
Performance Evaluation of Closed-loop Industrial
Applications Over Imperfect Networks

JUNE 2019 • VOLUME XI • NUMBER 232

INFOCOMMUNICATIONS JOURNAL

Performance Evaluation of Closed-loop Industrial
Applications Over Imperfect Networks

Sándor Rácz, Géza Szabó and József Pető

Sándor Rácz and Géza Szabó are with Ericsson Research, Budapest, 
Hungary (e-mail: {sandor.racz, geza.szabo}@ericsson.com

József Pető is with Budapest University of Technology and Economics, 
Hungary (e-mail: pjoejoejoe@gmail.com)

Performance Evaluation of Closed-loop Industrial

Applications Over Imperfect Networks

Sándor Rácz, Géza Szabó

Ericsson Research, Budapest, Hungary

Email: {sandor.racz, geza.szabo}@ericsson.com

József Pető

Budapest University of Technology and Economics, Hungary

Email: pjoejoejoe@gmail.com

Abstract—5G networks provide technology enablers targeting
industrial applications. One key enabler is the Ultra Reliable
Low Latency Communication (URLLC). This paper studies the
performance impact of network delay on closed-loop control for
industrial applications. We investigate the performance of the
closed-loop control of an UR5 industrial robot arm assuming fix
delay. The goal is to stress the system at the upper limit of the
possible network delay. We prove that to achieve the maximum
accuracy of the robot at maximum speed, URLLC is a must have.

Index Terms—Industrial Application, Robot Arm, URLLC,
Network Delay, Trajectory Accuracy, Measurements, Perfor-
mance Evaluation

I. INTRODUCTION

Wireless networks are continuously replacing wired net-

works in several areas. Mobile Broadband is one of the most

successful areas. As a next step, 5G networks also provide

technology enablers targeting industrial automation and con-

trol applications. One key enabler is the Ultra Reliable Low

Latency Communication (URLLC). URLLC should be capable

of successfully transmitting messages over radio interface

within 1 ms with a 99.999% success probability and should be

capable to achieve a latency of 0.5 ms on average for multiple

transmissions [1].

Industrial automation and control applications require sig-

nificantly different latency and reliability [2]. Least demand-

ing applications like diagnostics and maintenance do not

require latency lower than 15 ms and reliability around

99.99%. Closed-loop applications require latency between

1 ms and 15 ms and ultra high reliability. Special applications,

e.g., printing machine, typically require even lower latency (<1
ms).

A well-designed Industrial-Ethernet based solution provides

reliable and low latency connection [6]. A potential problem

is the cable cut like events. To overcome this, aliveness of the

connection is continuously monitored. In case of a connection

problem, the application executes emergency action, typically,

the robotic cell is stopped. For example, in ProfiNet RT [16],

data frames are sent periodically (update time specifies the

period) and when a predefined number of consecutive frames

are not arrived in time (retry parameter specifies the threshold,

typical value is 3) then the application is notified.

From controller point of view, industrial applications over

wired links are designed based on the assumption of perfect

communication environment, e.g., non-delayed sensing and

actuation. In contrast to wired networks, providing high quality

services over wireless networks is resource demanding. Wire-

less networks have to deal with non-negligible transmission

disturbances due to e.g. interference, fading and shadowing

over the radio link. Several radio mechanisms, e.g., retrans-

mission mechanisms, active queue managements, multicon-

nectivity, power control, link adaptation, try to compensate

disturbances, and finally the network provides high quality

services.

Wired link can be replaced by wireless link without touching

the control algorithm of the application when

• wireless link can guarantee the same transmission re-

quirements as the wired link provides, or

• characteristics of wireless link fulfill the design require-

ments of the control algorithm.

The first case is more conservative and much more chal-

lenging to realize by a wireless network, because in several

applications the underlying industrial protocol provides strict

guarantees that are much higher than the application requires.

In the second case, the characteristics of connection provided

by wireless link are adapted to the application requirements.

The joint optimization of application control loop and

wireless network can improve efficiency. If the network is

informed about the current latency requirement of the control

loop, then the network can more efficiently assign resources.

In this way, the wireless network can serve more applications

simultaneously. We address the case when neither the link

nor the application are optimized jointly. This paper evaluates

the performance of a robot arm control application. The

application includes closed-loop control of an UR5 industrial

robot arm [10] and it is connected to the robot arm through a

fixed delay connection. The main focus is on the effect of the

link delay on the performance of robot arm movement quality

measured by specific key performance indicators (KPIs).

Our target system on which the evaluation is done is a UR5

robot arm. The UR5 is an industrial grade robot arm and has an

externally accessible velocity control interface. The robot arm

accepts velocity commands for each joint (servo) and publishes

joint state information with 8 ms update time. Investigated

KPIs are response time and precision of trajectory execution,

i.e., spatial and temporal deviations from the planed trajectory.

The paper is organized as follows. Section II discusses

the state-of-the-art. Section III describes the measurement

setup and provides measurement results. Section IV describes

Performance Evaluation of Closed-loop Industrial

Applications Over Imperfect Networks

Sándor Rácz, Géza Szabó

Ericsson Research, Budapest, Hungary

Email: {sandor.racz, geza.szabo}@ericsson.com

József Pető

Budapest University of Technology and Economics, Hungary

Email: pjoejoejoe@gmail.com

Abstract—5G networks provide technology enablers targeting
industrial applications. One key enabler is the Ultra Reliable
Low Latency Communication (URLLC). This paper studies the
performance impact of network delay on closed-loop control for
industrial applications. We investigate the performance of the
closed-loop control of an UR5 industrial robot arm assuming fix
delay. The goal is to stress the system at the upper limit of the
possible network delay. We prove that to achieve the maximum
accuracy of the robot at maximum speed, URLLC is a must have.

Index Terms—Industrial Application, Robot Arm, URLLC,
Network Delay, Trajectory Accuracy, Measurements, Perfor-
mance Evaluation

I. INTRODUCTION

Wireless networks are continuously replacing wired net-

works in several areas. Mobile Broadband is one of the most

successful areas. As a next step, 5G networks also provide

technology enablers targeting industrial automation and con-

trol applications. One key enabler is the Ultra Reliable Low

Latency Communication (URLLC). URLLC should be capable

of successfully transmitting messages over radio interface

within 1 ms with a 99.999% success probability and should be

capable to achieve a latency of 0.5 ms on average for multiple

transmissions [1].

Industrial automation and control applications require sig-

nificantly different latency and reliability [2]. Least demand-

ing applications like diagnostics and maintenance do not

require latency lower than 15 ms and reliability around

99.99%. Closed-loop applications require latency between

1 ms and 15 ms and ultra high reliability. Special applications,

e.g., printing machine, typically require even lower latency (<1
ms).

A well-designed Industrial-Ethernet based solution provides

reliable and low latency connection [6]. A potential problem

is the cable cut like events. To overcome this, aliveness of the

connection is continuously monitored. In case of a connection

problem, the application executes emergency action, typically,

the robotic cell is stopped. For example, in ProfiNet RT [16],

data frames are sent periodically (update time specifies the

period) and when a predefined number of consecutive frames

are not arrived in time (retry parameter specifies the threshold,

typical value is 3) then the application is notified.

From controller point of view, industrial applications over

wired links are designed based on the assumption of perfect

communication environment, e.g., non-delayed sensing and

actuation. In contrast to wired networks, providing high quality

services over wireless networks is resource demanding. Wire-

less networks have to deal with non-negligible transmission

disturbances due to e.g. interference, fading and shadowing

over the radio link. Several radio mechanisms, e.g., retrans-

mission mechanisms, active queue managements, multicon-

nectivity, power control, link adaptation, try to compensate

disturbances, and finally the network provides high quality

services.

Wired link can be replaced by wireless link without touching

the control algorithm of the application when

• wireless link can guarantee the same transmission re-

quirements as the wired link provides, or

• characteristics of wireless link fulfill the design require-

ments of the control algorithm.

The first case is more conservative and much more chal-

lenging to realize by a wireless network, because in several

applications the underlying industrial protocol provides strict

guarantees that are much higher than the application requires.

In the second case, the characteristics of connection provided

by wireless link are adapted to the application requirements.

The joint optimization of application control loop and

wireless network can improve efficiency. If the network is

informed about the current latency requirement of the control

loop, then the network can more efficiently assign resources.

In this way, the wireless network can serve more applications

simultaneously. We address the case when neither the link

nor the application are optimized jointly. This paper evaluates

the performance of a robot arm control application. The

application includes closed-loop control of an UR5 industrial

robot arm [10] and it is connected to the robot arm through a

fixed delay connection. The main focus is on the effect of the

link delay on the performance of robot arm movement quality

measured by specific key performance indicators (KPIs).

Our target system on which the evaluation is done is a UR5

robot arm. The UR5 is an industrial grade robot arm and has an

externally accessible velocity control interface. The robot arm

accepts velocity commands for each joint (servo) and publishes

joint state information with 8 ms update time. Investigated

KPIs are response time and precision of trajectory execution,

i.e., spatial and temporal deviations from the planed trajectory.

The paper is organized as follows. Section II discusses

the state-of-the-art. Section III describes the measurement

setup and provides measurement results. Section IV describes

Performance Evaluation of Closed-loop Industrial

Applications Over Imperfect Networks

Sándor Rácz, Géza Szabó

Ericsson Research, Budapest, Hungary

Email: {sandor.racz, geza.szabo}@ericsson.com

József Pető

Budapest University of Technology and Economics, Hungary

Email: pjoejoejoe@gmail.com

Abstract—5G networks provide technology enablers targeting
industrial applications. One key enabler is the Ultra Reliable
Low Latency Communication (URLLC). This paper studies the
performance impact of network delay on closed-loop control for
industrial applications. We investigate the performance of the
closed-loop control of an UR5 industrial robot arm assuming fix
delay. The goal is to stress the system at the upper limit of the
possible network delay. We prove that to achieve the maximum
accuracy of the robot at maximum speed, URLLC is a must have.

Index Terms—Industrial Application, Robot Arm, URLLC,
Network Delay, Trajectory Accuracy, Measurements, Perfor-
mance Evaluation

I. INTRODUCTION

Wireless networks are continuously replacing wired net-

works in several areas. Mobile Broadband is one of the most

successful areas. As a next step, 5G networks also provide

technology enablers targeting industrial automation and con-

trol applications. One key enabler is the Ultra Reliable Low

Latency Communication (URLLC). URLLC should be capable

of successfully transmitting messages over radio interface

within 1 ms with a 99.999% success probability and should be

capable to achieve a latency of 0.5 ms on average for multiple

transmissions [1].

Industrial automation and control applications require sig-

nificantly different latency and reliability [2]. Least demand-

ing applications like diagnostics and maintenance do not

require latency lower than 15 ms and reliability around

99.99%. Closed-loop applications require latency between

1 ms and 15 ms and ultra high reliability. Special applications,

e.g., printing machine, typically require even lower latency (<1
ms).

A well-designed Industrial-Ethernet based solution provides

reliable and low latency connection [6]. A potential problem

is the cable cut like events. To overcome this, aliveness of the

connection is continuously monitored. In case of a connection

problem, the application executes emergency action, typically,

the robotic cell is stopped. For example, in ProfiNet RT [16],

data frames are sent periodically (update time specifies the

period) and when a predefined number of consecutive frames

are not arrived in time (retry parameter specifies the threshold,

typical value is 3) then the application is notified.

From controller point of view, industrial applications over

wired links are designed based on the assumption of perfect

communication environment, e.g., non-delayed sensing and

actuation. In contrast to wired networks, providing high quality

services over wireless networks is resource demanding. Wire-

less networks have to deal with non-negligible transmission

disturbances due to e.g. interference, fading and shadowing

over the radio link. Several radio mechanisms, e.g., retrans-

mission mechanisms, active queue managements, multicon-

nectivity, power control, link adaptation, try to compensate

disturbances, and finally the network provides high quality

services.

Wired link can be replaced by wireless link without touching

the control algorithm of the application when

• wireless link can guarantee the same transmission re-

quirements as the wired link provides, or

• characteristics of wireless link fulfill the design require-

ments of the control algorithm.

The first case is more conservative and much more chal-

lenging to realize by a wireless network, because in several

applications the underlying industrial protocol provides strict

guarantees that are much higher than the application requires.

In the second case, the characteristics of connection provided

by wireless link are adapted to the application requirements.

The joint optimization of application control loop and

wireless network can improve efficiency. If the network is

informed about the current latency requirement of the control

loop, then the network can more efficiently assign resources.

In this way, the wireless network can serve more applications

simultaneously. We address the case when neither the link

nor the application are optimized jointly. This paper evaluates

the performance of a robot arm control application. The

application includes closed-loop control of an UR5 industrial

robot arm [10] and it is connected to the robot arm through a

fixed delay connection. The main focus is on the effect of the

link delay on the performance of robot arm movement quality

measured by specific key performance indicators (KPIs).

Our target system on which the evaluation is done is a UR5

robot arm. The UR5 is an industrial grade robot arm and has an

externally accessible velocity control interface. The robot arm

accepts velocity commands for each joint (servo) and publishes

joint state information with 8 ms update time. Investigated

KPIs are response time and precision of trajectory execution,

i.e., spatial and temporal deviations from the planed trajectory.

The paper is organized as follows. Section II discusses

the state-of-the-art. Section III describes the measurement

setup and provides measurement results. Section IV describes

Performance Evaluation of Closed-loop Industrial

Applications Over Imperfect Networks

Sándor Rácz, Géza Szabó

Ericsson Research, Budapest, Hungary

Email: {sandor.racz, geza.szabo}@ericsson.com

József Pető

Budapest University of Technology and Economics, Hungary

Email: pjoejoejoe@gmail.com

Abstract—5G networks provide technology enablers targeting
industrial applications. One key enabler is the Ultra Reliable
Low Latency Communication (URLLC). This paper studies the
performance impact of network delay on closed-loop control for
industrial applications. We investigate the performance of the
closed-loop control of an UR5 industrial robot arm assuming fix
delay. The goal is to stress the system at the upper limit of the
possible network delay. We prove that to achieve the maximum
accuracy of the robot at maximum speed, URLLC is a must have.

Index Terms—Industrial Application, Robot Arm, URLLC,
Network Delay, Trajectory Accuracy, Measurements, Perfor-
mance Evaluation

I. INTRODUCTION

Wireless networks are continuously replacing wired net-

works in several areas. Mobile Broadband is one of the most

successful areas. As a next step, 5G networks also provide

technology enablers targeting industrial automation and con-

trol applications. One key enabler is the Ultra Reliable Low

Latency Communication (URLLC). URLLC should be capable

of successfully transmitting messages over radio interface

within 1 ms with a 99.999% success probability and should be

capable to achieve a latency of 0.5 ms on average for multiple

transmissions [1].

