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Abstract— In this paper, an Electromagnetic Band Gap 
(EBG) lens of a single layer is invented to improve the gain of a 
truncated slotted square patch antenna for the Wi-Fi applica-
tions. The proposed EBG lens is structured from 5×5 planar 
array. The individual unit cell is basically shaped as a couple 
of a split concave conductive patch. The proposed EBG struc-
ture performance is tested numerically using Finite Integration 
Technique (FIT) formulations of CSTMWS and analytically 
using circuit theory. Then, the antenna performance in terms 
of |S11|, the boresight gain, and radiation patterns are reported 
and compared to the performance before introducing the EBG 
lens to identify the significant enhancements. The proposed 
EBG antenna is simulated numerically inside FIT formulations 
of CSTMWS time domain (TD) solver. A significant gain en-
hancement of 11.1 dBi at 2.45 GHz and a front to back ratio 
(F/B) about 22 dB are achieved after introducing the EBG lens. 
The antenna performance is validated using a frequency do-
main (FD) solver based CSTMWS formulations to obtain excel-
lent agreements between the two invoked methods.

Index Terms—EBG; microstrip antenna; CST MWS

I.           INTRODUCTION

Since the last century, Yablonovitch [1] and John [2] in-
vestigated the EBG structures conceptions. After that sig-
nificant efforts have been established to realize the perfect 
lenses concepts. Therefore, the theoretical notions were 
founded from Bloch wave principles, reciprocal space, 
Brillion zones, and dispersion relations [3], [4]. The EBG 
structures were realized and engineered in a similar method 
of defecting traditional electronic semiconductor crystals 
to be classified according to 1D, 2D, and 3D crystals. For 
instance, in [5], a 2D EBG structure was investigated from 
a dielectric substrate at the microwave regime. An etched 
2D metallic aperture array on a dielectric slab to create a 
periodical variation in the dielectric constant of the medium 
was investigated for the antenna performance enhancement 
in [6]. EBG structures were applied to miniaturize the anten-
na size and increasing the bandwidth [7]. Usually, the EBG 
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structures could be patterned either on the metal patches or 
etched from ground planes as proposed in [8], [9]. The EBG 
possess several untraditional features such as zero effective 
refractive index and distinctive stopbands [10]. However, 
EBG structures are unresonant structures and may suffer 
from two fundamental limitations: narrow bandwidth and 
high losses due to the conducting inclusions [11]. In [12], 
an EBG structure was folded on a folded ground plane of an 
antenna for breast cancer detection. Another antenna struc-
ture based miniaturized EBG ground plane defect for Mul-
tiple-Input and Multiple-Output (MIMO) application was 
proposed in [13]. The proposed antenna in [14] was con-
structed on EBG ground plane defects for Ultra-WideBand 
(UWB) application. Nevertheless, the work in [15] was con-
ducted for optical application based EBG flat lenses. Printed 
dipoles based EBG arrays of a geometry were proposed in 
[16] for Wi-Fi applications. Nevertheless, a high impedance 
structure based EBG structure attached to a dipole anten-
na was reported in [17] for sensor applications. A folded 
MIMO antenna array was investigated in [18] to reduce the 
mutual coupling effects. The proposed structure in [19] was 
consistent of periodical grounded dielectric substrate depos-
ited with square conductive patches connected through vias 
to the ground. It has been demonstrated that EBG structures 
exhibits zero refractive indices to achieve highly directive 
antennas with enhanced bandwidth and excellent gain of 
miniaturized size [20] with low mutual coupling for MIMO 
applications [21].

