); 
(0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1); 
(0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1). 

The remaining rows of the D-code matrix are obtained from 
the first row by element-wise modulo 2 addition with the 
corresponding rows of the Hadamard matrix. 

B. Example formation of ternary D-code 
Consider now an example of the formation of the ternary D-

code of order 3k =  with the length of code words 
33 27N = = , which allows you to form a 3 22 2γ −= =  

ensembles of D-code using method (5) - (6) [18]. 
We form the first rows of two different matrices 

(ensembles) of the D-code of order 3k = . The remaining 
rows of the D-code matrix are obtained from the first row by 
element-wise addition modulo p with the corresponding rows 
of the VC-Kronecker matrix. 

In this case, from (6) we obtain: 

( )1 2

2

1, 1 1 2 3
1

;
liy i l l

i
d y y y y y y+ +

=

= = +∑  

( ) ( )3 2 1 1 2 33 ; , , 0,1,2; 0,1,...,26;y y y y y y y y= = =  

1 21,2; 1; 1,2.i l l= = =  
From where for two ensembles we obtain: 

1, 1 2 1 3 1yd y y y y+ = +  and 1, 1 2 1 3 2yd y y y y+ = + . 
At 0,1,...,26y = , for the first ensemble we obtain the 

following first row of the matrix of the D-code: 
(0 0 0 0 1 2 0 2 1 0 1 2 0 2 1 0 0 0 0 2 1 0 0 0 0 1 2). 

For the second ensemble, the first row of the D-code matrix 
is as follows: 

(0 0 0 0 1 2 0 2 1 0 0 0 1 2 0 2 1 0 0 0 0 2 0 1 1 0 2). 

C. Determination of coherent additional signal 
Let us refer as the polyphase coherent additional signal 

(CAS) of the train of p PCSK pulses encoded by p-paired 

sequences of the D-code [14]. We call this signal “coherent” 
because the coherence of PCSK pulses must be maintained in 
the train. In addition, we call it “additional” because the pulses 
are encoded by complementary (additional) sequences. 

The analytical expression of the complex envelope (CE) of 
CAS has a form: 
 

( ) ( )( )( )0 0 ,
1 1

1 1 ,
p N

i n
i n

S t S t n i Nq T d
= =

= − + − −∑∑  (7) 

 

where ( )( ) ( ) 0 0
0 0

1, 1
1

0, at other 
n T t nT

S t n T
t

 − ≤ ≤− − = 


 is the 

envelope of the n–th slice of CAS; 0T  is the slice duration; 

2q ≥  is the off-duty factor; , 1,1

N i
i n Nd = D  are elements of i-th 

p-paired sequence. 
CE of CAS in the vector form will have the following form: 

 

( )( ) ( ) ( )(
( ) )

1 2
1, 1,1, 1 1, 11, 1 1

1, 1,1, 1

...

... ... ,

N NN q N qN p q

i p
N NN q

− −− +

−

=S D 0 D 0

D 0 D
 (8) 

 
where ( ) ( )( )1 21, 1 10 0 ... 0 ... 0nN q N q− −=0  is the zero 

vector- row with length ( )1N q − . 

III. CORRELATION CHARACTERISTICS OF POLYPHASE 
COHERENT ADDITIONAL SIGNALS 

An analysis of CAS correlation characteristics is performed 
in [14, 17]. 

The aperiodic cross-correlation function (CCF) of 
sequences { }ind  and { }jnd  is defined as: 
 

, *

1

N
i j i j

m n n m
n m

r d d −
= +

= ∑  at ;i j≠  ( )0, 1 1 ,m ,..., N= ± ± −  (9) 

 
where , 0i j

mr =  at 0,m =  because complimentary sequences 
built according to (5) – (6), are orthogonal. 

In the vector form, ACF of the polyphase CAS will have a 
form [14]: 
 

( )( )

( )

( )

( )

( )

1
1,

1,2 11,2 1 1 1
1

1
, 1

1,2 1 1,2 11, 2
1 1

1
, , 1

1,2 1 1,2 11, 2
1 1

....

... 0 ...

... 0 ... ,

p p
s i p i

NN p q
i

p p
i i i

N NN q
i i

p pp j
i i j i i p

N NN q
i i

− −
+ −

−− + −
=

−
+

− −−
= =

− −−
+ + −

− −−
= =


= 






∑

∑ ∑

∑ ∑

R R

R 0 R

R 0 R

 (10) 

 
where ( ) ( )( )1 21, 2 20 0 ... 0 ... 0nN q N q− −=0  is the zero 

vector-row with the length ( )2N q − ; 
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(
)

, , , , , ,
1,2 1 1 2 1 0 1

, , ,
2 1

... ...