Industrial automation and control applications require sig-

nificantly different latency and reliability [2]. Least demand-

ing applications like diagnostics and maintenance do not

require latency lower than 15 ms and reliability around

99.99%. Closed-loop applications require latency between

1 ms and 15 ms and ultra high reliability. Special applications,

e.g., printing machine, typically require even lower latency (<1
ms).

A well-designed Industrial-Ethernet based solution provides

reliable and low latency connection [6]. A potential problem

is the cable cut like events. To overcome this, aliveness of the

connection is continuously monitored. In case of a connection

problem, the application executes emergency action, typically,

the robotic cell is stopped. For example, in ProfiNet RT [16],

data frames are sent periodically (update time specifies the

period) and when a predefined number of consecutive frames

are not arrived in time (retry parameter specifies the threshold,

typical value is 3) then the application is notified.

From controller point of view, industrial applications over

wired links are designed based on the assumption of perfect

communication environment, e.g., non-delayed sensing and

actuation. In contrast to wired networks, providing high quality

services over wireless networks is resource demanding. Wire-

less networks have to deal with non-negligible transmission

disturbances due to e.g. interference, fading and shadowing

over the radio link. Several radio mechanisms, e.g., retrans-

mission mechanisms, active queue managements, multicon-

nectivity, power control, link adaptation, try to compensate

disturbances, and finally the network provides high quality

services.

Wired link can be replaced by wireless link without touching

the control algorithm of the application when

• wireless link can guarantee the same transmission re-

quirements as the wired link provides, or

• characteristics of wireless link fulfill the design require-

ments of the control algorithm.

The first case is more conservative and much more chal-

lenging to realize by a wireless network, because in several

applications the underlying industrial protocol provides strict

guarantees that are much higher than the application requires.

In the second case, the characteristics of connection provided

by wireless link are adapted to the application requirements.

The joint optimization of application control loop and

wireless network can improve efficiency. If the network is

informed about the current latency requirement of the control

loop, then the network can more efficiently assign resources.

In this way, the wireless network can serve more applications

simultaneously. We address the case when neither the link

nor the application are optimized jointly. This paper evaluates

the performance of a robot arm control application. The

application includes closed-loop control of an UR5 industrial

robot arm [10] and it is connected to the robot arm through a

fixed delay connection. The main focus is on the effect of the

link delay on the performance of robot arm movement quality

measured by specific key performance indicators (KPIs).

Our target system on which the evaluation is done is a UR5

robot arm. The UR5 is an industrial grade robot arm and has an

externally accessible velocity control interface. The robot arm

accepts velocity commands for each joint (servo) and publishes

joint state information with 8 ms update time. Investigated

KPIs are response time and precision of trajectory execution,

i.e., spatial and temporal deviations from the planed trajectory.

The paper is organized as follows. Section II discusses

the state-of-the-art. Section III describes the measurement

setup and provides measurement results. Section IV describes

the measurement scenarios. Section V shows the performed

evaluations. Section VI discusses the observations. Section VII

concludes the paper.

II. RELATED WORK

The rest of the section gives an overview of Networked

Control Systems (NCSs) focusing on the introduction of

wireless link.

A. Networked control systems

In networked control systems, feedback control loops are

closed via communication networks [11], [12]. A NCS consists

of numerous coupled subsystems, which are geographically

distributed, and individual subsystems exchange information

over wired or wireless networks. In [11], an overview of recent

developments on NCSs is presented. Three general config-

urations of networked control systems, i.e., centralized, de-

centralized and distributed configurations are discussed. Then,

challenging issues from the study and application of NCSs

are outlined from three aspects: communication, computation

and control. In [12], several aspects of NCS was discussed,

including sampling, network-induced delays, packets dropouts,

quantization errors, sampled-data control, networked control,

event-triggered control, network-based filtering in continuous

or discrete-time domain.

The introduction of wireless links in a NCS requires us to

revisit the design aspect of the system. There are two main

means to integrate a wireless link into a NCS:

• adapting the control algorithms to the properties offered

by wireless link [11], [13] and

• improving the wireless network to meet the current design

assumptions [9], [14] .

In [11], authors proposed a fuzzy predictive control

method to mitigate the network-induced delays from sensor-

to-controller and controller-to-actuator links. At each time

instance, the method evaluates the network delays and the

proper control law is designed based on a predictive scheme. In

[13], delay compensation scheme using classical and adaptive

Smith predictor was applied to wireless NCS. The Markov

model was proposed to compute the estimated network delay

used in the classical predictor. In the adaptive predictor, the

channel delay statistics using shift registers was proposed to

update the estimated delay.

In [9], they provided a low complexity RTT skew MIMO

control algorithm for 5G using multiconnectivity. In [14],

authors considered all control loops as network applications

(i.e. keeping controllers and devices unchanged) and developed

a control-aware network uplink scheduler to handle the control

performance degradation caused by communication delays.

B. Wired communication

Industrial automation and control applications use diverse

technology to interconnect controller and devices. Industrial-

Ethernet based protocols (e.g. ProfiNet, EtherCAT) and Field-

Buses (e.g. ProfiBus) are the most widespread solutions with

estimated market shares of about 46% and 48%, respectively

[3]. In [4], authors compare the network protocols used

nowadays in industrial applications. All investigated systems

show similar basic principles, which are solely implemented

in different ways. Shared memory is applied and most systems

require a master or a comparable management system which

controls the communication. Shared memory is implemented

via data distribution mechanisms that are based on a high

frequency packet sending pattern. These packets have to be

transmitted with strict delivery time with minimum jitter.

ProfiNet [5] distinguishes between two real-time classes

with different services and target applications.

• Real-Time (RT) class: This class is suitable for appli-

cations with cycle times of 1-10 ms. Standard Ethernet

components can be used to connect devices. Application,

transmission and devices have their own not synchronous

cycles, in this way jitter is not optimized.

• Isochronous Real-Time (IRT) class: This class is suitable

for applications with cycle times of less than 1 ms. This

class provides clock synchronized communication and

provides jitter less than 1 µs, but needs hardware support

via switch-ASIC.

C. Wireless communication

A lot of effort is put into improving radio algorithms of

URLLC. In [7], authors reviewed recent advances in URLLC.

In [8], authors discussed wireless channel models that are rele-

vant for URLLC. For challenging services like URLLC, tailor-

made methods are developed to achieve the strict performance

requirements, e.g. [9]. The support of URLLC services comes

at the cost of reduced spectral efficiency compared to mobile

broadband services without latency and reliability constraints

[1]. The spectral efficiency significantly depends on the pro-

vided quality, for example, URLLC providing 1 ms latency

can have about 3 times lower spectral efficiency compared

to URLLC providing only 10 ms latency. In networks, where

the share of the URLLC traffic can be significant in the load,

optimized use of URLLC can improve the network capacity.

III. EXPERIMENTAL ENVIRONMENT

In this section, we investigate the response time and the

trajectory execution performance of an UR5 industrial robot

arm in networked control scenarios. During measurements we

used a real UR5 robot arm.

A. Hardware components

UR5 industrial robot arm is a 6-DOF, lightweight, flexible,

and collaborative robot that allows to automate repetitive and

dangerous tasks with payloads of up to 5 kg. The robot arm is

ideal for optimizing low-weight collaborative processes, such

as picking, placing and testing.

The controller of UR5 provides access to a wide range

of low level functionalities. This makes the robot suitable to

be included in custom networked control system. At lowest

level, individual joints with brushless servo motors and har-

monic drive reducers are controlled with 2.4 KHz frequency.

Unfortunately, this interface is not accessible externally. The

the measurement scenarios. Section V shows the performed

evaluations. Section VI discusses the observations. Section VII

concludes the paper.

II. RELATED WORK

The rest of the section gives an overview of Networked

Control Systems (NCSs) focusing on the introduction of

wireless link.

A. Networked control systems

In networked control systems, feedback control loops are

closed via communication networks [11], [12]. A NCS consists

of numerous coupled subsystems, which are geographically

distributed, and individual subsystems exchange information

over wired or wireless networks. In [11], an overview of recent

developments on NCSs is presented. Three general config-

urations of networked control systems, i.e., centralized, de-

centralized and distributed configurations are discussed. Then,

challenging issues from the study and application of NCSs

are outlined from three aspects: communication, computation

and control. In [12], several aspects of NCS was discussed,

including sampling, network-induced delays, packets dropouts,

quantization errors, sampled-data control, networked control,

event-triggered control, network-based filtering in continuous

or discrete-time domain.

The introduction of wireless links in a NCS requires us to

revisit the design aspect of the system. There are two main

means to integrate a wireless link into a NCS:

• adapting the control algorithms to the properties offered

by wireless link [11], [13] and

• improving the wireless network to meet the current design

assumptions [9], [14] .

In [11], authors proposed a fuzzy predictive control

method to mitigate the network-induced delays from sensor-

to-controller and controller-to-actuator links. At each time

instance, the method evaluates the network delays and the

proper control law is designed based on a predictive scheme. In

[13], delay compensation scheme using classical and adaptive

Smith predictor was applied to wireless NCS. The Markov

model was proposed to compute the estimated network delay

used in the classical predictor. In the adaptive predictor, the

channel delay statistics using shift registers was proposed to

update the estimated delay.

In [9], they provided a low complexity RTT skew MIMO

control algorithm for 5G using multiconnectivity. In [14],

authors considered all control loops as network applications

(i.e. keeping controllers and devices unchanged) and developed

a control-aware network uplink scheduler to handle the control

performance degradation caused by communication delays.

B. Wired communication

Industrial automation and control applications use diverse

technology to interconnect controller and devices. Industrial-

Ethernet based protocols (e.g. ProfiNet, EtherCAT) and Field-

Buses (e.g. ProfiBus) are the most widespread solutions with

estimated market shares of about 46% and 48%, respectively

[3]. In [4], authors compare the network protocols used

nowadays in industrial applications. All investigated systems

show similar basic principles, which are solely implemented

in different ways. Shared memory is applied and most systems

require a master or a comparable management system which

controls the communication. Shared memory is implemented

via data distribution mechanisms that are based on a high

frequency packet sending pattern. These packets have to be

transmitted with strict delivery time with minimum jitter.

ProfiNet [5] distinguishes between two real-time classes

with different services and target applications.

• Real-Time (RT) class: This class is suitable for appli-

cations with cycle times of 1-10 ms. Standard Ethernet

components can be used to connect devices. Application,

transmission and devices have their own not synchronous

cycles, in this way jitter is not optimized.

• Isochronous Real-Time (IRT) class: This class is suitable

for applications with cycle times of less than 1 ms. This

class provides clock synchronized communication and

provides jitter less than 1 µs, but needs hardware support

via switch-ASIC.

C. Wireless communication

A lot of effort is put into improving radio algorithms of

URLLC. In [7], authors reviewed recent advances in URLLC.

In [8], authors discussed wireless channel models that are rele-

vant for URLLC. For challenging services like URLLC, tailor-

made methods are developed to achieve the strict performance

requirements, e.g. [9]. The support of URLLC services comes

at the cost of reduced spectral efficiency compared to mobile

broadband services without latency and reliability constraints

[1]. The spectral efficiency significantly depends on the pro-

vided quality, for example, URLLC providing 1 ms latency

can have about 3 times lower spectral efficiency compared

to URLLC providing only 10 ms latency. In networks, where

the share of the URLLC traffic can be significant in the load,

optimized use of URLLC can improve the network capacity.

III. EXPERIMENTAL ENVIRONMENT

In this section, we investigate the response time and the

trajectory execution performance of an UR5 industrial robot

arm in networked control scenarios. During measurements we

used a real UR5 robot arm.

A. Hardware components

UR5 industrial robot arm is a 6-DOF, lightweight, flexible,

and collaborative robot that allows to automate repetitive and

dangerous tasks with payloads of up to 5 kg. The robot arm is

ideal for optimizing low-weight collaborative processes, such

as picking, placing and testing.

The controller of UR5 provides access to a wide range

of low level functionalities. This makes the robot suitable to

be included in custom networked control system. At lowest

level, individual joints with brushless servo motors and har-

monic drive reducers are controlled with 2.4 KHz frequency.

Unfortunately, this interface is not accessible externally. The

the measurement scenarios. Section V shows the performed

evaluations. Section VI discusses the observations. Section VII

concludes the paper.

II. RELATED WORK

The rest of the section gives an overview of Networked

Control Systems (NCSs) focusing on the introduction of

wireless link.

A. Networked control systems

In networked control systems, feedback control loops are

closed via communication networks [11], [12]. A NCS consists

of numerous coupled subsystems, which are geographically

distributed, and individual subsystems exchange information

over wired or wireless networks. In [11], an overview of recent

developments on NCSs is presented. Three general config-

urations of networked control systems, i.e., centralized, de-

centralized and distributed configurations are discussed. Then,

challenging issues from the study and application of NCSs

are outlined from three aspects: communication, computation

and control. In [12], several aspects of NCS was discussed,

including sampling, network-induced delays, packets dropouts,

quantization errors, sampled-data control, networked control,

event-triggered control, network-based filtering in continuous

or discrete-time domain.

The introduction of wireless links in a NCS requires us to

revisit the design aspect of the system. There are two main

means to integrate a wireless link into a NCS:

• adapting the control algorithms to the properties offered

by wireless link [11], [13] and

• improving the wireless network to meet the current design

assumptions [9], [14] .

In [11], authors proposed a fuzzy predictive control

method to mitigate the network-induced delays from sensor-

to-controller and controller-to-actuator links. At each time

instance, the method evaluates the network delays and the

proper control law is designed based on a predictive scheme. In

[13], delay compensation scheme using classical and adaptive

Smith predictor was applied to wireless NCS. The Markov

model was proposed to compute the estimated network delay

used in the classical predictor. In the adaptive predictor, the

channel delay statistics using shift registers was proposed to

update the estimated delay.

In [9], they provided a low complexity RTT skew MIMO

control algorithm for 5G using multiconnectivity. In [14],

authors considered all control loops as network applications

(i.e. keeping controllers and devices unchanged) and developed

a control-aware network uplink scheduler to handle the control

performance degradation caused by communication delays.

B. Wired communication

Industrial automation and control applications use diverse

technology to interconnect controller and devices. Industrial-

Ethernet based protocols (e.g. ProfiNet, EtherCAT) and Field-

Buses (e.g. ProfiBus) are the most widespread solutions with

estimated market shares of about 46% and 48%, respectively

[3]. In [4], authors compare the network protocols used

nowadays in industrial applications. All investigated systems

show similar basic principles, which are solely implemented

in different ways. Shared memory is applied and most systems

require a master or a comparable management system which

controls the communication. Shared memory is implemented

via data distribution mechanisms that are based on a high

frequency packet sending pattern. These packets have to be

transmitted with strict delivery time with minimum jitter.

ProfiNet [5] distinguishes between two real-time classes

with different services and target applications.

