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 
Abstract — The advent of social networking applications, 

media streaming technologies, and synchronous 
communications has created an evolution towards 
dynamic shared media experiences. In this new model, 
geographically distributed groups of users can be 
immersed in a common virtual networked environment in 
which they can interact and collaborate in real-time within 
the context of simultaneous media content consumption. In 
this environment, intra-stream and inter-stream 
synchronization techniques are used inside the consumers’ 
playout devices, while synchronization of media streams 
across multiple separated locations is required. This 
synchronization is known as multipoint, group or Inter-
Destination Multimedia Synchronization (IDMS) and is 
needed in many applications such as social TV and 
synchronous e-learning. This survey paper discusses intra-
and inter-stream synchronization issues, but it mainly 
focuses on the most well-known IDMS techniques that can 
be used in emerging distributed multimedia applications. 
In addition, it provides some research directions for future 
work.  
 

Index Terms — Multimedia synchronization, IDMS, 
multipoint synchronization, RTP/RTCP  
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AMP   Adaptive media playout 
DCS   Distributed control scheme 
ETSI   European Telecommunications Standards Institute 
    for Advanced Networking 
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I. INTRODUCTION 
OWADAYS, novel media consumption paradigms such as 
social TV and synchronous e-learning are enabling users 
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to consume multiple media streams at multiple devices 
together and having dynamic shared media experiences [1]. In 
order to provide an enjoyable dynamic shared media 
experience, various technical challenges must be faced. 
Examples are synchronization, Quality of Service (QoS), 
Quality of Experience (QoE), scalability, user mobility, 
intelligent media adaptation and delivery, social networking 
integration, privacy concerns, and user preferences 
management [2]. This survey focuses on the synchronization 
of media streams across multiple separated 
locations/consumers. This synchronization is known as 
multipoint, group or Inter-Destination Multimedia 
Synchronization (IDMS) and is required in many use cases 
such as social TV, synchronous e-learning, networked quiz 
shows, networked real-time multiplayer games, multimedia 
multi-point to multi-point communications, distributed tele-
orchestra, multi-party multimedia conferencing, presence-
based games, conferencing sound reinforcement systems, 
networked stereo loudspeakers, game-show participation, 
shared service control, networked video wall, and synchronous 
groupware [3]. These use cases require media synchronization 
as there are significant delay differences between the various 
delivery routes for multimedia services (e.g., media 
streaming). Meanwhile, broadcasters have started using 
proprietary solutions for over-the-top media synchronization 
such as media fingerprinting or media watermarking 
technologies. Given the commercial interest in media 
synchronization and the disadvantages of proprietary 
technologies, consumer-equipment manufacturers, 
broadcasters, and telecom and cable operators have started 
developing new standards for multimedia synchronization. 
 An important feature of multimedia applications is the 
integration of multiple media streams that have to be presented 
in a synchronized fashion [4]. Multimedia synchronization is 
the preservation of the temporal constraints within and among 
multimedia data streams at the time of playout. Temporal 
relations define the temporal dependencies between media 
objects [5]. An example of a temporal relation is the relation 
between a video and an audio object which are recorded 
during a concert. If these objects are presented, the temporal 
relation during the presentations of the two media objects must 
correspond to the temporal relation at the time of recording. 
Discrete media like text, graphics, and images are time-
independent media objects, while the semantic of their content 
does not depend upon a presentation to the time domain. A 
discrete media object is frequently presented using one 
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presentation unit. Conversely, a time-dependent media object 
is presented as a continuous media stream in which the 
presentation durations of all Media Units (MUs) are equal [4]. 
For example, a video consists of a number of ordered frames, 
where each of these frames has a fixed presentation duration. 
Most of the components of a multimedia system support and 
address temporal synchronization. These components may 
include the operating system, communication subsystem, 
databases, documents, and even applications. In distributed 
multimedia systems, networks introduce random delays in the 
delivery of multimedia information. Actually, there are some 
sources of asynchrony that can disrupt synchronization [3],[6]: 
 Network Jitter. This is an inherent characteristic of best-

effort networks like the Internet.  
 Local Clock Drift arises when clocks at users run at 

different rates. Without a synchronization mechanism, the 
asynchrony will gradually become more and more 
serious.  

 Different Initial Collection Times. Let us consider two 
media sources, one providing voice and the other video. If 
these sources start to collect their MUs at different times, 
the playback of the MUs of voice and video at the 
receiver loses semantic meaning.  

 Different Initial Playback Times. If the initial playback 
times are different for each user, then asynchrony will 
arise.  

 Network topology changes and unpredictable delays. In 
mobile ad hoc networks (MANETs), the preservation of 
temporal dependencies among the exchanged real-time 
data is mainly affected: (1) by the asynchronous 
transmissions; (2) by constant topology changes; and (3) 
by unpredictable delays. 

 The encoding used. If media streams are encoded 
differently, the decoding times at receiver may vary 
considerably.  

 Delay is a simple constraint when users are consuming 
non-time sensitive content from content-on-demand networks. 
However, delay and jitter (variation of end-to-end delay) 
become serious constraints when an interaction between the 
user and the media content (or interaction between different 
users) is needed. In those applications, delay and jitter could 
be harmful to the QoE and may prevent the inclusion of higher 
forms of interactivity in various group-shared services. 
Consequently, many multimedia synchronization techniques 
have been proposed to ensure synchronous sharing of content 
among users temporarily collocated, either being spatially 
distributed or even sharing a physical space.  

This paper presents the basic control schemes for IDMS and 
discusses IDMS solutions and IDMS standardization efforts 
for emerging distributed multimedia applications. The 
structure of the paper is organized as follows. Section II 
discusses intra-stream and inter-stream synchronization issues. 
Section III reviews well-known schemes for IDMS, while 
Section IV presents standardization efforts on IDMS as well as 
effective IDMS solutions. Finally, Section V concludes the 
paper and gives directions for future work.  

II.  BACKGROUND 

A. Intra-stream Synchronization 
 Intra-stream (also known as intra-media or serial) 

synchronization is the reconstruction of temporal relations 
between the MUs of the same stream. An example is the 
reconstruction of the temporal relations between the single 
frames of a video stream. The spacing between subsequent 
frames is dictated by the frame production rate. For instance, 
for a video with a rate of 40 frames per second, each of these 
frames must be displayed for 25 ms. Jitter may destroy the 
temporal relationships between periodically transmitted MUs 
that constitute a real-time stream, thus hindering the 
comprehension of the stream. Playout adaptation algorithms 
undertake the labor of the temporal reconstruction of the 
stream. This reconstruction is referred to as the ‘restoration of 
its intra-stream synchronization quality’ [7]. Adaptive Media 
Playout (AMP) improves the media synchronization quality of 
streaming applications by regulating the playout time interval 
among MUs at a receiver. To mitigate the effect of the jitter, 
MUs have to be delayed at the receiver in order a continuous 
synchronized presentation to be achieved. Therefore, MUs 
have to be stored in a buffer and the size of this buffer may 
correspond to the amount of jitter in the network. As the 
synchronization requirements can vary according to the 
application on hand, we must control the individual sync 
requirements (i.e., delay sensitivity, error tolerance etc.) for 
each media separately. To this direction, Park and Choi [7] 
investigated an efficient and flexible multimedia 
synchronization method that can be applied at intra-media 
synchronization in a consistent manner. They proposed an 
adaptive synchronization scheme based on: (1) the delay 
offset; and (2) the playout rate adjustment that can match the 
application’s varying sync requirements effectively. Park and 
Kim [8] introduced an AMP scheme based on a discontinuity 
model for intra-media synchronization of video applications 
over best-effort networks. They analyzed the temporal 
distortion (i.e., discontinuity) cases such as playout pause and 
skip, to define a unified discontinuity model. Finally, 
Laoutaris and Stavrakakis [9] surveyed the work in the area of 
playout adaptation. Actually, the problem of intra-stream 
synchronization has been solved efficiently as many intra-
stream synchronization techniques in the literature achieved to 
avoid receiver buffer underflow and overflow problems. 

B. Inter-stream Synchronization 
Inter-stream (also known as inter-media or parallel) 

synchronization is the problem of synchronizing different but 
related streams. Precisely, it is the preservation of the temporal 
dependencies between playout processes of different, but 
correlated, media streams involved in a multimedia session. 
An example of inter-stream synchronization is the Lip 
synchronization that refers to the temporal relationship 
between an audio and a video stream for the particular case of 
human speaking [10]. Fig. 1 shows an example of the 
temporal relations in inter-stream synchronization.  
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order to provide an enjoyable dynamic shared media 
experience, various technical challenges must be faced. 
Examples are synchronization, Quality of Service (QoS), 
Quality of Experience (QoE), scalability, user mobility, 
intelligent media adaptation and delivery, social networking 
integration, privacy concerns, and user preferences 
management [2]. This survey focuses on the synchronization 
of media streams across multiple separated 
locations/consumers. This synchronization is known as 
multipoint, group or Inter-Destination Multimedia 
Synchronization (IDMS) and is required in many use cases 
such as social TV, synchronous e-learning, networked quiz 
shows, networked real-time multiplayer games, multimedia 
multi-point to multi-point communications, distributed tele-
orchestra, multi-party multimedia conferencing, presence-
based games, conferencing sound reinforcement systems, 
networked stereo loudspeakers, game-show participation, 
shared service control, networked video wall, and synchronous 
groupware [3]. These use cases require media synchronization 
as there are significant delay differences between the various 
delivery routes for multimedia services (e.g., media 
streaming). Meanwhile, broadcasters have started using 
proprietary solutions for over-the-top media synchronization 
such as media fingerprinting or media watermarking 
technologies. Given the commercial interest in media 
synchronization and the disadvantages of proprietary 
technologies, consumer-equipment manufacturers, 
broadcasters, and telecom and cable operators have started 
developing new standards for multimedia synchronization. 
 An important feature of multimedia applications is the 
integration of multiple media streams that have to be presented 
in a synchronized fashion [4]. Multimedia synchronization is 
the preservation of the temporal constraints within and among 
multimedia data streams at the time of playout. Temporal 
relations define the temporal dependencies between media 
objects [5]. An example of a temporal relation is the relation 
between a video and an audio object which are recorded 
during a concert. If these objects are presented, the temporal 
relation during the presentations of the two media objects must 
correspond to the temporal relation at the time of recording. 
Discrete media like text, graphics, and images are time-
independent media objects, while the semantic of their content 
does not depend upon a presentation to the time domain. A 
discrete media object is frequently presented using one 
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to consume multiple media streams at multiple devices 
together and having dynamic shared media experiences [1]. In 
order to provide an enjoyable dynamic shared media 
experience, various technical challenges must be faced. 
Examples are synchronization, Quality of Service (QoS), 
Quality of Experience (QoE), scalability, user mobility, 
intelligent media adaptation and delivery, social networking 
integration, privacy concerns, and user preferences 
management [2]. This survey focuses on the synchronization 
of media streams across multiple separated 
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Synchronization (IDMS) and is required in many use cases 
such as social TV, synchronous e-learning, networked quiz 
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based games, conferencing sound reinforcement systems, 
networked stereo loudspeakers, game-show participation, 
shared service control, networked video wall, and synchronous 
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as there are significant delay differences between the various 
delivery routes for multimedia services (e.g., media 
streaming). Meanwhile, broadcasters have started using 
proprietary solutions for over-the-top media synchronization 
such as media fingerprinting or media watermarking 
technologies. Given the commercial interest in media 
synchronization and the disadvantages of proprietary 
technologies, consumer-equipment manufacturers, 
broadcasters, and telecom and cable operators have started 
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to consume multiple media streams at multiple devices 
together and having dynamic shared media experiences [1]. In 
order to provide an enjoyable dynamic shared media 
experience, various technical challenges must be faced. 
Examples are synchronization, Quality of Service (QoS), 
Quality of Experience (QoE), scalability, user mobility, 
intelligent media adaptation and delivery, social networking 
integration, privacy concerns, and user preferences 
management [2]. This survey focuses on the synchronization 
of media streams across multiple separated 
locations/consumers. This synchronization is known as 
multipoint, group or Inter-Destination Multimedia 
Synchronization (IDMS) and is required in many use cases 
such as social TV, synchronous e-learning, networked quiz 
shows, networked real-time multiplayer games, multimedia 
multi-point to multi-point communications, distributed tele-
orchestra, multi-party multimedia conferencing, presence-
based games, conferencing sound reinforcement systems, 
networked stereo loudspeakers, game-show participation, 
shared service control, networked video wall, and synchronous 
groupware [3]. These use cases require media synchronization 
as there are significant delay differences between the various 
delivery routes for multimedia services (e.g., media 
streaming). Meanwhile, broadcasters have started using 
proprietary solutions for over-the-top media synchronization 
such as media fingerprinting or media watermarking 
technologies. Given the commercial interest in media 
synchronization and the disadvantages of proprietary 
technologies, consumer-equipment manufacturers, 
broadcasters, and telecom and cable operators have started 
developing new standards for multimedia synchronization. 
 An important feature of multimedia applications is the 
integration of multiple media streams that have to be presented 
in a synchronized fashion [4]. Multimedia synchronization is 
the preservation of the temporal constraints within and among 
multimedia data streams at the time of playout. Temporal 
relations define the temporal dependencies between media 
objects [5]. An example of a temporal relation is the relation 
between a video and an audio object which are recorded 
during a concert. If these objects are presented, the temporal 
relation during the presentations of the two media objects must 
correspond to the temporal relation at the time of recording. 
Discrete media like text, graphics, and images are time-
independent media objects, while the semantic of their content 
does not depend upon a presentation to the time domain. A 
discrete media object is frequently presented using one 
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presentation unit. Conversely, a time-dependent media object 
is presented as a continuous media stream in which the 
presentation durations of all Media Units (MUs) are equal [4]. 
For example, a video consists of a number of ordered frames, 
where each of these frames has a fixed presentation duration. 
Most of the components of a multimedia system support and 
address temporal synchronization. These components may 
include the operating system, communication subsystem, 
databases, documents, and even applications. In distributed 
multimedia systems, networks introduce random delays in the 
delivery of multimedia information. Actually, there are some 
sources of asynchrony that can disrupt synchronization [3],[6]: 
 Network Jitter. This is an inherent characteristic of best-

effort networks like the Internet.  
 Local Clock Drift arises when clocks at users run at 

different rates. Without a synchronization mechanism, the 
asynchrony will gradually become more and more 
serious.  

 Different Initial Collection Times. Let us consider two 
media sources, one providing voice and the other video. If 
these sources start to collect their MUs at different times, 
the playback of the MUs of voice and video at the 
receiver loses semantic meaning.  

 Different Initial Playback Times. If the initial playback 
times are different for each user, then asynchrony will 
arise.  

 Network topology changes and unpredictable delays. In 
mobile ad hoc networks (MANETs), the preservation of 
temporal dependencies among the exchanged real-time 
data is mainly affected: (1) by the asynchronous 
transmissions; (2) by constant topology changes; and (3) 
by unpredictable delays. 

 The encoding used. If media streams are encoded 
differently, the decoding times at receiver may vary 
considerably.  

 Delay is a simple constraint when users are consuming 
non-time sensitive content from content-on-demand networks. 
However, delay and jitter (variation of end-to-end delay) 
become serious constraints when an interaction between the 
user and the media content (or interaction between different 
users) is needed. In those applications, delay and jitter could 
be harmful to the QoE and may prevent the inclusion of higher 
forms of interactivity in various group-shared services. 
Consequently, many multimedia synchronization techniques 
have been proposed to ensure synchronous sharing of content 
among users temporarily collocated, either being spatially 
distributed or even sharing a physical space.  

This paper presents the basic control schemes for IDMS and 
discusses IDMS solutions and IDMS standardization efforts 
for emerging distributed multimedia applications. The 
structure of the paper is organized as follows. Section II 
discusses intra-stream and inter-stream synchronization issues. 
Section III reviews well-known schemes for IDMS, while 
Section IV presents standardization efforts on IDMS as well as 
effective IDMS solutions. Finally, Section V concludes the 
paper and gives directions for future work.  

II.  BACKGROUND 

A. Intra-stream Synchronization 
 Intra-stream (also known as intra-media or serial) 

synchronization is the reconstruction of temporal relations 
between the MUs of the same stream. An example is the 
reconstruction of the temporal relations between the single 
frames of a video stream. The spacing between subsequent 
frames is dictated by the frame production rate. For instance, 
for a video with a rate of 40 frames per second, each of these 
frames must be displayed for 25 ms. Jitter may destroy the 
temporal relationships between periodically transmitted MUs 
that constitute a real-time stream, thus hindering the 
comprehension of the stream. Playout adaptation algorithms 
undertake the labor of the temporal reconstruction of the 
stream. This reconstruction is referred to as the ‘restoration of 
its intra-stream synchronization quality’ [7]. Adaptive Media 
Playout (AMP) improves the media synchronization quality of 
streaming applications by regulating the playout time interval 
among MUs at a receiver. To mitigate the effect of the jitter, 
MUs have to be delayed at the receiver in order a continuous 
synchronized presentation to be achieved. Therefore, MUs 
have to be stored in a buffer and the size of this buffer may 
correspond to the amount of jitter in the network. As the 
synchronization requirements can vary according to the 
application on hand, we must control the individual sync 
requirements (i.e., delay sensitivity, error tolerance etc.) for 
each media separately. To this direction, Park and Choi [7] 
investigated an efficient and flexible multimedia 
synchronization method that can be applied at intra-media 
synchronization in a consistent manner. They proposed an 
adaptive synchronization scheme based on: (1) the delay 
offset; and (2) the playout rate adjustment that can match the 
application’s varying sync requirements effectively. Park and 
Kim [8] introduced an AMP scheme based on a discontinuity 
model for intra-media synchronization of video applications 
over best-effort networks. They analyzed the temporal 
distortion (i.e., discontinuity) cases such as playout pause and 
skip, to define a unified discontinuity model. Finally, 
Laoutaris and Stavrakakis [9] surveyed the work in the area of 
playout adaptation. Actually, the problem of intra-stream 
synchronization has been solved efficiently as many intra-
stream synchronization techniques in the literature achieved to 
avoid receiver buffer underflow and overflow problems. 

B. Inter-stream Synchronization 
Inter-stream (also known as inter-media or parallel) 

synchronization is the problem of synchronizing different but 
related streams. Precisely, it is the preservation of the temporal 
dependencies between playout processes of different, but 
correlated, media streams involved in a multimedia session. 
An example of inter-stream synchronization is the Lip 
synchronization that refers to the temporal relationship 
between an audio and a video stream for the particular case of 
human speaking [10]. Fig. 1 shows an example of the 
temporal relations in inter-stream synchronization.  
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presentation unit. Conversely, a time-dependent media object 
is presented as a continuous media stream in which the 
presentation durations of all Media Units (MUs) are equal [4]. 
For example, a video consists of a number of ordered frames, 
where each of these frames has a fixed presentation duration. 
Most of the components of a multimedia system support and 
address temporal synchronization. These components may 
include the operating system, communication subsystem, 
databases, documents, and even applications. In distributed 
multimedia systems, networks introduce random delays in the 
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sources of asynchrony that can disrupt synchronization [3],[6]: 
 Network Jitter. This is an inherent characteristic of best-
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be harmful to the QoE and may prevent the inclusion of higher 
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have been proposed to ensure synchronous sharing of content 
among users temporarily collocated, either being spatially 
distributed or even sharing a physical space.  