... ... .

i j i j i j i j i j i j
N N N

i j i j i j
m N N

r r r r r

r r r

− − + − + −

− −

==R
 

For i j= , ,
1,2 1 1,2 1
i j i

N N− −=R R  and according to (2): 
 

( )1,2 1 1 2 2 1
1

0 0 ... ... 0 0 ,
p

i
N N N N N

i
pN− − + − + − −

=

=∑R  (11) 

 
and at i j≠  ,

0 0i jr = . 
It follows from (10) and (11) that the ZACZ width (from 

both sides of the central peak of ACF) of the polyphase CAS 
is equal to ( ) ( )2 1 2 2 1 1 2 1Z N q N N q= + − + − − + − + =

2 ( 1)N q= − , and taking into account the slice duration 0 :T  
 

0 ( 1).Z NT q= −  (12) 
 

The relative width of ZACZ is defined as: 
 

( ) ( )( )0 1 1 1 ,Z LT q q pε = = − − +  (13) 
 
where ( )( )1 1L N p q= − +  is the slices number in CAS. 

It follows from (13) that 
 
( ) ( )1 2 1 1 1 ,p p− ≤ ε < −  (14) 

 
and at 2p = , 1 3 1≤ ε <  [17]. 

In (1), kM N p≥ = , 2k ≥  is the integer number, therefore, 
for signals considered in [4 - 7], 1ε . 

The polyphase CAS can be considered as the signal formed 
by the sequence from the ZACZ-ensemble [8, 17] with 
parameters: 

( ), ,ZACZ J L Z , 

where NJ
p

γ=  is a number of sequences in the ensemble. 

The set of sequences forming p CAS and formed from the 
adjacent sets of p-paired sequences of the D-code can be 
considered as the ZCZ-ensemble [17] with parameters: 

( ), ,ZCZ p L Z . 
Fig. 1 and 2 show, relatively, a part of the two-dimensional 

ambiguity function ( ),R Fτ  of the three-phase CAS with the 
number of slices of 243N =  in the pulse and with the off-
duty factor 3q =  and its section by the plane 0F = , i.e., ACF 
of CE of CAS at complete filter matching with echoes in 
frequency. 

The width of CAS ZACZ with given parameters in relative 
units is 0 486Z T = . From Fig. 1 it is seen that in the region of 
the central peak, the ambiguity function has the clearly 
expressed rectangular region of zero correlation along the 
whole frequency axis F at ( )01 1N T N q− < ≤ −τ , which is 
caused by a presence of the vector ( )1, 2N q−0  in (10). The 

dimensions of this region does not depend on the law of the 
phase-shift keying and on mismatching in frequency, but 
depends only on the off-duty factor q. The region of zero 
correlation at 00 1T N< ≤ −τ  near the central peak of ACF, 
which is caused by the property of complementary sequences 
(2), takes a place only at complete filter matching with the 
echoes in frequency. 
 

 
 

Fig. 1. Ambiguity function of the three-phase CAS 
 

The ambiguity function section of CAS by the plane 0τ =  
has the envelope of the form sin x x  with the main lobe 

width on the zero level ( )02 NT  and the internal comb 
structure. The spectrum combs are spaced from each other in F 
by the value ( )01 qNT . The comb width on the zero level is 

( )02 pqNT , and the total number of combs within the main 
lobe of the amplitude-frequency spectrum envelope of the 
CAS CE square is equal to 2 1q − . The side lobes with the 
width ( )01 pqNT  on the zero level occur between combs and 
the total number of side lobes is equal to 2p − . 

ZACZ exists only at complete filter matching with echoes 
in the Doppler frequency [14]. At mismatch ∆F in the 
frequency in ZACZ near the main ACF peak, the side lobed 
appear, the greatest of them is compared in the level with the 
maximal side lobe outside ZACZ at 00.3F pqNT∆ = . 

 
 

Fig. 2. Autocorrelation function of the three-phase CAS 
 

CAS is assumed to use at radar target tracking in resolution 
modes for accurate measurements (specification) of the 
Doppler frequency, when the target rough estimation is 
already known from the preliminary target detection. At that, 
the compression device for CAS should be multi-channel in 
the Doppler frequency with the necessary channel width. 
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IV. THE COMPRESSION DEVICE OF POLYPHASE COHERENT 
ADDITIONAL SIGNALS 

For compression of the coherent pulse sequence, the 
correlation-filtering processing is usually used, at which the 
reflected signal modulation is first removed and then, with the 
help of the fast Fourier transform (FFT), the Doppler 
frequency is defined [4, 6]. 

The structural circuit of the compression device for 
polyphase CAS is shown in Fig. 3 and represents the 
equivalent structural diagram of the matched filter of 
polyphase CAS at the known Doppler frequency or the 
equivalent structural diagram of the matched filter in the 
single frequency channel. 
 

 
 

Fig. 3. Structural diagram of the single-channel compression device of CAS 
 

The compression device consists of the input register on N 
memory cells, the processor of the discrete D-transform with 
N inputs and N outputs, the switching block, 1p −  similar 
shift registers on qN  memory cells and 1p −  similar 
summation units of complex number, where q is the off-duty 
factor, kN p=  is the D-code length. 