• Real-Time (RT) class: This class is suitable for appli-

cations with cycle times of 1-10 ms. Standard Ethernet

components can be used to connect devices. Application,

transmission and devices have their own not synchronous

cycles, in this way jitter is not optimized.

• Isochronous Real-Time (IRT) class: This class is suitable

for applications with cycle times of less than 1 ms. This

class provides clock synchronized communication and

provides jitter less than 1 µs, but needs hardware support

via switch-ASIC.

C. Wireless communication

A lot of effort is put into improving radio algorithms of

URLLC. In [7], authors reviewed recent advances in URLLC.

In [8], authors discussed wireless channel models that are rele-

vant for URLLC. For challenging services like URLLC, tailor-

made methods are developed to achieve the strict performance

requirements, e.g. [9]. The support of URLLC services comes

at the cost of reduced spectral efficiency compared to mobile

broadband services without latency and reliability constraints

[1]. The spectral efficiency significantly depends on the pro-

vided quality, for example, URLLC providing 1 ms latency

can have about 3 times lower spectral efficiency compared

to URLLC providing only 10 ms latency. In networks, where

the share of the URLLC traffic can be significant in the load,

optimized use of URLLC can improve the network capacity.

III. EXPERIMENTAL ENVIRONMENT

In this section, we investigate the response time and the

trajectory execution performance of an UR5 industrial robot

arm in networked control scenarios. During measurements we

used a real UR5 robot arm.

A. Hardware components

UR5 industrial robot arm is a 6-DOF, lightweight, flexible,

and collaborative robot that allows to automate repetitive and

dangerous tasks with payloads of up to 5 kg. The robot arm is

ideal for optimizing low-weight collaborative processes, such

as picking, placing and testing.

The controller of UR5 provides access to a wide range

of low level functionalities. This makes the robot suitable to

be included in custom networked control system. At lowest

level, individual joints with brushless servo motors and har-

monic drive reducers are controlled with 2.4 KHz frequency.

Unfortunately, this interface is not accessible externally. The

DOI: 10.36244/ICJ.2019.2.4

mailto:sandor.racz%40ericsson.com?subject=
mailto:geza.szabo%40ericsson.com?subject=
mailto:pjoejoejoe%40gmail.com?subject=
http://doi.org/10.36244/ICJ.2019.2.4


Performance Evaluation of Closed-loop Industrial
Applications Over Imperfect Networks

INFOCOMMUNICATIONS JOURNAL

JUNE 2019 • VOLUME XI • NUMBER 2 33

the measurement scenarios. Section V shows the performed

evaluations. Section VI discusses the observations. Section VII

concludes the paper.

II. RELATED WORK

The rest of the section gives an overview of Networked

Control Systems (NCSs) focusing on the introduction of

wireless link.

A. Networked control systems

In networked control systems, feedback control loops are

closed via communication networks [11], [12]. A NCS consists

of numerous coupled subsystems, which are geographically

distributed, and individual subsystems exchange information

over wired or wireless networks. In [11], an overview of recent

developments on NCSs is presented. Three general config-

urations of networked control systems, i.e., centralized, de-

centralized and distributed configurations are discussed. Then,

challenging issues from the study and application of NCSs

are outlined from three aspects: communication, computation

and control. In [12], several aspects of NCS was discussed,

including sampling, network-induced delays, packets dropouts,

quantization errors, sampled-data control, networked control,

event-triggered control, network-based filtering in continuous

or discrete-time domain.

The introduction of wireless links in a NCS requires us to

revisit the design aspect of the system. There are two main

means to integrate a wireless link into a NCS:

• adapting the control algorithms to the properties offered

by wireless link [11], [13] and

• improving the wireless network to meet the current design

assumptions [9], [14] .

In [11], authors proposed a fuzzy predictive control

method to mitigate the network-induced delays from sensor-

to-controller and controller-to-actuator links. At each time

instance, the method evaluates the network delays and the

proper control law is designed based on a predictive scheme. In

[13], delay compensation scheme using classical and adaptive

Smith predictor was applied to wireless NCS. The Markov

model was proposed to compute the estimated network delay

used in the classical predictor. In the adaptive predictor, the

channel delay statistics using shift registers was proposed to

update the estimated delay.

In [9], they provided a low complexity RTT skew MIMO

control algorithm for 5G using multiconnectivity. In [14],

authors considered all control loops as network applications

(i.e. keeping controllers and devices unchanged) and developed

a control-aware network uplink scheduler to handle the control

performance degradation caused by communication delays.

B. Wired communication

Industrial automation and control applications use diverse

technology to interconnect controller and devices. Industrial-

Ethernet based protocols (e.g. ProfiNet, EtherCAT) and Field-

Buses (e.g. ProfiBus) are the most widespread solutions with

estimated market shares of about 46% and 48%, respectively

[3]. In [4], authors compare the network protocols used

nowadays in industrial applications. All investigated systems

show similar basic principles, which are solely implemented

in different ways. Shared memory is applied and most systems

require a master or a comparable management system which

controls the communication. Shared memory is implemented

via data distribution mechanisms that are based on a high

frequency packet sending pattern. These packets have to be

transmitted with strict delivery time with minimum jitter.

ProfiNet [5] distinguishes between two real-time classes

with different services and target applications.

• Real-Time (RT) class: This class is suitable for appli-

cations with cycle times of 1-10 ms. Standard Ethernet

components can be used to connect devices. Application,

transmission and devices have their own not synchronous

cycles, in this way jitter is not optimized.

• Isochronous Real-Time (IRT) class: This class is suitable

for applications with cycle times of less than 1 ms. This

class provides clock synchronized communication and

provides jitter less than 1 µs, but needs hardware support

via switch-ASIC.

C. Wireless communication

A lot of effort is put into improving radio algorithms of

URLLC. In [7], authors reviewed recent advances in URLLC.

In [8], authors discussed wireless channel models that are rele-

vant for URLLC. For challenging services like URLLC, tailor-

made methods are developed to achieve the strict performance

requirements, e.g. [9]. The support of URLLC services comes

at the cost of reduced spectral efficiency compared to mobile

broadband services without latency and reliability constraints

[1]. The spectral efficiency significantly depends on the pro-

vided quality, for example, URLLC providing 1 ms latency

can have about 3 times lower spectral efficiency compared

to URLLC providing only 10 ms latency. In networks, where

the share of the URLLC traffic can be significant in the load,

optimized use of URLLC can improve the network capacity.

III. EXPERIMENTAL ENVIRONMENT

In this section, we investigate the response time and the

trajectory execution performance of an UR5 industrial robot

arm in networked control scenarios. During measurements we

used a real UR5 robot arm.

A. Hardware components

UR5 industrial robot arm is a 6-DOF, lightweight, flexible,

and collaborative robot that allows to automate repetitive and

dangerous tasks with payloads of up to 5 kg. The robot arm is

ideal for optimizing low-weight collaborative processes, such

as picking, placing and testing.

The controller of UR5 provides access to a wide range

of low level functionalities. This makes the robot suitable to

be included in custom networked control system. At lowest

level, individual joints with brushless servo motors and har-

monic drive reducers are controlled with 2.4 KHz frequency.

Unfortunately, this interface is not accessible externally. The

the measurement scenarios. Section V shows the performed

evaluations. Section VI discusses the observations. Section VII

concludes the paper.

II. RELATED WORK

The rest of the section gives an overview of Networked

Control Systems (NCSs) focusing on the introduction of

wireless link.

A. Networked control systems

In networked control systems, feedback control loops are

closed via communication networks [11], [12]. A NCS consists

of numerous coupled subsystems, which are geographically

distributed, and individual subsystems exchange information

over wired or wireless networks. In [11], an overview of recent

developments on NCSs is presented. Three general config-

urations of networked control systems, i.e., centralized, de-

centralized and distributed configurations are discussed. Then,

challenging issues from the study and application of NCSs

are outlined from three aspects: communication, computation

and control. In [12], several aspects of NCS was discussed,

including sampling, network-induced delays, packets dropouts,

quantization errors, sampled-data control, networked control,

event-triggered control, network-based filtering in continuous

or discrete-time domain.

The introduction of wireless links in a NCS requires us to

revisit the design aspect of the system. There are two main

means to integrate a wireless link into a NCS:

• adapting the control algorithms to the properties offered

by wireless link [11], [13] and

• improving the wireless network to meet the current design

assumptions [9], [14] .

In [11], authors proposed a fuzzy predictive control

method to mitigate the network-induced delays from sensor-

to-controller and controller-to-actuator links. At each time

instance, the method evaluates the network delays and the

proper control law is designed based on a predictive scheme. In

[13], delay compensation scheme using classical and adaptive

Smith predictor was applied to wireless NCS. The Markov

model was proposed to compute the estimated network delay

used in the classical predictor. In the adaptive predictor, the

channel delay statistics using shift registers was proposed to

update the estimated delay.

In [9], they provided a low complexity RTT skew MIMO

control algorithm for 5G using multiconnectivity. In [14],

authors considered all control loops as network applications

(i.e. keeping controllers and devices unchanged) and developed

a control-aware network uplink scheduler to handle the control

performance degradation caused by communication delays.

B. Wired communication

Industrial automation and control applications use diverse

technology to interconnect controller and devices. Industrial-

Ethernet based protocols (e.g. ProfiNet, EtherCAT) and Field-

Buses (e.g. ProfiBus) are the most widespread solutions with

estimated market shares of about 46% and 48%, respectively

[3]. In [4], authors compare the network protocols used

nowadays in industrial applications. All investigated systems

show similar basic principles, which are solely implemented

in different ways. Shared memory is applied and most systems

require a master or a comparable management system which

controls the communication. Shared memory is implemented

via data distribution mechanisms that are based on a high

frequency packet sending pattern. These packets have to be

transmitted with strict delivery time with minimum jitter.

ProfiNet [5] distinguishes between two real-time classes

with different services and target applications.

• Real-Time (RT) class: This class is suitable for appli-

cations with cycle times of 1-10 ms. Standard Ethernet

components can be used to connect devices. Application,

transmission and devices have their own not synchronous

cycles, in this way jitter is not optimized.

• Isochronous Real-Time (IRT) class: This class is suitable

for applications with cycle times of less than 1 ms. This

class provides clock synchronized communication and

provides jitter less than 1 µs, but needs hardware support

via switch-ASIC.

C. Wireless communication

A lot of effort is put into improving radio algorithms of

URLLC. In [7], authors reviewed recent advances in URLLC.

In [8], authors discussed wireless channel models that are rele-

vant for URLLC. For challenging services like URLLC, tailor-

made methods are developed to achieve the strict performance

requirements, e.g. [9]. The support of URLLC services comes

at the cost of reduced spectral efficiency compared to mobile

broadband services without latency and reliability constraints

[1]. The spectral efficiency significantly depends on the pro-

vided quality, for example, URLLC providing 1 ms latency

can have about 3 times lower spectral efficiency compared

to URLLC providing only 10 ms latency. In networks, where

the share of the URLLC traffic can be significant in the load,

optimized use of URLLC can improve the network capacity.

III. EXPERIMENTAL ENVIRONMENT

In this section, we investigate the response time and the

trajectory execution performance of an UR5 industrial robot

arm in networked control scenarios. During measurements we

used a real UR5 robot arm.

A. Hardware components

UR5 industrial robot arm is a 6-DOF, lightweight, flexible,

and collaborative robot that allows to automate repetitive and

dangerous tasks with payloads of up to 5 kg. The robot arm is

ideal for optimizing low-weight collaborative processes, such

as picking, placing and testing.

The controller of UR5 provides access to a wide range

of low level functionalities. This makes the robot suitable to

be included in custom networked control system. At lowest

level, individual joints with brushless servo motors and har-

monic drive reducers are controlled with 2.4 KHz frequency.

Unfortunately, this interface is not accessible externally. The

the measurement scenarios. Section V shows the performed

evaluations. Section VI discusses the observations. Section VII

concludes the paper.

II. RELATED WORK

The rest of the section gives an overview of Networked

Control Systems (NCSs) focusing on the introduction of

wireless link.

A. Networked control systems

In networked control systems, feedback control loops are

closed via communication networks [11], [12]. A NCS consists

of numerous coupled subsystems, which are geographically

distributed, and individual subsystems exchange information

over wired or wireless networks. In [11], an overview of recent

developments on NCSs is presented. Three general config-

urations of networked control systems, i.e., centralized, de-

centralized and distributed configurations are discussed. Then,

challenging issues from the study and application of NCSs

are outlined from three aspects: communication, computation

and control. In [12], several aspects of NCS was discussed,

including sampling, network-induced delays, packets dropouts,

quantization errors, sampled-data control, networked control,

event-triggered control, network-based filtering in continuous

or discrete-time domain.

The introduction of wireless links in a NCS requires us to

revisit the design aspect of the system. There are two main

means to integrate a wireless link into a NCS:

• adapting the control algorithms to the properties offered

by wireless link [11], [13] and

• improving the wireless network to meet the current design

assumptions [9], [14] .

In [11], authors proposed a fuzzy predictive control

method to mitigate the network-induced delays from sensor-

to-controller and controller-to-actuator links. At each time

instance, the method evaluates the network delays and the

proper control law is designed based on a predictive scheme. In

[13], delay compensation scheme using classical and adaptive

Smith predictor was applied to wireless NCS. The Markov

model was proposed to compute the estimated network delay

used in the classical predictor. In the adaptive predictor, the

channel delay statistics using shift registers was proposed to

update the estimated delay.

In [9], they provided a low complexity RTT skew MIMO

control algorithm for 5G using multiconnectivity. In [14],

authors considered all control loops as network applications

(i.e. keeping controllers and devices unchanged) and developed

a control-aware network uplink scheduler to handle the control

performance degradation caused by communication delays.

B. Wired communication

Industrial automation and control applications use diverse

technology to interconnect controller and devices. Industrial-

Ethernet based protocols (e.g. ProfiNet, EtherCAT) and Field-

Buses (e.g. ProfiBus) are the most widespread solutions with

estimated market shares of about 46% and 48%, respectively

[3]. In [4], authors compare the network protocols used

nowadays in industrial applications. All investigated systems

show similar basic principles, which are solely implemented

in different ways. Shared memory is applied and most systems

require a master or a comparable management system which

controls the communication. Shared memory is implemented

via data distribution mechanisms that are based on a high

frequency packet sending pattern. These packets have to be

transmitted with strict delivery time with minimum jitter.

ProfiNet [5] distinguishes between two real-time classes

with different services and target applications.

• Real-Time (RT) class: This class is suitable for appli-

cations with cycle times of 1-10 ms. Standard Ethernet

components can be used to connect devices. Application,

transmission and devices have their own not synchronous

cycles, in this way jitter is not optimized.