This paper presents the basic control schemes for IDMS and 
discusses IDMS solutions and IDMS standardization efforts 
for emerging distributed multimedia applications. The 
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investigated an efficient and flexible multimedia 
synchronization method that can be applied at intra-media 
synchronization in a consistent manner. They proposed an 
adaptive synchronization scheme based on: (1) the delay 
offset; and (2) the playout rate adjustment that can match the 
application’s varying sync requirements effectively. Park and 
Kim [8] introduced an AMP scheme based on a discontinuity 
model for intra-media synchronization of video applications 
over best-effort networks. They analyzed the temporal 
distortion (i.e., discontinuity) cases such as playout pause and 
skip, to define a unified discontinuity model. Finally, 
Laoutaris and Stavrakakis [9] surveyed the work in the area of 
playout adaptation. Actually, the problem of intra-stream 
synchronization has been solved efficiently as many intra-
stream synchronization techniques in the literature achieved to 
avoid receiver buffer underflow and overflow problems. 

B. Inter-stream Synchronization 
Inter-stream (also known as inter-media or parallel) 

synchronization is the problem of synchronizing different but 
related streams. Precisely, it is the preservation of the temporal 
dependencies between playout processes of different, but 
correlated, media streams involved in a multimedia session. 
An example of inter-stream synchronization is the Lip 
synchronization that refers to the temporal relationship 
between an audio and a video stream for the particular case of 
human speaking [10]. Fig. 1 shows an example of the 
temporal relations in inter-stream synchronization.  
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 
Abstract — The advent of social networking applications, 

media streaming technologies, and synchronous 
communications has created an evolution towards 
dynamic shared media experiences. In this new model, 
geographically distributed groups of users can be 
immersed in a common virtual networked environment in 
which they can interact and collaborate in real-time within 
the context of simultaneous media content consumption. In 
this environment, intra-stream and inter-stream 
synchronization techniques are used inside the consumers’ 
playout devices, while synchronization of media streams 
across multiple separated locations is required. This 
synchronization is known as multipoint, group or Inter-
Destination Multimedia Synchronization (IDMS) and is 
needed in many applications such as social TV and 
synchronous e-learning. This survey paper discusses intra-
and inter-stream synchronization issues, but it mainly 
focuses on the most well-known IDMS techniques that can 
be used in emerging distributed multimedia applications. 
In addition, it provides some research directions for future 
work.  
 

Index Terms — Multimedia synchronization, IDMS, 
multipoint synchronization, RTP/RTCP  
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AMP   Adaptive media playout 
DCS   Distributed control scheme 
ETSI   European Telecommunications Standards Institute 
    for Advanced Networking 
IDMS  Inter-destination multimedia synchronization 
IETF   Internet Engineering Task Force 
M/S   Master/slave receiver scheme 
MU   Media unit  
QoE   Quality of experience 
QoS   Quality of service 
RTP   Real-Time Transport Protocol 
RTCP  RTP Control Protocol 
SMS   Synchronization maestro scheme 
TISPAN Telecoms & Internet Converged Services and Protocols  
VTR   Virtual-time rendering synchronization algorithm 

I. INTRODUCTION 
OWADAYS, novel media consumption paradigms such as 
social TV and synchronous e-learning are enabling users 
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to consume multiple media streams at multiple devices 
together and having dynamic shared media experiences [1]. In 
order to provide an enjoyable dynamic shared media 
experience, various technical challenges must be faced. 
Examples are synchronization, Quality of Service (QoS), 
Quality of Experience (QoE), scalability, user mobility, 
intelligent media adaptation and delivery, social networking 
integration, privacy concerns, and user preferences 
management [2]. This survey focuses on the synchronization 
of media streams across multiple separated 
locations/consumers. This synchronization is known as 
multipoint, group or Inter-Destination Multimedia 
Synchronization (IDMS) and is required in many use cases 
such as social TV, synchronous e-learning, networked quiz 
shows, networked real-time multiplayer games, multimedia 
multi-point to multi-point communications, distributed tele-
orchestra, multi-party multimedia conferencing, presence-
based games, conferencing sound reinforcement systems, 
networked stereo loudspeakers, game-show participation, 
shared service control, networked video wall, and synchronous 
groupware [3]. These use cases require media synchronization 
as there are significant delay differences between the various 
delivery routes for multimedia services (e.g., media 
streaming). Meanwhile, broadcasters have started using 
proprietary solutions for over-the-top media synchronization 
such as media fingerprinting or media watermarking 
technologies. Given the commercial interest in media 
synchronization and the disadvantages of proprietary 
technologies, consumer-equipment manufacturers, 
broadcasters, and telecom and cable operators have started 
developing new standards for multimedia synchronization. 
 An important feature of multimedia applications is the 
integration of multiple media streams that have to be presented 
in a synchronized fashion [4]. Multimedia synchronization is 
the preservation of the temporal constraints within and among 
multimedia data streams at the time of playout. Temporal 
relations define the temporal dependencies between media 
objects [5]. An example of a temporal relation is the relation 
between a video and an audio object which are recorded 
during a concert. If these objects are presented, the temporal 
relation during the presentations of the two media objects must 
correspond to the temporal relation at the time of recording. 
Discrete media like text, graphics, and images are time-
independent media objects, while the semantic of their content 
does not depend upon a presentation to the time domain. A 
discrete media object is frequently presented using one 
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presentation unit. Conversely, a time-dependent media object 
is presented as a continuous media stream in which the 
presentation durations of all Media Units (MUs) are equal [4]. 
For example, a video consists of a number of ordered frames, 
where each of these frames has a fixed presentation duration. 
Most of the components of a multimedia system support and 
address temporal synchronization. These components may 
include the operating system, communication subsystem, 
databases, documents, and even applications. In distributed 
multimedia systems, networks introduce random delays in the 
delivery of multimedia information. Actually, there are some 
sources of asynchrony that can disrupt synchronization [3],[6]: 
 Network Jitter. This is an inherent characteristic of best-

effort networks like the Internet.  
 Local Clock Drift arises when clocks at users run at 

different rates. Without a synchronization mechanism, the 
asynchrony will gradually become more and more 
serious.  

 Different Initial Collection Times. Let us consider two 
media sources, one providing voice and the other video. If 
these sources start to collect their MUs at different times, 
the playback of the MUs of voice and video at the 
receiver loses semantic meaning.  

 Different Initial Playback Times. If the initial playback 
times are different for each user, then asynchrony will 
arise.  

 Network topology changes and unpredictable delays. In 
mobile ad hoc networks (MANETs), the preservation of 
temporal dependencies among the exchanged real-time 
data is mainly affected: (1) by the asynchronous 
transmissions; (2) by constant topology changes; and (3) 
by unpredictable delays. 

 The encoding used. If media streams are encoded 
differently, the decoding times at receiver may vary 
considerably.  

 Delay is a simple constraint when users are consuming 
non-time sensitive content from content-on-demand networks. 
However, delay and jitter (variation of end-to-end delay) 
become serious constraints when an interaction between the 
user and the media content (or interaction between different 
users) is needed. In those applications, delay and jitter could 
be harmful to the QoE and may prevent the inclusion of higher 
forms of interactivity in various group-shared services. 
Consequently, many multimedia synchronization techniques 
have been proposed to ensure synchronous sharing of content 
among users temporarily collocated, either being spatially 
distributed or even sharing a physical space.  

This paper presents the basic control schemes for IDMS and 
discusses IDMS solutions and IDMS standardization efforts 
for emerging distributed multimedia applications. The 
structure of the paper is organized as follows. Section II 
discusses intra-stream and inter-stream synchronization issues. 
Section III reviews well-known schemes for IDMS, while 
Section IV presents standardization efforts on IDMS as well as 
effective IDMS solutions. Finally, Section V concludes the 
paper and gives directions for future work.  

II.  BACKGROUND 

A. Intra-stream Synchronization 
 Intra-stream (also known as intra-media or serial) 

synchronization is the reconstruction of temporal relations 
between the MUs of the same stream. An example is the 
reconstruction of the temporal relations between the single 
frames of a video stream. The spacing between subsequent 
frames is dictated by the frame production rate. For instance, 
for a video with a rate of 40 frames per second, each of these 
frames must be displayed for 25 ms. Jitter may destroy the 
temporal relationships between periodically transmitted MUs 
that constitute a real-time stream, thus hindering the 
comprehension of the stream. Playout adaptation algorithms 
undertake the labor of the temporal reconstruction of the 
stream. This reconstruction is referred to as the ‘restoration of 
its intra-stream synchronization quality’ [7]. Adaptive Media 
Playout (AMP) improves the media synchronization quality of 
streaming applications by regulating the playout time interval 
among MUs at a receiver. To mitigate the effect of the jitter, 
MUs have to be delayed at the receiver in order a continuous 
synchronized presentation to be achieved. Therefore, MUs 
have to be stored in a buffer and the size of this buffer may 
correspond to the amount of jitter in the network. As the 
synchronization requirements can vary according to the 
application on hand, we must control the individual sync 
requirements (i.e., delay sensitivity, error tolerance etc.) for 
each media separately. To this direction, Park and Choi [7] 
investigated an efficient and flexible multimedia 
synchronization method that can be applied at intra-media 
synchronization in a consistent manner. They proposed an 
adaptive synchronization scheme based on: (1) the delay 
offset; and (2) the playout rate adjustment that can match the 
application’s varying sync requirements effectively. Park and 
Kim [8] introduced an AMP scheme based on a discontinuity 
model for intra-media synchronization of video applications 
over best-effort networks. They analyzed the temporal 
distortion (i.e., discontinuity) cases such as playout pause and 
skip, to define a unified discontinuity model. Finally, 
Laoutaris and Stavrakakis [9] surveyed the work in the area of 
playout adaptation. Actually, the problem of intra-stream 
synchronization has been solved efficiently as many intra-
stream synchronization techniques in the literature achieved to 
avoid receiver buffer underflow and overflow problems. 

B. Inter-stream Synchronization 
Inter-stream (also known as inter-media or parallel) 

synchronization is the problem of synchronizing different but 
related streams. Precisely, it is the preservation of the temporal 
dependencies between playout processes of different, but 
correlated, media streams involved in a multimedia session. 
An example of inter-stream synchronization is the Lip 
synchronization that refers to the temporal relationship 
between an audio and a video stream for the particular case of 
human speaking [10]. Fig. 1 shows an example of the 
temporal relations in inter-stream synchronization.  
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It starts with an animation (Animation) which is partially 
commented using an audio sequence (Audio1). Starting the 
animation presentation, a multiple-choice question is 
presented to the user (Interaction). If the user has made a 
selection, a final picture (P1) is shown. Then, the replay of a
recorded user interaction (RI) follows with a slide sequence 
(P2-P5), and a lip-synchronized audio/video sequence (Audio2 
and Video). Blakowski and Steinmetz [5] illustrated the main 
specification methods that can describe synchronization 
scenarios. These methods are interval-based specification, 
control flow-based specification, axes-based synchronization, 
event-based synchronization, scripts, and comments. Among 
them, Scripts is one of the most powerful methods that 
describe the majority of synchronization scenarios. Scripts 
often become full programming languages extended by timing 
operations. Such language is SMIL (Synchronized Multimedia 
Integration Language) that became a standard (W3C SMIL 
3.0, Dec. 2008). Scripts may rely on different specification 
methods. A typical script is a script that is based on a 
hierarchical method and supports three main operations: serial 
presentation, parallel presentation, and the repeated 
presentation of a media object. Below, we write a script for the 
application example depicted in Fig. 1. 

The symbols & and >> denote parallel and serial presentation 
correspondingly. Note that activities and subscripts compose 
the script. A synchronization specification of a multimedia 

object describes all temporal dependencies of the objects 
included in this object. It is comprised of: 

 Intra-object synchronization specifications for the media 
objects of the presentation. 

 QoS descriptions for intra-object synchronization. 
 Inter-object synchronization specifications for media 

objects of the presentation. 
 QoS descriptions for inter-object synchronization. 

To achieve inter-stream synchronization, various algorithms 
have been applied. Also, there are several types of intra-stream 
synchronization control such as Skipping [11], Buffering [11],
Adaptive Buffer Control (ABC) [12], Queue Monitoring (QM) 
[13], Virtual-Time Rendering (VTR) [14], and Media Adaptive 
Buffering [15]. Boronat et al. [16] have reviewed and 
compared the most powerful inter-stream synchronization 
algorithms. The building blocks of these algorithms are the 
synchronization techniques utilized both at the sender and the 
receiver sides. These algorithms can use multiple 
synchronization techniques to achieve synchronization aim 
even from different categories [17]. 

C. Classification of Inter-Media Techniques 
Boronat et al. [16] categorized synchronization techniques 

according to the ‘location’, ‘content’, ‘sync information used’
and ‘purpose’. 
 Location of synchronization technique: The 

synchronization control can be performed either by source 
or receiver. If control is performed by the source, most of 
the time it will require some feedback information from 
the receiver. The receiver will tell the source about the 
degree of asynchrony at the current instance. 

 Live vs. Synthetic synchronization (Type of Media): In 
live media, the temporal relations are exactly reproduced 
at a presentation as they existed during the capture 
process. Synthetic synchronization techniques are used 
for stored media.

 Information used for synchronization technique: The 
information included in the MU for the synchronization 
purpose can be different like timestamp, sequence 
number. Some techniques use either sequence number or 
timestamp, while others may use both. For example, the 
Real-Time Transport Protocol (RTP) provides timestamps 
to synchronize different media streams. 

 Purpose of synchronization technique: The techniques
can be divided into four subcategories with respect to 
their purpose:  
1. The basic control techniques are required in almost 

all synchronization algorithms. Examples are adding 
synchronization information in MUs at the source 
and buffering of MUs at the receiver.

2. The common control techniques can be applied in 
both ways.  

3. The preventive control techniques are used to prevent 
the asynchrony in the streams. Preventive 
mechanisms minimize latencies and jitters and may 
involve disk-reading scheduling algorithms, network 

Fig. 1. An inter-media synchronization example

activity Picture     Picture1(“picture1.jpeg”); 
activity DigAudio    Audio1(“animation.au”); 
activity RTAnima     Animation(“animation.ani”); 
activity Xrecorder    Recorder(“window.rec”); 
activity StartInteraction Selection; 
activity Picture     Picture2(“picture2.jpeg”); 
activity Picture     Picture3(“picture3.jpeg”); 
activity Picture     Picture4(“picture4.jpeg”); 
activity Picture     Picture5(“picture5.jpeg”); 
 
activity DigAudio    Audio2(“audio2.au”); 
activity SMP       Video(“video.smp”); 
 
script AniComment CC = Animation & 
Audio1.Translate(GR); 
script Picture_sequence 
  4Pictures =    Picture2.Duration(3)>> 
          Picture3.Duration(3)>> 

Picture4.Duration(3)>> 
          Picture5.Duration(3); 
script Lipsynch  AV = Audio2 & Video; 
script Multimedia 
 Application_example { 
          ((Selection Picture1) & CC >> 
          Record.UI >> 
          4Pictures>> 
          AV 
       } 

Fig. 2. A script for the example depicted in Fig. 1
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transport protocols, operating systems, and 
synchronization schedules.

4. The reactive control (or corrective) techniques are 
designed to recover synchronization in the presence 
of synchronization errors. An example of corrective 
mechanisms is included in the Stream 
Synchronization Protocol (SSP). 

Based on these criteria, Table I shows a classification of 
inter-media techniques. 

TABLE I. 
CLASSIFICATION OF INTER-MEDIA TECHNIQUES

Technique Location Description

Basic 
Control

Source 
control

 Add information useful for 
synchronization: timestamps, sequence 
numbers (identifiers), event information 
and/or source identifiers.

Receiver 
control

 Buffering techniques

Common 
Control

Source 
control

 Skip or pause MUs in the transmission 
process.

 Advance the transmission timing 
dynamically.

 Adjust the input rate.
 Media Scaling.

Receiver 
control

 Adjust the playout rate.
 Data Interpolation.

Preventive 
Control

Source 
control

 Initial playout instant calculation.
 Deadline-based transmission scheduling.
 Interleave MUs of different media 

streams in only one transport stream.
Receiver 
control

 Preventive skips of MUs (e.g.,
discardings) and/or preventive pauses of 
MUs (repetitions, insertions or stops).

 Change the buffering waiting time of 
MUs.

 Enlarge or shorten the silence periods of 
the streams.

Reactive 
Control

Source 
control

 Adjust the transmission timing.
 Decrease the media streams transmitted. 
 Drop low-priority MUs.

Receiver 
control

 Reactive skips (eliminations or 
discardings) and/or reactive pauses 
(repetitions, insertions or stops).

 Make playout duration extensions or 
reductions (playout rate adjustments).

 Use of virtual time with contractions or 
expansions.

 Master/slave scheme.
 Late event discarding (Event-based).
 Rollback techniques (Event-based) 

III. INTER-DESTINATION MULTIMEDIA SYNCHRONIZATION

Inter-Destination (also known as Inter-Receiver or group or 
multipoint) Multimedia Synchronization (IDMS) has been 
gaining popularity due to the rise of social networking 
applications. IDMS involves the simultaneous synchronization 
of one or more playout receivers of one or several media 

streams at geographically distributed receivers to achieve 
fairness among them. Fairness implies that during a 
multimedia session, all the receivers must play the same MU 
at each media stream. For example, in a networked video wall 
scenario, wherein users are watching an on-line football 
match, all users should experience the goal event almost 
simultaneously (to have a fair shared experience).  

Existing distribution technologies do not handle the IDMS 
problem in an optimal way. Thus, additional adaptive 
techniques must be provided to meet the IDMS 
synchronization requirements in practical content delivery 
networks. The levels of required synchrony among the 
receivers depend on the application on hand. However, the 
exact ranges of asynchrony levels (which could be tolerated by 
users for emerging distributed applications) have not 
sufficiently determined yet [3].  

Akyildiz and Yen [6] introduced group synchronization 
protocols for real-time multimedia applications including 
teleconference, tele-orchestration, and multimedia on demand 
services. Their protocols achieve synchronization for all 
configurations (one-to-one, one-to-many, many-to-one, and 
many-to-many), and do so without prior knowledge of the 
end-to-end delay distribution, or the distribution of the clock 
drift. The only a-priori knowledge the protocols require is an 
upper bound on the end-to-end delay. Boronat et al. [16]
reviewed the most-known multimedia group and inter-stream 
synchronization approaches. Group synchronization 
techniques can be classified at three schemes (discussed later). 
These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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It starts with an animation (Animation) which is partially 
commented using an audio sequence (Audio1). Starting the 
animation presentation, a multiple-choice question is 
presented to the user (Interaction). If the user has made a 
selection, a final picture (P1) is shown. Then, the replay of a
recorded user interaction (RI) follows with a slide sequence 
(P2-P5), and a lip-synchronized audio/video sequence (Audio2 
and Video). Blakowski and Steinmetz [5] illustrated the main 
specification methods that can describe synchronization 
scenarios. These methods are interval-based specification, 
control flow-based specification, axes-based synchronization, 
event-based synchronization, scripts, and comments. Among 
them, Scripts is one of the most powerful methods that 
describe the majority of synchronization scenarios. Scripts 
often become full programming languages extended by timing 
operations. Such language is SMIL (Synchronized Multimedia 
Integration Language) that became a standard (W3C SMIL 
3.0, Dec. 2008). Scripts may rely on different specification 
methods. A typical script is a script that is based on a 
hierarchical method and supports three main operations: serial 
presentation, parallel presentation, and the repeated 
presentation of a media object. Below, we write a script for the 
application example depicted in Fig. 1. 