The switching block performs connection of p from its N 
inputs with p outputs according to expression (4), i.e., in 
accordance with the row numbers, in which the p-paired D-
codes are situated. 

At 2p = , we obtain the compression device of bi-phase 
(binary) CAS. 

The basing element of this device is the processor of 
discrete D-transform (the processor DT-D), which operation 
algorithm is described by the following mathematical 
expression: 
 

,1 1, ,T
N N N=G D S  (15) 

 
where 1,NS  is the vector of input signal samples of the discrete 
D-transform; T is operation of the vector transposition. 

Substituting (5) in (15), we obtain: 
 

,1 1,
T

N N N N=G H d S . (16) 
 

It is known that the VC-Kronecker matrix can be factorized 
by the Good method [19], i.e., the discrete D-transform (16) 
can be reduced to FFT in the basis of VC-Kronecker function 
system (FTVC), which has the form: 
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where ⊗  is the operation of the Kronecker product; p1  is the 
unitary matrix with dimensions p p× ; pE  is the matrix of 
discrete exponential functions (DEF) with dimensions p p× . 

From expression (17), it follows that the DT-D processor in 
the diagram in Fig. 3 can be replaced by the FTVC processor 
with addition of weight coefficients (the matrix Nd  in 
expression) in the processor input, which are elements of the 
first row of MAS ND . Then the structural diagram of the 
compression device of the polyphase CAS will have the form 
presented in Fig. 4. 
 

 
 

Fig. 4. Structural diagram of the single-channel compression device of CAS 
with FTVC 

 
For 2p = , the compression algorithm of polyphase CAS 

presented in the form of the structural diagram in Fig. 4 is 
transformed into the compression algorithm of binary CAS, 
and the FTVC processor is transformed into the processor of 
the fast Walsh transform. 

V. THE MULTI-CHANNEL COMPRESSION DEVICE OF 
POLYPHASE COHERENT ADDITIONAL SIGNALS 

In [20] the multi-channel compression device for CAS is 
described, which allows simultaneous removal of the 
modulation of polyphase pulse signals encoded by 
complimentary sequences and determine the Doppler 
frequency in restricted Doppler frequency range according to 
preliminary target detection. This device consists of the 
processor of fast D-transform-Fourier (FT-D-FK, K is a 
number of used frequency channels), using the combination of 
the FFT algorithms in basis-matrices of additional sequences 
and DEF by means of bit-by-bit multiplication of each MAS 
row with dimensions of N N× . The MAS matrix here is the 
matrix of pulse characteristics of CAS pulses. The block 
matrix with dimension NK N×  obtained at that represents the 
set of matrices of pulse characteristics on K different 
frequencies, i.e., rows of DEF matrix play the role of 
frequency channels. In the FT-D-FK algorithm, the MAS 
matrix itself is factorized. 

The multi-channel compression device of CAS described in 
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and at i j≠  ,

0 0i jr = . 
It follows from (10) and (11) that the ZACZ width (from 

both sides of the central peak of ACF) of the polyphase CAS 
is equal to ( ) ( )2 1 2 2 1 1 2 1Z N q N N q= + − + − − + − + =

2 ( 1)N q= − , and taking into account the slice duration 0 :T  
 

0 ( 1).Z NT q= −  (12) 
 

The relative width of ZACZ is defined as: 
 

( ) ( )( )0 1 1 1 ,Z LT q q pε = = − − +  (13) 
 
where ( )( )1 1L N p q= − +  is the slices number in CAS. 

It follows from (13) that 
 
( ) ( )1 2 1 1 1 ,p p− ≤ ε < −  (14) 

 
and at 2p = , 1 3 1≤ ε <  [17]. 

In (1), kM N p≥ = , 2k ≥  is the integer number, therefore, 
for signals considered in [4 - 7], 1ε . 

The polyphase CAS can be considered as the signal formed 
by the sequence from the ZACZ-ensemble [8, 17] with 
parameters: 

( ), ,ZACZ J L Z , 

where NJ
p

γ=  is a number of sequences in the ensemble. 

The set of sequences forming p CAS and formed from the 
adjacent sets of p-paired sequences of the D-code can be 
considered as the ZCZ-ensemble [17] with parameters: 

( ), ,ZCZ p L Z . 
Fig. 1 and 2 show, relatively, a part of the two-dimensional 

ambiguity function ( ),R Fτ  of the three-phase CAS with the 
number of slices of 243N =  in the pulse and with the off-
duty factor 3q =  and its section by the plane 0F = , i.e., ACF 
of CE of CAS at complete filter matching with echoes in 
frequency. 

