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I. INTRODUCTION 
HISpaper presents an evaluation tool of an optical 
distance measurement system. Optical distance 
measurement can have errors, apparently larger than 

traditional systems [1, 2]. Using the Six Sigma (6σ) tools, we 
can ensure that optical distance measurement is accurate, 
having high precision at smaller and bigger distances too [18]. 

In today's industrialized world, robots are the key elements 
which makes possible to build products in big volume and 
with a highquality standard to cover the needs of today's 
consumer world [3, 4, 14, 15]. Robots need to measure 
distances to know their position in space and the distance to 
the manipulated object [5]. They must use optical distance 
measurement methods to ensure flexibility [6]. Optical 
distance measurement with the usage of stereo cameras [16] is 
one of the most common ways to achieve high precision 
distance measurement for industrial robots [7]. 

Measurement system analysis (MSA) is often performed to 
ensure that the system behaves as desired [10]. First, a pretest 
is done, where the measurement system errors are measured 
[11]. After, some corrections are made, and is checked if the 
changes really reduced the measurement errors [12]. 
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II. PROBLEM FORMULATION 
In the laboratory we had access to an educational/industrial 

robotic arm (Fig. 1), which we needed to program to track the 
sun [18]. The demand was to know its position in space and 
the distance to the manipulated object to implement automated 
software which can control it to move autonomously [18]. The 
optical distance measurement was the best solution to obtain 
the position of the key parts of the robotic arm in space [8]. 
We evaluated the optical distance measurement against the 
distances measured with laser. The optical distance 
measurement had some errors. We had to measure somehow if 
these errors are acceptable, if some corrections are needed, or 
if we need to use another distance measurement method [9]. 

 
Fig. 1.  The normal probability plot, for the actual real distance and the 
distance computed, by the system using the cameras. 

 
On Fig. 2 there can be seen the optical distance 

measurement method with two cameras (stereo cameras). 

 
Fig. 2.  Distance computation using two video cameras (stereo cameras). 
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I. INTRODUCTION 
HISpaper presents an evaluation tool of an optical 
distance measurement system. Optical distance 
measurement can have errors, apparently larger than 

traditional systems [1, 2]. Using the Six Sigma (6σ) tools, we 
can ensure that optical distance measurement is accurate, 
having high precision at smaller and bigger distances too [18]. 

In today's industrialized world, robots are the key elements 
which makes possible to build products in big volume and 
with a highquality standard to cover the needs of today's 
consumer world [3, 4, 14, 15]. Robots need to measure 
distances to know their position in space and the distance to 
the manipulated object [5]. They must use optical distance 
measurement methods to ensure flexibility [6]. Optical 
distance measurement with the usage of stereo cameras [16] is 
one of the most common ways to achieve high precision 
distance measurement for industrial robots [7]. 

Measurement system analysis (MSA) is often performed to 
ensure that the system behaves as desired [10]. First, a pretest 
is done, where the measurement system errors are measured 
[11]. After, some corrections are made, and is checked if the 
changes really reduced the measurement errors [12]. 
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II. PROBLEM FORMULATION 
In the laboratory we had access to an educational/industrial 

robotic arm (Fig. 1), which we needed to program to track the 
sun [18]. The demand was to know its position in space and 
the distance to the manipulated object to implement automated 
software which can control it to move autonomously [18]. The 
optical distance measurement was the best solution to obtain 
the position of the key parts of the robotic arm in space [8]. 
We evaluated the optical distance measurement against the 
distances measured with laser. The optical distance 
measurement had some errors. We had to measure somehow if 
these errors are acceptable, if some corrections are needed, or 
if we need to use another distance measurement method [9]. 

 
Fig. 1.  The normal probability plot, for the actual real distance and the 
distance computed, by the system using the cameras. 

 
On Fig. 2 there can be seen the optical distance 

measurement method with two cameras (stereo cameras). 

 
Fig. 2.  Distance computation using two video cameras (stereo cameras). 
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measurement can have errors, apparently larger than 

traditional systems [1, 2]. Using the Six Sigma (6σ) tools, we 
can ensure that optical distance measurement is accurate, 
having high precision at smaller and bigger distances too [18]. 

In today's industrialized world, robots are the key elements 
which makes possible to build products in big volume and 
with a highquality standard to cover the needs of today's 
consumer world [3, 4, 14, 15]. Robots need to measure 
distances to know their position in space and the distance to 
the manipulated object [5]. They must use optical distance 
measurement methods to ensure flexibility [6]. Optical 
distance measurement with the usage of stereo cameras [16] is 
one of the most common ways to achieve high precision 
distance measurement for industrial robots [7]. 

Measurement system analysis (MSA) is often performed to 
ensure that the system behaves as desired [10]. First, a pretest 
is done, where the measurement system errors are measured 
[11]. After, some corrections are made, and is checked if the 
changes really reduced the measurement errors [12]. 
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robotic arm (Fig. 1), which we needed to program to track the 
sun [18]. The demand was to know its position in space and 
the distance to the manipulated object to implement automated 
software which can control it to move autonomously [18]. The 
optical distance measurement was the best solution to obtain 
the position of the key parts of the robotic arm in space [8]. 
We evaluated the optical distance measurement against the 
distances measured with laser. The optical distance 
measurement had some errors. We had to measure somehow if 
these errors are acceptable, if some corrections are needed, or 
if we need to use another distance measurement method [9]. 

 
Fig. 1.  The normal probability plot, for the actual real distance and the 
distance computed, by the system using the cameras. 

 
On Fig. 2 there can be seen the optical distance 

measurement method with two cameras (stereo cameras). 

 
Fig. 2.  Distance computation using two video cameras (stereo cameras). 
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The camera separation and initial distance from the base of 
the robotic arm is measured previously with laser. These 
values are hardcoded in the automated distance measurement 
software, made by the authors, in C++ programming language, 
for the robotic arm. The automated distance measurement 
system can compute the distances to each colored bottle cap 
(blue, yellow and red) at the robotic arm’s joints. The colored 
bottle caps are recognized using color filtering. 