The symbols & and >> denote parallel and serial presentation 
correspondingly. Note that activities and subscripts compose 
the script. A synchronization specification of a multimedia 

object describes all temporal dependencies of the objects 
included in this object. It is comprised of: 

 Intra-object synchronization specifications for the media 
objects of the presentation. 

 QoS descriptions for intra-object synchronization. 
 Inter-object synchronization specifications for media 

objects of the presentation. 
 QoS descriptions for inter-object synchronization. 

To achieve inter-stream synchronization, various algorithms 
have been applied. Also, there are several types of intra-stream 
synchronization control such as Skipping [11], Buffering [11],
Adaptive Buffer Control (ABC) [12], Queue Monitoring (QM) 
[13], Virtual-Time Rendering (VTR) [14], and Media Adaptive 
Buffering [15]. Boronat et al. [16] have reviewed and 
compared the most powerful inter-stream synchronization 
algorithms. The building blocks of these algorithms are the 
synchronization techniques utilized both at the sender and the 
receiver sides. These algorithms can use multiple 
synchronization techniques to achieve synchronization aim 
even from different categories [17]. 

C. Classification of Inter-Media Techniques 
Boronat et al. [16] categorized synchronization techniques 

according to the ‘location’, ‘content’, ‘sync information used’
and ‘purpose’. 
 Location of synchronization technique: The 

synchronization control can be performed either by source 
or receiver. If control is performed by the source, most of 
the time it will require some feedback information from 
the receiver. The receiver will tell the source about the 
degree of asynchrony at the current instance. 

 Live vs. Synthetic synchronization (Type of Media): In 
live media, the temporal relations are exactly reproduced 
at a presentation as they existed during the capture 
process. Synthetic synchronization techniques are used 
for stored media.

 Information used for synchronization technique: The 
information included in the MU for the synchronization 
purpose can be different like timestamp, sequence 
number. Some techniques use either sequence number or 
timestamp, while others may use both. For example, the 
Real-Time Transport Protocol (RTP) provides timestamps 
to synchronize different media streams. 

 Purpose of synchronization technique: The techniques
can be divided into four subcategories with respect to 
their purpose:  
1. The basic control techniques are required in almost 

all synchronization algorithms. Examples are adding 
synchronization information in MUs at the source 
and buffering of MUs at the receiver.

2. The common control techniques can be applied in 
both ways.  

3. The preventive control techniques are used to prevent 
the asynchrony in the streams. Preventive 
mechanisms minimize latencies and jitters and may 
involve disk-reading scheduling algorithms, network 

Fig. 1. An inter-media synchronization example

activity Picture     Picture1(“picture1.jpeg”); 
activity DigAudio    Audio1(“animation.au”); 
activity RTAnima     Animation(“animation.ani”); 
activity Xrecorder    Recorder(“window.rec”); 
activity StartInteraction Selection; 
activity Picture     Picture2(“picture2.jpeg”); 
activity Picture     Picture3(“picture3.jpeg”); 
activity Picture     Picture4(“picture4.jpeg”); 
activity Picture     Picture5(“picture5.jpeg”); 
 
activity DigAudio    Audio2(“audio2.au”); 
activity SMP       Video(“video.smp”); 
 
script AniComment CC = Animation & 
Audio1.Translate(GR); 
script Picture_sequence 
  4Pictures =    Picture2.Duration(3)>> 
          Picture3.Duration(3)>> 

Picture4.Duration(3)>> 
          Picture5.Duration(3); 
script Lipsynch  AV = Audio2 & Video; 
script Multimedia 
 Application_example { 
          ((Selection Picture1) & CC >> 
          Record.UI >> 
          4Pictures>> 
          AV 
       } 

Fig. 2. A script for the example depicted in Fig. 1
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transport protocols, operating systems, and 
synchronization schedules.

4. The reactive control (or corrective) techniques are 
designed to recover synchronization in the presence 
of synchronization errors. An example of corrective 
mechanisms is included in the Stream 
Synchronization Protocol (SSP). 

Based on these criteria, Table I shows a classification of 
inter-media techniques. 

TABLE I. 
CLASSIFICATION OF INTER-MEDIA TECHNIQUES

Technique Location Description

Basic 
Control

Source 
control

 Add information useful for 
synchronization: timestamps, sequence 
numbers (identifiers), event information 
and/or source identifiers.

Receiver 
control

 Buffering techniques

Common 
Control

Source 
control

 Skip or pause MUs in the transmission 
process.

 Advance the transmission timing 
dynamically.

 Adjust the input rate.
 Media Scaling.

Receiver 
control

 Adjust the playout rate.
 Data Interpolation.

Preventive 
Control

Source 
control

 Initial playout instant calculation.
 Deadline-based transmission scheduling.
 Interleave MUs of different media 

streams in only one transport stream.
Receiver 
control

 Preventive skips of MUs (e.g.,
discardings) and/or preventive pauses of 
MUs (repetitions, insertions or stops).

 Change the buffering waiting time of 
MUs.

 Enlarge or shorten the silence periods of 
the streams.

Reactive 
Control

Source 
control

 Adjust the transmission timing.
 Decrease the media streams transmitted. 
 Drop low-priority MUs.

Receiver 
control

 Reactive skips (eliminations or 
discardings) and/or reactive pauses 
(repetitions, insertions or stops).

 Make playout duration extensions or 
reductions (playout rate adjustments).

 Use of virtual time with contractions or 
expansions.

 Master/slave scheme.
 Late event discarding (Event-based).
 Rollback techniques (Event-based) 

III. INTER-DESTINATION MULTIMEDIA SYNCHRONIZATION

Inter-Destination (also known as Inter-Receiver or group or 
multipoint) Multimedia Synchronization (IDMS) has been 
gaining popularity due to the rise of social networking 
applications. IDMS involves the simultaneous synchronization 
of one or more playout receivers of one or several media 

streams at geographically distributed receivers to achieve 
fairness among them. Fairness implies that during a 
multimedia session, all the receivers must play the same MU 
at each media stream. For example, in a networked video wall 
scenario, wherein users are watching an on-line football 
match, all users should experience the goal event almost 
simultaneously (to have a fair shared experience).  

Existing distribution technologies do not handle the IDMS 
problem in an optimal way. Thus, additional adaptive 
techniques must be provided to meet the IDMS 
synchronization requirements in practical content delivery 
networks. The levels of required synchrony among the 
receivers depend on the application on hand. However, the 
exact ranges of asynchrony levels (which could be tolerated by 
users for emerging distributed applications) have not 
sufficiently determined yet [3].  

Akyildiz and Yen [6] introduced group synchronization 
protocols for real-time multimedia applications including 
teleconference, tele-orchestration, and multimedia on demand 
services. Their protocols achieve synchronization for all 
configurations (one-to-one, one-to-many, many-to-one, and 
many-to-many), and do so without prior knowledge of the 
end-to-end delay distribution, or the distribution of the clock 
drift. The only a-priori knowledge the protocols require is an 
upper bound on the end-to-end delay. Boronat et al. [16]
reviewed the most-known multimedia group and inter-stream 
synchronization approaches. Group synchronization 
techniques can be classified at three schemes (discussed later). 
These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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It starts with an animation (Animation) which is partially 
commented using an audio sequence (Audio1). Starting the 
animation presentation, a multiple-choice question is 
presented to the user (Interaction). If the user has made a 
selection, a final picture (P1) is shown. Then, the replay of a
recorded user interaction (RI) follows with a slide sequence 
(P2-P5), and a lip-synchronized audio/video sequence (Audio2 
and Video). Blakowski and Steinmetz [5] illustrated the main 
specification methods that can describe synchronization 
scenarios. These methods are interval-based specification, 
control flow-based specification, axes-based synchronization, 
event-based synchronization, scripts, and comments. Among 
them, Scripts is one of the most powerful methods that 
describe the majority of synchronization scenarios. Scripts 
often become full programming languages extended by timing 
operations. Such language is SMIL (Synchronized Multimedia 
Integration Language) that became a standard (W3C SMIL 
3.0, Dec. 2008). Scripts may rely on different specification 
methods. A typical script is a script that is based on a 
hierarchical method and supports three main operations: serial 
presentation, parallel presentation, and the repeated 
presentation of a media object. Below, we write a script for the 
application example depicted in Fig. 1. 

The symbols & and >> denote parallel and serial presentation 
correspondingly. Note that activities and subscripts compose 
the script. A synchronization specification of a multimedia 

object describes all temporal dependencies of the objects 
included in this object. It is comprised of: 

 Intra-object synchronization specifications for the media 
objects of the presentation. 

 QoS descriptions for intra-object synchronization. 
 Inter-object synchronization specifications for media 

objects of the presentation. 
 QoS descriptions for inter-object synchronization. 

To achieve inter-stream synchronization, various algorithms 
have been applied. Also, there are several types of intra-stream 
synchronization control such as Skipping [11], Buffering [11],
Adaptive Buffer Control (ABC) [12], Queue Monitoring (QM) 
[13], Virtual-Time Rendering (VTR) [14], and Media Adaptive 
Buffering [15]. Boronat et al. [16] have reviewed and 
compared the most powerful inter-stream synchronization 
algorithms. The building blocks of these algorithms are the 
synchronization techniques utilized both at the sender and the 
receiver sides. These algorithms can use multiple 
synchronization techniques to achieve synchronization aim 
even from different categories [17]. 

C. Classification of Inter-Media Techniques 
Boronat et al. [16] categorized synchronization techniques 

according to the ‘location’, ‘content’, ‘sync information used’
and ‘purpose’. 
 Location of synchronization technique: The 

synchronization control can be performed either by source 
or receiver. If control is performed by the source, most of 
the time it will require some feedback information from 
the receiver. The receiver will tell the source about the 
degree of asynchrony at the current instance. 

 Live vs. Synthetic synchronization (Type of Media): In 
live media, the temporal relations are exactly reproduced 
at a presentation as they existed during the capture 
process. Synthetic synchronization techniques are used 
for stored media.

 Information used for synchronization technique: The 
information included in the MU for the synchronization 
purpose can be different like timestamp, sequence 
number. Some techniques use either sequence number or 
timestamp, while others may use both. For example, the 
Real-Time Transport Protocol (RTP) provides timestamps 
to synchronize different media streams. 

 Purpose of synchronization technique: The techniques
can be divided into four subcategories with respect to 
their purpose:  
1. The basic control techniques are required in almost 

all synchronization algorithms. Examples are adding 
synchronization information in MUs at the source 
and buffering of MUs at the receiver.

2. The common control techniques can be applied in 
both ways.  

3. The preventive control techniques are used to prevent 
the asynchrony in the streams. Preventive 
mechanisms minimize latencies and jitters and may 
involve disk-reading scheduling algorithms, network 

Fig. 1. An inter-media synchronization example

activity Picture     Picture1(“picture1.jpeg”); 
activity DigAudio    Audio1(“animation.au”); 
activity RTAnima     Animation(“animation.ani”); 
activity Xrecorder    Recorder(“window.rec”); 
activity StartInteraction Selection; 
activity Picture     Picture2(“picture2.jpeg”); 
activity Picture     Picture3(“picture3.jpeg”); 
activity Picture     Picture4(“picture4.jpeg”); 
activity Picture     Picture5(“picture5.jpeg”); 
 
activity DigAudio    Audio2(“audio2.au”); 
activity SMP       Video(“video.smp”); 
 
script AniComment CC = Animation & 
Audio1.Translate(GR); 
script Picture_sequence 
  4Pictures =    Picture2.Duration(3)>> 
          Picture3.Duration(3)>> 

Picture4.Duration(3)>> 
          Picture5.Duration(3); 
script Lipsynch  AV = Audio2 & Video; 
script Multimedia 
 Application_example { 
          ((Selection Picture1) & CC >> 
          Record.UI >> 
          4Pictures>> 
          AV 
       } 

Fig. 2. A script for the example depicted in Fig. 1
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transport protocols, operating systems, and 
synchronization schedules.

4. The reactive control (or corrective) techniques are 
designed to recover synchronization in the presence 
of synchronization errors. An example of corrective 
mechanisms is included in the Stream 
Synchronization Protocol (SSP). 

Based on these criteria, Table I shows a classification of 
inter-media techniques. 

TABLE I. 
CLASSIFICATION OF INTER-MEDIA TECHNIQUES

Technique Location Description

Basic 
Control

Source 
control

 Add information useful for 
synchronization: timestamps, sequence 
numbers (identifiers), event information 
and/or source identifiers.

Receiver 
control

 Buffering techniques

Common 
Control

Source 
control

 Skip or pause MUs in the transmission 
process.

 Advance the transmission timing 
dynamically.

 Adjust the input rate.
 Media Scaling.

Receiver 
control

 Adjust the playout rate.
 Data Interpolation.

Preventive 
Control

Source 
control

 Initial playout instant calculation.
 Deadline-based transmission scheduling.
 Interleave MUs of different media 

streams in only one transport stream.
Receiver 
control

 Preventive skips of MUs (e.g.,
discardings) and/or preventive pauses of 
MUs (repetitions, insertions or stops).

 Change the buffering waiting time of 
MUs.

 Enlarge or shorten the silence periods of 
the streams.

Reactive 
Control

Source 
control

 Adjust the transmission timing.
 Decrease the media streams transmitted. 
 Drop low-priority MUs.

Receiver 
control

 Reactive skips (eliminations or 
discardings) and/or reactive pauses 
(repetitions, insertions or stops).

 Make playout duration extensions or 
reductions (playout rate adjustments).

 Use of virtual time with contractions or 
expansions.

 Master/slave scheme.
 Late event discarding (Event-based).
 Rollback techniques (Event-based) 
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Inter-Destination (also known as Inter-Receiver or group or 
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fairness among them. Fairness implies that during a 
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at each media stream. For example, in a networked video wall 
scenario, wherein users are watching an on-line football 
match, all users should experience the goal event almost 
simultaneously (to have a fair shared experience).  

Existing distribution technologies do not handle the IDMS 
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synchronization requirements in practical content delivery 
networks. The levels of required synchrony among the 
receivers depend on the application on hand. However, the 
exact ranges of asynchrony levels (which could be tolerated by 
users for emerging distributed applications) have not 
sufficiently determined yet [3].  

Akyildiz and Yen [6] introduced group synchronization 
protocols for real-time multimedia applications including 
teleconference, tele-orchestration, and multimedia on demand 
services. Their protocols achieve synchronization for all 
configurations (one-to-one, one-to-many, many-to-one, and 
many-to-many), and do so without prior knowledge of the 
end-to-end delay distribution, or the distribution of the clock 
drift. The only a-priori knowledge the protocols require is an 
upper bound on the end-to-end delay. Boronat et al. [16]
reviewed the most-known multimedia group and inter-stream 
synchronization approaches. Group synchronization 
techniques can be classified at three schemes (discussed later). 
These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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It starts with an animation (Animation) which is partially 
commented using an audio sequence (Audio1). Starting the 
animation presentation, a multiple-choice question is 
presented to the user (Interaction). If the user has made a 
selection, a final picture (P1) is shown. Then, the replay of a
recorded user interaction (RI) follows with a slide sequence 
(P2-P5), and a lip-synchronized audio/video sequence (Audio2 
and Video). Blakowski and Steinmetz [5] illustrated the main 
specification methods that can describe synchronization 
scenarios. These methods are interval-based specification, 
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event-based synchronization, scripts, and comments. Among 
them, Scripts is one of the most powerful methods that 
describe the majority of synchronization scenarios. Scripts 
often become full programming languages extended by timing 
operations. Such language is SMIL (Synchronized Multimedia 
Integration Language) that became a standard (W3C SMIL 
3.0, Dec. 2008). Scripts may rely on different specification 
methods. A typical script is a script that is based on a 
hierarchical method and supports three main operations: serial 
presentation, parallel presentation, and the repeated 
presentation of a media object. Below, we write a script for the 
application example depicted in Fig. 1. 

The symbols & and >> denote parallel and serial presentation 
correspondingly. Note that activities and subscripts compose 
the script. A synchronization specification of a multimedia 

object describes all temporal dependencies of the objects 
included in this object. It is comprised of: 
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objects of the presentation. 

 QoS descriptions for intra-object synchronization. 
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have been applied. Also, there are several types of intra-stream 
synchronization control such as Skipping [11], Buffering [11],
Adaptive Buffer Control (ABC) [12], Queue Monitoring (QM) 
[13], Virtual-Time Rendering (VTR) [14], and Media Adaptive 
Buffering [15]. Boronat et al. [16] have reviewed and 
compared the most powerful inter-stream synchronization 
algorithms. The building blocks of these algorithms are the 
synchronization techniques utilized both at the sender and the 
receiver sides. These algorithms can use multiple 
synchronization techniques to achieve synchronization aim 
even from different categories [17]. 

C. Classification of Inter-Media Techniques 
Boronat et al. [16] categorized synchronization techniques 

according to the ‘location’, ‘content’, ‘sync information used’
and ‘purpose’. 
 Location of synchronization technique: The 

synchronization control can be performed either by source 
or receiver. If control is performed by the source, most of 
the time it will require some feedback information from 
the receiver. The receiver will tell the source about the 
degree of asynchrony at the current instance. 

 Live vs. Synthetic synchronization (Type of Media): In 
live media, the temporal relations are exactly reproduced 
at a presentation as they existed during the capture 
process. Synthetic synchronization techniques are used 
for stored media.

 Information used for synchronization technique: The 
information included in the MU for the synchronization 
purpose can be different like timestamp, sequence 
number. Some techniques use either sequence number or 
timestamp, while others may use both. For example, the 
Real-Time Transport Protocol (RTP) provides timestamps 
to synchronize different media streams. 

 Purpose of synchronization technique: The techniques
can be divided into four subcategories with respect to 
their purpose:  
1. The basic control techniques are required in almost 

all synchronization algorithms. Examples are adding 
synchronization information in MUs at the source 
and buffering of MUs at the receiver.

2. The common control techniques can be applied in 
both ways.  

3. The preventive control techniques are used to prevent 
the asynchrony in the streams. Preventive 
mechanisms minimize latencies and jitters and may 
involve disk-reading scheduling algorithms, network 

Fig. 1. An inter-media synchronization example

activity Picture     Picture1(“picture1.jpeg”); 
activity DigAudio    Audio1(“animation.au”); 
activity RTAnima     Animation(“animation.ani”); 
activity Xrecorder    Recorder(“window.rec”); 
activity StartInteraction Selection; 
activity Picture     Picture2(“picture2.jpeg”); 
activity Picture     Picture3(“picture3.jpeg”); 
activity Picture     Picture4(“picture4.jpeg”); 
activity Picture     Picture5(“picture5.jpeg”); 
 
activity DigAudio    Audio2(“audio2.au”); 
activity SMP       Video(“video.smp”); 
 
script AniComment CC = Animation & 
Audio1.Translate(GR); 
script Picture_sequence 
  4Pictures =    Picture2.Duration(3)>> 
          Picture3.Duration(3)>> 

Picture4.Duration(3)>> 
          Picture5.Duration(3); 
script Lipsynch  AV = Audio2 & Video; 
script Multimedia 
 Application_example { 
          ((Selection Picture1) & CC >> 
          Record.UI >> 
          4Pictures>> 
          AV 
       } 

Fig. 2. A script for the example depicted in Fig. 1

Submission 65 4

transport protocols, operating systems, and 
synchronization schedules.

4. The reactive control (or corrective) techniques are 
designed to recover synchronization in the presence 
of synchronization errors. An example of corrective 
mechanisms is included in the Stream 
Synchronization Protocol (SSP). 