The width of CAS ZACZ with given parameters in relative 
units is 0 486Z T = . From Fig. 1 it is seen that in the region of 
the central peak, the ambiguity function has the clearly 
expressed rectangular region of zero correlation along the 
whole frequency axis F at ( )01 1N T N q− < ≤ −τ , which is 
caused by a presence of the vector ( )1, 2N q−0  in (10). The 

dimensions of this region does not depend on the law of the 
phase-shift keying and on mismatching in frequency, but 
depends only on the off-duty factor q. The region of zero 
correlation at 00 1T N< ≤ −τ  near the central peak of ACF, 
which is caused by the property of complementary sequences 
(2), takes a place only at complete filter matching with the 
echoes in frequency. 
 

 
 

Fig. 1. Ambiguity function of the three-phase CAS 
 

The ambiguity function section of CAS by the plane 0τ =  
has the envelope of the form sin x x  with the main lobe 

width on the zero level ( )02 NT  and the internal comb 
structure. The spectrum combs are spaced from each other in F 
by the value ( )01 qNT . The comb width on the zero level is 

( )02 pqNT , and the total number of combs within the main 
lobe of the amplitude-frequency spectrum envelope of the 
CAS CE square is equal to 2 1q − . The side lobes with the 
width ( )01 pqNT  on the zero level occur between combs and 
the total number of side lobes is equal to 2p − . 

ZACZ exists only at complete filter matching with echoes 
in the Doppler frequency [14]. At mismatch ∆F in the 
frequency in ZACZ near the main ACF peak, the side lobed 
appear, the greatest of them is compared in the level with the 
maximal side lobe outside ZACZ at 00.3F pqNT∆ = . 

 
 

Fig. 2. Autocorrelation function of the three-phase CAS 
 

CAS is assumed to use at radar target tracking in resolution 
modes for accurate measurements (specification) of the 
Doppler frequency, when the target rough estimation is 
already known from the preliminary target detection. At that, 
the compression device for CAS should be multi-channel in 
the Doppler frequency with the necessary channel width. 
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IV. THE COMPRESSION DEVICE OF POLYPHASE COHERENT 
ADDITIONAL SIGNALS 

For compression of the coherent pulse sequence, the 
correlation-filtering processing is usually used, at which the 
reflected signal modulation is first removed and then, with the 
help of the fast Fourier transform (FFT), the Doppler 
frequency is defined [4, 6]. 

The structural circuit of the compression device for 
polyphase CAS is shown in Fig. 3 and represents the 
equivalent structural diagram of the matched filter of 
polyphase CAS at the known Doppler frequency or the 
equivalent structural diagram of the matched filter in the 
single frequency channel. 
 

 
 

Fig. 3. Structural diagram of the single-channel compression device of CAS 
 

The compression device consists of the input register on N 
memory cells, the processor of the discrete D-transform with 
N inputs and N outputs, the switching block, 1p −  similar 
shift registers on qN  memory cells and 1p −  similar 
summation units of complex number, where q is the off-duty 
factor, kN p=  is the D-code length. 

The switching block performs connection of p from its N 
inputs with p outputs according to expression (4), i.e., in 
accordance with the row numbers, in which the p-paired D-
codes are situated. 

At 2p = , we obtain the compression device of bi-phase 
(binary) CAS. 

The basing element of this device is the processor of 
discrete D-transform (the processor DT-D), which operation 
algorithm is described by the following mathematical 
expression: 
 

,1 1, ,T
N N N=G D S  (15) 

 
where 1,NS  is the vector of input signal samples of the discrete 
D-transform; T is operation of the vector transposition. 

Substituting (5) in (15), we obtain: 
 

,1 1,
T

N N N N=G H d S . (16) 
 

It is known that the VC-Kronecker matrix can be factorized 
by the Good method [19], i.e., the discrete D-transform (16) 
can be reduced to FFT in the basis of VC-Kronecker function 
system (FTVC), which has the form: 
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where ⊗  is the operation of the Kronecker product; p1  is the 
unitary matrix with dimensions p p× ; pE  is the matrix of 
discrete exponential functions (DEF) with dimensions p p× . 

From expression (17), it follows that the DT-D processor in 
the diagram in Fig. 3 can be replaced by the FTVC processor 
with addition of weight coefficients (the matrix Nd  in 
expression) in the processor input, which are elements of the 
first row of MAS ND . Then the structural diagram of the 
compression device of the polyphase CAS will have the form 
presented in Fig. 4. 
 

 
 

Fig. 4. Structural diagram of the single-channel compression device of CAS 
with FTVC 

 
For 2p = , the compression algorithm of polyphase CAS 

presented in the form of the structural diagram in Fig. 4 is 
transformed into the compression algorithm of binary CAS, 
and the FTVC processor is transformed into the processor of 
the fast Walsh transform. 