On the  and  axes the distance can be computed easily 
based on a 2D coordinate system based on the pixels from one 
camera. To compute the distance on the  axis (in 3D) the 
following formulas were used. 

On equation (1) can be seen the tangent of the  and  
angles. 

 


 = 	 = 	  (1) 

 
The initial offset can be computed from the  coordinates of 

the left and right camera, as shown on equation (2). 
 	 =  −  (2) 
 
The conversion factor can be computed as shown on 

equation (3). 
 	 = 	 × 		  (3) 
 
The final offset can be computed from the  coordinates of 

the left and right camera, as shown on equation (4). 
 	 = 	  −  (4) 
 
The final distance can be computed as shown on equation 

(5). 
 	 = 	 × 		  (5) 
 
The novelty of the paper is measuring movement distances 

for a robotic arm’s gripper, during movement (dynamically), 
with the usage of two cameras (stereo cameras) in realtime. 

To have a robotic arm which can move freely, to execute 
any given task, as it was programmed previously (statically), 
the optical distance measurement must be very precise. To test 
the robustness of the optical distance measurement, the system 
must be tested as any industrial process. The best way to test 
this is to create a measurement system analysis (MSA) using 
Six Sigma tools.  

III. PROBLEM SOLUTION 
The optical distance measurement method was tested using 

Six Sigma tools [17]. Six Sigma represents a set of methods 
and tools which are used to improve the process. Six Sigma 
methods try to improve the quality of a process by finding and 

eliminating the root causes of defects. It uses a set of quality 
management tools, mainly statistical tools. The Six Sigma 
tools were implemented using graphs in Minitab statistical 
software [18]. 

These tools can show if the measurements are accurate 
enough and if some fine tuning is needed [13]. 

As shown on Table I., the system was tested with 
measurements at different distances. The range of values used 
for the measurements is between 100 mm and 3000 mm, with 
100 mm step. The real values, measured by laser, and the 
distance measured and computed by the system with the 
cameras are very close. There are two cameras, they are 
placed near each other, and the distance is computed with 
stereo triangulation. We computed also an error delta, the 
difference between the actual distance value and the value 
measured by the camera system. The low sample size is not a 
problem for the Six Sigma tools, because it can be used 
always normal probability plot instead of histograms. 

 
TABLE I 

DISTANCE MEASUREMENT USING CAMERAS AT DIFFERENT DISTANCES [MM] 
AND THE MEASUREMENT ERROR DELTA [MM] 

Real Distance [mm] Computed Distance 
[mm] Error Delta [mm] 

100 99 1 
200 202 2 
300 303 3 
400 395 5 
500 502 2 
600 598 2 
700 699 1 
800 797 3 
900 904 4 

1000 1005 5 
1100 1101 1 
1200 1204 4 
1300 1298 2 
1400 1402 2 
1500 1494 6 
1600 1599 1 
1700 1701 1 
1800 1802 2 
1900 1905 5 
2000 2005 5 
2100 2105 5 
2200 2202 2 
2300 2302 2 
2400 2404 4 
2500 2496 4 
2600 2598 2 
2700 2697 3 
2800 2796 4 
2900 2902 2 
3000 3006 6 

IV. EVALUATION 
In Fig. 3 we present a normal probability plot with a 95% 

confidence interval of the two measurements, the real distance 
and the measured distance with the camera system. Please 
note that these graphs overlap almost perfectly, so the 
measured distance, does not differ very much from the actual 
distance. The AndersonDarling (AD)value is 0.321, and the 
pvalue (the pvalue or probability value is the probability for 
a specific statistical model, when the null hypothesis is true) is 
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Six Sigma tools [17]. Six Sigma represents a set of methods 
and tools which are used to improve the process. Six Sigma 
methods try to improve the quality of a process by finding and 

eliminating the root causes of defects. It uses a set of quality 
management tools, mainly statistical tools. The Six Sigma 
tools were implemented using graphs in Minitab statistical 
software [18]. 

These tools can show if the measurements are accurate 
enough and if some fine tuning is needed [13]. 

As shown on Table I., the system was tested with 
measurements at different distances. The range of values used 
for the measurements is between 100 mm and 3000 mm, with 
100 mm step. The real values, measured by laser, and the 
distance measured and computed by the system with the 
cameras are very close. There are two cameras, they are 
placed near each other, and the distance is computed with 
stereo triangulation. We computed also an error delta, the 
difference between the actual distance value and the value 
measured by the camera system. The low sample size is not a 
problem for the Six Sigma tools, because it can be used 
always normal probability plot instead of histograms. 

 
TABLE I 

DISTANCE MEASUREMENT USING CAMERAS AT DIFFERENT DISTANCES [MM] 
AND THE MEASUREMENT ERROR DELTA [MM] 

Real Distance [mm] Computed Distance 
[mm] Error Delta [mm] 

100 99 1 
200 202 2 
300 303 3 
400 395 5 
500 502 2 
600 598 2 
700 699 1 
800 797 3 
900 904 4 

1000 1005 5 
1100 1101 1 
1200 1204 4 
1300 1298 2 
1400 1402 2 
1500 1494 6 
1600 1599 1 
1700 1701 1 
1800 1802 2 
1900 1905 5 
2000 2005 5 
2100 2105 5 
2200 2202 2 
2300 2302 2 
2400 2404 4 
2500 2496 4 
2600 2598 2 
2700 2697 3 
2800 2796 4 
2900 2902 2 
3000 3006 6 

IV. EVALUATION 
In Fig. 3 we present a normal probability plot with a 95% 

confidence interval of the two measurements, the real distance 
and the measured distance with the camera system. Please 
note that these graphs overlap almost perfectly, so the 
measured distance, does not differ very much from the actual 
distance. The AndersonDarling (AD)value is 0.321, and the 
pvalue (the pvalue or probability value is the probability for 
a specific statistical model, when the null hypothesis is true) is 
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The camera separation and initial distance from the base of 
the robotic arm is measured previously with laser. These 
values are hardcoded in the automated distance measurement 
software, made by the authors, in C++ programming language, 
for the robotic arm. The automated distance measurement 
system can compute the distances to each colored bottle cap 
(blue, yellow and red) at the robotic arm’s joints. The colored 
bottle caps are recognized using color filtering. 