Based on these criteria, Table I shows a classification of 
inter-media techniques. 

TABLE I. 
CLASSIFICATION OF INTER-MEDIA TECHNIQUES

Technique Location Description

Basic 
Control

Source 
control

 Add information useful for 
synchronization: timestamps, sequence 
numbers (identifiers), event information 
and/or source identifiers.

Receiver 
control

 Buffering techniques

Common 
Control

Source 
control

 Skip or pause MUs in the transmission 
process.

 Advance the transmission timing 
dynamically.

 Adjust the input rate.
 Media Scaling.

Receiver 
control

 Adjust the playout rate.
 Data Interpolation.

Preventive 
Control

Source 
control

 Initial playout instant calculation.
 Deadline-based transmission scheduling.
 Interleave MUs of different media 

streams in only one transport stream.
Receiver 
control

 Preventive skips of MUs (e.g.,
discardings) and/or preventive pauses of 
MUs (repetitions, insertions or stops).

 Change the buffering waiting time of 
MUs.

 Enlarge or shorten the silence periods of 
the streams.

Reactive 
Control

Source 
control

 Adjust the transmission timing.
 Decrease the media streams transmitted. 
 Drop low-priority MUs.

Receiver 
control

 Reactive skips (eliminations or 
discardings) and/or reactive pauses 
(repetitions, insertions or stops).

 Make playout duration extensions or 
reductions (playout rate adjustments).

 Use of virtual time with contractions or 
expansions.

 Master/slave scheme.
 Late event discarding (Event-based).
 Rollback techniques (Event-based) 

III. INTER-DESTINATION MULTIMEDIA SYNCHRONIZATION

Inter-Destination (also known as Inter-Receiver or group or 
multipoint) Multimedia Synchronization (IDMS) has been 
gaining popularity due to the rise of social networking 
applications. IDMS involves the simultaneous synchronization 
of one or more playout receivers of one or several media 

streams at geographically distributed receivers to achieve 
fairness among them. Fairness implies that during a 
multimedia session, all the receivers must play the same MU 
at each media stream. For example, in a networked video wall 
scenario, wherein users are watching an on-line football 
match, all users should experience the goal event almost 
simultaneously (to have a fair shared experience).  

Existing distribution technologies do not handle the IDMS 
problem in an optimal way. Thus, additional adaptive 
techniques must be provided to meet the IDMS 
synchronization requirements in practical content delivery 
networks. The levels of required synchrony among the 
receivers depend on the application on hand. However, the 
exact ranges of asynchrony levels (which could be tolerated by 
users for emerging distributed applications) have not 
sufficiently determined yet [3].  

Akyildiz and Yen [6] introduced group synchronization 
protocols for real-time multimedia applications including 
teleconference, tele-orchestration, and multimedia on demand 
services. Their protocols achieve synchronization for all 
configurations (one-to-one, one-to-many, many-to-one, and 
many-to-many), and do so without prior knowledge of the 
end-to-end delay distribution, or the distribution of the clock 
drift. The only a-priori knowledge the protocols require is an 
upper bound on the end-to-end delay. Boronat et al. [16]
reviewed the most-known multimedia group and inter-stream 
synchronization approaches. Group synchronization 
techniques can be classified at three schemes (discussed later). 
These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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scenario, wherein users are watching an on-line football 
match, all users should experience the goal event almost 
simultaneously (to have a fair shared experience).  

Existing distribution technologies do not handle the IDMS 
problem in an optimal way. Thus, additional adaptive 
techniques must be provided to meet the IDMS 
synchronization requirements in practical content delivery 
networks. The levels of required synchrony among the 
receivers depend on the application on hand. However, the 
exact ranges of asynchrony levels (which could be tolerated by 
users for emerging distributed applications) have not 
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Akyildiz and Yen [6] introduced group synchronization 
protocols for real-time multimedia applications including 
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services. Their protocols achieve synchronization for all 
configurations (one-to-one, one-to-many, many-to-one, and 
many-to-many), and do so without prior knowledge of the 
end-to-end delay distribution, or the distribution of the clock 
drift. The only a-priori knowledge the protocols require is an 
upper bound on the end-to-end delay. Boronat et al. [16]
reviewed the most-known multimedia group and inter-stream 
synchronization approaches. Group synchronization 
techniques can be classified at three schemes (discussed later). 
These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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It starts with an animation (Animation) which is partially 
commented using an audio sequence (Audio1). Starting the 
animation presentation, a multiple-choice question is 
presented to the user (Interaction). If the user has made a 
selection, a final picture (P1) is shown. Then, the replay of a
recorded user interaction (RI) follows with a slide sequence 
(P2-P5), and a lip-synchronized audio/video sequence (Audio2 
and Video). Blakowski and Steinmetz [5] illustrated the main 
specification methods that can describe synchronization 
scenarios. These methods are interval-based specification, 
control flow-based specification, axes-based synchronization, 
event-based synchronization, scripts, and comments. Among 
them, Scripts is one of the most powerful methods that 
describe the majority of synchronization scenarios. Scripts 
often become full programming languages extended by timing 
operations. Such language is SMIL (Synchronized Multimedia 
Integration Language) that became a standard (W3C SMIL 
3.0, Dec. 2008). Scripts may rely on different specification 
methods. A typical script is a script that is based on a 
hierarchical method and supports three main operations: serial 
presentation, parallel presentation, and the repeated 
presentation of a media object. Below, we write a script for the 
application example depicted in Fig. 1. 

The symbols & and >> denote parallel and serial presentation 
correspondingly. Note that activities and subscripts compose 
the script. A synchronization specification of a multimedia 

object describes all temporal dependencies of the objects 
included in this object. It is comprised of: 

 Intra-object synchronization specifications for the media 
objects of the presentation. 

 QoS descriptions for intra-object synchronization. 
 Inter-object synchronization specifications for media 

objects of the presentation. 
 QoS descriptions for inter-object synchronization. 

To achieve inter-stream synchronization, various algorithms 
have been applied. Also, there are several types of intra-stream 
synchronization control such as Skipping [11], Buffering [11],
Adaptive Buffer Control (ABC) [12], Queue Monitoring (QM) 
[13], Virtual-Time Rendering (VTR) [14], and Media Adaptive 
Buffering [15]. Boronat et al. [16] have reviewed and 
compared the most powerful inter-stream synchronization 
algorithms. The building blocks of these algorithms are the 
synchronization techniques utilized both at the sender and the 
receiver sides. These algorithms can use multiple 
synchronization techniques to achieve synchronization aim 
even from different categories [17]. 

C. Classification of Inter-Media Techniques 
Boronat et al. [16] categorized synchronization techniques 

according to the ‘location’, ‘content’, ‘sync information used’
and ‘purpose’. 
 Location of synchronization technique: The 

synchronization control can be performed either by source 
or receiver. If control is performed by the source, most of 
the time it will require some feedback information from 
the receiver. The receiver will tell the source about the 
degree of asynchrony at the current instance. 

 Live vs. Synthetic synchronization (Type of Media): In 
live media, the temporal relations are exactly reproduced 
at a presentation as they existed during the capture 
process. Synthetic synchronization techniques are used 
for stored media.

 Information used for synchronization technique: The 
information included in the MU for the synchronization 
purpose can be different like timestamp, sequence 
number. Some techniques use either sequence number or 
timestamp, while others may use both. For example, the 
Real-Time Transport Protocol (RTP) provides timestamps 
to synchronize different media streams. 

 Purpose of synchronization technique: The techniques
can be divided into four subcategories with respect to 
their purpose:  
1. The basic control techniques are required in almost 

all synchronization algorithms. Examples are adding 
synchronization information in MUs at the source 
and buffering of MUs at the receiver.

2. The common control techniques can be applied in 
both ways.  

3. The preventive control techniques are used to prevent 
the asynchrony in the streams. Preventive 
mechanisms minimize latencies and jitters and may 
involve disk-reading scheduling algorithms, network 

Fig. 1. An inter-media synchronization example

activity Picture     Picture1(“picture1.jpeg”); 
activity DigAudio    Audio1(“animation.au”); 
activity RTAnima     Animation(“animation.ani”); 
activity Xrecorder    Recorder(“window.rec”); 
activity StartInteraction Selection; 
activity Picture     Picture2(“picture2.jpeg”); 
activity Picture     Picture3(“picture3.jpeg”); 
activity Picture     Picture4(“picture4.jpeg”); 
activity Picture     Picture5(“picture5.jpeg”); 
 
activity DigAudio    Audio2(“audio2.au”); 
activity SMP       Video(“video.smp”); 
 
script AniComment CC = Animation & 
Audio1.Translate(GR); 
script Picture_sequence 
  4Pictures =    Picture2.Duration(3)>> 
          Picture3.Duration(3)>> 

Picture4.Duration(3)>> 
          Picture5.Duration(3); 
script Lipsynch  AV = Audio2 & Video; 
script Multimedia 
 Application_example { 
          ((Selection Picture1) & CC >> 
          Record.UI >> 
          4Pictures>> 
          AV 
       } 

Fig. 2. A script for the example depicted in Fig. 1
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transport protocols, operating systems, and 
synchronization schedules.

4. The reactive control (or corrective) techniques are 
designed to recover synchronization in the presence 
of synchronization errors. An example of corrective 
mechanisms is included in the Stream 
Synchronization Protocol (SSP). 

Based on these criteria, Table I shows a classification of 
inter-media techniques. 

TABLE I. 
CLASSIFICATION OF INTER-MEDIA TECHNIQUES

Technique Location Description

Basic 
Control

Source 
control

 Add information useful for 
synchronization: timestamps, sequence 
numbers (identifiers), event information 
and/or source identifiers.

Receiver 
control

 Buffering techniques

Common 
Control

Source 
control

 Skip or pause MUs in the transmission 
process.

 Advance the transmission timing 
dynamically.

 Adjust the input rate.
 Media Scaling.

Receiver 
control

 Adjust the playout rate.
 Data Interpolation.

Preventive 
Control

Source 
control

 Initial playout instant calculation.
 Deadline-based transmission scheduling.
 Interleave MUs of different media 

streams in only one transport stream.
Receiver 
control

 Preventive skips of MUs (e.g.,
discardings) and/or preventive pauses of 
MUs (repetitions, insertions or stops).

 Change the buffering waiting time of 
MUs.

 Enlarge or shorten the silence periods of 
the streams.

Reactive 
Control

Source 
control

 Adjust the transmission timing.
 Decrease the media streams transmitted. 
 Drop low-priority MUs.

Receiver 
control

 Reactive skips (eliminations or 
discardings) and/or reactive pauses 
(repetitions, insertions or stops).

 Make playout duration extensions or 
reductions (playout rate adjustments).

 Use of virtual time with contractions or 
expansions.

 Master/slave scheme.
 Late event discarding (Event-based).
 Rollback techniques (Event-based) 
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Inter-Destination (also known as Inter-Receiver or group or 
multipoint) Multimedia Synchronization (IDMS) has been 
gaining popularity due to the rise of social networking 
applications. IDMS involves the simultaneous synchronization 
of one or more playout receivers of one or several media 

streams at geographically distributed receivers to achieve 
fairness among them. Fairness implies that during a 
multimedia session, all the receivers must play the same MU 
at each media stream. For example, in a networked video wall 
scenario, wherein users are watching an on-line football 
match, all users should experience the goal event almost 
simultaneously (to have a fair shared experience).  

Existing distribution technologies do not handle the IDMS 
problem in an optimal way. Thus, additional adaptive 
techniques must be provided to meet the IDMS 
synchronization requirements in practical content delivery 
networks. The levels of required synchrony among the 
receivers depend on the application on hand. However, the 
exact ranges of asynchrony levels (which could be tolerated by 
users for emerging distributed applications) have not 
sufficiently determined yet [3].  

Akyildiz and Yen [6] introduced group synchronization 
protocols for real-time multimedia applications including 
teleconference, tele-orchestration, and multimedia on demand 
services. Their protocols achieve synchronization for all 
configurations (one-to-one, one-to-many, many-to-one, and 
many-to-many), and do so without prior knowledge of the 
end-to-end delay distribution, or the distribution of the clock 
drift. The only a-priori knowledge the protocols require is an 
upper bound on the end-to-end delay. Boronat et al. [16]
reviewed the most-known multimedia group and inter-stream 
synchronization approaches. Group synchronization 
techniques can be classified at three schemes (discussed later). 
These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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transport protocols, operating systems, and 
synchronization schedules.

4. The reactive control (or corrective) techniques are 
designed to recover synchronization in the presence 
of synchronization errors. An example of corrective 
mechanisms is included in the Stream 
Synchronization Protocol (SSP). 

Based on these criteria, Table I shows a classification of 
inter-media techniques. 
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 Change the buffering waiting time of 
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 Enlarge or shorten the silence periods of 
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Reactive 
Control

Source 
control

 Adjust the transmission timing.
 Decrease the media streams transmitted. 
 Drop low-priority MUs.

Receiver 
control

 Reactive skips (eliminations or 
discardings) and/or reactive pauses 
(repetitions, insertions or stops).

 Make playout duration extensions or 
reductions (playout rate adjustments).

 Use of virtual time with contractions or 
expansions.

 Master/slave scheme.
 Late event discarding (Event-based).
 Rollback techniques (Event-based) 

III. INTER-DESTINATION MULTIMEDIA SYNCHRONIZATION

Inter-Destination (also known as Inter-Receiver or group or 
multipoint) Multimedia Synchronization (IDMS) has been 
gaining popularity due to the rise of social networking 
applications. IDMS involves the simultaneous synchronization 
of one or more playout receivers of one or several media 

streams at geographically distributed receivers to achieve 
fairness among them. Fairness implies that during a 
multimedia session, all the receivers must play the same MU 
at each media stream. For example, in a networked video wall 
scenario, wherein users are watching an on-line football 
match, all users should experience the goal event almost 
simultaneously (to have a fair shared experience).  

Existing distribution technologies do not handle the IDMS 
problem in an optimal way. Thus, additional adaptive 
techniques must be provided to meet the IDMS 
synchronization requirements in practical content delivery 
networks. The levels of required synchrony among the 
receivers depend on the application on hand. However, the 
exact ranges of asynchrony levels (which could be tolerated by 
users for emerging distributed applications) have not 
sufficiently determined yet [3].  

Akyildiz and Yen [6] introduced group synchronization 
protocols for real-time multimedia applications including 
teleconference, tele-orchestration, and multimedia on demand 
services. Their protocols achieve synchronization for all 
configurations (one-to-one, one-to-many, many-to-one, and 
many-to-many), and do so without prior knowledge of the 
end-to-end delay distribution, or the distribution of the clock 
drift. The only a-priori knowledge the protocols require is an 
upper bound on the end-to-end delay. Boronat et al. [16]
reviewed the most-known multimedia group and inter-stream 
synchronization approaches. Group synchronization 
techniques can be classified at three schemes (discussed later). 
These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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It starts with an animation (Animation) which is partially 
commented using an audio sequence (Audio1). Starting the 
animation presentation, a multiple-choice question is 
presented to the user (Interaction). If the user has made a 
selection, a final picture (P1) is shown. Then, the replay of a
recorded user interaction (RI) follows with a slide sequence 
(P2-P5), and a lip-synchronized audio/video sequence (Audio2 
and Video). Blakowski and Steinmetz [5] illustrated the main 
specification methods that can describe synchronization 
scenarios. These methods are interval-based specification, 
control flow-based specification, axes-based synchronization, 
event-based synchronization, scripts, and comments. Among 
them, Scripts is one of the most powerful methods that 
describe the majority of synchronization scenarios. Scripts 
often become full programming languages extended by timing 
operations. Such language is SMIL (Synchronized Multimedia 
Integration Language) that became a standard (W3C SMIL 
3.0, Dec. 2008). Scripts may rely on different specification 
methods. A typical script is a script that is based on a 
hierarchical method and supports three main operations: serial 
presentation, parallel presentation, and the repeated 
presentation of a media object. Below, we write a script for the 
application example depicted in Fig. 1. 

The symbols & and >> denote parallel and serial presentation 
correspondingly. Note that activities and subscripts compose 
the script. A synchronization specification of a multimedia 

object describes all temporal dependencies of the objects 
included in this object. It is comprised of: 

 Intra-object synchronization specifications for the media 
objects of the presentation. 

 QoS descriptions for intra-object synchronization. 
 Inter-object synchronization specifications for media 

objects of the presentation. 
 QoS descriptions for inter-object synchronization. 

To achieve inter-stream synchronization, various algorithms 
have been applied. Also, there are several types of intra-stream 
synchronization control such as Skipping [11], Buffering [11],
Adaptive Buffer Control (ABC) [12], Queue Monitoring (QM) 
[13], Virtual-Time Rendering (VTR) [14], and Media Adaptive 
Buffering [15]. Boronat et al. [16] have reviewed and 
compared the most powerful inter-stream synchronization 
algorithms. The building blocks of these algorithms are the 
synchronization techniques utilized both at the sender and the 
receiver sides. These algorithms can use multiple 
synchronization techniques to achieve synchronization aim 
even from different categories [17]. 

C. Classification of Inter-Media Techniques 
Boronat et al. [16] categorized synchronization techniques 

according to the ‘location’, ‘content’, ‘sync information used’
and ‘purpose’. 
 Location of synchronization technique: The 

synchronization control can be performed either by source 
or receiver. If control is performed by the source, most of 
the time it will require some feedback information from 
the receiver. The receiver will tell the source about the 
degree of asynchrony at the current instance. 

 Live vs. Synthetic synchronization (Type of Media): In 
live media, the temporal relations are exactly reproduced 
at a presentation as they existed during the capture 
process. Synthetic synchronization techniques are used 
for stored media.

 Information used for synchronization technique: The 
information included in the MU for the synchronization 
purpose can be different like timestamp, sequence 
number. Some techniques use either sequence number or 
timestamp, while others may use both. For example, the 
Real-Time Transport Protocol (RTP) provides timestamps 
to synchronize different media streams. 

 Purpose of synchronization technique: The techniques
can be divided into four subcategories with respect to 
their purpose:  
1. The basic control techniques are required in almost 

all synchronization algorithms. Examples are adding 
synchronization information in MUs at the source 
and buffering of MUs at the receiver.

2. The common control techniques can be applied in 
both ways.  

3. The preventive control techniques are used to prevent 
the asynchrony in the streams. Preventive 
mechanisms minimize latencies and jitters and may 
involve disk-reading scheduling algorithms, network 

Fig. 1. An inter-media synchronization example

activity Picture     Picture1(“picture1.jpeg”); 
activity DigAudio    Audio1(“animation.au”); 
activity RTAnima     Animation(“animation.ani”); 
activity Xrecorder    Recorder(“window.rec”); 
activity StartInteraction Selection; 
activity Picture     Picture2(“picture2.jpeg”); 
activity Picture     Picture3(“picture3.jpeg”); 
activity Picture     Picture4(“picture4.jpeg”); 
activity Picture     Picture5(“picture5.jpeg”); 
 
activity DigAudio    Audio2(“audio2.au”); 
activity SMP       Video(“video.smp”); 
 
script AniComment CC = Animation & 
Audio1.Translate(GR); 
script Picture_sequence 
  4Pictures =    Picture2.Duration(3)>> 
          Picture3.Duration(3)>> 

Picture4.Duration(3)>> 
          Picture5.Duration(3); 
script Lipsynch  AV = Audio2 & Video; 
script Multimedia 
 Application_example { 
          ((Selection Picture1) & CC >> 
          Record.UI >> 
          4Pictures>> 
          AV 
       } 

Fig. 2. A script for the example depicted in Fig. 1
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transport protocols, operating systems, and 
synchronization schedules.