• Isochronous Real-Time (IRT) class: This class is suitable

for applications with cycle times of less than 1 ms. This

class provides clock synchronized communication and

provides jitter less than 1 µs, but needs hardware support

via switch-ASIC.

C. Wireless communication

A lot of effort is put into improving radio algorithms of

URLLC. In [7], authors reviewed recent advances in URLLC.

In [8], authors discussed wireless channel models that are rele-

vant for URLLC. For challenging services like URLLC, tailor-

made methods are developed to achieve the strict performance

requirements, e.g. [9]. The support of URLLC services comes

at the cost of reduced spectral efficiency compared to mobile

broadband services without latency and reliability constraints

[1]. The spectral efficiency significantly depends on the pro-

vided quality, for example, URLLC providing 1 ms latency

can have about 3 times lower spectral efficiency compared

to URLLC providing only 10 ms latency. In networks, where

the share of the URLLC traffic can be significant in the load,

optimized use of URLLC can improve the network capacity.

III. EXPERIMENTAL ENVIRONMENT

In this section, we investigate the response time and the

trajectory execution performance of an UR5 industrial robot

arm in networked control scenarios. During measurements we

used a real UR5 robot arm.

A. Hardware components

UR5 industrial robot arm is a 6-DOF, lightweight, flexible,

and collaborative robot that allows to automate repetitive and

dangerous tasks with payloads of up to 5 kg. The robot arm is

ideal for optimizing low-weight collaborative processes, such

as picking, placing and testing.

The controller of UR5 provides access to a wide range

of low level functionalities. This makes the robot suitable to

be included in custom networked control system. At lowest

level, individual joints with brushless servo motors and har-

monic drive reducers are controlled with 2.4 KHz frequency.

Unfortunately, this interface is not accessible externally. The

UR5 
controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a

the measurement scenarios. Section V shows the performed

evaluations. Section VI discusses the observations. Section VII

concludes the paper.

II. RELATED WORK

The rest of the section gives an overview of Networked

Control Systems (NCSs) focusing on the introduction of

wireless link.

A. Networked control systems

In networked control systems, feedback control loops are

closed via communication networks [11], [12]. A NCS consists

of numerous coupled subsystems, which are geographically

distributed, and individual subsystems exchange information

over wired or wireless networks. In [11], an overview of recent

developments on NCSs is presented. Three general config-

urations of networked control systems, i.e., centralized, de-

centralized and distributed configurations are discussed. Then,

challenging issues from the study and application of NCSs

are outlined from three aspects: communication, computation

and control. In [12], several aspects of NCS was discussed,

including sampling, network-induced delays, packets dropouts,

quantization errors, sampled-data control, networked control,

event-triggered control, network-based filtering in continuous

or discrete-time domain.

The introduction of wireless links in a NCS requires us to

revisit the design aspect of the system. There are two main

means to integrate a wireless link into a NCS:

• adapting the control algorithms to the properties offered

by wireless link [11], [13] and

• improving the wireless network to meet the current design

assumptions [9], [14] .

In [11], authors proposed a fuzzy predictive control

method to mitigate the network-induced delays from sensor-

to-controller and controller-to-actuator links. At each time

instance, the method evaluates the network delays and the

proper control law is designed based on a predictive scheme. In

[13], delay compensation scheme using classical and adaptive

Smith predictor was applied to wireless NCS. The Markov

model was proposed to compute the estimated network delay

used in the classical predictor. In the adaptive predictor, the

channel delay statistics using shift registers was proposed to

update the estimated delay.

In [9], they provided a low complexity RTT skew MIMO

control algorithm for 5G using multiconnectivity. In [14],

authors considered all control loops as network applications

(i.e. keeping controllers and devices unchanged) and developed

a control-aware network uplink scheduler to handle the control

performance degradation caused by communication delays.

B. Wired communication

Industrial automation and control applications use diverse

technology to interconnect controller and devices. Industrial-

Ethernet based protocols (e.g. ProfiNet, EtherCAT) and Field-

Buses (e.g. ProfiBus) are the most widespread solutions with

estimated market shares of about 46% and 48%, respectively

[3]. In [4], authors compare the network protocols used

nowadays in industrial applications. All investigated systems

show similar basic principles, which are solely implemented

in different ways. Shared memory is applied and most systems

require a master or a comparable management system which

controls the communication. Shared memory is implemented

via data distribution mechanisms that are based on a high

frequency packet sending pattern. These packets have to be

transmitted with strict delivery time with minimum jitter.

ProfiNet [5] distinguishes between two real-time classes

with different services and target applications.

• Real-Time (RT) class: This class is suitable for appli-

cations with cycle times of 1-10 ms. Standard Ethernet

components can be used to connect devices. Application,

transmission and devices have their own not synchronous

cycles, in this way jitter is not optimized.

• Isochronous Real-Time (IRT) class: This class is suitable

for applications with cycle times of less than 1 ms. This

class provides clock synchronized communication and

provides jitter less than 1 µs, but needs hardware support

via switch-ASIC.

C. Wireless communication

A lot of effort is put into improving radio algorithms of

URLLC. In [7], authors reviewed recent advances in URLLC.

In [8], authors discussed wireless channel models that are rele-

vant for URLLC. For challenging services like URLLC, tailor-

made methods are developed to achieve the strict performance

requirements, e.g. [9]. The support of URLLC services comes

at the cost of reduced spectral efficiency compared to mobile

broadband services without latency and reliability constraints

[1]. The spectral efficiency significantly depends on the pro-

vided quality, for example, URLLC providing 1 ms latency

can have about 3 times lower spectral efficiency compared

to URLLC providing only 10 ms latency. In networks, where

the share of the URLLC traffic can be significant in the load,

optimized use of URLLC can improve the network capacity.

III. EXPERIMENTAL ENVIRONMENT

In this section, we investigate the response time and the

trajectory execution performance of an UR5 industrial robot

arm in networked control scenarios. During measurements we

used a real UR5 robot arm.

A. Hardware components

UR5 industrial robot arm is a 6-DOF, lightweight, flexible,

and collaborative robot that allows to automate repetitive and

dangerous tasks with payloads of up to 5 kg. The robot arm is

ideal for optimizing low-weight collaborative processes, such

as picking, placing and testing.

The controller of UR5 provides access to a wide range

of low level functionalities. This makes the robot suitable to

be included in custom networked control system. At lowest

level, individual joints with brushless servo motors and har-

monic drive reducers are controlled with 2.4 KHz frequency.

Unfortunately, this interface is not accessible externally. The



Performance Evaluation of Closed-loop Industrial
Applications Over Imperfect Networks

JUNE 2019 • VOLUME XI • NUMBER 234

INFOCOMMUNICATIONS JOURNAL
UR5 

controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a

UR5 
controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a

UR5 
controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a

UR5 
controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a

UR5 
controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a

UR5 
controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a

continuous random variable uniformly distributed over [0, 8) is

2.3. The measurements show that the internal robot operation

contributes to the jitter of control-loop about 2 ms. Table

also shows that the network delay additionally increases the

average response time and does not significantly modify the

standard deviation. This means that the quick reaction on

external events needs low network delay. For example, assume

that the robot moves with 1 m/sec, then e.g., 10 ms additional

network delay can end in up to 1 cm additional difference.

B. Precision of trajectory execution

We evaluated three main KPIs for each trajectory to measure

execution quality. Two of them measure execution precision

and the third one measures the execution time. Let p(t) and

r(t) denote the position functions of the planned and the

realized trajectories, respectively. Positions can be defined in

Cartesian space or in joint space. In Cartesian space, the

3D coordinates (i.e. x, y and z) and the orientation of the

tool center point are considered. In joint space, for example,

r(0) = {r1(0), r2(0), . . . , r6(0)} denotes the start position,

where ri(t) denotes the position of i-th joint at t. Denote

Tp and Tr the durations of the planned and the realized

trajectories, respectively. During Tp < t ≤ Tr, the goal

position refinement is being executed by the controller. The

execution is finished when the predefined goal position ac-

curacy has been achieved or predefined refinement time limit

reached. In measurements, 10 sec maximum refinement time

was configured. We introduce the following KPIs:

• Spatial deviation from the planned trajectory.

Γ(t) = min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tr].

The Γ(t) is the minimal distance between the robot

position at time t and the corresponding segment of the

planned trajectory around t. For orientation,

ΓO(t) = min
τ∈[−1,1]

arccos
[

O−1
r (t) ·Op(t+ τ)

]

, t ∈ [0, Tr],

where Or(t) and Op(t) are unit quaternions [15] repre-

senting the realized and the planed orientations of the tool

center point, respectively.

• Temporal deviation from the planned trajectory.

∆(t) = arg min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tp].

The ∆(t) is the time difference between minimal distance

point pair at time t.

• Refinement time. Υ = Tr − Tp is the extra time needed

to approach the goal position in the predefined spatial

accuracy.

The spatial and temporal deviations describe the distance

between the realized and the planed trajectory. The spatial

deviation measures the distance in Cartesian space or in joint

space. By temporal accuracy, we refer to the timing accuracy

of trajectory execution. The temporal deviation measures how

accurately the planed trajectory is followed in time. For

example, assume that the robot arm exactly moves along the

planned path. In this case the spatial deviation is zero. Now

assume that the robot arm moves on this path with 100 ms

delay, i.e. r(t) = p(t−0.1). In this case the temporal deviation

is −100 ms.

V. EVALUATION OF THE MEASUREMENTS

During the measurements we have executed trajectories to

randomly generated goal positions and orientations. The same

trajectories were executed with varying parameter settings.

We used different maximum allowed join speeds (from 22.5
to 112.5 deg/sec), goal accuracy in joint space (from 0.1 to

0.001 deg), controller update times (8, 16 and 24 ms) and a

wide range of network delays (RTT: 0, 1, 2, 4, 8, 16, 32
and 64 ms). The high delay values, i.e. 32 and 64 ms, are

included to see extreme cases as well. Figure 2 and Figure 3

highlight measurement results.

A. Affecting the temporal deviation

Figure 2(a) and Figure 2(b) show the average and the range

of temporal deviation from planned trajectories for different

network delays as a function of maximum allowed joint speed

and using 8 ms update time and 0.1 deg accuracy. The average

of temporal deviation hardly depends on the network delay, its

absolute value is about 12-18 ms and the negative sign means

that the robot is a little behind time in average. Note that this

is approximately the dead delay of the control loop for non-

delayed (i.e. RTT: 0 ms) case.

The range of temporal deviation is more sensitive to network

delay. For each network delay we can observe a speed limit,

e.g. for 16 ms delay it is about 45 deg/sec. If the speed is

below this limit, the curve is close to the non-delayed curve.

However above the limit, the range of temporal deviation

curve goes above the non-delayed curve. Increased range value

means that the robot is sometimes ahead of time and sometime

behind time to the planed trajectory. It is also interesting that

in low speed cases (e.g. 22.5 deg/sec) the range of temporal

deviation is high (∼ 150 ms) and hardly depends on the

network delay. This can mean that in case of slow motion

the high temporal deviation is probably caused by internal

operation of the robot and the controller and not by the

network delay. Summarizing, low network delay is required

for use-cases where high temporal accuracy is crucial at high

robot movement speed. For example, to avoid collision of more

robot arms working close to each other.

B. Affecting the spatial deviation

Figure 2(c) and Figure 2(d) show the average of spatial

deviation from planned trajectory for different network delays

as a function of maximum allowed joint speed and using

8 ms update time and 0.1 deg accuracy. In Figure 2(c), the

measures are evaluated in joint space, in Figure 2(d) the

measures are evaluated in Cartesian space. For higher speed,

the same network delay causes higher degradation, as we

expected. For network delays of 32 and 64 ms, the difference

is significant. For lower network delays, the difference is

relatively small. This can mean that from a certain network

continuous random variable uniformly distributed over [0, 8) is

2.3. The measurements show that the internal robot operation

contributes to the jitter of control-loop about 2 ms. Table

also shows that the network delay additionally increases the

average response time and does not significantly modify the

standard deviation. This means that the quick reaction on

external events needs low network delay. For example, assume

that the robot moves with 1 m/sec, then e.g., 10 ms additional

network delay can end in up to 1 cm additional difference.

B. Precision of trajectory execution

We evaluated three main KPIs for each trajectory to measure

execution quality. Two of them measure execution precision

and the third one measures the execution time. Let p(t) and

r(t) denote the position functions of the planned and the

realized trajectories, respectively. Positions can be defined in

Cartesian space or in joint space. In Cartesian space, the

3D coordinates (i.e. x, y and z) and the orientation of the

tool center point are considered. In joint space, for example,

r(0) = {r1(0), r2(0), . . . , r6(0)} denotes the start position,

where ri(t) denotes the position of i-th joint at t. Denote

Tp and Tr the durations of the planned and the realized

trajectories, respectively. During Tp < t ≤ Tr, the goal

position refinement is being executed by the controller. The

execution is finished when the predefined goal position ac-

curacy has been achieved or predefined refinement time limit

reached. In measurements, 10 sec maximum refinement time

was configured. We introduce the following KPIs:

• Spatial deviation from the planned trajectory.

Γ(t) = min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tr].

The Γ(t) is the minimal distance between the robot

position at time t and the corresponding segment of the

planned trajectory around t. For orientation,

ΓO(t) = min
τ∈[−1,1]

arccos
[

O−1
r (t) ·Op(t+ τ)

]

, t ∈ [0, Tr],

where Or(t) and Op(t) are unit quaternions [15] repre-

senting the realized and the planed orientations of the tool

center point, respectively.

• Temporal deviation from the planned trajectory.

∆(t) = arg min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tp].

The ∆(t) is the time difference between minimal distance

point pair at time t.

• Refinement time. Υ = Tr − Tp is the extra time needed

to approach the goal position in the predefined spatial

accuracy.

The spatial and temporal deviations describe the distance

between the realized and the planed trajectory. The spatial

deviation measures the distance in Cartesian space or in joint

space. By temporal accuracy, we refer to the timing accuracy

of trajectory execution. The temporal deviation measures how

accurately the planed trajectory is followed in time. For

example, assume that the robot arm exactly moves along the

planned path. In this case the spatial deviation is zero. Now

assume that the robot arm moves on this path with 100 ms

delay, i.e. r(t) = p(t−0.1). In this case the temporal deviation

is −100 ms.

V. EVALUATION OF THE MEASUREMENTS

During the measurements we have executed trajectories to

randomly generated goal positions and orientations. The same

trajectories were executed with varying parameter settings.

We used different maximum allowed join speeds (from 22.5
to 112.5 deg/sec), goal accuracy in joint space (from 0.1 to

0.001 deg), controller update times (8, 16 and 24 ms) and a

wide range of network delays (RTT: 0, 1, 2, 4, 8, 16, 32
and 64 ms). The high delay values, i.e. 32 and 64 ms, are

included to see extreme cases as well. Figure 2 and Figure 3

highlight measurement results.