On the  and  axes the distance can be computed easily 
based on a 2D coordinate system based on the pixels from one 
camera. To compute the distance on the  axis (in 3D) the 
following formulas were used. 

On equation (1) can be seen the tangent of the  and  
angles. 

 


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The novelty of the paper is measuring movement distances 

for a robotic arm’s gripper, during movement (dynamically), 
with the usage of two cameras (stereo cameras) in realtime. 

To have a robotic arm which can move freely, to execute 
any given task, as it was programmed previously (statically), 
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the robustness of the optical distance measurement, the system 
must be tested as any industrial process. The best way to test 
this is to create a measurement system analysis (MSA) using 
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and tools which are used to improve the process. Six Sigma 
methods try to improve the quality of a process by finding and 

eliminating the root causes of defects. It uses a set of quality 
management tools, mainly statistical tools. The Six Sigma 
tools were implemented using graphs in Minitab statistical 
software [18]. 

These tools can show if the measurements are accurate 
enough and if some fine tuning is needed [13]. 

As shown on Table I., the system was tested with 
measurements at different distances. The range of values used 
for the measurements is between 100 mm and 3000 mm, with 
100 mm step. The real values, measured by laser, and the 
distance measured and computed by the system with the 
cameras are very close. There are two cameras, they are 
placed near each other, and the distance is computed with 
stereo triangulation. We computed also an error delta, the 
difference between the actual distance value and the value 
measured by the camera system. The low sample size is not a 
problem for the Six Sigma tools, because it can be used 
always normal probability plot instead of histograms. 
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    

 

I. INTRODUCTION 
HISpaper presents an evaluation tool of an optical 
distance measurement system. Optical distance 
measurement can have errors, apparently larger than 

traditional systems [1, 2]. Using the Six Sigma (6σ) tools, we 
can ensure that optical distance measurement is accurate, 
having high precision at smaller and bigger distances too [18]. 

In today's industrialized world, robots are the key elements 
which makes possible to build products in big volume and 
with a highquality standard to cover the needs of today's 
consumer world [3, 4, 14, 15]. Robots need to measure 
distances to know their position in space and the distance to 
the manipulated object [5]. They must use optical distance 
measurement methods to ensure flexibility [6]. Optical 
distance measurement with the usage of stereo cameras [16] is 
one of the most common ways to achieve high precision 
distance measurement for industrial robots [7]. 

Measurement system analysis (MSA) is often performed to 
ensure that the system behaves as desired [10]. First, a pretest 
is done, where the measurement system errors are measured 
[11]. After, some corrections are made, and is checked if the 
changes really reduced the measurement errors [12]. 
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II. PROBLEM FORMULATION 
In the laboratory we had access to an educational/industrial 

robotic arm (Fig. 1), which we needed to program to track the 
sun [18]. The demand was to know its position in space and 
the distance to the manipulated object to implement automated 
software which can control it to move autonomously [18]. The 
optical distance measurement was the best solution to obtain 
the position of the key parts of the robotic arm in space [8]. 
We evaluated the optical distance measurement against the 
distances measured with laser. The optical distance 
measurement had some errors. We had to measure somehow if 
these errors are acceptable, if some corrections are needed, or 
if we need to use another distance measurement method [9]. 

 
Fig. 1.  The normal probability plot, for the actual real distance and the 
distance computed, by the system using the cameras. 

 
On Fig. 2 there can be seen the optical distance 

measurement method with two cameras (stereo cameras). 

 
Fig. 2.  Distance computation using two video cameras (stereo cameras). 
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The camera separation and initial distance from the base of 
the robotic arm is measured previously with laser. These 
values are hardcoded in the automated distance measurement 
software, made by the authors, in C++ programming language, 
for the robotic arm. The automated distance measurement 
system can compute the distances to each colored bottle cap 
(blue, yellow and red) at the robotic arm’s joints. The colored 
bottle caps are recognized using color filtering. 

On the  and  axes the distance can be computed easily 
based on a 2D coordinate system based on the pixels from one 
camera. To compute the distance on the  axis (in 3D) the 
following formulas were used. 

On equation (1) can be seen the tangent of the  and  
angles. 

 


 = 	 = 	  (1) 

 
The initial offset can be computed from the  coordinates of 

the left and right camera, as shown on equation (2). 
 	 =  −  (2) 
 
The conversion factor can be computed as shown on 

equation (3). 
 	 = 	 × 		  (3) 
 
The final offset can be computed from the  coordinates of 

the left and right camera, as shown on equation (4). 
 	 = 	  −  (4) 
 
The final distance can be computed as shown on equation 

(5). 
 	 = 	 × 		  (5) 
 
The novelty of the paper is measuring movement distances 

for a robotic arm’s gripper, during movement (dynamically), 
with the usage of two cameras (stereo cameras) in realtime. 

To have a robotic arm which can move freely, to execute 
any given task, as it was programmed previously (statically), 
the optical distance measurement must be very precise. To test 
the robustness of the optical distance measurement, the system 
must be tested as any industrial process. The best way to test 
this is to create a measurement system analysis (MSA) using 
Six Sigma tools.  

III. PROBLEM SOLUTION 
The optical distance measurement method was tested using 

Six Sigma tools [17]. Six Sigma represents a set of methods 
and tools which are used to improve the process. Six Sigma 
methods try to improve the quality of a process by finding and 

eliminating the root causes of defects. It uses a set of quality 
management tools, mainly statistical tools. The Six Sigma 
tools were implemented using graphs in Minitab statistical 
software [18]. 

These tools can show if the measurements are accurate 
enough and if some fine tuning is needed [13]. 