4. The reactive control (or corrective) techniques are 
designed to recover synchronization in the presence 
of synchronization errors. An example of corrective 
mechanisms is included in the Stream 
Synchronization Protocol (SSP). 

Based on these criteria, Table I shows a classification of 
inter-media techniques. 

TABLE I. 
CLASSIFICATION OF INTER-MEDIA TECHNIQUES

Technique Location Description

Basic 
Control

Source 
control

 Add information useful for 
synchronization: timestamps, sequence 
numbers (identifiers), event information 
and/or source identifiers.

Receiver 
control

 Buffering techniques

Common 
Control

Source 
control

 Skip or pause MUs in the transmission 
process.

 Advance the transmission timing 
dynamically.

 Adjust the input rate.
 Media Scaling.

Receiver 
control

 Adjust the playout rate.
 Data Interpolation.

Preventive 
Control

Source 
control

 Initial playout instant calculation.
 Deadline-based transmission scheduling.
 Interleave MUs of different media 

streams in only one transport stream.
Receiver 
control

 Preventive skips of MUs (e.g.,
discardings) and/or preventive pauses of 
MUs (repetitions, insertions or stops).

 Change the buffering waiting time of 
MUs.

 Enlarge or shorten the silence periods of 
the streams.

Reactive 
Control

Source 
control

 Adjust the transmission timing.
 Decrease the media streams transmitted. 
 Drop low-priority MUs.

Receiver 
control

 Reactive skips (eliminations or 
discardings) and/or reactive pauses 
(repetitions, insertions or stops).

 Make playout duration extensions or 
reductions (playout rate adjustments).

 Use of virtual time with contractions or 
expansions.

 Master/slave scheme.
 Late event discarding (Event-based).
 Rollback techniques (Event-based) 
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Inter-Destination (also known as Inter-Receiver or group or 
multipoint) Multimedia Synchronization (IDMS) has been 
gaining popularity due to the rise of social networking 
applications. IDMS involves the simultaneous synchronization 
of one or more playout receivers of one or several media 

streams at geographically distributed receivers to achieve 
fairness among them. Fairness implies that during a 
multimedia session, all the receivers must play the same MU 
at each media stream. For example, in a networked video wall 
scenario, wherein users are watching an on-line football 
match, all users should experience the goal event almost 
simultaneously (to have a fair shared experience).  

Existing distribution technologies do not handle the IDMS 
problem in an optimal way. Thus, additional adaptive 
techniques must be provided to meet the IDMS 
synchronization requirements in practical content delivery 
networks. The levels of required synchrony among the 
receivers depend on the application on hand. However, the 
exact ranges of asynchrony levels (which could be tolerated by 
users for emerging distributed applications) have not 
sufficiently determined yet [3].  

Akyildiz and Yen [6] introduced group synchronization 
protocols for real-time multimedia applications including 
teleconference, tele-orchestration, and multimedia on demand 
services. Their protocols achieve synchronization for all 
configurations (one-to-one, one-to-many, many-to-one, and 
many-to-many), and do so without prior knowledge of the 
end-to-end delay distribution, or the distribution of the clock 
drift. The only a-priori knowledge the protocols require is an 
upper bound on the end-to-end delay. Boronat et al. [16]
reviewed the most-known multimedia group and inter-stream 
synchronization approaches. Group synchronization 
techniques can be classified at three schemes (discussed later). 
These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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These schemes are based on the Virtual-Time Rendering
(VTR) media synchronization algorithm to determine the 
output timing of each MU so that the timing can be the same 
at all the destinations. VTR algorithm is applicable to 
networks with unknown delay bounds. It makes use of 
globally synchronized clocks. VTR consists of the dynamic 
adjustment of the MUs rendering-time according to the 
network condition. For a better understanding of these 
schemes, let us consider that M sources and N
destinations/receivers are connected through a network. MUs 
of M different streams have been stored with timestamps in M
sources, and they are broadcasted to all the receivers. The 
timestamp contained in a MU indicates its generation time. 
The streams often fall into a Master stream and Slave streams.
At each receiver, the slave streams are synchronized with the 
Master stream by using an inter-media synchronization 
mechanism. 

A. Master/Slave (M/S) Receiver Scheme  
In M/S scheme [18], the receivers are categorized into one 

Master receiver and Slave receivers. Multiple streams are 
received at each receiver and one of these streams acts as 
Master stream in order inter-media synchronization to be 
achieved at each receiver (Fig. 3).  
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 

Fig. 4. Synchronization Maestro Scheme [19].

Fig. 3. Master/Slave Receiver Scheme [19].
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 

Fig. 5. The Distributed Control Scheme [19]
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technique is its simplicity and the decreased amount of 
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synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
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This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
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Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
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can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 
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master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 
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estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
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slave receivers. This control packet includes the 
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modified and the sequence number of the MU for which 
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packets to accommodate the newly joined slave receivers. 
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technique is its simplicity and the decreased amount of 
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can influence the performance of the scheme because slave 
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(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
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associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 
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In SMS scheme [22], all the receivers are handled fairly as 
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Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
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among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 

Fig. 4. Synchronization Maestro Scheme [19].

Fig. 3. Master/Slave Receiver Scheme [19].
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is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 
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presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
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the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
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bottleneck in the system. A second problem deals with the 
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master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
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estimates the network delay, and then determines the 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 

Fig. 4. Synchronization Maestro Scheme [19].

Fig. 3. Master/Slave Receiver Scheme [19].
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This process is called “initial presentation adjustment”. 
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master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
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This process is called “initial presentation adjustment”. 
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changes, the Master receiver notifies all the slaves about 
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information. Fig. 3 presents the different type of message 
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packet drops at faster slave receiver(s). It is noteworthy that 
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(i.e., the IDMS reference is calculated by averaging the 
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problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 

Fig. 4. Synchronization Maestro Scheme [19].

Fig. 3. Master/Slave Receiver Scheme [19].

Submission 65 6

presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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Fig. 3. Master/Slave Receiver Scheme [19].
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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Fig. 3. Master/Slave Receiver Scheme [19].
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 

Fig. 4. Synchronization Maestro Scheme [19].

Fig. 3. Master/Slave Receiver Scheme [19].
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 

Fig. 5. The Distributed Control Scheme [19]

Submission 65 6

presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 

Fig. 4. Synchronization Maestro Scheme [19].

Fig. 3. Master/Slave Receiver Scheme [19].
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 

Fig. 4. Synchronization Maestro Scheme [19].

Fig. 3. Master/Slave Receiver Scheme [19].
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None of the slave receivers send any feedback information 
about the timing of the playout processes. It only adjusts the 
playout timing of MUs to that of the Master receiver. Only the 
Master receiver sends (multicasts) its playout timing to all the 
other (slave) receivers. The Master receiver controls and 
computes the presentation time of the MUs according to its 
own state of the received stream data. Group synchronization 
is achieved by adjusting the presentation time of the MUs of 
master stream at the slave receivers to that of the Master 
receiver. Therefore, the slave receivers should present MUs at 
the same timing as the Master receiver. The synchronization 
of the slave receivers is achieved as follows: 
 The Master receiver multicasts a control packet to all 

slave receivers. This control packet includes the 
presentation time of its first MU of the master stream. 
This process is called “initial presentation adjustment”. 

 When the target presentation time of the Master receiver 
changes, the Master receiver notifies all the slaves about 
this modification by multicasting a control packet. This 
control packet contains the amount of time that is 
modified and the sequence number of the MU for which 
the target presentation time has been changed.  

 The Master receiver periodically multicasts proper control 
packets to accommodate the newly joined slave receivers. 

Boronat et al. [20] presented the M/S scheme by extending 
the RTP/RTCP (Real-time Transport Protocol/ RTP Control 
Protocol) messages for containing the synchronization 
information. Fig. 3 presents the different type of message 
exchanges in the basic M/S scheme. The advantage of the M/S
technique is its simplicity and the decreased amount of 
information exchange (i.e., control packets) to support group 
synchronization. However, the selection of the Master receiver 
can influence the performance of the scheme because slave 
receivers must present MUs at the same timing as the Master 
receiver. If the fastest (more advanced) receiver is selected as 
the master, the playout point of this receiver is selected as the 
IDMS reference. This will result to poor presentation quality 
at slower (or more lagged) receivers. On the contrary, if the 
slowest receiver is selected as master, this will result in high 
packet drops at faster slave receiver(s). It is noteworthy that 
synchronization can also be based on the mean playout point 

(i.e., the IDMS reference is calculated by averaging the 
playout timing reported from all the distributed receivers). A 
problem with the M/S technique is that the master can act as a 
bottleneck in the system. A second problem deals with the 
associated degree of unfairness with the slave receivers. 
Boronat et al. [21] discussed possible options with pros and 
cons for the master selection in this scheme. 

B. Synchronization Maestro Scheme (SMS) 
In SMS scheme [22], all the receivers are handled fairly as 

master and slaves do not exist. SMS involves a 
Synchronization Manager (SM) which can be performed by 
one of the source or receiver. For example, in Fig. 4, one 
receiver (destination) performs the role of SM.  

Each receiver estimates the network delay and uses the 
estimates to determine the local presentation time of the MU. 
Then, each receiver sends this estimated presentation time of 
MU to the SM. After that, the SM gathers the estimates from 
the receivers and adjusts the presentation timing among the 
receivers by multicasting control packets to receivers. The 
SMS scheme assumes that the clock speed at the sources and 
receivers is the same and that the current local times are also 
the same (i.e., globally synchronized clocks). Figure 4 depicts 
the basic principle of the SMS technique. Boronat et al. [16]
presented the RTCP-based schemes which follow the same 
basic principle. The SMS scheme (like the M/S) is a 
centralized solution, and thus it can confront the bottleneck 
problem. The advantage of the SMS scheme over M/S is its 
fairness to the receivers because the feedback information of 
all the receivers is accounted for determining the presentation 
time of the MU. However, this fairness costs more 
communication overhead among the receiver and the 
Synchronization Manager (SM). 

C. Distributed Control Scheme (DCS) 
Figure 5 illustrates the DCS scheme [23]. Each receiver 
estimates the network delay, and then determines the 
presentation time of the MU. Then, it sends (multicasts) this 
presentation time to all the receivers. After that, every receiver 
will have the entire view of the estimated time of MU. Each 
receiver has the flexibility to decide the reference playout time 
among the timing of all the receivers. The DCS scheme 
provides higher flexibility to each receiver to decide the 

Fig. 4. Synchronization Maestro Scheme [19].

Fig. 3. Master/Slave Receiver Scheme [19].
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presentation time of MU. For example, it is possible that by 
selecting the presentation time of other receiver, it can achieve 
higher group synchronization quality, but it may cause the 
inter-media or intra-media synchronization degradation. In this 
case, the receiver has the flexibility to choose between the 
types of synchronization depending upon the nature of 
application on hand. If the application on hand requires the 
higher inter-media or intra-media synchronization and can 
sacrifice on the group synchronization to certain limit, then the 
receiver can select its own determined presentation time and 
vice versa. DCS is a distributed scheme by nature and does not 
suffer from the bottleneck problem. If one or more receivers 
leave the system, it will not disturb the overall scheme. This 
greater flexibility and the distributed nature of DCS make it 
complex in terms of processing. This happens because the 
receiver does more calculations and comparisons before 
deciding the presentation time of MU. Finally, DCS has a
higher message complexity, because each receiver multicasts 
the estimated presentation time. 

D. Comparison  of Control Schemes - Lessons Learned 
The following factors affect IDMS performance (i.e., the level 
of synchronicity among receivers). These factors can be used 
as evaluation criteria for the comparison of IDMS control 
schemes [3][16]: 

Robustness: Disconnections and failures of some receivers/ 
participants may affect the ability to perform the IDMS 
control. In a distributed control architecture (DCS), the failure 
of any of the participant has a slight effect on the other 
participants because each one of them is independent and has 
locally all the required information to compute the overall 
synchronization status at any time. In SMS, if the Maestro 
cannot communicate with the other terminals owing to some
trouble, no destination can carry out the IDMS control. 
Generally, a centralized scheme (SMS or M/S) is less robust
than distributed schemes. A distributed architecture (DCS) is 
more robust because it can simplify the deployment and 
maintenance of a distributed multimedia application. 

Scalability: This is the ability to handle multiple concurrent 
participants/receivers in an IDMS session. SMS requires the 

maintenance of a dedicated server (Maestro) to which all the 
control information converges. Thus, SMS may present higher 
scalability constraints. For example, multiple receivers may 
send control packets almost simultaneously, thus originating a 
feedback-implosion problem because of the IDMS control. As 
the number of the receivers/participants increases, bursty 
traffic due to control packets can overwhelm the 
synchronization manager and may degrade the output quality 
of the media streams.  

Traffic overhead: It is generated by two factors: (1) the 
distribution of the playout timing messages from the 
participants to the synchronization manager; and (2) the 
transmission of playout setting instructions. Generally, traffic 
overhead may be higher in DCS than in SMS. 

Interactivity (low delays): Each slave destination can 
compute the detected playout asynchrony when it receives the 
control messages from the master destination. Consequently, 
the lowest delays may be achieved using the M/S scheme. In 
DCS, each participant must gather the overall status from all 
the other active participants. As a result, delays in DCS are bit
larger. In SMS, the Maestro must gather the playout timing of 
all the receivers, and then send back to them new control 
messages including IDMS setting instructions. Therefore, the 
highest delay (smallest interactivity) occurs in SMS, but this 
delay depends on the network topology and on the routing tree 
structure. 

Location of control nodes: The location of the multimedia 
source and the location of the synchronization manager affect 
the IDMS performance of the schemes. Centralized control 
schemes are more sensitive to these locations. Under heavily 
loaded network conditions, the IDMS performance with SMS 
can be slightly larger than the one with M/S and DCS 
schemes, if the media source is selected as the Maestro. This is 
due to the fact that IDMS control packets sent by the Maestro 
are sent through the same path as the MUs (e.g., video frames, 
encapsulated in data packets). In SMS scheme, IDMS control 
messages scarcely increase the network load. But, if the 
bandwidth availability is limited, some (data or control) 
packets may be dropped. If a control packet is dropped (lost), 
the destination cannot get the reference output timing until 
receiving the next control packet. On the other hand, in M/S 
scheme, if the most heavily loaded destination is selected as 
the master, the data packets are less likely dropped on the 
intermediate links because it does not need to receive control 
packets and their own sent control packets may be transmitted 
in the opposite direction to the media data packets. 

Consistency: In media-sharing applications, consistency is 
required to guarantee concurrently synchronized playout states 
in all the distributed participants. In centralized schemes, 
inconsistency between receivers’ states occurs less likely, 
since all of them always receive the same control information 
about IDMS timing from the Maestro (in SMS) or the Master 
receiver (in M/S scheme). On the contrary, in a DCS scheme, 
there is no guarantee that the same reference IDMS timing, 
from among all the collected IDMS control reports, will be 
selected in all the distributed receivers since each one takes its 
own decisions locally. This leads to a more probable potential 
inter-receivers inconsistency.  

Security: Centralized architectures provide higher security 
than distributed architectures. In DCS architectures, we have 

Fig. 5. The Distributed Control Scheme [19]
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[28] Seq. number and 
Recei-
ver 

techniques for intra- stream 
synchronization. 

RTP-FGP  
[29] 

SMS Timestamps  
Source id. 

Source 
and 
Recei-
ver 

Initial playout instant. 
Reactive skips and pauses 
at the receiver side. 
Playout rate adjustment. 
Virtual time expansion. 
Master/slave receiver 
switching (group 
synchronization). 

SMS 
[11], 
[18], 
[30], 
[31], 
[22]  

SMS Timestamps  
Seq. number 

Recei-
ver 

Initial transmission instant  
(only in [22]) 

BS: bucket synchronization; DSC: distributed control scheme;  
ILA: interactivity-loss avoidance;  
LL-TW: local-lag and time warp algorithms;  
RTP-FGP: RTP-based feedback-global protocol;  
SMS: synchronization maestro scheme; TSS: trailing state synchronization;  
VTR: virtual time rendering algorithm 

 
Moreover, many different reactive techniques have been 

proposed. For example, receivers can discard late events in 
[24]. In addition, receivers in [25] can use rollback techniques, 
such as maintaining late events and using them to compensate 
for inconsistency at the receiving end. In the Timewarp 
algorithm [23], this can cause an extra overhead in terms of 
memory space and computation for inconsistency 
compensation. To re-establish the consistency of the game 
state, rollback-based techniques were developed in [23]. 
Copies of the states are maintained after command executions 
and events received after their playout time are stored locally 
instead of being dropped and used to compensate for the 
inconsistency among receivers’ views. Then, visual rendering 
of significant events can be delayed (to avoid inconsistencies 
if corrections occur). In this case, the difficulty is that the use 
of these realignment techniques may further impact on the 
responsiveness of the system. The Trailing State 
Synchronization (TSS) algorithm [26] uses dynamically 
changing states as the source of rollbacks as opposed to static 
snapshots, which is the fundamental difference between it and 
Timewarp [23]. TSS preserves more than a few instances of 
the applications running with different synchronization delays. 
In TSS, inconsistencies are noticed by detecting when the 
leading state and the correct state diverge, and at that point are 
corrected. From another perspective, a proactive event 
discarding mechanism is used in [27]. This mechanism is 
based on the discrimination of obsolete events. In particular, 
obsolete events are discarded with a probability depending on 
the level of interactivity.  

In the next section, we present IDMS standardization efforts 
and some state-of-the-art IDMS solutions. 

IV. RECOMMENDATIONS AND SOLUTIONS 

A. Standardization efforts 
ETSI (European Telecommunications Standards Institute) 
TISPAN (Telecoms & Internet converged Services & 
Protocols for Advanced Networking) has been carried out 
standardization efforts of IDMS. This standardization is also a 
highlight for the IETF AVTCORE WG (Internet Engineering 

Task Force - Audio/Video Transport Core Maintenance 
Working Group). The specification [33] does pose IDMS and 
the synchronization of media streams from different sources as 
a requirement for providing synchronization-sensitive 
interactive services. These use cases are mostly in the 
categories of ‘low’ or ‘medium’ synchronization, and not very 
high requirements are posed to delay differences between 
various user equipments. However, Montagud et al. [3] 
presented up to 19 use cases for IDMS, each one having its 
own (very high) synchronization requirements. The most of 
these use cases are not supported by the protocol specification, 
which gives a delay difference of between 150 and 400 ms as 
a guideline for achieving transparent interactivity, based on 
ITU guidelines for interactivity in person-to-person 
communication.  

ETSI TISPAN has done the first work on standardizing 
RTCP usage for IDMS. The ETSI proposal is a dedicated 
solution for use in large scale IPTV deployments with ‘low’ to 
‘medium’ level synchronization requirements. The ETSI 
solution [34] is an evolved version of an RTCP-based IDMS 
approach including an AMP scheme that adjusts the playout 
timing of each one of the geographically distributed 
consumers in a specific cluster if an allowable asynchrony 
threshold between their playout states is exceeded. Still, there 
are use cases [3] that require higher levels of synchronization 
and are not supported efficiently by the ETSI solution.  