V. THE MULTI-CHANNEL COMPRESSION DEVICE OF 
POLYPHASE COHERENT ADDITIONAL SIGNALS 

In [20] the multi-channel compression device for CAS is 
described, which allows simultaneous removal of the 
modulation of polyphase pulse signals encoded by 
complimentary sequences and determine the Doppler 
frequency in restricted Doppler frequency range according to 
preliminary target detection. This device consists of the 
processor of fast D-transform-Fourier (FT-D-FK, K is a 
number of used frequency channels), using the combination of 
the FFT algorithms in basis-matrices of additional sequences 
and DEF by means of bit-by-bit multiplication of each MAS 
row with dimensions of N N× . The MAS matrix here is the 
matrix of pulse characteristics of CAS pulses. The block 
matrix with dimension NK N×  obtained at that represents the 
set of matrices of pulse characteristics on K different 
frequencies, i.e., rows of DEF matrix play the role of 
frequency channels. In the FT-D-FK algorithm, the MAS 
matrix itself is factorized. 

The multi-channel compression device of CAS described in 
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[20], can be built on the base of FTVC using (5). The 
structural diagram of such a device is presented in Fig. 5. The 
controllable local oscillator of the radar receiving device, 
according to rough estimation of the Doppler frequency DF̂  
obtained in the mode of target detection, retunes its frequency 
so as the value DF̂  falls in the frequency range, which is 
covered by frequency channels of the compression device of 
CAS. To CAS compression, the processor of fast Vilenkin-
Chrestenson-Fourier (FTVC-FK, K is a number of used 
frequency channels) using of combination of FFT algorithms 
in the basis of the VC-Kronecker and DEF function system by 
means of the bit-by-bit multiplication of each row of the VC-
Kronecker matrix with dimension N L× , ( )( )1 1L N p q= − +  
(the matrix rows are prolonged by repeating of each element 
or zero padding), by each from K rows of DEF matrix with 
dimension L L× . 
 

 
 

Fig. 5. Structural diagram of the multi-channel compression device of CAS 
with FTVC-FK 

 
CE of the signal reflected from the target can be written as: 

( ) ( ) ( )D D
ˆ ˆ, exp 2S t F S t j F t= − π  , 

where ( )S t  is CAS CE (7). The signal is fed from the ADC 
outputs in the quadratic channels to the input shift register of 
the compression device. Having transferred from analog 
quantities to discrete ones, i.e., at ( ) 01nt t n T→ = − , 

( )D D
ˆ ˆ 1

k
F F k F→ = − ∆ , 01F LT∆ =  is the mismatch between 
frequency channels, 1, 2, ...,n L= , 1, 2, ...,k K= , we obtain 
the echo CE in the discrete form: 

( ) ( ) ( )( )2, exp 1 1S n k S n j n k
L
π = − − − 

 
  . 

Hence, the DEF matrix should have the dimension L L× . 
Because MAS has N columns, and a number of MAS and 

DEF columns should be equal, the rows of MAS matrix and 
CAS pulses need to be prolonged, for example, owing to 
repeat of each samples by ( )1 1L N p q= − +  times or to use 
zero padding. 

Then the discrete D-transform-Fourier (DT-D-FK) has a 
form: 
 

( ),1 , 1 2 1,

, , 1,

... ...
L L L L

T T
KN N L k K L

T
N L KL L L

′ ′= =

′ ′=

G D E E E E S

D E S
, (18) 

 
where 1,L′S  is the sample vector of the prolonged input signal; 

( ) ( ) ( )( ) ( )( ){ }0 1 1 1 1 1 1 1diag ... ...
L

k k n k L k
k W W W W− − − − − −=E , 

( )2expW j L
π= − , is a diagonal matrix with elements from 

the k-th row of the DEF matrix, which is included in the 
structure of the block matrix ,KL LE ; ,N L′D  is MAS with 
prolonged rows. 

Taking (5) into consideration, we obtain from (18) the 
discrete Vilenkin-Chrestenson-Fourier transform (DTVC-FK): 
 

,1 , , 1, , , 1,
T T

KN N L L KL L L N L KL L L L′ ′ ′ ′ ′ ′= =G H d E S H E d S , (19) 
 
where ,N L′H  is the VC-Kronecker matrix with prolonged 

rows; { }1
1,diagL L′ ′=d D  is the diagonal matrix with elements 

from the first rows of the ,N L′D  matrix. 
From [19] we know that column repeating of the VC-

Kronecker matrix with dimension N N× , kN p= , lp  times 
is equivalent to row decimation of the VC-Kronecker matrix 
with dimension L L× , where k lL p +=  to the rectangular 
matrix with dimension N L× . In other words, in (19), the 

,N L′H  matrix can be replaced by the VC-Kronecker matrix 
with dimension L L× , we can factorize it, and necessary 
values of the signal spectrum can be obtained from the known 
decimated row numbers. 