A. Affecting the temporal deviation

Figure 2(a) and Figure 2(b) show the average and the range

of temporal deviation from planned trajectories for different

network delays as a function of maximum allowed joint speed

and using 8 ms update time and 0.1 deg accuracy. The average

of temporal deviation hardly depends on the network delay, its

absolute value is about 12-18 ms and the negative sign means

that the robot is a little behind time in average. Note that this

is approximately the dead delay of the control loop for non-

delayed (i.e. RTT: 0 ms) case.

The range of temporal deviation is more sensitive to network

delay. For each network delay we can observe a speed limit,

e.g. for 16 ms delay it is about 45 deg/sec. If the speed is

below this limit, the curve is close to the non-delayed curve.

However above the limit, the range of temporal deviation

curve goes above the non-delayed curve. Increased range value

means that the robot is sometimes ahead of time and sometime

behind time to the planed trajectory. It is also interesting that

in low speed cases (e.g. 22.5 deg/sec) the range of temporal

deviation is high (∼ 150 ms) and hardly depends on the

network delay. This can mean that in case of slow motion

the high temporal deviation is probably caused by internal

operation of the robot and the controller and not by the

network delay. Summarizing, low network delay is required

for use-cases where high temporal accuracy is crucial at high

robot movement speed. For example, to avoid collision of more

robot arms working close to each other.

B. Affecting the spatial deviation

Figure 2(c) and Figure 2(d) show the average of spatial

deviation from planned trajectory for different network delays

as a function of maximum allowed joint speed and using

8 ms update time and 0.1 deg accuracy. In Figure 2(c), the

measures are evaluated in joint space, in Figure 2(d) the

measures are evaluated in Cartesian space. For higher speed,

the same network delay causes higher degradation, as we

expected. For network delays of 32 and 64 ms, the difference

is significant. For lower network delays, the difference is

relatively small. This can mean that from a certain network



Performance Evaluation of Closed-loop Industrial
Applications Over Imperfect Networks

INFOCOMMUNICATIONS JOURNAL

JUNE 2019 • VOLUME XI • NUMBER 2 35

continuous random variable uniformly distributed over [0, 8) is

2.3. The measurements show that the internal robot operation

contributes to the jitter of control-loop about 2 ms. Table

also shows that the network delay additionally increases the

average response time and does not significantly modify the

standard deviation. This means that the quick reaction on

external events needs low network delay. For example, assume

that the robot moves with 1 m/sec, then e.g., 10 ms additional

network delay can end in up to 1 cm additional difference.

B. Precision of trajectory execution

We evaluated three main KPIs for each trajectory to measure

execution quality. Two of them measure execution precision

and the third one measures the execution time. Let p(t) and

r(t) denote the position functions of the planned and the

realized trajectories, respectively. Positions can be defined in

Cartesian space or in joint space. In Cartesian space, the

3D coordinates (i.e. x, y and z) and the orientation of the

tool center point are considered. In joint space, for example,

r(0) = {r1(0), r2(0), . . . , r6(0)} denotes the start position,

where ri(t) denotes the position of i-th joint at t. Denote

Tp and Tr the durations of the planned and the realized

trajectories, respectively. During Tp < t ≤ Tr, the goal

position refinement is being executed by the controller. The

execution is finished when the predefined goal position ac-

curacy has been achieved or predefined refinement time limit

reached. In measurements, 10 sec maximum refinement time

was configured. We introduce the following KPIs:

• Spatial deviation from the planned trajectory.

Γ(t) = min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tr].

The Γ(t) is the minimal distance between the robot

position at time t and the corresponding segment of the

planned trajectory around t. For orientation,

ΓO(t) = min
τ∈[−1,1]

arccos
[

O−1
r (t) ·Op(t+ τ)

]

, t ∈ [0, Tr],

where Or(t) and Op(t) are unit quaternions [15] repre-

senting the realized and the planed orientations of the tool

center point, respectively.

• Temporal deviation from the planned trajectory.

∆(t) = arg min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tp].

The ∆(t) is the time difference between minimal distance

point pair at time t.

• Refinement time. Υ = Tr − Tp is the extra time needed

to approach the goal position in the predefined spatial

accuracy.

The spatial and temporal deviations describe the distance

between the realized and the planed trajectory. The spatial

deviation measures the distance in Cartesian space or in joint

space. By temporal accuracy, we refer to the timing accuracy

of trajectory execution. The temporal deviation measures how

accurately the planed trajectory is followed in time. For

example, assume that the robot arm exactly moves along the

planned path. In this case the spatial deviation is zero. Now

assume that the robot arm moves on this path with 100 ms

delay, i.e. r(t) = p(t−0.1). In this case the temporal deviation

is −100 ms.

V. EVALUATION OF THE MEASUREMENTS

During the measurements we have executed trajectories to

randomly generated goal positions and orientations. The same

trajectories were executed with varying parameter settings.

We used different maximum allowed join speeds (from 22.5
to 112.5 deg/sec), goal accuracy in joint space (from 0.1 to

0.001 deg), controller update times (8, 16 and 24 ms) and a

wide range of network delays (RTT: 0, 1, 2, 4, 8, 16, 32
and 64 ms). The high delay values, i.e. 32 and 64 ms, are

included to see extreme cases as well. Figure 2 and Figure 3

highlight measurement results.

A. Affecting the temporal deviation

Figure 2(a) and Figure 2(b) show the average and the range

of temporal deviation from planned trajectories for different

network delays as a function of maximum allowed joint speed

and using 8 ms update time and 0.1 deg accuracy. The average

of temporal deviation hardly depends on the network delay, its

absolute value is about 12-18 ms and the negative sign means

that the robot is a little behind time in average. Note that this

is approximately the dead delay of the control loop for non-

delayed (i.e. RTT: 0 ms) case.

The range of temporal deviation is more sensitive to network

delay. For each network delay we can observe a speed limit,

e.g. for 16 ms delay it is about 45 deg/sec. If the speed is

below this limit, the curve is close to the non-delayed curve.

However above the limit, the range of temporal deviation

curve goes above the non-delayed curve. Increased range value

means that the robot is sometimes ahead of time and sometime

behind time to the planed trajectory. It is also interesting that

in low speed cases (e.g. 22.5 deg/sec) the range of temporal

deviation is high (∼ 150 ms) and hardly depends on the

network delay. This can mean that in case of slow motion

the high temporal deviation is probably caused by internal

operation of the robot and the controller and not by the

network delay. Summarizing, low network delay is required

for use-cases where high temporal accuracy is crucial at high

robot movement speed. For example, to avoid collision of more

robot arms working close to each other.

B. Affecting the spatial deviation

Figure 2(c) and Figure 2(d) show the average of spatial

deviation from planned trajectory for different network delays

as a function of maximum allowed joint speed and using

8 ms update time and 0.1 deg accuracy. In Figure 2(c), the

measures are evaluated in joint space, in Figure 2(d) the

measures are evaluated in Cartesian space. For higher speed,

the same network delay causes higher degradation, as we

expected. For network delays of 32 and 64 ms, the difference

is significant. For lower network delays, the difference is

relatively small. This can mean that from a certain network

continuous random variable uniformly distributed over [0, 8) is

2.3. The measurements show that the internal robot operation

contributes to the jitter of control-loop about 2 ms. Table

also shows that the network delay additionally increases the

average response time and does not significantly modify the

standard deviation. This means that the quick reaction on

external events needs low network delay. For example, assume

that the robot moves with 1 m/sec, then e.g., 10 ms additional

network delay can end in up to 1 cm additional difference.

B. Precision of trajectory execution

We evaluated three main KPIs for each trajectory to measure

execution quality. Two of them measure execution precision

and the third one measures the execution time. Let p(t) and

r(t) denote the position functions of the planned and the

realized trajectories, respectively. Positions can be defined in

Cartesian space or in joint space. In Cartesian space, the

3D coordinates (i.e. x, y and z) and the orientation of the

tool center point are considered. In joint space, for example,

r(0) = {r1(0), r2(0), . . . , r6(0)} denotes the start position,

where ri(t) denotes the position of i-th joint at t. Denote

Tp and Tr the durations of the planned and the realized

trajectories, respectively. During Tp < t ≤ Tr, the goal

position refinement is being executed by the controller. The

execution is finished when the predefined goal position ac-

curacy has been achieved or predefined refinement time limit

reached. In measurements, 10 sec maximum refinement time

was configured. We introduce the following KPIs:

• Spatial deviation from the planned trajectory.

Γ(t) = min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tr].

The Γ(t) is the minimal distance between the robot

position at time t and the corresponding segment of the

planned trajectory around t. For orientation,

ΓO(t) = min
τ∈[−1,1]

arccos
[

O−1
r (t) ·Op(t+ τ)

]

, t ∈ [0, Tr],

where Or(t) and Op(t) are unit quaternions [15] repre-

senting the realized and the planed orientations of the tool

center point, respectively.

• Temporal deviation from the planned trajectory.

∆(t) = arg min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tp].

The ∆(t) is the time difference between minimal distance

point pair at time t.

• Refinement time. Υ = Tr − Tp is the extra time needed

to approach the goal position in the predefined spatial

accuracy.

The spatial and temporal deviations describe the distance

between the realized and the planed trajectory. The spatial

deviation measures the distance in Cartesian space or in joint

space. By temporal accuracy, we refer to the timing accuracy

of trajectory execution. The temporal deviation measures how

accurately the planed trajectory is followed in time. For

example, assume that the robot arm exactly moves along the

planned path. In this case the spatial deviation is zero. Now

assume that the robot arm moves on this path with 100 ms

delay, i.e. r(t) = p(t−0.1). In this case the temporal deviation

is −100 ms.

V. EVALUATION OF THE MEASUREMENTS

During the measurements we have executed trajectories to

randomly generated goal positions and orientations. The same

trajectories were executed with varying parameter settings.

We used different maximum allowed join speeds (from 22.5
to 112.5 deg/sec), goal accuracy in joint space (from 0.1 to

0.001 deg), controller update times (8, 16 and 24 ms) and a

wide range of network delays (RTT: 0, 1, 2, 4, 8, 16, 32
and 64 ms). The high delay values, i.e. 32 and 64 ms, are

included to see extreme cases as well. Figure 2 and Figure 3

highlight measurement results.

A. Affecting the temporal deviation

Figure 2(a) and Figure 2(b) show the average and the range

of temporal deviation from planned trajectories for different

network delays as a function of maximum allowed joint speed

and using 8 ms update time and 0.1 deg accuracy. The average

of temporal deviation hardly depends on the network delay, its

absolute value is about 12-18 ms and the negative sign means

that the robot is a little behind time in average. Note that this

is approximately the dead delay of the control loop for non-

delayed (i.e. RTT: 0 ms) case.

The range of temporal deviation is more sensitive to network

delay. For each network delay we can observe a speed limit,

e.g. for 16 ms delay it is about 45 deg/sec. If the speed is

below this limit, the curve is close to the non-delayed curve.

However above the limit, the range of temporal deviation

curve goes above the non-delayed curve. Increased range value

means that the robot is sometimes ahead of time and sometime

behind time to the planed trajectory. It is also interesting that

in low speed cases (e.g. 22.5 deg/sec) the range of temporal

deviation is high (∼ 150 ms) and hardly depends on the

network delay. This can mean that in case of slow motion

the high temporal deviation is probably caused by internal

operation of the robot and the controller and not by the

network delay. Summarizing, low network delay is required

for use-cases where high temporal accuracy is crucial at high

robot movement speed. For example, to avoid collision of more

robot arms working close to each other.

B. Affecting the spatial deviation

Figure 2(c) and Figure 2(d) show the average of spatial

deviation from planned trajectory for different network delays

as a function of maximum allowed joint speed and using

8 ms update time and 0.1 deg accuracy. In Figure 2(c), the

measures are evaluated in joint space, in Figure 2(d) the

measures are evaluated in Cartesian space. For higher speed,

the same network delay causes higher degradation, as we

expected. For network delays of 32 and 64 ms, the difference

is significant. For lower network delays, the difference is

relatively small. This can mean that from a certain network

UR5 
controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a
UR5 

controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a

UR5 
controller

UR5 robot arm

TrajectoryGenerator

TrajectoryExecutor

Communication modulD

Random goal pos. generator
Local cloud

Ethernet 
& TCP/IP

Traffic Control tool 
adds fixed delay to IP 

packets

moveTo commands

 speedj commands (125 Hz)

 position of joints (125 Hz) 

In-house developed 
controller

Fig. 1. Measurement setup

next control possibility is to command (receive) the velocity

(state) of the individual joints at sampling frequency of 125 Hz

and this interface is accessible externally (low level control

API). The robot supports ProfiNet RT, ModBus and TCP/IP

communication protocols.

B. Software components

We have developed a robot arm controller from scratch

based on the low level control API of the UR5. The main

reason to do so is to facilitate the integration of our custom

KPIs. Figure 1 shows our measurement setup. The controller

runs on a Linux PC that is connected to UR5 over Ethernet. It

uses TCP/IP protocol stack for communication and a 125 Hz

controlling frequency. Furthermore, velocity control is applied

which means that we send per joint velocity commands

(speedj) to the robot arm every 8 ms, including rotation speed

information of the 6 servo motors. Network delay that models

latency aspect of URLLC link is inserted in the control loop,

i.e., between the controller and UR5 robot arm, by the Traffic

Control tool of Linux. We use fix delay to analyze the behavior

of the system on the upper limit of the possible network delay.

Note that jitter can be transformed to fix delay with a jitter-

buffer.

Our controller implements trajectory generation, trajectory

execution and communication modules, see Figure 1. Tra-

jectory generator accepts moveTo commands. The parameters

of a command specify the goal position and orientation in

Cartesian space, target execution start time and maximum

allowed joint velocity and acceleration. First, using inverse

kinematics, the goal position and orientation are transformed

into joint space. Then, a feasible path is determined from

the current position of the robot to the goal position using

tangent bug algorithm. Obstacles can be specified in joint

space. Finally, the feasible path is sampled and cubic-spline

interpolation is applied considering the specified maximum

Network delay Avg. response time Stand. Dev.

0 ms 14.66 ms 1.84 ms

1 ms 14.99 ms 2.00 ms

2 ms 15.60 ms 2.50 ms

4 ms 20.61 ms 1.91 ms

8 ms 22.46 ms 1.66 ms

16 ms 30.51 ms 1.70 ms

32 ms 46.62 ms 1.81 ms

64 ms 78.50 ms 1.83 ms

TABLE I
AVERAGE AND STANDARD DEVIATION OF RESPONSE TIME FOR DIFFERENT

NETWORK DELAYS

joint velocity and acceleration. The trajectory generator also

supports smooth on-the-fly trajectory modification.