Within the Internet Engineering Task Force (IETF), the 
AVTCORE working group [35] carries out standardization of 
the RTCP-based IDMS protocol. This is the core group that is 
responsible for the RTP and accompanying RTCP protocol. 
Actually, most RTCP extensions are developed within the 
IETF. van Deventer et al. [36] provided an overview of 
recently published standards for media synchronization from 
the most relevant bodies: IETF, ETSI, MPEG, DVB, HbbTV, 
and W3C.  

B. Solutions  
Boronat et al. [16] described most IDMS solutions that define 
new proprietary protocols with specific control messages 
which increase the network load. Montagud et al. [37] 
reviewed the existing sync reference models by examining the 
involved features, components, and layers in each one of 
them. Their study reflects the need for a new modular and 
extensible theoretical framework to efficiently comprehend 
the overall media sync research area. From another 
perspective, Huang et al. [38] presented a historical view of 
temporal synchronization studies focusing on continuous 
multimedia. They demonstrated how the development of 
multimedia systems has created new challenges for 
synchronization technologies. They concluded with a new 
application dependent, multi-location, multi-requirement 
synchronization framework to address these new challenges. 

The realization of synchronous shared experiences requires 
that users feel that they are coherently communicating with 
each other. Vaishnavi et al. [1] analyzed challenges that need 
to be tackled to achieve coherence: QoS, mobility, and 
distributed media synchronization. They presented their 
solution to distributed media synchronization. Their design 
uses the local lag mechanism over a distributed control or 
master–slave signaling architecture. Montagud et al. [39] 
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lack of control because each participant has the responsibility 
of what is doing, and some participants may be malicious. 
Synchronization entities (Maestro in SMS, or each destination 
in DCS and in M/S) must consider inconsistent playout 
information (exceeding configuration limits) as a 
malfunctioning service and reject that information in the 
calculation of the necessary playout adjustments 
(synchronization actions).  
 Coherence: This is the ability to synchronously and 
simultaneously coordinate the media playout timing according 
to a reference timing for IDMS. For this reason, the maximum 
playout asynchrony (between the most lagged and the most 
advanced receiver) must be estimated. And this is easy in DCS 
and SMS schemes. But, in M/S scheme, each receiver can 
only know the asynchrony between its local playout process 
and that of the Master. Using M/S scheme, the reactive 
synchronization actions will not be performed simultaneously 
because slave receivers adjust their playout timing when they 
detect an asynchrony value (regarding the playout state of the 
master) exceeding an allowable threshold and this situation 
may not be detected at the same time in all the slave receivers. 
Consequently, SMS outperforms the M/S and DCS in terms of 
coherence.  
 Fairness: M/S scheme is appropriate for applications in 
which a single receiver has a certain priority level over the 
others. For example, in multi-point video conferencing (e.g., 
synchronous e-learning), the teacher’s terminal can be selected 
as the Master receiver, which directs to the students’ devices 
the required playout adjustments to get in sync. However, M/S 
scheme cannot treat all the receivers fairly. This problem is 
minimized when SMS or DCS are employed because the 
reference output timing is selected after a comparison among 
the output timing of all the receivers. 
 Flexibility: Using M/S scheme, there is no option for 
selecting the reference output timing since it is taken from the 
one reported by the master destination. Conversely, the 
Maestro, in SMS, and the distributed receivers, in DCS, can 
employ several dynamic policies for selecting an IDMS 
reference from the collected output timings. 
 Conclusively, M/S scheme can provide the best 
performance in terms of scalability, traffic overhead, and 
interactivity. Moreover, M/S scheme can be proper in those 
scenarios in which the bandwidth availability is limited, and 
also in those use cases in which a single participant (e.g., a 
teacher in a synchronous e-learning scenario) has a certain 
priority level over the others. However, the M/S scheme 
presents serious drawbacks, if some features such as 
robustness, coherence, flexibility, and fairness are required. 
Finally, M/S and SMS control schemes are the most 
appropriate in terms of consistency. Centralized schemes (M/S 
and SMS) have larger network delays (low interactivity), 
lower robustness with poorer flexibility and scalability. 

E. Classification of Group Synchronization Solutions 
In Table II, we summarize the most well-known 

synchronization solutions by presenting the above schemes 
and other features of interest such as the following ones: 

 Group synchronization schemes: The control schemes 
(M/S receiver scheme, SMS, and/or DCS) included in 
the solutions are indicated.  

 Synchronization information: The information used for 
synchronization (included in the transmitted MUs) is 
indicated. 

 Location of the synchronization techniques: The 
synchronization control is made by the source(s) or by 
the receiver(s) or both. 

 Synchronization techniques: The most representative 
techniques included in each solution have been 
indicated in Table II. 

 

In the first column (Table II), the Name of the group 
synchronization solution and the corresponding cited work are 
included. Several solutions use RTP/RTCP protocols [32]. 
Particularly, they use feedback and time information 
(timestamps) included in the RTP/RTCP. These solutions 
exploit the use of control RTCP report packets for including 
feedback information for multimedia synchronization 
purposes. The VTR media synchronization algorithm [18] has 
been used in media synchronization between voice and 
movement of avatars in networked virtual environments. The 
synchronization maestro scheme (SMS) for group 
synchronization, employed together with the VTR media 
synchronization algorithm, has been enhanced so that the SMS 
scheme can be used efficiently in a networked real-time game 
with collaborative work [31], and in a P2P-based system [28]. 

 
TABLE II:  

CLASSIFICATION OF SOME GROUP SYNCHRONIZATION SOLUTIONS 
Name Sche-

me 
Sync 
information 

Loca-
tion 

Synchronization  
techniques 

VTR 
[18] 

M
as

te
r/S

la
ve

  
re

ce
iv

er
 sc

he
m

e 

Timestamps  
Seq. number 

Source 
and 
Recei-
ver 

Change of the buffering 
time according to the delay 
estimation. 
Decreasing the number of 
media streams.  
Preventive pauses.  
Reactive skips and pauses.  
Skips at the source side.  
Playout duration 
extensions or reductions.  
Virtual local time 
expansions or contractions.  

[6] DCS Timestamp  
in 1st packet 

-- Initial transmission and 
playout instant. 
Playout rate adjustments 
(receiver’s clock). 
Master/slave receiver 
switching (chairman). 

BS [24] DCS Timestamps  
Seq. number 

Recei-
ver 

Skips (discarding) and 
pauses (duplicates). 
Late events are dropped. 

LL-TW 
[23] 

DCS Timestamps Recei-
ver 

Event-based 
synchronization control. 
Playout duration extension. 
Rollback-based techniques. 

DCS 
[25] 

DCS Timestamps Recei-
ver 

VTR techniques 

TSS [26] DCS  Timestamps Recei-
ver 

Event-based 
synchronization control. 
Playout duration extension. 
Rollback-based techniques. 

ILA [27] DCS Timestamps Recei-
ver 

Event-based 
synchronization control.  
Preventive MDU/event 
discarding. 
Reactive events discarding. 

ESMS SMS Timestamps  Source Skipping and VTR 
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[28] Seq. number and 
Recei-
ver 

techniques for intra- stream 
synchronization. 

RTP-FGP  
[29] 

SMS Timestamps  
Source id. 

Source 
and 
Recei-
ver 

Initial playout instant. 
Reactive skips and pauses 
at the receiver side. 
Playout rate adjustment. 
Virtual time expansion. 
Master/slave receiver 
switching (group 
synchronization). 

SMS 
[11], 
[18], 
[30], 
[31], 
[22]  

SMS Timestamps  
Seq. number 

Recei-
ver 

Initial transmission instant  
(only in [22]) 

BS: bucket synchronization; DSC: distributed control scheme;  
ILA: interactivity-loss avoidance;  
LL-TW: local-lag and time warp algorithms;  
RTP-FGP: RTP-based feedback-global protocol;  
SMS: synchronization maestro scheme; TSS: trailing state synchronization;  
VTR: virtual time rendering algorithm 

 
Moreover, many different reactive techniques have been 

proposed. For example, receivers can discard late events in 
[24]. In addition, receivers in [25] can use rollback techniques, 
such as maintaining late events and using them to compensate 
for inconsistency at the receiving end. In the Timewarp 
algorithm [23], this can cause an extra overhead in terms of 
memory space and computation for inconsistency 
compensation. To re-establish the consistency of the game 
state, rollback-based techniques were developed in [23]. 
Copies of the states are maintained after command executions 
and events received after their playout time are stored locally 
instead of being dropped and used to compensate for the 
inconsistency among receivers’ views. Then, visual rendering 
of significant events can be delayed (to avoid inconsistencies 
if corrections occur). In this case, the difficulty is that the use 
of these realignment techniques may further impact on the 
responsiveness of the system. The Trailing State 
Synchronization (TSS) algorithm [26] uses dynamically 
changing states as the source of rollbacks as opposed to static 
snapshots, which is the fundamental difference between it and 
Timewarp [23]. TSS preserves more than a few instances of 
the applications running with different synchronization delays. 
In TSS, inconsistencies are noticed by detecting when the 
leading state and the correct state diverge, and at that point are 
corrected. From another perspective, a proactive event 
discarding mechanism is used in [27]. This mechanism is 
based on the discrimination of obsolete events. In particular, 
obsolete events are discarded with a probability depending on 
the level of interactivity.  

In the next section, we present IDMS standardization efforts 
and some state-of-the-art IDMS solutions. 

IV. RECOMMENDATIONS AND SOLUTIONS 

A. Standardization efforts 
ETSI (European Telecommunications Standards Institute) 
TISPAN (Telecoms & Internet converged Services & 
Protocols for Advanced Networking) has been carried out 
standardization efforts of IDMS. This standardization is also a 
highlight for the IETF AVTCORE WG (Internet Engineering 

Task Force - Audio/Video Transport Core Maintenance 
Working Group). The specification [33] does pose IDMS and 
the synchronization of media streams from different sources as 
a requirement for providing synchronization-sensitive 
interactive services. These use cases are mostly in the 
categories of ‘low’ or ‘medium’ synchronization, and not very 
high requirements are posed to delay differences between 
various user equipments. However, Montagud et al. [3] 
presented up to 19 use cases for IDMS, each one having its 
own (very high) synchronization requirements. The most of 
these use cases are not supported by the protocol specification, 
which gives a delay difference of between 150 and 400 ms as 
a guideline for achieving transparent interactivity, based on 
ITU guidelines for interactivity in person-to-person 
communication.  

ETSI TISPAN has done the first work on standardizing 
RTCP usage for IDMS. The ETSI proposal is a dedicated 
solution for use in large scale IPTV deployments with ‘low’ to 
‘medium’ level synchronization requirements. The ETSI 
solution [34] is an evolved version of an RTCP-based IDMS 
approach including an AMP scheme that adjusts the playout 
timing of each one of the geographically distributed 
consumers in a specific cluster if an allowable asynchrony 
threshold between their playout states is exceeded. Still, there 
are use cases [3] that require higher levels of synchronization 
and are not supported efficiently by the ETSI solution.  

Within the Internet Engineering Task Force (IETF), the 
AVTCORE working group [35] carries out standardization of 
the RTCP-based IDMS protocol. This is the core group that is 
responsible for the RTP and accompanying RTCP protocol. 
Actually, most RTCP extensions are developed within the 
IETF. van Deventer et al. [36] provided an overview of 
recently published standards for media synchronization from 
the most relevant bodies: IETF, ETSI, MPEG, DVB, HbbTV, 
and W3C.  

B. Solutions  
Boronat et al. [16] described most IDMS solutions that define 
new proprietary protocols with specific control messages 
which increase the network load. Montagud et al. [37] 
reviewed the existing sync reference models by examining the 
involved features, components, and layers in each one of 
them. Their study reflects the need for a new modular and 
extensible theoretical framework to efficiently comprehend 
the overall media sync research area. From another 
perspective, Huang et al. [38] presented a historical view of 
temporal synchronization studies focusing on continuous 
multimedia. They demonstrated how the development of 
multimedia systems has created new challenges for 
synchronization technologies. They concluded with a new 
application dependent, multi-location, multi-requirement 
synchronization framework to address these new challenges. 

The realization of synchronous shared experiences requires 
that users feel that they are coherently communicating with 
each other. Vaishnavi et al. [1] analyzed challenges that need 
to be tackled to achieve coherence: QoS, mobility, and 
distributed media synchronization. They presented their 
solution to distributed media synchronization. Their design 
uses the local lag mechanism over a distributed control or 
master–slave signaling architecture. Montagud et al. [39] 
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lack of control because each participant has the responsibility 
of what is doing, and some participants may be malicious. 
Synchronization entities (Maestro in SMS, or each destination 
in DCS and in M/S) must consider inconsistent playout 
information (exceeding configuration limits) as a 
malfunctioning service and reject that information in the 
calculation of the necessary playout adjustments 
(synchronization actions).  
 Coherence: This is the ability to synchronously and 
simultaneously coordinate the media playout timing according 
to a reference timing for IDMS. For this reason, the maximum 
playout asynchrony (between the most lagged and the most 
advanced receiver) must be estimated. And this is easy in DCS 
and SMS schemes. But, in M/S scheme, each receiver can 
only know the asynchrony between its local playout process 
and that of the Master. Using M/S scheme, the reactive 
synchronization actions will not be performed simultaneously 
because slave receivers adjust their playout timing when they 
detect an asynchrony value (regarding the playout state of the 
master) exceeding an allowable threshold and this situation 
may not be detected at the same time in all the slave receivers. 
Consequently, SMS outperforms the M/S and DCS in terms of 
coherence.  
 Fairness: M/S scheme is appropriate for applications in 
which a single receiver has a certain priority level over the 
others. For example, in multi-point video conferencing (e.g., 
synchronous e-learning), the teacher’s terminal can be selected 
as the Master receiver, which directs to the students’ devices 
the required playout adjustments to get in sync. However, M/S 
scheme cannot treat all the receivers fairly. This problem is 
minimized when SMS or DCS are employed because the 
reference output timing is selected after a comparison among 
the output timing of all the receivers. 
 Flexibility: Using M/S scheme, there is no option for 
selecting the reference output timing since it is taken from the 
one reported by the master destination. Conversely, the 
Maestro, in SMS, and the distributed receivers, in DCS, can 
employ several dynamic policies for selecting an IDMS 
reference from the collected output timings. 
 Conclusively, M/S scheme can provide the best 
performance in terms of scalability, traffic overhead, and 
interactivity. Moreover, M/S scheme can be proper in those 
scenarios in which the bandwidth availability is limited, and 
also in those use cases in which a single participant (e.g., a 
teacher in a synchronous e-learning scenario) has a certain 
priority level over the others. However, the M/S scheme 
presents serious drawbacks, if some features such as 
robustness, coherence, flexibility, and fairness are required. 
Finally, M/S and SMS control schemes are the most 
appropriate in terms of consistency. Centralized schemes (M/S 
and SMS) have larger network delays (low interactivity), 
lower robustness with poorer flexibility and scalability. 

E. Classification of Group Synchronization Solutions 
In Table II, we summarize the most well-known 

synchronization solutions by presenting the above schemes 
and other features of interest such as the following ones: 

 Group synchronization schemes: The control schemes 
(M/S receiver scheme, SMS, and/or DCS) included in 
the solutions are indicated.  

 Synchronization information: The information used for 
synchronization (included in the transmitted MUs) is 
indicated. 

 Location of the synchronization techniques: The 
synchronization control is made by the source(s) or by 
the receiver(s) or both. 

 Synchronization techniques: The most representative 
techniques included in each solution have been 
indicated in Table II. 

 

In the first column (Table II), the Name of the group 
synchronization solution and the corresponding cited work are 
included. Several solutions use RTP/RTCP protocols [32]. 
Particularly, they use feedback and time information 
(timestamps) included in the RTP/RTCP. These solutions 
exploit the use of control RTCP report packets for including 
feedback information for multimedia synchronization 
purposes. The VTR media synchronization algorithm [18] has 
been used in media synchronization between voice and 
movement of avatars in networked virtual environments. The 
synchronization maestro scheme (SMS) for group 
synchronization, employed together with the VTR media 
synchronization algorithm, has been enhanced so that the SMS 
scheme can be used efficiently in a networked real-time game 
with collaborative work [31], and in a P2P-based system [28]. 

 
TABLE II:  

CLASSIFICATION OF SOME GROUP SYNCHRONIZATION SOLUTIONS 
Name Sche-
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Sync 
information 

Loca-
tion 

Synchronization  
techniques 

VTR 
[18] 

M
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te
r/S

la
ve

  
re

ce
iv

er
 sc

he
m
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Timestamps  
Seq. number 

Source 
and 
Recei-
ver 

Change of the buffering 
time according to the delay 
estimation. 
Decreasing the number of 
media streams.  
Preventive pauses.  
Reactive skips and pauses.  
Skips at the source side.  
Playout duration 
extensions or reductions.  
Virtual local time 
expansions or contractions.  

[6] DCS Timestamp  
in 1st packet 

-- Initial transmission and 
playout instant. 
Playout rate adjustments 
(receiver’s clock). 
Master/slave receiver 
switching (chairman). 

BS [24] DCS Timestamps  
Seq. number 

Recei-
ver 

Skips (discarding) and 
pauses (duplicates). 
Late events are dropped. 

LL-TW 
[23] 

DCS Timestamps Recei-
ver 

Event-based 
synchronization control. 
Playout duration extension. 
Rollback-based techniques. 

DCS 
[25] 

DCS Timestamps Recei-
ver 

VTR techniques 

TSS [26] DCS  Timestamps Recei-
ver 

Event-based 
synchronization control. 
Playout duration extension. 
Rollback-based techniques. 

ILA [27] DCS Timestamps Recei-
ver 

Event-based 
synchronization control.  
Preventive MDU/event 
discarding. 
Reactive events discarding. 

ESMS SMS Timestamps  Source Skipping and VTR 
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playback position errors corrects those on the media client 
devices according to the expected playback position for the 
time elapsed since the last synchronization. Rare and periodic 
synchronization is applied in preparation for control packet 
loss, correcting the local adjustment errors when no event 
occurs. To evaluate the performance of PlaySharing, the 
average synchronization errors (between the source device and 
the client devices) were measured in an IEEE 802.11 
infrastructure network configuration and a hierarchical 
wireless media streaming network (HSN) configuration. For 
these measurements, two protocols were used: the user 
datagram protocol unicast and broadcast for control packet 
transmission. The experimental results showed that 
PlaySharing, with user datagram protocol unicast transmission 
of control messages in the HSN, has the lowest 
synchronization errors in the experiments. 

Last but not least, an additional challenge in IDMS is 
securing group communication that involves Multicast Group 
Key Management. Such management is the management of the 
keys in a group communication. Developing group key 
management faces additional challenges in wireless mobile 
networks (e.g., MANETs) due to their inherent complexities. 
The constraints of wireless devices in terms of resources 
scarcity and the mobility of group members increase the 
complexity of designing a group key management scheme. 
Daghighi et al. [50] surveyed existing group key management 
schemes that consider the host mobility issue in secure group 
communications in wireless mobile environments. 

V. CONCLUSION AND FUTURE WORK 
This paper has illustrated various issues on multimedia 

synchronization. It has presented the basic control schemes for 
IDMS and has focused on IDMS solutions and standardization 
efforts for emerging distributed multimedia applications.  