As shown on Table I., the system was tested with 
measurements at different distances. The range of values used 
for the measurements is between 100 mm and 3000 mm, with 
100 mm step. The real values, measured by laser, and the 
distance measured and computed by the system with the 
cameras are very close. There are two cameras, they are 
placed near each other, and the distance is computed with 
stereo triangulation. We computed also an error delta, the 
difference between the actual distance value and the value 
measured by the camera system. The low sample size is not a 
problem for the Six Sigma tools, because it can be used 
always normal probability plot instead of histograms. 

 
TABLE I 

DISTANCE MEASUREMENT USING CAMERAS AT DIFFERENT DISTANCES [MM] 
AND THE MEASUREMENT ERROR DELTA [MM] 

Real Distance [mm] Computed Distance 
[mm] Error Delta [mm] 

100 99 1 
200 202 2 
300 303 3 
400 395 5 
500 502 2 
600 598 2 
700 699 1 
800 797 3 
900 904 4 

1000 1005 5 
1100 1101 1 
1200 1204 4 
1300 1298 2 
1400 1402 2 
1500 1494 6 
1600 1599 1 
1700 1701 1 
1800 1802 2 
1900 1905 5 
2000 2005 5 
2100 2105 5 
2200 2202 2 
2300 2302 2 
2400 2404 4 
2500 2496 4 
2600 2598 2 
2700 2697 3 
2800 2796 4 
2900 2902 2 
3000 3006 6 

IV. EVALUATION 
In Fig. 3 we present a normal probability plot with a 95% 

confidence interval of the two measurements, the real distance 
and the measured distance with the camera system. Please 
note that these graphs overlap almost perfectly, so the 
measured distance, does not differ very much from the actual 
distance. The AndersonDarling (AD)value is 0.321, and the 
pvalue (the pvalue or probability value is the probability for 
a specific statistical model, when the null hypothesis is true) is 
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I. INTRODUCTION 
HISpaper presents an evaluation tool of an optical 
distance measurement system. Optical distance 
measurement can have errors, apparently larger than 

traditional systems [1, 2]. Using the Six Sigma (6σ) tools, we 
can ensure that optical distance measurement is accurate, 
having high precision at smaller and bigger distances too [18]. 

In today's industrialized world, robots are the key elements 
which makes possible to build products in big volume and 
with a highquality standard to cover the needs of today's 
consumer world [3, 4, 14, 15]. Robots need to measure 
distances to know their position in space and the distance to 
the manipulated object [5]. They must use optical distance 
measurement methods to ensure flexibility [6]. Optical 
distance measurement with the usage of stereo cameras [16] is 
one of the most common ways to achieve high precision 
distance measurement for industrial robots [7]. 

Measurement system analysis (MSA) is often performed to 
ensure that the system behaves as desired [10]. First, a pretest 
is done, where the measurement system errors are measured 
[11]. After, some corrections are made, and is checked if the 
changes really reduced the measurement errors [12]. 
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II. PROBLEM FORMULATION 
In the laboratory we had access to an educational/industrial 

robotic arm (Fig. 1), which we needed to program to track the 
sun [18]. The demand was to know its position in space and 
the distance to the manipulated object to implement automated 
software which can control it to move autonomously [18]. The 
optical distance measurement was the best solution to obtain 
the position of the key parts of the robotic arm in space [8]. 
We evaluated the optical distance measurement against the 
distances measured with laser. The optical distance 
measurement had some errors. We had to measure somehow if 
these errors are acceptable, if some corrections are needed, or 
if we need to use another distance measurement method [9]. 

 
Fig. 1.  The normal probability plot, for the actual real distance and the 
distance computed, by the system using the cameras. 

 
On Fig. 2 there can be seen the optical distance 

measurement method with two cameras (stereo cameras). 

 
Fig. 2.  Distance computation using two video cameras (stereo cameras). 
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      

           

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
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I. INTRODUCTION 
HISpaper presents an evaluation tool of an optical 
distance measurement system. Optical distance 
measurement can have errors, apparently larger than 

traditional systems [1, 2]. Using the Six Sigma (6σ) tools, we 
can ensure that optical distance measurement is accurate, 
having high precision at smaller and bigger distances too [18]. 

In today's industrialized world, robots are the key elements 
which makes possible to build products in big volume and 
with a highquality standard to cover the needs of today's 
consumer world [3, 4, 14, 15]. Robots need to measure 
distances to know their position in space and the distance to 
the manipulated object [5]. They must use optical distance 
measurement methods to ensure flexibility [6]. Optical 
distance measurement with the usage of stereo cameras [16] is 
one of the most common ways to achieve high precision 
distance measurement for industrial robots [7]. 

Measurement system analysis (MSA) is often performed to 
ensure that the system behaves as desired [10]. First, a pretest 
is done, where the measurement system errors are measured 
[11]. After, some corrections are made, and is checked if the 
changes really reduced the measurement errors [12]. 
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II. PROBLEM FORMULATION 
In the laboratory we had access to an educational/industrial 

robotic arm (Fig. 1), which we needed to program to track the 
sun [18]. The demand was to know its position in space and 
the distance to the manipulated object to implement automated 
software which can control it to move autonomously [18]. The 
optical distance measurement was the best solution to obtain 
the position of the key parts of the robotic arm in space [8]. 
We evaluated the optical distance measurement against the 
distances measured with laser. The optical distance 
measurement had some errors. We had to measure somehow if 
these errors are acceptable, if some corrections are needed, or 
if we need to use another distance measurement method [9]. 

 
Fig. 1.  The normal probability plot, for the actual real distance and the 
distance computed, by the system using the cameras. 

 
On Fig. 2 there can be seen the optical distance 

measurement method with two cameras (stereo cameras). 

 
Fig. 2.  Distance computation using two video cameras (stereo cameras). 
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The camera separation and initial distance from the base of 
the robotic arm is measured previously with laser. These 
values are hardcoded in the automated distance measurement 
software, made by the authors, in C++ programming language, 
for the robotic arm. The automated distance measurement 
system can compute the distances to each colored bottle cap 
(blue, yellow and red) at the robotic arm’s joints. The colored 
bottle caps are recognized using color filtering. 