Trajectory executor receives trajectories. A trajectory is

described by 6 splines, each spline describes individual joint

position evolution in time. For each joint, a feed-forward ve-

locity control is running with predefined update time for which

default value is 8 ms. The position error is calculated from the

target position coming from the spline and the current position

extracted from the robot feedback. The baseline velocity is

obtained from the spline by derivation and modified through

a PID controller based on position error. We have tuned

the parameters of the PID controller for zero network delay

and we kept this setting unchanged during the investigations.

The update timers of the robot and the trajectory executor

are unsynchronized. This unsynchronized operation further

increases the average response time with 4 ms and the standard

deviation (i.e. jitter) with ∼ 2.3 ms. Consequently, the average

dead delay of the control loop of trajectory executor is about

18 ms and the jitter is about 3 ms. Trajectory executor also

records the realized trajectory. After execution, it compares

the planned and the realized trajectories and calculates KPIs.

The communication module sends the joint velocity com-

mands to the robot. Commands are sent in clear text format,

and each command message contains joint velocity values for

all of the 6 joints. A velocity command message is valid until

a new message received or an optionally specified timeout

expired. The status feedback is encoded in binary format and

has a size of about 1 Kbyte.

IV. MEASUREMENT SCENARIOS

A. Response time

We started with the investigation of the response time

(i.e, dead delay) of the robot. We sent a (non-zero) velocity

command to standstill robot and inspected the received status

messages sent by the robot. The response time is the time

elapsed from the command transmission to the first received

status message reporting joint movements. Table I shows the

mean value and the standard deviation of response times for

different network delays. Without network delay, the average

response time is 14.66 ms and the standard deviation is

1.84 ms. The robot checks the incoming commands peri-

odically with 8 ms period and also sends status messages

with 8 ms period. Note that the standard deviation of a

continuous random variable uniformly distributed over [0, 8) is

2.3. The measurements show that the internal robot operation

contributes to the jitter of control-loop about 2 ms. Table

also shows that the network delay additionally increases the

average response time and does not significantly modify the

standard deviation. This means that the quick reaction on

external events needs low network delay. For example, assume

that the robot moves with 1 m/sec, then e.g., 10 ms additional

network delay can end in up to 1 cm additional difference.

B. Precision of trajectory execution

We evaluated three main KPIs for each trajectory to measure

execution quality. Two of them measure execution precision

and the third one measures the execution time. Let p(t) and

r(t) denote the position functions of the planned and the

realized trajectories, respectively. Positions can be defined in

Cartesian space or in joint space. In Cartesian space, the

3D coordinates (i.e. x, y and z) and the orientation of the

tool center point are considered. In joint space, for example,

r(0) = {r1(0), r2(0), . . . , r6(0)} denotes the start position,

where ri(t) denotes the position of i-th joint at t. Denote

Tp and Tr the durations of the planned and the realized

trajectories, respectively. During Tp < t ≤ Tr, the goal

position refinement is being executed by the controller. The

execution is finished when the predefined goal position ac-

curacy has been achieved or predefined refinement time limit

reached. In measurements, 10 sec maximum refinement time

was configured. We introduce the following KPIs:

• Spatial deviation from the planned trajectory.

Γ(t) = min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tr].

The Γ(t) is the minimal distance between the robot

position at time t and the corresponding segment of the

planned trajectory around t. For orientation,

ΓO(t) = min
τ∈[−1,1]

arccos
[

O−1
r (t) ·Op(t+ τ)

]

, t ∈ [0, Tr],

where Or(t) and Op(t) are unit quaternions [15] repre-

senting the realized and the planed orientations of the tool

center point, respectively.

• Temporal deviation from the planned trajectory.

∆(t) = arg min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tp].

The ∆(t) is the time difference between minimal distance

point pair at time t.

• Refinement time. Υ = Tr − Tp is the extra time needed

to approach the goal position in the predefined spatial

accuracy.

The spatial and temporal deviations describe the distance

between the realized and the planed trajectory. The spatial

deviation measures the distance in Cartesian space or in joint

space. By temporal accuracy, we refer to the timing accuracy

of trajectory execution. The temporal deviation measures how

accurately the planed trajectory is followed in time. For

example, assume that the robot arm exactly moves along the

planned path. In this case the spatial deviation is zero. Now

assume that the robot arm moves on this path with 100 ms

delay, i.e. r(t) = p(t−0.1). In this case the temporal deviation

is −100 ms.

V. EVALUATION OF THE MEASUREMENTS

During the measurements we have executed trajectories to

randomly generated goal positions and orientations. The same

trajectories were executed with varying parameter settings.

We used different maximum allowed join speeds (from 22.5
to 112.5 deg/sec), goal accuracy in joint space (from 0.1 to

0.001 deg), controller update times (8, 16 and 24 ms) and a

wide range of network delays (RTT: 0, 1, 2, 4, 8, 16, 32
and 64 ms). The high delay values, i.e. 32 and 64 ms, are

included to see extreme cases as well. Figure 2 and Figure 3

highlight measurement results.

A. Affecting the temporal deviation

Figure 2(a) and Figure 2(b) show the average and the range

of temporal deviation from planned trajectories for different

network delays as a function of maximum allowed joint speed

and using 8 ms update time and 0.1 deg accuracy. The average

of temporal deviation hardly depends on the network delay, its

absolute value is about 12-18 ms and the negative sign means

that the robot is a little behind time in average. Note that this

is approximately the dead delay of the control loop for non-

delayed (i.e. RTT: 0 ms) case.

The range of temporal deviation is more sensitive to network

delay. For each network delay we can observe a speed limit,

e.g. for 16 ms delay it is about 45 deg/sec. If the speed is

below this limit, the curve is close to the non-delayed curve.

However above the limit, the range of temporal deviation

curve goes above the non-delayed curve. Increased range value

means that the robot is sometimes ahead of time and sometime

behind time to the planed trajectory. It is also interesting that

in low speed cases (e.g. 22.5 deg/sec) the range of temporal

deviation is high (∼ 150 ms) and hardly depends on the

network delay. This can mean that in case of slow motion

the high temporal deviation is probably caused by internal

operation of the robot and the controller and not by the

network delay. Summarizing, low network delay is required

for use-cases where high temporal accuracy is crucial at high

robot movement speed. For example, to avoid collision of more

robot arms working close to each other.

B. Affecting the spatial deviation

Figure 2(c) and Figure 2(d) show the average of spatial

deviation from planned trajectory for different network delays

as a function of maximum allowed joint speed and using

8 ms update time and 0.1 deg accuracy. In Figure 2(c), the

measures are evaluated in joint space, in Figure 2(d) the

measures are evaluated in Cartesian space. For higher speed,

the same network delay causes higher degradation, as we

expected. For network delays of 32 and 64 ms, the difference

is significant. For lower network delays, the difference is

relatively small. This can mean that from a certain network
continuous random variable uniformly distributed over [0, 8) is

2.3. The measurements show that the internal robot operation

contributes to the jitter of control-loop about 2 ms. Table

also shows that the network delay additionally increases the

average response time and does not significantly modify the

standard deviation. This means that the quick reaction on

external events needs low network delay. For example, assume

that the robot moves with 1 m/sec, then e.g., 10 ms additional

network delay can end in up to 1 cm additional difference.

B. Precision of trajectory execution

We evaluated three main KPIs for each trajectory to measure

execution quality. Two of them measure execution precision

and the third one measures the execution time. Let p(t) and

r(t) denote the position functions of the planned and the

realized trajectories, respectively. Positions can be defined in

Cartesian space or in joint space. In Cartesian space, the

3D coordinates (i.e. x, y and z) and the orientation of the

tool center point are considered. In joint space, for example,

r(0) = {r1(0), r2(0), . . . , r6(0)} denotes the start position,

where ri(t) denotes the position of i-th joint at t. Denote

Tp and Tr the durations of the planned and the realized

trajectories, respectively. During Tp < t ≤ Tr, the goal

position refinement is being executed by the controller. The

execution is finished when the predefined goal position ac-

curacy has been achieved or predefined refinement time limit

reached. In measurements, 10 sec maximum refinement time

was configured. We introduce the following KPIs:

• Spatial deviation from the planned trajectory.

Γ(t) = min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tr].

The Γ(t) is the minimal distance between the robot

position at time t and the corresponding segment of the

planned trajectory around t. For orientation,

ΓO(t) = min
τ∈[−1,1]

arccos
[

O−1
r (t) ·Op(t+ τ)

]

, t ∈ [0, Tr],

where Or(t) and Op(t) are unit quaternions [15] repre-

senting the realized and the planed orientations of the tool

center point, respectively.

• Temporal deviation from the planned trajectory.

∆(t) = arg min
τ∈[−1,1]

∥

∥ r(t)− p(t+ τ)
∥

∥

2
, t ∈ [0, Tp].

The ∆(t) is the time difference between minimal distance

point pair at time t.

• Refinement time. Υ = Tr − Tp is the extra time needed

to approach the goal position in the predefined spatial

accuracy.

The spatial and temporal deviations describe the distance

between the realized and the planed trajectory. The spatial

deviation measures the distance in Cartesian space or in joint

space. By temporal accuracy, we refer to the timing accuracy

of trajectory execution. The temporal deviation measures how

accurately the planed trajectory is followed in time. For

example, assume that the robot arm exactly moves along the

planned path. In this case the spatial deviation is zero. Now

assume that the robot arm moves on this path with 100 ms

delay, i.e. r(t) = p(t−0.1). In this case the temporal deviation

is −100 ms.

V. EVALUATION OF THE MEASUREMENTS

During the measurements we have executed trajectories to

randomly generated goal positions and orientations. The same

trajectories were executed with varying parameter settings.

We used different maximum allowed join speeds (from 22.5
to 112.5 deg/sec), goal accuracy in joint space (from 0.1 to

0.001 deg), controller update times (8, 16 and 24 ms) and a

wide range of network delays (RTT: 0, 1, 2, 4, 8, 16, 32
and 64 ms). The high delay values, i.e. 32 and 64 ms, are

included to see extreme cases as well. Figure 2 and Figure 3

highlight measurement results.

A. Affecting the temporal deviation

Figure 2(a) and Figure 2(b) show the average and the range

of temporal deviation from planned trajectories for different

network delays as a function of maximum allowed joint speed

and using 8 ms update time and 0.1 deg accuracy. The average

of temporal deviation hardly depends on the network delay, its

absolute value is about 12-18 ms and the negative sign means

that the robot is a little behind time in average. Note that this

is approximately the dead delay of the control loop for non-

delayed (i.e. RTT: 0 ms) case.

The range of temporal deviation is more sensitive to network

delay. For each network delay we can observe a speed limit,

e.g. for 16 ms delay it is about 45 deg/sec. If the speed is

below this limit, the curve is close to the non-delayed curve.

However above the limit, the range of temporal deviation

curve goes above the non-delayed curve. Increased range value

means that the robot is sometimes ahead of time and sometime

behind time to the planed trajectory. It is also interesting that

in low speed cases (e.g. 22.5 deg/sec) the range of temporal

deviation is high (∼ 150 ms) and hardly depends on the

network delay. This can mean that in case of slow motion

the high temporal deviation is probably caused by internal

operation of the robot and the controller and not by the

network delay. Summarizing, low network delay is required

for use-cases where high temporal accuracy is crucial at high

robot movement speed. For example, to avoid collision of more

robot arms working close to each other.

B. Affecting the spatial deviation

Figure 2(c) and Figure 2(d) show the average of spatial

deviation from planned trajectory for different network delays

as a function of maximum allowed joint speed and using

8 ms update time and 0.1 deg accuracy. In Figure 2(c), the

measures are evaluated in joint space, in Figure 2(d) the

measures are evaluated in Cartesian space. For higher speed,

the same network delay causes higher degradation, as we

expected. For network delays of 32 and 64 ms, the difference

is significant. For lower network delays, the difference is

relatively small. This can mean that from a certain network

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the



Performance Evaluation of Closed-loop Industrial
Applications Over Imperfect Networks

JUNE 2019 • VOLUME XI • NUMBER 236

INFOCOMMUNICATIONS JOURNAL

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the
(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in

joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.



Performance Evaluation of Closed-loop Industrial
Applications Over Imperfect Networks

INFOCOMMUNICATIONS JOURNAL

JUNE 2019 • VOLUME XI • NUMBER 2 37

(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the

(a) Average of temporal deviation (b) Range of temporal deviation

(c) Average of spatial deviation in joint space (d) Average spatial deviation in Cartesian space

Fig. 2. Statistics of temporal and spatial deviations of realized trajectory from planned trajectory for different network delays

delay limit (in this measurement setup 32 ms) the network

delay causes more intense degradation of accuracy. The two

figures have similar shape. Note that, using forward kinematics

formulae, joint space can be one-to-one mapped into Cartesian

space. For inverse kinematics (Cartesian space to joint space

transformation), a point in Cartesian space can have more

than one image in the joint space. We conclude that applying

lower joint speeds the spatial accuracy increases and also the

controller is more tolerable to network delay. In this way,

if low latency connection is available then the robot can be

used at full speed. This also means that if only higher latency

connection is available then using lower robot speed allows

achieving the same spatial accuracy.

C. Affecting the refinement time

Figure 3 shows results for refinement time. Figure 3(a)

shows the spatial distance at time Tp, i.e., when the planned

trajectory ends and goal refinement starts. As we expected, this

KPI has similar figure as average spatial deviation values. Fig-

ure 3(b) shows how refinement times depend on the required

spatial accuracy (8 ms update time and 16 ms network delay).

Refinement time is higher for stricter accuracy requirement

and for higher robot speed. There are also cases when the

required accuracy cannot be achieved within predefined time

limit, e.g., 0.001 deg accuracy and > 90 deg/sec speed. This

means that a deadline on execution time leads to requirement

on maximum tolerable network delay. In contrary, using lower

robot speed with the same spatial accuracy is achievable over

a connection with higher latency. The cost is the increased

execution time. Consequently, choosing proper required accu-

racy can improve execution time. In a robotic cell, the cyclic

time is an important KPI. The cyclic time can be improved

by reducing refinement time by specifying lower accuracy for

cases where spatial accuracy is not crucial.

D. Experimenting with the update time of the controller

In the final measurement, we investigated the effect of

update time of controller on the accuracy. In Table II, max-

imum spatial deviation in joint space is shown. For each

trajectory, the maximum spatial deviation is calculated (i.e.

maxt∈[0,TB ]Γ(t)) and averaged over executed trajectories. We

observed that to utilize the advantage of lower update time

requires low network delay as well. For example, in 64 ms

network delay cases, using the lowest (i.e. 8 ms) update

time has no significant effect on the performance. However,

for lower network delay cases (e.g. 16 ms), lower update

time leads to significant gain. This means that systems using

low update time require strict latency requirements from the
(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in

joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.

B. Handling jitter, delay and packet loss

In the measurements, jitter and packet loss were not con-

sidered. We assumed negligible jitter and no packet loss was

introduced by the network.