 
Lessons Learned 

 
IDMS is essential in various emerging distributed 

multimedia applications such as social TV, hybrid 
broadcast/broadband services, networked quiz shows, 
networked video wall, multi-party multimedia conferencing, 
and interactive 3D tele-immersive applications. 3D tele-
immersive applications provide geographically distributed 
users with a realistic and immersive multimedia experience 
[51]. The protocol software developer must take into account: 
(1) the context and space in which the IDMS solution is going 
to be deployed; and (2) the multimedia application 
requirements that must be satisfied. The key-point in IDMS is 
to minimize the delay differences among different receivers by 
introducing proper buffering mechanisms. The primary 
latency in IDMS scenario is the playout delay that consists of 
the sending buffer delay, packet transfer delay, and receiving 
buffer delay. The transfer delay (which includes packet 
transmission and path propagation delay) of the same (media) 
video packet to different destinations often differs 
significantly because of the variations in available bandwidth 
and path propagation delays. These packet transfer delay 
differences are the main barrier for IDMS because they affect 
the receivers’ synchronous playout possibility substantially. 

Existing control schemes (i.e., M/S, SMS, DCS) for IDMS 
have their own strengths and weaknesses. However, the choice 
between these schemes is largely application-dependent. For 
their evaluation, certain metrics must be used such as 
robustness, fairness, scalability, traffic overhead, interactivity 
(low delay), location of control nodes, consistency, coherence, 
security, and flexibility.  

Precise group synchronization schemes can be deployed by 
using event-based synchronization. This kind of 
synchronization implies that the synchronization controller 
can transfer a synchronization control message to the media 
client devices when an event (e.g., Play, Pause, Resume, Stop, 
and Seek) in a media source device occurs. The control 
message may include an event time, an event type, a playback 
position, etc. Then, media client devices could synchronize 
their playback states with the media source device after 
correcting errors, based on the received control message.   

The current industry pushes for new IDMS services, both at 
the IP media stream level (IETF RTCP, ETSI TISPAN) and 
the MPEG-2 transport stream level (DVB CSS, MPEG 
TEMI). It also includes more fundamental standards [(W3C 
SMIL and ITU - NCL (Nested Context Language)] that can 
serve as models for future and more general synchronization 
primitives. The standardization of IDMS will facilitate the 
uptake of implementations and of the interoperability between 
different implementations. Such standardization will ensure a 
more extensive use of IDMS. 

 
Future Work  

 
 The basic control schemes for IDMS must be compared 

and evaluated under various types of wireless networks 
(e.g., MANETs, VANETs). The evaluation metrics must 
cover many aspects such as robustness, interactivity, etc. 

 Future IDMS techniques could benefit from cross-layer 
optimization. Such optimization allows communication 
between OSI-RM layers by permitting one layer to access 
the data of another layer to exchange information and 
enable interaction [52]. It contributes to an improvement 
of QoS under various operational conditions. The cross-
layer control mechanism can provide feedback on 
concurrent quality information for the adaptive setting of 
control parameters of a multimedia system. As a result, it 
could help to the utilization of synchronization techniques 
such as preventive control. A comprehensive multimedia 
synchronization subsystem will integrate preventive and 
reactive methods and will use a cross-layer optimization 
method and other components (e.g., the IP Multimedia 
Subsystem).  

 In RTP-based multimedia streaming services, client-
driven media synchronization mechanisms must be 
developed to provide accurate media synchronization 
such as to reduce: (1) the initial synchronization delay; (2) 
the processing complexity at the client device; (3) the 
number of required user datagram protocol ports; and (4) 
the amount of control traffic injected into the network. 
Such a synchronization mechanism was recently proposed 
in [53]. In this mechanism, the server does not need to 
send any RTCP sender report packets for synchronization. 
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presented an IDMS solution based on extending the 
capabilities of RTP/RTCP protocols. To enable an adaptive, 
highly accurate, and standard compliant IDMS solution, they 
specified RTCP extensions in combination with several 
control algorithms and adjustment techniques.  

Focused on the TV area, Costa and Santos [40] surveyed the 
existing media sync solutions, classifying them in terms of 
types of involved devices, types of media content, types of 
sync techniques, targeted applications or scenarios, and 
evaluation methodologies. The following sync specific aspects 
were considered to classify the existing solutions: protocols, 
algorithms, delivery channels, specification methods, 
architectural schemes, allowable asynchrony levels, and 
evaluation metrics. Marfil et al. [41] presented an adaptive, 
accurate and standard-compliant IDMS solution for hybrid 
broadcast and broadband delivery. Their solution can 
accomplish synchronization when different formats/versions 
of the same (or even related) contents are being played out in a 
shared session. It can also independently manage the playout 
processes of different groups of users. Their IDMS solution 
has been integrated within an end-to-end platform, which is 
compatible with the Hybrid broadcast broadband TV 
(HbbTV) standard. It has been applied to digital video 
broadcasting-terrestrial technology and tested for a social TV 
scenario, by also including an ad-hoc chat tool as an 
interaction channel.  

Ishibashi et al. [42] carried out QoE assessment of fairness 
between players in a networked game with olfaction. They 
investigated the influence of the time it takes for a smell to 
reach a player on fairness. They illustrated that fairness is 
hardly damaged when the constant delays are smaller than 
about 500 ms. The used media synchronization algorithm 
considers the human perception of intra-stream and inter-
stream synchronization errors. Ghinea and Ademoye [43] 
conducted a perceptual measurement of the impact of a 
synchronization error between smell sensory data and 
audiovisual content, assuming the audiovisual lip skew is zero. 
Their results showed a synchronization threshold of 30 s, 
when olfaction is ahead of audiovisual data, and of 20 s when 
olfaction is behind. In joint musical performance, multiple 
users play their respective same or different types of musical 
instruments together. However, the media synchronization 
quality and interactivity may seriously be deteriorated owing 
to the network delay. Sithu and Ishibashi [19] proposed a new 
media synchronization control called the ‘dynamic local lag 
control’. By QoE assessment, they demonstrated that this new 
control can achieve a high quality of media synchronization 
and keep the interactivity high in joint musical performance.  

Bello et al. [44] presented a distributed multimedia 
synchronization protocol oriented to satisfy logical and 
temporal dependencies in the exchange of real-time data in 
mobile distributed systems by using logical mapping, avoiding 
the use of global references. Two main aspects of their 
protocol include: (1) the computation of the deadline for 
messages by using only relative time points, and (2) by 
dividing the processing stage to achieve synchronization with 
an asymmetric principle of design. Simulations results showed 
that their protocol is effective in diminishing the 
synchronization error. Furthermore, their protocol is efficient 
as regards processing and storage costs at the mobile hosts, 

and in the overhead attached per message with a reduced 
usage of bandwidth across the wired and wireless channels in 
comparison with the RTP. 

Internet-based video services can also benefit from IDMS. 
We can achieve a smooth multiple-stream distributed 
multimedia presentation over the Internet if we apply 
presentation adaptation and flow control. Huang et al. [45] 
proposed the Pause-And-Run approach for k-stream (PARK) 
multimedia presentations over the Internet to achieve reliable 
transmission of continuous media. They evaluated the 
application of the PARK approach over the Internet. The 
evaluation results revealed a suitable buffering control policy 
for the audio and video media respectively. The characteristics 
of the PARK approach are: 

 PARK adopts TCP to achieve reliable transmission for 
continuous media. 

 A novel flow adaptation scheme reduces the overhead 
of the network and end-hosts because the slow-start 
scheme is embedded in TCP. The server adapts its 
transmission rates to the buffer situation of the client 
and prevents the client’s buffers from overflow and 
underflow as much as possible. 

 With the provision of multiple-stream synchronization 
and the multi-level adaptation control, the client 
achieves smooth multimedia presentations and graceful 
presentation degradation. 

 
From another perspective, Wersync [46] is a novel web-

based platform that enables distributed media synchronization 
and social interaction across remote users. By using Wersync, 
users can create or join on-going sessions for concurrently 
consuming the same media content with other remote users in 
a synchronized manner.  

Rainer et al. [47] presented Merge and Forward, an IDMS 
scheme for adaptive HTTP streaming as a distributed control 
scheme and adopting the MPEG-DASH standard [48] as a 
representation format. They introduced so-called IDMS 
sessions and described how an unstructured peer-to-peer 
overlay can be created using the session information and using 
the MPEG-DASH. They assessed the performance of Merge 
and Forward with respect to convergence time (time needed 
until all clients hold the same reference time stamp) and 
scalability. After the negotiation on a reference time stamp, 
the clients have to synchronize their multimedia playback to 
the agreed reference time stamp. In order to achieve this, the 
authors proposed a new AMP approach minimizing the impact 
of playback synchronization on the QoE. The proposed AMP 
was assessed subjectively using crowdsourcing.  

Kwon et al. [49] proposed a media sharing scheme (named 
PlaySharing) for scalable media streaming and precise group 
synchronization services. PlaySharing combines event-based 
synchronization, local adjustment of playback position errors, 
and rare and periodic synchronization. It achieves sustained 
precise synchronization by minimizing synchronization 
control packets during network congestion. Event-based 
synchronization manages the synchronization between a 
media source device and client devices using event messages 
from the source device. To reduce the number of 
synchronization control packets, the local adjustment of 
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playback position errors corrects those on the media client 
devices according to the expected playback position for the 
time elapsed since the last synchronization. Rare and periodic 
synchronization is applied in preparation for control packet 
loss, correcting the local adjustment errors when no event 
occurs. To evaluate the performance of PlaySharing, the 
average synchronization errors (between the source device and 
the client devices) were measured in an IEEE 802.11 
infrastructure network configuration and a hierarchical 
wireless media streaming network (HSN) configuration. For 
these measurements, two protocols were used: the user 
datagram protocol unicast and broadcast for control packet 
transmission. The experimental results showed that 
PlaySharing, with user datagram protocol unicast transmission 
of control messages in the HSN, has the lowest 
synchronization errors in the experiments. 

Last but not least, an additional challenge in IDMS is 
securing group communication that involves Multicast Group 
Key Management. Such management is the management of the 
keys in a group communication. Developing group key 
management faces additional challenges in wireless mobile 
networks (e.g., MANETs) due to their inherent complexities. 
The constraints of wireless devices in terms of resources 
scarcity and the mobility of group members increase the 
complexity of designing a group key management scheme. 
Daghighi et al. [50] surveyed existing group key management 
schemes that consider the host mobility issue in secure group 
communications in wireless mobile environments. 

V. CONCLUSION AND FUTURE WORK 
This paper has illustrated various issues on multimedia 

synchronization. It has presented the basic control schemes for 
IDMS and has focused on IDMS solutions and standardization 
efforts for emerging distributed multimedia applications.  

 
Lessons Learned 

 
IDMS is essential in various emerging distributed 

multimedia applications such as social TV, hybrid 
broadcast/broadband services, networked quiz shows, 
networked video wall, multi-party multimedia conferencing, 
and interactive 3D tele-immersive applications. 3D tele-
immersive applications provide geographically distributed 
users with a realistic and immersive multimedia experience 
[51]. The protocol software developer must take into account: 
(1) the context and space in which the IDMS solution is going 
to be deployed; and (2) the multimedia application 
requirements that must be satisfied. The key-point in IDMS is 
to minimize the delay differences among different receivers by 
introducing proper buffering mechanisms. The primary 
latency in IDMS scenario is the playout delay that consists of 
the sending buffer delay, packet transfer delay, and receiving 
buffer delay. The transfer delay (which includes packet 
transmission and path propagation delay) of the same (media) 
video packet to different destinations often differs 
significantly because of the variations in available bandwidth 
and path propagation delays. These packet transfer delay 
differences are the main barrier for IDMS because they affect 
the receivers’ synchronous playout possibility substantially. 

Existing control schemes (i.e., M/S, SMS, DCS) for IDMS 
have their own strengths and weaknesses. However, the choice 
between these schemes is largely application-dependent. For 
their evaluation, certain metrics must be used such as 
robustness, fairness, scalability, traffic overhead, interactivity 
(low delay), location of control nodes, consistency, coherence, 
security, and flexibility.  

Precise group synchronization schemes can be deployed by 
using event-based synchronization. This kind of 
synchronization implies that the synchronization controller 
can transfer a synchronization control message to the media 
client devices when an event (e.g., Play, Pause, Resume, Stop, 
and Seek) in a media source device occurs. The control 
message may include an event time, an event type, a playback 
position, etc. Then, media client devices could synchronize 
their playback states with the media source device after 
correcting errors, based on the received control message.   

The current industry pushes for new IDMS services, both at 
the IP media stream level (IETF RTCP, ETSI TISPAN) and 
the MPEG-2 transport stream level (DVB CSS, MPEG 
TEMI). It also includes more fundamental standards [(W3C 
SMIL and ITU - NCL (Nested Context Language)] that can 
serve as models for future and more general synchronization 
primitives. The standardization of IDMS will facilitate the 
uptake of implementations and of the interoperability between 
different implementations. Such standardization will ensure a 
more extensive use of IDMS. 

 
Future Work  

 
 The basic control schemes for IDMS must be compared 

and evaluated under various types of wireless networks 
(e.g., MANETs, VANETs). The evaluation metrics must 
cover many aspects such as robustness, interactivity, etc. 

 Future IDMS techniques could benefit from cross-layer 
optimization. Such optimization allows communication 
between OSI-RM layers by permitting one layer to access 
the data of another layer to exchange information and 
enable interaction [52]. It contributes to an improvement 
of QoS under various operational conditions. The cross-
layer control mechanism can provide feedback on 
concurrent quality information for the adaptive setting of 
control parameters of a multimedia system. As a result, it 
could help to the utilization of synchronization techniques 
such as preventive control. A comprehensive multimedia 
synchronization subsystem will integrate preventive and 
reactive methods and will use a cross-layer optimization 
method and other components (e.g., the IP Multimedia 
Subsystem).  

 In RTP-based multimedia streaming services, client-
driven media synchronization mechanisms must be 
developed to provide accurate media synchronization 
such as to reduce: (1) the initial synchronization delay; (2) 
the processing complexity at the client device; (3) the 
number of required user datagram protocol ports; and (4) 
the amount of control traffic injected into the network. 
Such a synchronization mechanism was recently proposed 
in [53]. In this mechanism, the server does not need to 
send any RTCP sender report packets for synchronization. 
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presented an IDMS solution based on extending the 
capabilities of RTP/RTCP protocols. To enable an adaptive, 
highly accurate, and standard compliant IDMS solution, they 
specified RTCP extensions in combination with several 
control algorithms and adjustment techniques.  

Focused on the TV area, Costa and Santos [40] surveyed the 
existing media sync solutions, classifying them in terms of 
types of involved devices, types of media content, types of 
sync techniques, targeted applications or scenarios, and 
evaluation methodologies. The following sync specific aspects 
were considered to classify the existing solutions: protocols, 
algorithms, delivery channels, specification methods, 
architectural schemes, allowable asynchrony levels, and 
evaluation metrics. Marfil et al. [41] presented an adaptive, 
accurate and standard-compliant IDMS solution for hybrid 
broadcast and broadband delivery. Their solution can 
accomplish synchronization when different formats/versions 
of the same (or even related) contents are being played out in a 
shared session. It can also independently manage the playout 
processes of different groups of users. Their IDMS solution 
has been integrated within an end-to-end platform, which is 
compatible with the Hybrid broadcast broadband TV 
(HbbTV) standard. It has been applied to digital video 
broadcasting-terrestrial technology and tested for a social TV 
scenario, by also including an ad-hoc chat tool as an 
interaction channel.  

Ishibashi et al. [42] carried out QoE assessment of fairness 
between players in a networked game with olfaction. They 
investigated the influence of the time it takes for a smell to 
reach a player on fairness. They illustrated that fairness is 
hardly damaged when the constant delays are smaller than 
about 500 ms. The used media synchronization algorithm 
considers the human perception of intra-stream and inter-
stream synchronization errors. Ghinea and Ademoye [43] 
conducted a perceptual measurement of the impact of a 
synchronization error between smell sensory data and 
audiovisual content, assuming the audiovisual lip skew is zero. 
Their results showed a synchronization threshold of 30 s, 
when olfaction is ahead of audiovisual data, and of 20 s when 
olfaction is behind. In joint musical performance, multiple 
users play their respective same or different types of musical 
instruments together. However, the media synchronization 
quality and interactivity may seriously be deteriorated owing 
to the network delay. Sithu and Ishibashi [19] proposed a new 
media synchronization control called the ‘dynamic local lag 
control’. By QoE assessment, they demonstrated that this new 
control can achieve a high quality of media synchronization 
and keep the interactivity high in joint musical performance.  

Bello et al. [44] presented a distributed multimedia 
synchronization protocol oriented to satisfy logical and 
temporal dependencies in the exchange of real-time data in 
mobile distributed systems by using logical mapping, avoiding 
the use of global references. Two main aspects of their 
protocol include: (1) the computation of the deadline for 
messages by using only relative time points, and (2) by 
dividing the processing stage to achieve synchronization with 
an asymmetric principle of design. Simulations results showed 
that their protocol is effective in diminishing the 
synchronization error. Furthermore, their protocol is efficient 
as regards processing and storage costs at the mobile hosts, 

and in the overhead attached per message with a reduced 
usage of bandwidth across the wired and wireless channels in 
comparison with the RTP. 

Internet-based video services can also benefit from IDMS. 
We can achieve a smooth multiple-stream distributed 
multimedia presentation over the Internet if we apply 
presentation adaptation and flow control. Huang et al. [45] 
proposed the Pause-And-Run approach for k-stream (PARK) 
multimedia presentations over the Internet to achieve reliable 
transmission of continuous media. They evaluated the 
application of the PARK approach over the Internet. The 
evaluation results revealed a suitable buffering control policy 
for the audio and video media respectively. The characteristics 
of the PARK approach are: 

 PARK adopts TCP to achieve reliable transmission for 
continuous media. 

 A novel flow adaptation scheme reduces the overhead 
of the network and end-hosts because the slow-start 
scheme is embedded in TCP. The server adapts its 
transmission rates to the buffer situation of the client 
and prevents the client’s buffers from overflow and 
underflow as much as possible. 

 With the provision of multiple-stream synchronization 
and the multi-level adaptation control, the client 
achieves smooth multimedia presentations and graceful 
presentation degradation. 

 
From another perspective, Wersync [46] is a novel web-

based platform that enables distributed media synchronization 
and social interaction across remote users. By using Wersync, 
users can create or join on-going sessions for concurrently 
consuming the same media content with other remote users in 
a synchronized manner.  

Rainer et al. [47] presented Merge and Forward, an IDMS 
scheme for adaptive HTTP streaming as a distributed control 
scheme and adopting the MPEG-DASH standard [48] as a 
representation format. They introduced so-called IDMS 
sessions and described how an unstructured peer-to-peer 
overlay can be created using the session information and using 
the MPEG-DASH. They assessed the performance of Merge 
and Forward with respect to convergence time (time needed 
until all clients hold the same reference time stamp) and 
scalability. After the negotiation on a reference time stamp, 
the clients have to synchronize their multimedia playback to 
the agreed reference time stamp. In order to achieve this, the 
authors proposed a new AMP approach minimizing the impact 
of playback synchronization on the QoE. The proposed AMP 
was assessed subjectively using crowdsourcing.  

Kwon et al. [49] proposed a media sharing scheme (named 
PlaySharing) for scalable media streaming and precise group 
synchronization services. PlaySharing combines event-based 
synchronization, local adjustment of playback position errors, 
and rare and periodic synchronization. It achieves sustained 
precise synchronization by minimizing synchronization 
control packets during network congestion. Event-based 
synchronization manages the synchronization between a 
media source device and client devices using event messages 
from the source device. To reduce the number of 
synchronization control packets, the local adjustment of 



Inter-destination multimedia synchronization:
A contemporary survey

MARCH 2019 • VOLUME XI • NUMBER 120

INFOCOMMUNICATIONS JOURNAL
Inter-destination multimedia synchronization:
A contemporary survey

MARCH 2019 • VOLUME XI • NUMBER 120

INFOCOMMUNICATIONS JOURNAL

Submission 65 11 

Instead, the client device derives the precise normal play 
time for each video and audio stream from the received 
RTP packets containing an RTP timestamp.  