On the  and  axes the distance can be computed easily 
based on a 2D coordinate system based on the pixels from one 
camera. To compute the distance on the  axis (in 3D) the 
following formulas were used. 

On equation (1) can be seen the tangent of the  and  
angles. 

 


 = 	 = 	  (1) 

 
The initial offset can be computed from the  coordinates of 

the left and right camera, as shown on equation (2). 
 	 =  −  (2) 
 
The conversion factor can be computed as shown on 

equation (3). 
 	 = 	 × 		  (3) 
 
The final offset can be computed from the  coordinates of 

the left and right camera, as shown on equation (4). 
 	 = 	  −  (4) 
 
The final distance can be computed as shown on equation 

(5). 
 	 = 	 × 		  (5) 
 
The novelty of the paper is measuring movement distances 

for a robotic arm’s gripper, during movement (dynamically), 
with the usage of two cameras (stereo cameras) in realtime. 

To have a robotic arm which can move freely, to execute 
any given task, as it was programmed previously (statically), 
the optical distance measurement must be very precise. To test 
the robustness of the optical distance measurement, the system 
must be tested as any industrial process. The best way to test 
this is to create a measurement system analysis (MSA) using 
Six Sigma tools.  

III. PROBLEM SOLUTION 
The optical distance measurement method was tested using 

Six Sigma tools [17]. Six Sigma represents a set of methods 
and tools which are used to improve the process. Six Sigma 
methods try to improve the quality of a process by finding and 

eliminating the root causes of defects. It uses a set of quality 
management tools, mainly statistical tools. The Six Sigma 
tools were implemented using graphs in Minitab statistical 
software [18]. 

These tools can show if the measurements are accurate 
enough and if some fine tuning is needed [13]. 

As shown on Table I., the system was tested with 
measurements at different distances. The range of values used 
for the measurements is between 100 mm and 3000 mm, with 
100 mm step. The real values, measured by laser, and the 
distance measured and computed by the system with the 
cameras are very close. There are two cameras, they are 
placed near each other, and the distance is computed with 
stereo triangulation. We computed also an error delta, the 
difference between the actual distance value and the value 
measured by the camera system. The low sample size is not a 
problem for the Six Sigma tools, because it can be used 
always normal probability plot instead of histograms. 

 
TABLE I 

DISTANCE MEASUREMENT USING CAMERAS AT DIFFERENT DISTANCES [MM] 
AND THE MEASUREMENT ERROR DELTA [MM] 

Real Distance [mm] Computed Distance 
[mm] Error Delta [mm] 

100 99 1 
200 202 2 
300 303 3 
400 395 5 
500 502 2 
600 598 2 
700 699 1 
800 797 3 
900 904 4 

1000 1005 5 
1100 1101 1 
1200 1204 4 
1300 1298 2 
1400 1402 2 
1500 1494 6 
1600 1599 1 
1700 1701 1 
1800 1802 2 
1900 1905 5 
2000 2005 5 
2100 2105 5 
2200 2202 2 
2300 2302 2 
2400 2404 4 
2500 2496 4 
2600 2598 2 
2700 2697 3 
2800 2796 4 
2900 2902 2 
3000 3006 6 

IV. EVALUATION 
In Fig. 3 we present a normal probability plot with a 95% 

confidence interval of the two measurements, the real distance 
and the measured distance with the camera system. Please 
note that these graphs overlap almost perfectly, so the 
measured distance, does not differ very much from the actual 
distance. The AndersonDarling (AD)value is 0.321, and the 
pvalue (the pvalue or probability value is the probability for 
a specific statistical model, when the null hypothesis is true) is 
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The camera separation and initial distance from the base of 
the robotic arm is measured previously with laser. These 
values are hardcoded in the automated distance measurement 
software, made by the authors, in C++ programming language, 
for the robotic arm. The automated distance measurement 
system can compute the distances to each colored bottle cap 
(blue, yellow and red) at the robotic arm’s joints. The colored 
bottle caps are recognized using color filtering. 

On the  and  axes the distance can be computed easily 
based on a 2D coordinate system based on the pixels from one 
camera. To compute the distance on the  axis (in 3D) the 
following formulas were used. 

On equation (1) can be seen the tangent of the  and  
angles. 
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 	 =  −  (2) 
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The novelty of the paper is measuring movement distances 

for a robotic arm’s gripper, during movement (dynamically), 
with the usage of two cameras (stereo cameras) in realtime. 

To have a robotic arm which can move freely, to execute 
any given task, as it was programmed previously (statically), 
the optical distance measurement must be very precise. To test 
the robustness of the optical distance measurement, the system 
must be tested as any industrial process. The best way to test 
this is to create a measurement system analysis (MSA) using 
Six Sigma tools.  

III. PROBLEM SOLUTION 
The optical distance measurement method was tested using 

Six Sigma tools [17]. Six Sigma represents a set of methods 
and tools which are used to improve the process. Six Sigma 
methods try to improve the quality of a process by finding and 

eliminating the root causes of defects. It uses a set of quality 
management tools, mainly statistical tools. The Six Sigma 
tools were implemented using graphs in Minitab statistical 
software [18]. 

These tools can show if the measurements are accurate 
enough and if some fine tuning is needed [13]. 

As shown on Table I., the system was tested with 
measurements at different distances. The range of values used 
for the measurements is between 100 mm and 3000 mm, with 
100 mm step. The real values, measured by laser, and the 
distance measured and computed by the system with the 
cameras are very close. There are two cameras, they are 
placed near each other, and the distance is computed with 
stereo triangulation. We computed also an error delta, the 
difference between the actual distance value and the value 
measured by the camera system. The low sample size is not a 
problem for the Six Sigma tools, because it can be used 
always normal probability plot instead of histograms. 
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Fig. 7.  Analysis of the residual values, for the distance computed, by the system using cameras. 
 

In Fig. 8 we continue the regression analysis between the 
actual real distance and the distance computed by the 
algorithm for measuring distances using cameras. For each 
input value x (actual real distance) there is a prediction of y 
(the computed distance) using a prediction interval of 95% for 
α = 0.05. 