Thus, from (19) we have the expression for FTVC-FK: 
 

,1 , 1, 1 1 , 1,... ...
L L L L

T T
KL L KL L L L k l k l j KL L L L+ + −′ ′ ′ ′= =G H E d S C C C C E d S , (20) 

 
where 

Lj
C  is the weakly-filled matrix from the Good 

factorization algorithm (17), 1, 2,...,j k l= + . 
At 2p = , FTVC-FK transforms into the fast Walsh-Fourier 

(FTW-FK) and ( )1L N q= +  [8]. To achieve the maximal FFT 
effectiveness, the DEF matrix dimension should be equal to 
the power of 2. For this, we introduce the quantity 

( )2log 1l q= +   , where x    is the operation of the number x 

rounding to the larger value. Then 2 2l k lL N += = . The 
rectangular matrix in (19) 

( )

,

, , 1 2 1
1, 1

l

N L

N L i m
i m

h  − +  = =

′ =H , 

where , 1

N
i n Nh = H  is the Hadamard matrix with dimension 

N N× , x    is the operation of integer part extraction of the 
number x, which is obtained from the Hadamard matrix LH  
with dimension L L×  in (20) be means of its rows 
decimation. The diagonal matrix in (19) and (20) is 

( ){ }1,1 1,1 1, 1,1, 1 2 1
diag ... ...lL N Nm

d d d d d − + 
′ =d , 

1, 2, ...,m L= , 
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[20], can be built on the base of FTVC using (5). The 
structural diagram of such a device is presented in Fig. 5. The 
controllable local oscillator of the radar receiving device, 
according to rough estimation of the Doppler frequency DF̂  
obtained in the mode of target detection, retunes its frequency 
so as the value DF̂  falls in the frequency range, which is 
covered by frequency channels of the compression device of 
CAS. To CAS compression, the processor of fast Vilenkin-
Chrestenson-Fourier (FTVC-FK, K is a number of used 
frequency channels) using of combination of FFT algorithms 
in the basis of the VC-Kronecker and DEF function system by 
means of the bit-by-bit multiplication of each row of the VC-
Kronecker matrix with dimension N L× , ( )( )1 1L N p q= − +  
(the matrix rows are prolonged by repeating of each element 
or zero padding), by each from K rows of DEF matrix with 
dimension L L× . 
 

 
 

Fig. 5. Structural diagram of the multi-channel compression device of CAS 
with FTVC-FK 
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( ) ( ) ( )D D
ˆ ˆ, exp 2S t F S t j F t= − π  , 

where ( )S t  is CAS CE (7). The signal is fed from the ADC 
outputs in the quadratic channels to the input shift register of 
the compression device. Having transferred from analog 
quantities to discrete ones, i.e., at ( ) 01nt t n T→ = − , 
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F F k F→ = − ∆ , 01F LT∆ =  is the mismatch between 
frequency channels, 1, 2, ...,n L= , 1, 2, ...,k K= , we obtain 
the echo CE in the discrete form: 

( ) ( ) ( )( )2, exp 1 1S n k S n j n k
L
π = − − − 

 
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Hence, the DEF matrix should have the dimension L L× . 
Because MAS has N columns, and a number of MAS and 

DEF columns should be equal, the rows of MAS matrix and 
CAS pulses need to be prolonged, for example, owing to 
repeat of each samples by ( )1 1L N p q= − +  times or to use 
zero padding. 

Then the discrete D-transform-Fourier (DT-D-FK) has a 
form: 
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π= − , is a diagonal matrix with elements from 

the k-th row of the DEF matrix, which is included in the 
structure of the block matrix ,KL LE ; ,N L′D  is MAS with 
prolonged rows. 

Taking (5) into consideration, we obtain from (18) the 
discrete Vilenkin-Chrestenson-Fourier transform (DTVC-FK): 
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from the first rows of the ,N L′D  matrix. 
From [19] we know that column repeating of the VC-

Kronecker matrix with dimension N N× , kN p= , lp  times 
is equivalent to row decimation of the VC-Kronecker matrix 
with dimension L L× , where k lL p +=  to the rectangular 
matrix with dimension N L× . In other words, in (19), the 

,N L′H  matrix can be replaced by the VC-Kronecker matrix 
with dimension L L× , we can factorize it, and necessary 
values of the signal spectrum can be obtained from the known 
decimated row numbers. 

Thus, from (19) we have the expression for FTVC-FK: 
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where 

Lj
C  is the weakly-filled matrix from the Good 

factorization algorithm (17), 1, 2,...,j k l= + . 
At 2p = , FTVC-FK transforms into the fast Walsh-Fourier 

(FTW-FK) and ( )1L N q= +  [8]. To achieve the maximal FFT 
effectiveness, the DEF matrix dimension should be equal to 
the power of 2. For this, we introduce the quantity 

( )2log 1l q= +   , where x    is the operation of the number x 

rounding to the larger value. Then 2 2l k lL N += = . The 
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N N× , x    is the operation of integer part extraction of the 
number x, which is obtained from the Hadamard matrix LH  
with dimension L L×  in (20) be means of its rows 
decimation. The diagonal matrix in (19) and (20) is 
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where 1
1, 1,1