 Intelligent distributed control schemes are required to 
develop IDMS for pull-based streaming. Such schemes 
must negotiate a reference playback timestamp among the 
peers participating in an IDMS session. The MPEG-
DASH standard can be used to incorporate these IDMS 
sessions in the Media Presentation Description (MPD). In 
this way, the proposed solutions will remain compliant to 
the MPEG-DASH because non-IDMS peers will ignore 
the additional session description when parsing the MPD. 

 Finally, we must introduce and evaluate transmission 
schemes that will minimize the transmission loss rate, 
while still ensuring the synchronous arrival of video 
packets. The main principle of their design will be to 
leverage the packet transfer delay differences among 
different destinations for spreading the departures of 
video/audio packets. The integration of such transmission 
schemes with dynamic AMP solutions will be a 
challenge. 
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Instead, the client device derives the precise normal play 
time for each video and audio stream from the received 
RTP packets containing an RTP timestamp.  

 Intelligent distributed control schemes are required to 
develop IDMS for pull-based streaming. Such schemes 
must negotiate a reference playback timestamp among the 
peers participating in an IDMS session. The MPEG-
DASH standard can be used to incorporate these IDMS 
sessions in the Media Presentation Description (MPD). In 
this way, the proposed solutions will remain compliant to 
the MPEG-DASH because non-IDMS peers will ignore 
the additional session description when parsing the MPD. 

 Finally, we must introduce and evaluate transmission 
schemes that will minimize the transmission loss rate, 
while still ensuring the synchronous arrival of video 
packets. The main principle of their design will be to 
leverage the packet transfer delay differences among 
different destinations for spreading the departures of 
video/audio packets. The integration of such transmission 
schemes with dynamic AMP solutions will be a 
challenge. 
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Instead, the client device derives the precise normal play 
time for each video and audio stream from the received 
RTP packets containing an RTP timestamp.  

 Intelligent distributed control schemes are required to 
develop IDMS for pull-based streaming. Such schemes 
must negotiate a reference playback timestamp among the 
peers participating in an IDMS session. The MPEG-
DASH standard can be used to incorporate these IDMS 
sessions in the Media Presentation Description (MPD). In 
this way, the proposed solutions will remain compliant to 
the MPEG-DASH because non-IDMS peers will ignore 
the additional session description when parsing the MPD. 

 Finally, we must introduce and evaluate transmission 
schemes that will minimize the transmission loss rate, 
while still ensuring the synchronous arrival of video 
packets. The main principle of their design will be to 
leverage the packet transfer delay differences among 
different destinations for spreading the departures of 
video/audio packets. The integration of such transmission 
schemes with dynamic AMP solutions will be a 
challenge. 

REFERENCES  
[1] Vaishnavi, I., Cesar, P., Bulterman, D., Friedrich, O., Gunkel, S., and 

Geerts, D. “From IPTV to synchronous shared experiences challenges in 
design: Distributed media synchronization,” Signal Processing: Image 
Communication, vol. 26, no. 7, pp.370-377, 2011. 

[2] Kernchen, R., Meissner, S., Moessner, K., Cesar, P., Vaishnavi, I., 
Boussard, M., and Hesselman, C. “Intelligent multimedia presentation in 
ubiquitous multidevice scenarios,” IEEE Multimedia, vol. 17, no. 2, pp. 
56-63, 2010. 

[3] Montagud, M., Boronat, F., Stokking, H., and van Brandenburg, R. 
“Inter-destination multimedia synchronization: Schemes, use cases and 
standardization,” Multimedia Systems, vol. 18, no. 6, pp. 59-482, 2012. 

[4] Li, M., Sun, Y., and Sheng, H. “Temporal relations in multimedia 
systems,” Computers & Graphics, vol. 21, no. 3, pp. 315-320, 1997. 

[5] Blakowski, G., and Steinmetz, R. “A media synchronization survey: 
Reference model, specification, and case studies,” IEEE J. Sel. Areas 
Commun., vol. 14, no. 1, pp. 5-35, 1996.  

[6] Akyildiz, I.F., and Yen, W. “Multimedia group synchronization 
protocols for integrated services networks,” IEEE J. Sel. Areas 
Commun., vol. 14, no. 1, pp. 162-173, 1996. 

[7] Park, S., and Choi, Y. “Real-time multimedia synchronization based on 
delay offset and playout rate adjustment,” Real-Time Imaging, vol. 2, no. 
3, pp.163-170, 1996. 

[8] Park, S., and Kim, J. “An adaptive media playout for intra-media 
synchronization of networked-video applications,” Journal of Visual 
Commun. and Image Representation, vol. 19, no. 2, pp.106-120, 2008. 

[9] Laoutaris, N., and Stavrakakis, I. “Intrastream synchronization for 
continuous media streams: A survey of playout schedulers,” IEEE 
Network, vol. 16, no. 3, pp. 30-40, 2002. 

[10] Aggarwal, S. and Jindal, A. “Comprehensive overview of various lip 
synchronization techniques,” Int. Symposium on Biometrics and Security 
Technologies, ISBAST 2008, pp.1-6, 23-24 April 2008. 

[11] Ishibashi, Y., Tasaka, S., and Miyamoto, H. “Joint synchronization 
between stored media with interactive control and live media in 
multicast communications,” IEICE Trans. on Communications, vol. 
E85-B, no. 4, pp.812–822, 2002. 

[12] Wongwirat, O., and Ohara, S. “Haptic media synchronization for remote 
surgery through simulation,” IEEE MultiMedia, vol. 13, no. 3, pp.62–69, 
2006. 

[13] Hikichi, K., Morino, H., Arimoto, I., Sezaki, K., and Yasuda, Y. “The 
evaluation of delay jitter for haptic collaboration over the Internet,” In 
Proc. of IEEE Global Commun. Conference (GLOBECOM) (pp. 1492-
1496), 2002.  

[14] Ishibashi, Y., Tasaka, S., and Hasegawa, T. “The Virtual-Time 
Rendering algorithm for haptic media synchronization in networked 

virtual environments,” In Proc. of the 16th Int. Workshop on 
Communications Quality and Reliability (pp. 213-217), 2002. 

[15] Isomura, E., Tasaka, S., and Nunome, T. “QoE enhancement in 
audiovisual and haptic interactive IP communications by media adaptive 
intra-stream synchronization,” In Proc. of IEEE TENCON (pp. 1085-
1089), 2011. 

[16] Boronat, F., Lloret, J., and García, M. “Multimedia group and inter-
stream synchronization techniques: A comparative study,” Information 
Systems, vol. 34, no. 1, pp. 108-131, 2009. 

[17] Din, S., and Bulterman, D. “Synchronization techniques in distributed 
multimedia presentation,” MMEDIA 2012: The Fourth Int. Conferences 
on Advances in Multimedia (pp.1-9), 2012. 

[18] Ishibashi, Y., Tsuji, A., and Tasaka, S. “A group synchronization 
mechanism for stored media in multicast communications,” In Proc. of 
the Sixth Annual Joint Conference of the IEEE Computer and 
Communications Societies (INFOCOM), (vol. 2, pp. 692–700). Kobe, 
Japan: IEEE Press, 1997. 

[19] Sithu, M., and Ishibashi, Y. “Media synchronization control in 
multimedia communication,” In D. Kanellopoulos (Ed.), Emerging 
Research on Networked Multimedia Communication Systems (pp.25-61). 
Hershey, PA: Information Science Publishing, 2015. 

[20] Boronat, F., Guerri, J.C., and Lloret, J. “An RTP/RTCP based approach 
for multimedia group and inter-stream synchronization,” Multimedia 
Tools Appl J, vol. 40 no. 2, pp. 285-319, 2008.  

[21] Boronat, F., Montagud, M., and Vidal, V. “Master selection policies for 
inter-destination multimedia synchronization in distributed 
applications,” In Proc. of the IEEE 19th Int. Symposium on MASCOTS, 
(pp. 269-277), 2011. 

[22] Ishibashi, Y., and Tasaka, S. “A group synchronization mechanism for 
live media in multicast communications,” In Proc. of the IEEE 
GLOBECOM’ 97, November 1997, (pp.746–752), 1997. 

[23] Mauve, M., Vogel, J., Hilt, V., and Effelsberg, W. “Local-lag and 
timewarp: Providing consistency for replicated continuous app,” IEEE 
Trans. Multimedia, vol. 6, no. 1, pp. 47-57, 2004. 

[24] Diot, C., and Gautier, L. “A distributed architecture for multiplayer 
interactive applications on the Internet”, IEEE Network, vol. 13, no. 4, 
pp. 6-15, 1999. 

[25] Ishibashi, Y., and Tasaka, S. “A distributed control scheme for causality 
and media synchronization in networked multimedia games”, in Proc. of 
the 11th Int. Conference on Computer Communications and Networks, 
Miami, USA, October 2002, pp. 144–149. 

[26] Cronin, E. Filstrup, B. Jamin, S. and Kurc, A.R. “An efficient 
synchronization mechanism for mirrored game architectures”, 
Multimedia Tools Appl., vol. 23 no. l, pp. 7-30, 2004. 

[27] Palazzi, C.E., Ferretti, S., Cacciaguerra, S., and Roccetti, M. “On 
maintaining interactivity in event delivery synchronization for mirrored 
game architectures”, in IEEE Global Telecommunications Conference 
Workshops, Dallas, TX, USA, November/December 2004, pp. 157–165. 

[28] Hashimoto, T. and Ishibashi, Y. “Group synchronization control over 
haptic media in a networked real-time game with collaborative work”, in 
Proc. of the Fifth ACM SIGCOMM workshop on Network and System 
Support for Games, Singapore, October 2006. 

[29] Boronat, F., Guerri, J.C., Esteve, M., & Murillo, J.M. “RTP-based 
feedback global protocol integration in Mbone tools”, EUROMEDIA 
2002, Modena, Italy (Best Paper Award) April 2002. 

[30] Kaneoka, H., and Ishibashi, Y. “Effects of group synchronization control 
over haptic media in collaborative work”, in: Proc. of the 14th Int. 
Conference on Artificial Reality and Telexistence (ICAT’04), Coex, 
Korea, November/December 2004, pp. 138–145. 

[31] Kurokawa, Y., Ishibashi, Y., and Asano, T. “Group synchronization 
control in a remote haptic drawing system”, in: Proc. of the IEEE 
International Conference on Multimedia and Expo, Beijing, China, July 
2007, pp. 572–575. 

[32] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. “RTP: a 
transport protocol for real-time applications”, RFC–3550, July 2003. 

[33] ETSI TS 181 016 V3.3.1 (2009-07). Telecommunications and Internet 
converged Services and Protocols for Advanced Networking (TISPAN); 
Service Layer Requirements to integrate NGN Services and IPTV. 

[34] Montagud, M., and Boronat, F. “Enhanced adaptive RTCP-based inter-
destination multimedia synchronization approach for distributed 
applications,” Computer Networks, vol. 56, no. 12, pp. 2912-2933, 2012. 

[35] van Brandenburg, R.H.O.F.M.K., Stokking, H., van Deventer, O., 
Boronat, F., Montagud, M., and Gross, K. “Inter-Destination Media 
Synchronization (IDMS) using the RTP Control Protocol (RTCP)”, 
RFC–7272, 2014. 

Submission 65 12 

[36] van Deventer, M. O., Stokking, H., Hammond, M., Le Feuvre, J., and 
Cesar, P. “Standards for multi-stream and multi-device media 
synchronization,” IEEE Communications Magazine, vol. 54, no. 3, 
pp.16-21, 2016. 

[37] Montagud, M., Jansen, J., Cesar, P., and Boronat, F. “Review of media 
sync reference models: Advances and open issues,” MediaSync2015 
Workshop, ISBN: 978-90-5968-463-4, 2015. 

[38] Huang, Z., Nahrstedt, K., and Steinmetz, R. “Evolution of temporal 
multimedia synchronization principles: A historical viewpoint,” ACM 
Trans. on Multimedia Computing, Commun., and Applications, vol. 9, 
no.1. Article 34, 23 pages, 2013. 

[39] Montagud, M., Boronat, F., Stokking, H., and Cesal, P. “Design, 
development and assessment of control schemes for IDMS in a 
standardized RTCP-based solution,” Computer Networks, vol. 70, no. 9, 
pp.240-259, 2014. 

[40] Costa, R., and Santos, C.A.S. “Systematic review of multiple contents 
synchronization in interactive television scenario,” ISRN Commun. and 
Networking, Volume 2014, Article ID 127142, pp. 1-17, 2014. 

[41] Marfil, D., Boronat, F., Montagud, M., and Sapena, A. “IDMS solution 
for hybrid broadcast broadband delivery within the context of HbbTV 
standard”. IEEE Transactions on Broadcasting, 2018.  

[42] Ishibashi, Y., Hoshino, S., Zeng, Q., Fukushima, N., and Sugawara, S. 
“QoE assessment of fairness in networked game with olfaction: 
Influence of time it takes for smell to reach player,” Multimedia Systems, 
vol. 20, no. 5, pp. 621-631, 2014.  

[43] Ghinea, G., and Ademoye, O. A. “Perceived synchronization of 
olfactory multimedia,” IEEE Trans. on Systems, Man and Cybernetics, 
vol. 40, no. 4, pp. 657-663, 2010. 

[44] Bello, M. A. O., Dominguez, E. L., Hernandez, S. E. P., and Cruz, J. R. 
“Synchronization protocol for real time multimedia in mobile distributed 
systems,” IEEE Access, vol. 6, pp.15926-15940, 2018. 

[45] Huang, C.-M., Kung, H.-Y., and Yang, J.-L. “Synchronization and flow 
adaptation schemes for reliable multiple-stream transmission in 
multimedia presentations,” Journal of Systems and Software, vol. 56, no. 
2, pp. 133-151, 2001. 

[46] Belda, J., Montagud, M., Boronat, F., Martinez, M., and Pastor, J. 
“Wersync: A web-based platform for distributed media synchronization 
and social interaction,” In Proc. ACM Int. Conf. on Interactive 
Experiences for Television and online Video (TVX 2015), 2015. 

[47] Rainer, B., Petscharnig, S., and Timmerer, C. “Merge and Forward: A 
self-organized inter-destination media synchronization scheme for 
adaptive media streaming over HTTP,” In MediaSync (pp. 593-627). 
Springer, Cham., 2018. 

[48] Sodagar. I. “The MPEG-DASH standard for multimedia streaming over 
the Internet,” IEEE MultiMedia, vol. 18 no.4, pp.62-67, 2011. 

[49] Kwon, D., Kim, H., and Ju, H. (2018). “PlaySharing: A group 
synchronization scheme for media streaming services in hierarchical 
WLANs,” Int. J. of Netw. Management, vol. 28 no. 6, e2024, 2018. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[50] Daghighi, B., Kiah, M.L.M., Shamshirband, S., Iqbal, S., and Asghari, 
P. “Key management paradigm for mobile secure group 
communications: Issues, solutions, and challenges,” Computer 
Communications, vol. 72, pp. 1-16, 2015. 

[51] Huang, Z., Wu, W., Nahrstedt, K., Rivas, R., and Arefin, A. “SyncCast: 
synchronized dissemination in multi-site interactive 3D tele-immersion”. 
In Proc. of the second annual ACM conference on Multimedia systems 
(pp. 69-80). ACM. 2011. 

[52] Bin-Salem, A., and Wan, T. “Survey of cross-layer designs for video 
transmission over wireless networks,” IETE Technical Review, vol. 29, 
no. 3, pp. 229-247, 2012. 

[53] Jung, T., and Seo, K. “A client-driven media synchronization 
mechanism for RTP packet-based video streaming,” Journal of Real-
Time Image Processing, vol. 12 no. 2, pp. 455-464, 2016. 
 
 

 
Dimitris N. Kanellopoulos is a member of the 
Educational Software Development Laboratory 
in the Department of Mathematics at the 
University of Patras, Greece. He received a 
Diploma in Electrical Engineering and a Ph.D. 
in Electrical and Computer Engineering from 
the University of Patras. Since 1990, he was a 
research assistant in the Department of 
Electrical and Computer Engineering at the 

University of Patras and involved in several EU R&D projects. He is 
a member of the IEEE Technical Committee on Multimedia 
Communications. He serves as a reviewer for highly-respected 
journals such as: J. Netw. Comput. Appl. (Elsevier), Int. J. of 
Commun. Systems (Wiley), J. of Systems and Software (Elsevier), 
Information Sciences (Elsevier), IETE Technical Review, Electronics 
(MDPI), etc. He has served as a technical program committee 
member to many international conferences. His current research 
interests are multimedia networking and wireless ad hoc networks. 
He has many publications to his credit in international journals and 
conferences at these areas. He has edited two books on Multimedia 
Networking, while he serves as an editorial board member in some 
refereed journals. 
 



Inter-destination multimedia synchronization:
A contemporary survey

INFOCOMMUNICATIONS JOURNAL

MARCH 2019 • VOLUME XI • NUMBER 1 21

Dimitris N. Kanellopoulos is a member of the 
Educational Software Development Laboratory in 
the Department of Mathematics at the University 
of Patras, Greece. He received a Diploma in 
Electrical Engineering and a Ph.D. in Electrical 
and Computer Engineering from the University 
of Patras. Since 1990, he was a research assistant 
in the Department of Electrical and Computer 
Engineering at the University of Patras and involved 
in several EU R&D projects. He is a member of 
the IEEE Technical Committee on Multimedia 

Communications. He serves as a reviewer for highly-respected journals 
such as: J. Netw. Comput. Appl. (Elsevier), Int. J. of Commun. Systems 
(Wiley), J. of Systems and Software (Elsevier), Information Sciences 
(Elsevier), IETE Technical Review, Electronics (MDPI), etc. He has 
served as a technical program committee member to many international 
conferences. His current research interests are multimedia networking 
and wireless ad hoc networks. He has many publications to his credit in 
international journals and conferences at these areas. He has edited two 
books on Multimedia Networking, while he serves as an editorial board 
member in some refereed journals.

Inter-destination multimedia synchronization:
A contemporary survey

INFOCOMMUNICATIONS JOURNAL

MARCH 2019 • VOLUME XI • NUMBER 1 21

Submission 65 11 

Instead, the client device derives the precise normal play 
time for each video and audio stream from the received 
RTP packets containing an RTP timestamp.  

 Intelligent distributed control schemes are required to 
develop IDMS for pull-based streaming. Such schemes 
must negotiate a reference playback timestamp among the 
peers participating in an IDMS session. The MPEG-
DASH standard can be used to incorporate these IDMS 
sessions in the Media Presentation Description (MPD). In 
this way, the proposed solutions will remain compliant to 
the MPEG-DASH because non-IDMS peers will ignore 
the additional session description when parsing the MPD. 

 Finally, we must introduce and evaluate transmission 
schemes that will minimize the transmission loss rate, 
while still ensuring the synchronous arrival of video 
packets. The main principle of their design will be to 
leverage the packet transfer delay differences among 
different destinations for spreading the departures of 
video/audio packets. The integration of such transmission 
schemes with dynamic AMP solutions will be a 
challenge. 
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