 
Fig. 8.  The prediction plot, for the actual real distance and the distance 
computed, by the system using cameras. 
 

In Fig. 9 we continue again the regression analysis, 
highlighting certain important values. We can see the R
Square (RSq) value adjusted to 100%, which shows that the 
output values (computed distance) can be predicted 100% 
from the input values (actual real distance). The residual 
standard deviation is 3.427 mm in the linear model and in the 

alternative quadratic model is 3.468 mm; these values are very 
good and there were expected. On the graph we can observe 
the empirical formula obtained by the regression analysis and 
the highest residual value of 6 mm when measuring the 
distance of 1500 mm. 

 
Fig. 9.  The fitted line plot for linear model, for the actual real distance and the 
distance computed, by the system using cameras. 
 

In Fig. 10 we present the summary report of the regression 
analysis. We can see that p <0.001, which is lower than α = 
0.05, so the null hypothesis is rejected: This means that the 
measured values differ enough from each other, to form a 
mathematical relationship between the computed distance (Y) 
and the actual real distance (X). The model variation, the R
Square (RSq) is 100%, therefore the output values (computed 
distance) can be predicted 100% from the input values (actual 
real distance), in other words the variation of the model is very 
small or nonexistent, or the computed values with the camera 
system are very close to the actual real values measured with 
laser. There is a perfect correlation between the computed 
distance (Y) and the actual real distance (X) using the 
empirical equation obtained by the regression analysis. 
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0.514, so it is higher than α = 0.05 (the significance level α is 
the probability of making the wrong decision, when the null 
hypothesis is true), so the null hypothesis is not rejected; thus, 
we can say that the measured distance values do not differ too 
much from each other. 

 
Fig. 3.  The normal probability plot, for the actual real distance and the 
distance computed, by the system using the cameras. 
 

In Fig. 4 we see the normal probability plot for absolute 
error delta with a confidence interval of 95%. The mean for 
the absolute error delta is 3.033 mm. The standard deviation is 
1.586 mm. The AD value is 1.261, and the value is p <0.005, 
which is lower than 0.05, so the null hypothesis is rejected. 
This means that the absolute error delta values differ from 
each other, which could be expected, because for absolute 
error delta is a computed value, not a measured one. Each 
value is transformed to a positive error, all errors are added 
and stacked, and all errors are over 0, even if the computed 
distance is higher or lower than the real distance. The mean of 
the absolute error has the value just over 3 mm. 

 
Fig. 4.  The normal probability plot created for the absolute error delta. 
 

In Fig. 5 we can see the fitted line plot, which is a method 
of the regression analysis. The computed distance is presented 
as a function of the actual real distance. The values are 
obtained first from the actual real distance values and then 
from the computed distance values. The standard deviation of 
these values is 3.42693 mm. The RSquare (RSq) and R
Square adjusted (RSq (adj)) values are 100%, which shows 
that the responses can be perfectly predicted by knowing the 
input values. This means that if we know the actual real 
distance, we can obtain the distance computed by the 

algorithm using video cameras. For regression analysis we 
obtained an empirical formula presented in the graph and 
shown in equation (6). 

 		 = 0.246 + 		
or  = 0.246 +  

(6) 

 

 
Fig. 5.  Regression analysis, for actual real distance and the distance 
computed, by the system using cameras. 
 

In Fig. 6 we show a more detailed analysis of regression, 
where, versus graphs are observed, indicating that there are no 
problems with the regression model, because the values are 
spread randomly above and below 0. Also, on the graph we 
can see a red dot, representing a high residual value, at the (6, 
1500) coordinate. This means that for the measurement of 
1500 mm, the largest error delta is 6 mm. 

 
Fig. 6.  The graph of residuals versus fitted values, for the actual real distance 
and the distance computed, by the system using cameras. 
 

In Fig. 7 we show the residual values obtained after the 
fitted line plot. We can see that the AD value is 0.549, and the 
pvalue is 0.145, this is higher than α = 0.05, the null 
hypothesis is not rejected. Thus, we can say that the residual 
values do not differ too much from each other. The histogram 
does not look like a Gaussian distribution, but for such a small 
number of values it cannot be expected a better result. The 
versus graphs (versus fits and versus order) show a large 
distribution of the values, which is normal and expected. 
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error delta with a confidence interval of 95%. The mean for 
the absolute error delta is 3.033 mm. The standard deviation is 
1.586 mm. The AD value is 1.261, and the value is p <0.005, 
which is lower than 0.05, so the null hypothesis is rejected. 
This means that the absolute error delta values differ from 
each other, which could be expected, because for absolute 
error delta is a computed value, not a measured one. Each 
value is transformed to a positive error, all errors are added 
and stacked, and all errors are over 0, even if the computed 
distance is higher or lower than the real distance. The mean of 
the absolute error has the value just over 3 mm. 

 
Fig. 4.  The normal probability plot created for the absolute error delta. 
 

In Fig. 5 we can see the fitted line plot, which is a method 
of the regression analysis. The computed distance is presented 
as a function of the actual real distance. The values are 
obtained first from the actual real distance values and then 
from the computed distance values. The standard deviation of 
these values is 3.42693 mm. The RSquare (RSq) and R
Square adjusted (RSq (adj)) values are 100%, which shows 
that the responses can be perfectly predicted by knowing the 
input values. This means that if we know the actual real 
distance, we can obtain the distance computed by the 

algorithm using video cameras. For regression analysis we 
obtained an empirical formula presented in the graph and 
shown in equation (6). 

 		 = 0.246 + 		
or  = 0.246 +  

(6) 

 

 
Fig. 5.  Regression analysis, for actual real distance and the distance 
computed, by the system using cameras. 
 

In Fig. 6 we show a more detailed analysis of regression, 
where, versus graphs are observed, indicating that there are no 
problems with the regression model, because the values are 
spread randomly above and below 0. Also, on the graph we 
can see a red dot, representing a high residual value, at the (6, 
1500) coordinate. This means that for the measurement of 
1500 mm, the largest error delta is 6 mm. 