When the jitter is relatively small compared to the latency

of the connection, then jitter buffer like methods can be used

to transform jitter into extra delay. During the end-to-end

delay budget calculation this extra delay should be taken into

account. This method requires packet buffering capability.

Delayed or lost packets that were not arrived in time can end

in performance degradation. The best solution is to minimize

the occurrence of these events and to avoid bursty occurrence

of them. One of the main goals of URLLC is to provide

reliable connection and fulfill these requirements. In some

extent, delayed or lost packets can also be handled at higher

layers in the controller and at the device side. All correction

methods reduce the accuracy of movements and can efficiently

be used only for a limited time period.

In case of delayed or lost status messages, action should

be taken at the controller side of the control loop. In case

of trajectory execution, the controller uses joint positions

from the status messages. The missing joint position values

can efficiently be extrapolated, because trajectory generators

intentionally generate smooth trajectories to reduce the load

of the servos. Practically, the missing joint position value

is extrapolated from the historical values of joint positions

and from the remaining part of the trajectory. The position

error caused by extrapolated values will be corrected by the

PID control when the controller receives again correct status

messages.

In case of delayed or lost command messages, action should

be taken at the both sides of the control loop. At the controller

side, the controller needs to be informed about the unsuccess-

ful command transmission to keep itself up-to-date. A potential

solution is that the wireless network informs controller about

transmission status of down-link packets. When radio interface

failed or predicted to fail to transmit a packet in time (e.g. radio

related problems or congestion), then wireless network notifies

the controller about this event. Relying on this information

the controller updates its internal state and tries to avoid

overreaction.

VII. CONCLUSION

We investigated the performance of the closed-loop control

of an UR5 industrial robot arm at varying network charac-

teristics. We run trajectories and measured the accuracy of

realized trajectories as the function of network delay and robot

movement speed. We introduced KPIs to evaluate the temporal

and spatial accuracy of the realized trajectories. We observed

that to achieve the maximum accuracy of the robot at maxi-

mum speed, there is a need for low latency communication.

However, at lower speed or at relaxed accuracy, higher network

latency is still tolerable. We also observed that, providing

much lower latency than the update time of the robot has only

moderate performance gain. Finally, we suggested a method

to handle loss and jitter of robot control packets.

REFERENCES

[1] J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair and K. Kittichokechai,
"5G Radio Network Design for Ultra-Reliable Low-Latency Communi-
cation," in IEEE Network, vol. 32, no. 2, pp. 24-31, March-April 2018.

[2] S. A. Ashraf, I. Aktas, E. Eriksson, K. W. Helmersson and J. Ansari,
"Ultra-reliable and low-latency communication for wireless factory au-
tomation: From LTE to 5G," 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), Berlin, 2016,
pp. 1-8.

[3] Automation Inside (March) 2017 [Online]. Available:
http://www.automationinside.com/2017/03/industrial-network-market-
shares-2017.html

[4] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth, F. Golatowski,
D. Timmermann and J. Schacht, "Survey on real-time communication
via ethernet in industrial automation environments," Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA), 2014,
pages 1-8.

[5] PROFIBUS and PROFINET International. (April 2019) [Online]. Avail-
able: https://www.profibus.com/

[6] S. Nsaibi, L. Leurs and H. D. Schotten, "Formal and simulation-based tim-
ing analysis of Industrial-Ethernet sercos III over TSN," 2017 IEEE/ACM
21st International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), Rome, 2017, pp. 1-8.

[7] Mehdi Bennis, Merouane Debbah and H. Vincent Poor, "Ultra-Reliable
and Low-Latency Wireless Communication: Tail, Risk and Scale," CoRR
abs/1801.01270 (2018)

[8] Patrick C. F. Eggers, Marko Angjelichinoski and Petar Popovski, "Wire-
less Channel Modeling Perspectives for Ultra-Reliable Communications,"
CoRR abs/1705.01725 (2017)

[9] R. A. Delgado, K. Lau, R. H. Middleton and T. Wigren, "Networked
Delay Control for 5G Wireless Machine-Type Communications Using
Multiconnectivity," in IEEE Transactions on Control Systems Technology,
2018, Early Access.

[10] https://www.universal-robots.com/products/ur5-robot/
[11] N. Vafamand, M. H. Khooban, T. Dragicevic and F. Blaabjerg, "Net-

worked Fuzzy Predictive Control of Power Buffers for Dynamic Stabiliza-
tion of DC Microgrids," in IEEE Transactions on Industrial Electronics,
doi: 10.1109/TIE.2018.2826485

[12] X. M. Zhang, Q. L. Han and X. Yu, "Survey on Recent Advances
in Networked Control Systems," in IEEE Transactions on Industrial
Informatics, vol. 12, no. 5, pp. 1740-1752, Oct. 2016.

[13] Mahmoud Gamal, Nayera Sadek, Mohamed R.M. Rizk and Ahmed K.
Abou-elSaoud, "Delay compensation using Smith predictor for wireless
network control system," Alexandria Engineering Journal, Volume 55,
Issue 2, 2016, Pages 1421-1428.

[14] Q. Liu, S. Zoppi, G. Tan, W. Kellerer and E. Steinbach, "Quality-of-
control-driven uplink scheduling for networked control systems running
over 5G communication networks," 2017 IEEE International Symposium
on Haptic, Audio and Visual Environments and Games (HAVE), Abu
Dhabi, 2017, pp. 1-6.

[15] Huynh, D.Q., "Metrics for 3D Rotations: Comparison and Analysis,"
J Math Imaging Vis (2009) 35: 155. https://doi.org/10.1007/s10851-009-
0161-2

[16] PROFINET Real-Time Protocol (PN-RT)
https://wiki.wireshark.org/PROFINET/RT

(a) Average spatial distance at the start of goal position refinement (b) Average refinement time for different required goal position accuracy in
joint space; accuracy requirements: from 0.001 deg to 0.1 deg

Fig. 3. Statistics of goal refinement phase

Max joint speed Delay 8 ms tick 16 ms tick 24 ms tick

22.5 deg/sec
16 ms 0.116 0.116 0.115
64 ms 0.143 0.186 0.141

45 deg/sec
16 ms 0.229 0.232 0.255
64 ms 0.622 0.710 0.675

67.5 deg/sec
16 ms 0.340 0.374 0.492
64 ms 1.464 1.571 1.568

90 deg/s
16 ms 0.477 0.608 0.808
64 ms 2.531 2.660 2.793

112.5 deg/sec
16 ms 0.801 1.029 1.287
64 ms 3.694 4.144 4.100

TABLE II
MAXIMUM SPATIAL DEVIATION IN JOINT SPACE [DEG] FROM PLANNED

TRAJECTORY FOR DIFFERENT CONTROLLER UPDATE TIME (TICK),
NETWORK DELAY AND MAXIMUM JOINT SPEED.

wireless link. Providing low latency connection for a system

with high update time has no performance advantage.

VI. DISCUSSION ON THE OBSERVATIONS

This section summarizes and discusses observations and

also suggests a method to handle loss and jitter.

A. Requirements on the network

In general, measurement results have shown that the net-

work delay lower than 4 ms has no significant performance

impact. This is because (a) the internal operation of the

robot ends in about 2 ms standard deviation in response

time, most probably, due to the internal sampling used in

the robot and (b) the ticks of the robot and the controller

are unsynchronized. The impact of network delay lower than

4 ms is masked by the background "noise" of measurement

setup. The detailed analysis of 0-4 ms network delay range

requires more sophisticated measurement apparatus, e.g., the

robot and the controller should be synchronized, otherwise

the randomness introduced by unsynchronized update times

dominates the behavior or a robot arm with lower update time

(e.g., < 1 ms) should be used.

The task of the robot arm can put requirements on the

network delay:

• For tasks where robot arm should react on external

events, low network delay is desired, because the network

delay between robot and controller directly increases the

reaction time.

• For tasks where time consuming goal refinement is

not tolerable, low network delay should be provisioned.

The deadline on trajectory execution time leads to a

requirement on the maximum tolerable network delay.

In general, higher network delay makes the refinement

time longer and in this way increases the total trajectory

execution time.

• Some tasks require accurate movement along the path,

e.g. welding, and not only at the goal position. Another

example is the collaboration of more robot arms where

the precise and synchronized movements are crucial. For

these tasks also low network delay is desired.

The internal mechanisms of robot arm can also put require-

ments on the network delay. In general, a low update time

system requires lower network delay. The control of a robot

arm with e.g. 20 ms update time, probably tolerates higher

network delay than a more precise and faster robot arm with

e.g. 1 ms update time. In addition to this, providing low latency

connection for a system with relatively high update time has

limited performance advantage.

Performance requirements of trajectory execution can also

put requirements on the network delay. Faster robot move-

ments require lower network delay for accurate movement. In

other side, if only higher latency connection is available then

using lower robot speed can compensate increased network

delay for some extent.

Performance optimization can also give guidelines for re-

quired network delay. Choosing proper required accuracy can

improve execution time. For example, if less accurate move-

ment is enough, then relaxed accuracy can shorten refinement

time.



Performance Evaluation of Closed-loop Industrial
Applications Over Imperfect Networks

JUNE 2019 • VOLUME XI • NUMBER 238

INFOCOMMUNICATIONS JOURNAL

B. Handling jitter, delay and packet loss

In the measurements, jitter and packet loss were not con-

sidered. We assumed negligible jitter and no packet loss was

introduced by the network.

When the jitter is relatively small compared to the latency

of the connection, then jitter buffer like methods can be used

to transform jitter into extra delay. During the end-to-end

delay budget calculation this extra delay should be taken into

account. This method requires packet buffering capability.

Delayed or lost packets that were not arrived in time can end

in performance degradation. The best solution is to minimize

the occurrence of these events and to avoid bursty occurrence

of them. One of the main goals of URLLC is to provide

reliable connection and fulfill these requirements. In some

extent, delayed or lost packets can also be handled at higher

layers in the controller and at the device side. All correction

methods reduce the accuracy of movements and can efficiently

be used only for a limited time period.

In case of delayed or lost status messages, action should

be taken at the controller side of the control loop. In case

of trajectory execution, the controller uses joint positions

from the status messages. The missing joint position values

can efficiently be extrapolated, because trajectory generators

intentionally generate smooth trajectories to reduce the load

of the servos. Practically, the missing joint position value

is extrapolated from the historical values of joint positions

and from the remaining part of the trajectory. The position

error caused by extrapolated values will be corrected by the

PID control when the controller receives again correct status

messages.

In case of delayed or lost command messages, action should

be taken at the both sides of the control loop. At the controller

side, the controller needs to be informed about the unsuccess-

ful command transmission to keep itself up-to-date. A potential

solution is that the wireless network informs controller about

transmission status of down-link packets. When radio interface

failed or predicted to fail to transmit a packet in time (e.g. radio

related problems or congestion), then wireless network notifies

the controller about this event. Relying on this information

the controller updates its internal state and tries to avoid

overreaction.

VII. CONCLUSION

We investigated the performance of the closed-loop control

of an UR5 industrial robot arm at varying network charac-

teristics. We run trajectories and measured the accuracy of

realized trajectories as the function of network delay and robot

movement speed. We introduced KPIs to evaluate the temporal

and spatial accuracy of the realized trajectories. We observed

that to achieve the maximum accuracy of the robot at maxi-

mum speed, there is a need for low latency communication.

However, at lower speed or at relaxed accuracy, higher network

latency is still tolerable. We also observed that, providing

much lower latency than the update time of the robot has only

moderate performance gain. Finally, we suggested a method

to handle loss and jitter of robot control packets.

REFERENCES

[1] J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair and K. Kittichokechai,
"5G Radio Network Design for Ultra-Reliable Low-Latency Communi-
cation," in IEEE Network, vol. 32, no. 2, pp. 24-31, March-April 2018.

[2] S. A. Ashraf, I. Aktas, E. Eriksson, K. W. Helmersson and J. Ansari,
"Ultra-reliable and low-latency communication for wireless factory au-
tomation: From LTE to 5G," 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), Berlin, 2016,
pp. 1-8.

[3] Automation Inside (March) 2017 [Online]. Available:
http://www.automationinside.com/2017/03/industrial-network-market-
shares-2017.html

[4] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth, F. Golatowski,
D. Timmermann and J. Schacht, "Survey on real-time communication
via ethernet in industrial automation environments," Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA), 2014,
pages 1-8.

[5] PROFIBUS and PROFINET International. (April 2019) [Online]. Avail-
able: https://www.profibus.com/

[6] S. Nsaibi, L. Leurs and H. D. Schotten, "Formal and simulation-based tim-
ing analysis of Industrial-Ethernet sercos III over TSN," 2017 IEEE/ACM
21st International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), Rome, 2017, pp. 1-8.

[7] Mehdi Bennis, Merouane Debbah and H. Vincent Poor, "Ultra-Reliable
and Low-Latency Wireless Communication: Tail, Risk and Scale," CoRR
abs/1801.01270 (2018)

[8] Patrick C. F. Eggers, Marko Angjelichinoski and Petar Popovski, "Wire-
less Channel Modeling Perspectives for Ultra-Reliable Communications,"
CoRR abs/1705.01725 (2017)

[9] R. A. Delgado, K. Lau, R. H. Middleton and T. Wigren, "Networked
Delay Control for 5G Wireless Machine-Type Communications Using
Multiconnectivity," in IEEE Transactions on Control Systems Technology,
2018, Early Access.

[10] https://www.universal-robots.com/products/ur5-robot/
[11] N. Vafamand, M. H. Khooban, T. Dragicevic and F. Blaabjerg, "Net-

worked Fuzzy Predictive Control of Power Buffers for Dynamic Stabiliza-
tion of DC Microgrids," in IEEE Transactions on Industrial Electronics,
doi: 10.1109/TIE.2018.2826485

[12] X. M. Zhang, Q. L. Han and X. Yu, "Survey on Recent Advances
in Networked Control Systems," in IEEE Transactions on Industrial
Informatics, vol. 12, no. 5, pp. 1740-1752, Oct. 2016.

[13] Mahmoud Gamal, Nayera Sadek, Mohamed R.M. Rizk and Ahmed K.
Abou-elSaoud, "Delay compensation using Smith predictor for wireless
network control system," Alexandria Engineering Journal, Volume 55,
Issue 2, 2016, Pages 1421-1428.

[14] Q. Liu, S. Zoppi, G. Tan, W. Kellerer and E. Steinbach, "Quality-of-
control-driven uplink scheduling for networked control systems running
over 5G communication networks," 2017 IEEE International Symposium
on Haptic, Audio and Visual Environments and Games (HAVE), Abu
Dhabi, 2017, pp. 1-6.