In this paper, a new EBG design of a single finite layer 
with improved properties is proposed as a uniform 2D array 
of periodic metallic structure on top of a microstrip antenna 
for gain enhancements. The combination of the proposed 
EBG structure with the microstrip antenna may suit dif-
ferent wireless applications over the frequency range from 
2.45 GHz to 2.55 GHz band to fit the fixed and mobile com-
munication systems, point-to-point microwave links, and te-
lemetry devices such as Unmanned Aerial vehicles (UAV). 
The numerical simulations are performed by conducting 
the FIT analysis based on TD and FD solvers to examine 
the proposed EBG properties [22]. The rest of this paper is 
organized as follows: In Section II, the description for the 
proposed EBG lens is presented; Section III discusses the 
radiation characteristics and performances of the microstrip 
antenna with and without EBG layer; and finally, the paper 
is concluded in Section IV.
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II. EBG GEOMETRICAL DETAILS 
 

To test the proposed EBG performance, a unit cell 
of EBG is positioned at the center of a fictitious 
waveguide as shown in Fig.1 to retrieve the 
transmission and reflection characteristics of the EBG-
structure model given by S-parameters. The two 
waveguide ports of TEM-like modes are shown in 
Fig.1. The top and bottom sides of the y-axis are 
assigned as Perfect Magnetic Conductors (PMC) and 
the left and right hand side of the z-axis are assigned as 
Perfect Electric Conductors (PECs) in order to create 
internal environment of waveguide as depicted in Fig. 
1. 

 
 

 
 

Fig. 1: CSTMWS numerical setup and unit cell dimensions in 
mm. 

 
The proposed EBG layer dimensions are 

240×240mm2 as shown in Fig. 2(a). Such layer is 
constructed from 5×5 unit cells; each one comes with 
four design variables given by: W1, W2, W3 and W4 to 
optimize the EBG performance at the desired 
frequency band. These variables are adjusted to 
resonate at 2.45 GHz. The maximum proposed EBG 
unit cell dimensions are 0.32λ×0.32λ where λ is 
wavelength at 2.45 GHz repeated and aligned on the x-
y plane, where EBG is based on copper layer of 
conductivity 5.8×107S/m and the EBG lens thickness is 
0.1 mm. The design variables are fixed at 30mm and 
15mm for W3 and W4, respectively. While, the other 
two variables W1 and W2 are changed together from 
2mm up to 10mm with step of 2mm to reach the 

resonance in the transmission (|S12|) around 2.45 GHz. 
As seen in Fig. 2(b), the proposed unit cell shows a 
very sensitive response to W3 and W4 change. This 
change is due to the capacitive coupling effects 
between the unit cells edges. 

 

 
Fig. 2: The proposed EBG details; (a) EBG layer dimensions in mm 

and (b) S-parameters spectra based the parametric study. 
 
Fig. 3 shows the transmission and reflection 

evaluation of the EBG-structure model with respect to 
the analytical circuit analysis. From the obtained 
results, it is found that the maximum (|S12|) is around at 
2.55GHz. Unsymmetrical unit cell is chosen to achieve 
a gain enhancement on both x- and y- axes that would 
be very useful for the circular gain enhancement. 
 

 
Fig. 3: Obtained S-parameters spectra. 
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The proposed EBG unit cell equivalent circuit is present-
ed in Fig. 4. Basically, the separation distance the concave 
patches can be presented by a capacitor (C1). However, the 
separation distance between the concave sides is presented by 
the capacitor (C2). The concave part is given by an inductor 
(L). The load resistance is given by the free space impedance 
that is given by (377Ω). The values of the proposed equiva-
lent circuit are listed in Table 1.
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(C1). However, the separation distance between the 
concave sides is presented by the capacitor (C2). The 
concave part is given by an inductor (L). The load 
resistance is given by the free space impedance that is 
given by (377Ω). The values of the proposed 
equivalent circuit are listed in Table 1. 

 
Fig. 4: Equivalent circuit. 

 
TABLE I EBG EFFECTIVE CIRCUIT PARAMETERS  

Parameter Value 

L 0.9 nH 

C1 1.1nF 

C2 2.3nF 

 
Next, to obtain the maximum gain enhancement, 

the proposed EBG layer is located to cover the 
microstrip antenna at 130 mm above the patch antenna. 
The material between the patch antenna and EGB layer   
is rigid foam of εr=1.039 and loss tangent tanδ=0.0097. 
The distance between the patch and EBG layer is 
optimized by using the same procedure that was 
described in [9]. All related EBG lens and the 
microstrip antenna dimensions are depicted in Fig 5. 