N
n Nd = D . The processor FTW-FK has NK outputs 

(decimated rows). The first N outputs represent the result of 
multiplication of the pulse characteristics matrix (MAS) by the 
processor input signal samples in the first frequency channel, 
the second N outputs – in the second frequency channel and so 
on, the last N outputs – in the K-th frequency channel. The 
switching block in each frequency channel performs the 
connection of two from its N inputs with two outputs in 
accordance with the rows number, in which the paired or 
adjacent sequences of the D-code are located. In adder of each 
channel, the summation of ACF samples of CAS pulses is 
performed owing to the samples delay of the ACF in the shift 
register by the repetition period of pulses qL. According to the 
number of the threshold device (TD in Fig. 5) ( 1,2,...,k K= ), 
in which the threshold is exceeded, the Doppler frequency 
shift ( ( )D

ˆ 1
k

F k F= − ∆ ) is determined. 

VI. CONCLUSIONS 
The method of polyphase radar signal with ZACZ is offered 

in this paper. At that, this signal represents the train of p 
PCSK pulses encoded by p-ary complementary sequences and 
is called the coherent additional signal. ZACZ takes place only 
at complete matching of the filter with echoes in the Doppler 
frequency. At mismatch in frequency, the level of the ACF 
main peak decreases and side lobes appear in ZACZ. The 
multi-channel compression device of this signal is studied. It 
is shown that the method of D-code formation allows 
utilization of algorithms of the fast transform for signal 
compression in the matched filter. 
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where 1
1, 1,1

N
n Nd = D . The processor FTW-FK has NK outputs 

(decimated rows). The first N outputs represent the result of 
multiplication of the pulse characteristics matrix (MAS) by the 
processor input signal samples in the first frequency channel, 
the second N outputs – in the second frequency channel and so 
on, the last N outputs – in the K-th frequency channel. The 
switching block in each frequency channel performs the 
connection of two from its N inputs with two outputs in 
accordance with the rows number, in which the paired or 
adjacent sequences of the D-code are located. In adder of each 
channel, the summation of ACF samples of CAS pulses is 
performed owing to the samples delay of the ACF in the shift 
register by the repetition period of pulses qL. According to the 
number of the threshold device (TD in Fig. 5) ( 1,2,...,k K= ), 
in which the threshold is exceeded, the Doppler frequency 
shift ( ( )D

ˆ 1
k

F k F= − ∆ ) is determined. 

VI. CONCLUSIONS 
The method of polyphase radar signal with ZACZ is offered 

in this paper. At that, this signal represents the train of p 
PCSK pulses encoded by p-ary complementary sequences and 
is called the coherent additional signal. ZACZ takes place only 
at complete matching of the filter with echoes in the Doppler 
frequency. At mismatch in frequency, the level of the ACF 
main peak decreases and side lobes appear in ZACZ. The 
multi-channel compression device of this signal is studied. It 
is shown that the method of D-code formation allows 
utilization of algorithms of the fast transform for signal 
compression in the matched filter. 
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[20], can be built on the base of FTVC using (5). The 
structural diagram of such a device is presented in Fig. 5. The 
controllable local oscillator of the radar receiving device, 
according to rough estimation of the Doppler frequency DF̂  
obtained in the mode of target detection, retunes its frequency 
so as the value DF̂  falls in the frequency range, which is 
covered by frequency channels of the compression device of 
CAS. To CAS compression, the processor of fast Vilenkin-
Chrestenson-Fourier (FTVC-FK, K is a number of used 
frequency channels) using of combination of FFT algorithms 
in the basis of the VC-Kronecker and DEF function system by 
means of the bit-by-bit multiplication of each row of the VC-
Kronecker matrix with dimension N L× , ( )( )1 1L N p q= − +  
(the matrix rows are prolonged by repeating of each element 
or zero padding), by each from K rows of DEF matrix with 
dimension L L× . 
 

 
 

Fig. 5. Structural diagram of the multi-channel compression device of CAS 
with FTVC-FK 

 
CE of the signal reflected from the target can be written as: 

( ) ( ) ( )D D
ˆ ˆ, exp 2S t F S t j F t= − π  , 

where ( )S t  is CAS CE (7). The signal is fed from the ADC 
outputs in the quadratic channels to the input shift register of 
the compression device. Having transferred from analog 
quantities to discrete ones, i.e., at ( ) 01nt t n T→ = − , 

( )D D
ˆ ˆ 1

k
F F k F→ = − ∆ , 01F LT∆ =  is the mismatch between 
frequency channels, 1, 2, ...,n L= , 1, 2, ...,k K= , we obtain 
the echo CE in the discrete form: 

( ) ( ) ( )( )2, exp 1 1S n k S n j n k
L
π = − − − 

 
  . 