[15] Huynh, D.Q., "Metrics for 3D Rotations: Comparison and Analysis,"
J Math Imaging Vis (2009) 35: 155. https://doi.org/10.1007/s10851-009-
0161-2

[16] PROFINET Real-Time Protocol (PN-RT)
https://wiki.wireshark.org/PROFINET/RT

Sándor Rácz received his MSc and PhD in electrical 
engineering from the Budapest University of Tech-
nology and Economics (BME), at the Department of 
Telecommunications and Media Informatics (TMIT) in 
1997 and 2004 respectively. Since 2000, he has been 
a research fellow at the Ericsson Traffic Analysis and 
Network Performance Laboratory (Traffic Lab) in 
Budapest. His research interests include performance 
modelling and analysis of telecommunication systems. 
He published several patents, as well as conference and 

journal papers, for which he received more than 850 independent citations.

Géza Szabó is working as a Senior Researcher in 
the Artificial Intelligence research area in Ericsson 
Research and taking part in designing and implementing 
demonstrations for external events within our robotics 
team e.g., Mobile World Congress, Hannover Messe.

József Pető received his MSc. degree in Computer 
Engineering from the Budapest University of Tech-
nology and Economics in 2018. He is currently working 
toward his Ph.D. degree. His current areas of interest 
and research include cloud robotics, digital twin, robot 
simulation, machine learning applications in robotics.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

1 

 
Abstract— Vehicle to grid (V2G) communication for electric 

vehicles and their charging points is already well established by 
the ISO 15118 standard. The standard allows vehicles to 
communicate with the charging station using the power cable, i.e. 
a wired link, but it is improved to enable wireless (WLAN) links 
as well. This paper aims to provide an implementation that 
accomplishes a wireless authentication solution (WAS). With that 
the electric vehicles can establish V2G connection when 
approaching the charging pool, then identify and authenticate the 
driver and/or the vehicle. Furthermore, the paper presents a 
TTCN-3 based validation and verification (V&V) framework in 
order to test the conformance of the prototype implementation 
against the standard. 
 

Index Terms—Vehicle-to-Grid, ISO 15118, wireless charging, 
Electric Vehicle, ITS, TTCN-3 

I. INTRODUCTION 

The proportion of Battery Electric Vehicles (BEV) and Plug-In 
Hybrid Electric Vehicles (PHEV), against conventional 
vehicles with internal combustion engine, is growing 
remarkably in developed countries. Led by the USA, the 
European Union and Japan the BEV and PHEV market is 
rapidly growing [1]. To serve this increased demand, massive 
charge point deployment is required. Nevertheless, due to 
business issues (e.g. billing) and grid limitations, smart 
charging is also a mandatory requirement to overcome the 
issues caused by mass electric vehicle (EV) recharging. For the 
sake of convenience hereafter the collection term EV for both 
battery electric vehicles and PHEVs is used. 
The communication between EVs is an extensively researched 
topic and it is becoming an essential part of the C-ITS 
(Cooperative Intelligent transportation system) environment. 
The bi-directional communication between the vehicle and the 
charging point (and the grid infrastructure behind it) is referred 
to as vehicle-to-grid (V2G), thus V2G provides a 
communication interface for bi-directional charging (or 
discharging) of EVs. The EV charging station is the so-called 
EVSE (Electric Vehicle Supply Equipment). Inside the EV 
there is a module responsible for the V2G communication. This 

 
This work is a part of the project NeMo - Hyper-Network for electro-Mobility 
that received funding from the European Union Horizon 2020 research & 
innovation program under grant agreement no 713794. Content reflects only the 
authors’ view and European Commission is not responsible for any use that 
may be made of the information it contains. 

module is referred to as Electric Vehicle Communication 
Controller (EVCC), while in the case of EVSE the literature 
uses the term Supply Equipment Communication Controller 
(SECC). The EV is capable of communicating with the 
charging point using its EVCC. The message exchange between 
the EV and the EVSE is standardized by ISO/IEC (International 
Organization for Standardization/ International 
Electrotechnical Commission) in the series of 15118 
(e.g. [2] – [7]). As the communication parts of this generic 
equipment are the EVCC and SECC, ISO 15118 describes the 
communication between these components. ISO 15118 is the 
enabler of vehicle-to-grid applications. 
The main challenge of any standardized technology is 
conformance and interoperability. Conformance testing checks 
a specific product (or maybe a part of a product) for compliance 
to requirements given in a base standard. A definition of 
interoperability testing is the "ability" of two or more systems 
(or components) to exchange and use information and execute 
successful procedures/sessions. The aim of interoperability 
testing is not restricted to demonstrating that products (from 
different manufacturers) can work together: it also shows that 
these products can work together using a specific protocol. 
Multi-vendor compatibility is crucial for the success of V2G 
technology. 
The contribution of this manuscript is given as follows: 
1. Introduce a prototype SECC implementation, which uses 

wireless (WLAN-based) communication to handle a V2G 
session with the EVCC. A wireless authentication solution 
(WAS) is presented that allows and handles the V2G 
communication and the identification of the EV via 
wireless links.  

2. Provide a validation and verification (V&V) tool to test the 
V2G conformance of the implemented prototype against 
the base standard given in [3].  

It is important to highlight the fact that V2G was originally 
planned to be used in a wired manner (i.e. using the charging 
cable with power line communication). However, wireless 
communication recently gained higher attention, even in the 

Zoltán Jakó is with the Broadbit Hungary Kft., 1023, Ürömi utca 40, 
Budapest, Hungary (e-mail: zoltan.jako@broadbit.net).  

Ádám Knapp is with the Broadbit Hungary Kft., 1023, Ürömi utca 40, 
Budapest, Hungary (e-mail: adam.knapp@broadbit.net).  

Nadim El Sayed is with the DAI-Labor, Technische Universität Berlin, 
Berlin (TUB), Berlin, Germany (e-mail: nadim.elsayed@dai-labor.de). 

Wireless Authentication Solution and TTCN-3 
based Test Framework for ISO-15118 Wireless 

V2G Communication 
Zoltán Jakó, Member, IEEE, Ádám Knapp, Member, IEEE and Nadim El Sayed 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

1 

 
Abstract— Vehicle to grid (V2G) communication for electric 

vehicles and their charging points is already well established by 
the ISO 15118 standard. The standard allows vehicles to 
communicate with the charging station using the power cable, i.e. 
a wired link, but it is improved to enable wireless (WLAN) links 
as well. This paper aims to provide an implementation that 
accomplishes a wireless authentication solution (WAS). With that 
the electric vehicles can establish V2G connection when 
approaching the charging pool, then identify and authenticate the 
driver and/or the vehicle. Furthermore, the paper presents a 
TTCN-3 based validation and verification (V&V) framework in 
order to test the conformance of the prototype implementation 
against the standard. 
 

Index Terms—Vehicle-to-Grid, ISO 15118, wireless charging, 
Electric Vehicle, ITS, TTCN-3 

I. INTRODUCTION 

The proportion of Battery Electric Vehicles (BEV) and Plug-In 
Hybrid Electric Vehicles (PHEV), against conventional 
vehicles with internal combustion engine, is growing 
remarkably in developed countries. Led by the USA, the 
European Union and Japan the BEV and PHEV market is 
rapidly growing [1]. To serve this increased demand, massive 
charge point deployment is required. Nevertheless, due to 
business issues (e.g. billing) and grid limitations, smart 
charging is also a mandatory requirement to overcome the 
issues caused by mass electric vehicle (EV) recharging. For the 
sake of convenience hereafter the collection term EV for both 
battery electric vehicles and PHEVs is used. 
The communication between EVs is an extensively researched 
topic and it is becoming an essential part of the C-ITS 
(Cooperative Intelligent transportation system) environment. 
The bi-directional communication between the vehicle and the 
charging point (and the grid infrastructure behind it) is referred 
to as vehicle-to-grid (V2G), thus V2G provides a 
communication interface for bi-directional charging (or 
discharging) of EVs. The EV charging station is the so-called 
EVSE (Electric Vehicle Supply Equipment). Inside the EV 
there is a module responsible for the V2G communication. This 

 
This work is a part of the project NeMo - Hyper-Network for electro-Mobility 
that received funding from the European Union Horizon 2020 research & 
innovation program under grant agreement no 713794. Content reflects only the 
authors’ view and European Commission is not responsible for any use that 
may be made of the information it contains. 

module is referred to as Electric Vehicle Communication 
Controller (EVCC), while in the case of EVSE the literature 
uses the term Supply Equipment Communication Controller 
(SECC). The EV is capable of communicating with the 
charging point using its EVCC. The message exchange between 
the EV and the EVSE is standardized by ISO/IEC (International 
Organization for Standardization/ International 
Electrotechnical Commission) in the series of 15118 
(e.g. [2] – [7]). As the communication parts of this generic 
equipment are the EVCC and SECC, ISO 15118 describes the 
communication between these components. ISO 15118 is the 
enabler of vehicle-to-grid applications. 
The main challenge of any standardized technology is 
conformance and interoperability. Conformance testing checks 
a specific product (or maybe a part of a product) for compliance 
to requirements given in a base standard. A definition of 
interoperability testing is the "ability" of two or more systems 
(or components) to exchange and use information and execute 
successful procedures/sessions. The aim of interoperability 
testing is not restricted to demonstrating that products (from 
different manufacturers) can work together: it also shows that 
these products can work together using a specific protocol. 
Multi-vendor compatibility is crucial for the success of V2G 
technology. 
The contribution of this manuscript is given as follows: 
1. Introduce a prototype SECC implementation, which uses 

wireless (WLAN-based) communication to handle a V2G 
session with the EVCC. A wireless authentication solution 
(WAS) is presented that allows and handles the V2G 
communication and the identification of the EV via 
wireless links.  

2. Provide a validation and verification (V&V) tool to test the 
V2G conformance of the implemented prototype against 
the base standard given in [3].  

It is important to highlight the fact that V2G was originally 
planned to be used in a wired manner (i.e. using the charging 
cable with power line communication). However, wireless 
communication recently gained higher attention, even in the 

Zoltán Jakó is with the Broadbit Hungary Kft., 1023, Ürömi utca 40, 
Budapest, Hungary (e-mail: zoltan.jako@broadbit.net).  

Ádám Knapp is with the Broadbit Hungary Kft., 1023, Ürömi utca 40, 
Budapest, Hungary (e-mail: adam.knapp@broadbit.net).  

Nadim El Sayed is with the DAI-Labor, Technische Universität Berlin, 
Berlin (TUB), Berlin, Germany (e-mail: nadim.elsayed@dai-labor.de). 

Wireless Authentication Solution and TTCN-3 
based Test Framework for ISO-15118 Wireless 

V2G Communication 
Zoltán Jakó, Member, IEEE, Ádám Knapp, Member, IEEE and Nadim El Sayed 

REFERENCES

 [1] J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair and K. Kittichokechai, 
"5G Radio Network Design for Ultra-Reliable Low-Latency 
Communication," in IEEE Network, vol. 32, no. 2, pp. 24-31, March-
April 2018.

 [2] S. A. Ashraf, I. Aktas, E. Eriksson, K. W. Helmersson and J. Ansari, 
"Ultra-reliable and low-latency communication for wireless factory au- 
tomation: From LTE to 5G," 2016 IEEE 21st International Conference 
on Emerging Technologies and Factory Automation (ETFA), Berlin, 
2016, pp. 1-8.

 [3] Automation Inside (March) 2017 [Online]. Available: http://
www.automationinside.com/2017/03/industrial-network-market-
shares-2017.html

 [4] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth, F. Golatowski, 
D. Timmermann and J. Schacht, "Survey on real-time communication 
via ethernet in industrial automation environments," Proceedings 
of the 2014 IEEE Emerging Technology and Factory Automation 
(ETFA), 2014, pages 1-8.

 [5] PROFIBUS and PROFINET International. (April 2019) [Online]. 
Available: https://www.profibus.com/

 [6] S. Nsaibi, L. Leursand H. D. Schotten, "Formal and simulation-based 
timing analysis of Industrial-Ethernet sercos III over TSN," 2017 
IEEE/ACM 21st International Symposium on Distributed Simulation 
and Real Time Applications (DS-RT), Rome, 2017, pp. 1-8.

 [7] Mehdi Bennis, Merouane Debbah and H. Vincent Poor, "Ultra-
Reliable and Low-Latency Wireless Communication: Tail, Risk and 
Scale," CoRR abs/1801.01270 (2018)

 [8] Patrick C. F. Eggers, Marko Angjelichinoski and Petar Popovski, 
"Wireless Channel Modeling Perspectives for Ultra-Reliable 
Communications," CoRR abs/1705.01725 (2017)

 [9] R. A. Delgado, K. Lau, R. H. Middleton and T. Wigren, "Networked 
Delay Control for 5G Wireless Machine-Type Communications 
Using Multiconnectivity," in IEEE Transactions on Control Systems 
Technology, 2018, Early Access.

 [10] https://www.universal-robots.com/products/ur5-robot/
 [11] N. Vafamand, M. H. Khooban, T. Dragicevic and F. Blaabjerg, "Net- 

worked Fuzzy Predictive Control of Power Buffers for Dynamic 
Stabilization of DC Microgrids," in IEEE Transactions on Industrial 
Electronics, doi: 10.1109/TIE.2018.2826485

 [12] X. M. Zhang, Q. L. Han and X. Yu, "Survey on Recent Advances 
in Networked Control Systems," in IEEE Transactions on Industrial 
Informatics, vol. 12, no. 5, pp. 1740-1752, Oct. 2016.

[13] Mahmoud Gamal, Nayera Sadek, Mohamed R.M. Rizk and Ahmed 
K. Abou-elSaoud, "Delay compensation using Smith predictor for 
wireless network control system," Alexandria Engineering Journal, 
Volume 55, Issue 2, 2016, Pages 1421-1428.

[14] Q. Liu, S. Zoppi, G. Tan, W. Kellerer and E. Steinbach, "Quality-
of-control-driven uplink scheduling for networked control systems 
running over 5G communication networks," 2017 IEEE International 
Symposium on Haptic, Audio and Visual Environments and Games 
(HAVE), Abu Dhabi, 2017, pp. 1-6.

[15] Huynh, D.Q., "Metrics for 3D Rotations: Comparison and Analysis," J 
Math Imaging Vis (2009) 35: 155. doi: 10.1007/s10851-009-0161-2

[16] PROFINET Real-Time Protocol (PN-RT) https://wiki.wireshark.org/
PROFINET/RT

http://www.automationinside.com/2017/03/industrial-network-market-shares-2017.html
http://www.automationinside.com/2017/03/industrial-network-market-shares-2017.html
 https://www.profibus.com/
https://www.universal-robots.com/products/ur5-robot/
http://doi.org/10.1109/TIE.2018.2826485
http://doi.org/10.1007/s10851-009-0161-2
https://wiki.wireshark.org/PROFINET/RT
https://wiki.wireshark.org/PROFINET/RT