 
Fig. 6.  The graph of residuals versus fitted values, for the actual real distance 
and the distance computed, by the system using cameras. 
 

In Fig. 7 we show the residual values obtained after the 
fitted line plot. We can see that the AD value is 0.549, and the 
pvalue is 0.145, this is higher than α = 0.05, the null 
hypothesis is not rejected. Thus, we can say that the residual 
values do not differ too much from each other. The histogram 
does not look like a Gaussian distribution, but for such a small 
number of values it cannot be expected a better result. The 
versus graphs (versus fits and versus order) show a large 
distribution of the values, which is normal and expected. 
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Fig. 7.  Analysis of the residual values, for the distance computed, by the system using cameras. 
 

In Fig. 8 we continue the regression analysis between the 
actual real distance and the distance computed by the 
algorithm for measuring distances using cameras. For each 
input value x (actual real distance) there is a prediction of y 
(the computed distance) using a prediction interval of 95% for 
α = 0.05. 

 
Fig. 8.  The prediction plot, for the actual real distance and the distance 
computed, by the system using cameras. 
 

In Fig. 9 we continue again the regression analysis, 
highlighting certain important values. We can see the R
Square (RSq) value adjusted to 100%, which shows that the 
output values (computed distance) can be predicted 100% 
from the input values (actual real distance). The residual 
standard deviation is 3.427 mm in the linear model and in the 

alternative quadratic model is 3.468 mm; these values are very 
good and there were expected. On the graph we can observe 
the empirical formula obtained by the regression analysis and 
the highest residual value of 6 mm when measuring the 
distance of 1500 mm. 

 
Fig. 9.  The fitted line plot for linear model, for the actual real distance and the 
distance computed, by the system using cameras. 
 

In Fig. 10 we present the summary report of the regression 
analysis. We can see that p <0.001, which is lower than α = 
0.05, so the null hypothesis is rejected: This means that the 
measured values differ enough from each other, to form a 
mathematical relationship between the computed distance (Y) 
and the actual real distance (X). The model variation, the R
Square (RSq) is 100%, therefore the output values (computed 
distance) can be predicted 100% from the input values (actual 
real distance), in other words the variation of the model is very 
small or nonexistent, or the computed values with the camera 
system are very close to the actual real values measured with 
laser. There is a perfect correlation between the computed 
distance (Y) and the actual real distance (X) using the 
empirical equation obtained by the regression analysis. 
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0.514, so it is higher than α = 0.05 (the significance level α is 
the probability of making the wrong decision, when the null 
hypothesis is true), so the null hypothesis is not rejected; thus, 
we can say that the measured distance values do not differ too 
much from each other. 

 
Fig. 3.  The normal probability plot, for the actual real distance and the 
distance computed, by the system using the cameras. 
 

In Fig. 4 we see the normal probability plot for absolute 
error delta with a confidence interval of 95%. The mean for 
the absolute error delta is 3.033 mm. The standard deviation is 
1.586 mm. The AD value is 1.261, and the value is p <0.005, 
which is lower than 0.05, so the null hypothesis is rejected. 
This means that the absolute error delta values differ from 
each other, which could be expected, because for absolute 
error delta is a computed value, not a measured one. Each 
value is transformed to a positive error, all errors are added 
and stacked, and all errors are over 0, even if the computed 
distance is higher or lower than the real distance. The mean of 
the absolute error has the value just over 3 mm. 

 
Fig. 4.  The normal probability plot created for the absolute error delta. 
 

In Fig. 5 we can see the fitted line plot, which is a method 
of the regression analysis. The computed distance is presented 
as a function of the actual real distance. The values are 
obtained first from the actual real distance values and then 
from the computed distance values. The standard deviation of 
these values is 3.42693 mm. The RSquare (RSq) and R
Square adjusted (RSq (adj)) values are 100%, which shows 
that the responses can be perfectly predicted by knowing the 
input values. This means that if we know the actual real 
distance, we can obtain the distance computed by the 

algorithm using video cameras. For regression analysis we 
obtained an empirical formula presented in the graph and 
shown in equation (6). 

 		 = 0.246 + 		
or  = 0.246 +  

(6) 

 

 
Fig. 5.  Regression analysis, for actual real distance and the distance 
computed, by the system using cameras. 
 

In Fig. 6 we show a more detailed analysis of regression, 
where, versus graphs are observed, indicating that there are no 
problems with the regression model, because the values are 
spread randomly above and below 0. Also, on the graph we 
can see a red dot, representing a high residual value, at the (6, 
1500) coordinate. This means that for the measurement of 
1500 mm, the largest error delta is 6 mm. 

 
Fig. 6.  The graph of residuals versus fitted values, for the actual real distance 
and the distance computed, by the system using cameras. 
 

In Fig. 7 we show the residual values obtained after the 
fitted line plot. We can see that the AD value is 0.549, and the 
pvalue is 0.145, this is higher than α = 0.05, the null 
hypothesis is not rejected. Thus, we can say that the residual 
values do not differ too much from each other. The histogram 
does not look like a Gaussian distribution, but for such a small 
number of values it cannot be expected a better result. The 
versus graphs (versus fits and versus order) show a large 
distribution of the values, which is normal and expected. 
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In Fig. 12 we continue the capability analysis for the error 
delta. We can see the individual value and moving range (I
MR) charts which are in limits. The normality (Anderson
Darling) test is passed with the pvalue of 0.084, which is 
greater than α = 0.05, so the null hypothesis is not rejected. 
Thus, we can say that the error delta values do not differ too 
much between each other. 

 
Fig. 12.  The IMR (individual value  moving range) analysis and the 
normality test made for the error delta. 
 

In Fig. 13 we observe the fluctuation of the error delta, 
measured in mm, as a function of the actual real distance, 
measured with laser in m. We can see a tendency of 
fluctuation of higher values, for the small distances, under 1 
m, a tendency of fluctuation of proportional values, for the 
average distances, between 1 m and 2 m, and a tendency of 
fluctuation of lower values, for the higher distances, between 2 
m and 3 m. This was expected, as this chart represents 
proportionality, so after this graph it can be said that the error 
deltas are mostly constant throughout all the distance ranges. 
This graph is a qualitative rather than a quantitative one; it 
shows the errors as the measurement distance is increased. 