Hence, the DEF matrix should have the dimension L L× . 
Because MAS has N columns, and a number of MAS and 

DEF columns should be equal, the rows of MAS matrix and 
CAS pulses need to be prolonged, for example, owing to 
repeat of each samples by ( )1 1L N p q= − +  times or to use 
zero padding. 

Then the discrete D-transform-Fourier (DT-D-FK) has a 
form: 
 

( ),1 , 1 2 1,

, , 1,

... ...
L L L L

T T
KN N L k K L

T
N L KL L L

′ ′= =

′ ′=

G D E E E E S

D E S
, (18) 

 
where 1,L′S  is the sample vector of the prolonged input signal; 

( ) ( ) ( )( ) ( )( ){ }0 1 1 1 1 1 1 1diag ... ...
L

k k n k L k
k W W W W− − − − − −=E , 

( )2expW j L
π= − , is a diagonal matrix with elements from 

the k-th row of the DEF matrix, which is included in the 
structure of the block matrix ,KL LE ; ,N L′D  is MAS with 
prolonged rows. 

Taking (5) into consideration, we obtain from (18) the 
discrete Vilenkin-Chrestenson-Fourier transform (DTVC-FK): 
 

,1 , , 1, , , 1,
T T

KN N L L KL L L N L KL L L L′ ′ ′ ′ ′ ′= =G H d E S H E d S , (19) 
 
where ,N L′H  is the VC-Kronecker matrix with prolonged 

rows; { }1
1,diagL L′ ′=d D  is the diagonal matrix with elements 

from the first rows of the ,N L′D  matrix. 
From [19] we know that column repeating of the VC-

Kronecker matrix with dimension N N× , kN p= , lp  times 
is equivalent to row decimation of the VC-Kronecker matrix 
with dimension L L× , where k lL p +=  to the rectangular 
matrix with dimension N L× . In other words, in (19), the 

,N L′H  matrix can be replaced by the VC-Kronecker matrix 
with dimension L L× , we can factorize it, and necessary 
values of the signal spectrum can be obtained from the known 
decimated row numbers. 

Thus, from (19) we have the expression for FTVC-FK: 
 

,1 , 1, 1 1 , 1,... ...
L L L L

T T
KL L KL L L L k l k l j KL L L L+ + −′ ′ ′ ′= =G H E d S C C C C E d S , (20) 

 
where 

Lj
C  is the weakly-filled matrix from the Good 

factorization algorithm (17), 1, 2,...,j k l= + . 
At 2p = , FTVC-FK transforms into the fast Walsh-Fourier 

(FTW-FK) and ( )1L N q= +  [8]. To achieve the maximal FFT 
effectiveness, the DEF matrix dimension should be equal to 
the power of 2. For this, we introduce the quantity 

( )2log 1l q= +   , where x    is the operation of the number x 

rounding to the larger value. Then 2 2l k lL N += = . The 
rectangular matrix in (19) 

( )

,

, , 1 2 1
1, 1

l

N L

N L i m
i m

h  − +  = =

′ =H , 

where , 1

N
i n Nh = H  is the Hadamard matrix with dimension 

N N× , x    is the operation of integer part extraction of the 
number x, which is obtained from the Hadamard matrix LH  
with dimension L L×  in (20) be means of its rows 
decimation. The diagonal matrix in (19) and (20) is 

( ){ }1,1 1,1 1, 1,1, 1 2 1
diag ... ...lL N Nm

d d d d d − + 
′ =d , 

1, 2, ...,m L= , 
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where 1
1, 1,1

N
n Nd = D . The processor FTW-FK has NK outputs 

(decimated rows). The first N outputs represent the result of 
multiplication of the pulse characteristics matrix (MAS) by the 
processor input signal samples in the first frequency channel, 
the second N outputs – in the second frequency channel and so 
on, the last N outputs – in the K-th frequency channel. The 
switching block in each frequency channel performs the 
connection of two from its N inputs with two outputs in 
accordance with the rows number, in which the paired or 
adjacent sequences of the D-code are located. In adder of each 
channel, the summation of ACF samples of CAS pulses is 
performed owing to the samples delay of the ACF in the shift 
register by the repetition period of pulses qL. According to the 
number of the threshold device (TD in Fig. 5) ( 1,2,...,k K= ), 
in which the threshold is exceeded, the Doppler frequency 
shift ( ( )D

ˆ 1
k

F k F= − ∆ ) is determined. 

VI. CONCLUSIONS 
The method of polyphase radar signal with ZACZ is offered 

in this paper. At that, this signal represents the train of p 
PCSK pulses encoded by p-ary complementary sequences and 
is called the coherent additional signal. ZACZ takes place only 
at complete matching of the filter with echoes in the Doppler 
frequency. At mismatch in frequency, the level of the ACF 
main peak decreases and side lobes appear in ZACZ. The 
multi-channel compression device of this signal is studied. It 
is shown that the method of D-code formation allows 
utilization of algorithms of the fast transform for signal 
compression in the matched filter. 
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