 

 
Fig. 13.  Graphic representation of the actual real distance [m] and the error of 
measurement (error delta) [mm] on the same graph. 

V. CONCLUSION 
As it was seen an optical distance measurement system, 

with stereo cameras, used for a sun tracker robotic arm, was 
evaluated using Six Sigma tools. 

The Six Sigma tools materialized by the graphs in Minitab 
showed that the optical distance measurement with video 
cameras is accurate enough and there is no need for fine 
tuning or replacing with other distance measurement method. 
This means that the measurement system analysis (MSA) has 
good results, 4σ accuracy which for real processes is very 
good (6σ is the theoretically ideal process, not existent in real 
life). Knowing that the MSA had good results we can say that 
the industrial robots can precisely detect their position in space 
and the distance to the manipulated object just by using optical 
distance measurement using video cameras. 
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Fig. 10.  Summary report of the regression analysis, for the actual real distance and the distance computed, by the system using cameras. 
 

In Fig. 11 we show the capability analysis for 30 error 
deltas. The individual value and moving range (IMR) charts 
are within limits. The histogram has somehow a Gaussian 
tendency but for a histogram, 30 values are not enough (better 
use normal probability plot). On the histogram we observe that 
there are no values where the error delta is 0, which means 
there is no measurement without error, but the errors are not 
too high. On the normal probability plot, the AD value is 
0.643 and the pvalue is 0.084, so this is higher than α = 0.05, 
so the null hypothesis is not rejected. This means that the error 
deltas do not differ too much between each other. The most 
important values are at the conclusions: the standard deviation 

is 2.965 mm for the subgroup and 3.38 mm for all the 
measurements. The process capability index for subgroup: Cpk 
= 1.38, over 4σ (where Cpk = 1.33), which is a very good result 
in a system of this kind. The performance for subgroup: Cp = 
1.46, the performance overall the data: Pp = 1.28 and the 
process capability index overall the data: Ppk = 1.21, all values 
are very close 4σ, which is a very good result for a system 
running under normal conditions. For parts per million (PPM), 
or the reported error to one million measurements is 20.21 for 
the subgroup and 171.11 for all the measurements, these 
values are also very good. 

 
Fig. 11.  The process capability analysis made for the error delta. 
 
































































 
 



 





 
 
 
 


 
 
 
 
 






















Sun Tracker Robotic Arm Optical Distance Measurement  
Evaluation at Different Positions Using Six Sigma Tools

INFOCOMMUNICATIONS JOURNAL

MARCH 2019 • VOLUME XI • NUMBER 1 59

 
 

6

In Fig. 12 we continue the capability analysis for the error 
delta. We can see the individual value and moving range (I
MR) charts which are in limits. The normality (Anderson
Darling) test is passed with the pvalue of 0.084, which is 
greater than α = 0.05, so the null hypothesis is not rejected. 
Thus, we can say that the error delta values do not differ too 
much between each other. 

 
Fig. 12.  The IMR (individual value  moving range) analysis and the 
normality test made for the error delta. 
 

In Fig. 13 we observe the fluctuation of the error delta, 
measured in mm, as a function of the actual real distance, 
measured with laser in m. We can see a tendency of 
fluctuation of higher values, for the small distances, under 1 
m, a tendency of fluctuation of proportional values, for the 
average distances, between 1 m and 2 m, and a tendency of 
fluctuation of lower values, for the higher distances, between 2 
m and 3 m. This was expected, as this chart represents 
proportionality, so after this graph it can be said that the error 
deltas are mostly constant throughout all the distance ranges. 
This graph is a qualitative rather than a quantitative one; it 
shows the errors as the measurement distance is increased. 

 

 
Fig. 13.  Graphic representation of the actual real distance [m] and the error of 
measurement (error delta) [mm] on the same graph. 

V. CONCLUSION 
As it was seen an optical distance measurement system, 

with stereo cameras, used for a sun tracker robotic arm, was 
evaluated using Six Sigma tools. 

The Six Sigma tools materialized by the graphs in Minitab 
showed that the optical distance measurement with video 
cameras is accurate enough and there is no need for fine 
tuning or replacing with other distance measurement method. 
This means that the measurement system analysis (MSA) has 
good results, 4σ accuracy which for real processes is very 
good (6σ is the theoretically ideal process, not existent in real 
life). Knowing that the MSA had good results we can say that 
the industrial robots can precisely detect their position in space 
and the distance to the manipulated object just by using optical 
distance measurement using video cameras. 
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Fig. 10.  Summary report of the regression analysis, for the actual real distance and the distance computed, by the system using cameras. 
 

In Fig. 11 we show the capability analysis for 30 error 
deltas. The individual value and moving range (IMR) charts 
are within limits. The histogram has somehow a Gaussian 
tendency but for a histogram, 30 values are not enough (better 
use normal probability plot). On the histogram we observe that 
there are no values where the error delta is 0, which means 
there is no measurement without error, but the errors are not 
too high. On the normal probability plot, the AD value is 
0.643 and the pvalue is 0.084, so this is higher than α = 0.05, 
so the null hypothesis is not rejected. This means that the error 
deltas do not differ too much between each other. The most 
important values are at the conclusions: the standard deviation 

is 2.965 mm for the subgroup and 3.38 mm for all the 
measurements. The process capability index for subgroup: Cpk 
= 1.38, over 4σ (where Cpk = 1.33), which is a very good result 
in a system of this kind. The performance for subgroup: Cp = 
1.46, the performance overall the data: Pp = 1.28 and the 
process capability index overall the data: Ppk = 1.21, all values 
are very close 4σ, which is a very good result for a system 
running under normal conditions. For parts per million (PPM), 
or the reported error to one million measurements is 20.21 for 
the subgroup and 171.11 for all the measurements, these 
values are also very good. 

 
Fig. 11.  The process capability analysis made for the error delta. 
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