The microstrip patch is designed as a square 
geometry of 40×25mm2 mounted on a dielectric 
substrate made of Rogers RO3203 with εr=3.02 and 
tanδ=0.0016 of 1mm thickness. The ground plane is 
installed on the backend of the substrate as a square 
copper layer with 240×240 mm2. The patch structure 
is considered as a truncated square patch to achieve a 
circular polarization pattern. The 50 Ω SubMiniature 
version (SMA) connector was used with a discrete 
wave port to excite the patch antenna. 
 

 
Fig. 5: The antenna geometrical details;  (a) 3D view of the 

microstrip antenna with the EBG lens , (b) and (c) front view of the 
microstrip antenna and the array of EBG lens , (d) magnified picture 

for the microstrip antenna patch, (e) side view of the EBG lens 
positioned over the microstrip antenna. All dimensions are in mm. 

 
III. RESULTS AND DISCUSSION 

The effects on the antenna performance after 
introducing the EBG lens to the antenna structure is 
investigated using the TD and FD solvers based on 
CST MWS formulations [20]. The TD solver is 
realized by conducting the use of perfect boundary 
approximations and thin sheet techniques. 
Nevertheless, a hexahedral volumetric mesh, see Fig. 
6(a), is applied to calculate the S-parameters and the 
electromagnetic fields simultaneously. However, the 
FD solver conducts the tetrahedral meshing, as 
presented in Fig. 6(b), of mixed order field 
computation calculating the phase de-embedding of the 
S-parameters. 
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Fig. 6: Mesh view; (a) hexahedral mesh and (b) tetrahedral mesh. 

 
Next, the focus on the effects of adding the EBG 

lens on antenna performance including the bandwidth, 
matching impedance, and frequency resonance is 
evaluated by monitoring the |S11| spectrum. Moreover, 
the gain, radiation efficiency, and the beamwidth are 
compared before and after introducing the proposed 
EBG structure. The |S11| spectra are presented in Fig. 
7(a) from both cases: before and after adding the EBG 
lens. In the obtained |S11| spectrum, the change is found 
due to introducing the EBG lens that adds a capacitive 
coupling with the microstrip antenna [12]. It is 
concluded that the antenna shows a frequency 
resonance at 2.45 GHz, however, the resonance is 
shifted to 2.43 GHz after adding the EBG lens. The 
antenna gain is enhanced from 5.6 dBi up to 11.1 dBi 
after adding the EBG lens due to focusing the emerged 
beams from 99o to 26.7o as seen in Fig. 7(b), therefore 
by minimizing the beam in both   ϑ- and φ- cut planes 
we will reach the maximum gain according to relation 
(1) [23]. 
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Insignificant decay is observed in the radiation 
efficiency of the microstrip antenna from 90% to 
88.4% due to the effects of the conductor losses from 
the EBG structure. Such degradation is found to be 
much less than published degradation values; this 
because of the use of a single layer in the proposed 
design. From Fig. 7(b), the F/B ration is calculated 
using equation (2) [23]. 

F/B= Gf – Gb                                                      (2)        

Where, Gf and Gb are the magnitude of the front 
lobe in dB value and the magnitude of the back lobe in 
dB, respectively. Therefore, from the radiation pattern 
presented in Fig. 7(b), the F/B = 11-(-11) =22 dB.  

 
Fig. 7: Antenna performances with and without EBG lens; (a) |S11| 

spectrum and (b) Gain radiation pattern. 
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The boresight gain spectrum is evaluated using the 
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as depicted in Fig. 11. From the obtained results in Fig. 
11, the microstrip antenna without EBG layer exhibits 
an insignificant change in the antenna gain with respect 
to the gain spectrum that is presented by the antenna 
based EBG lens. Such difference is due to the high 
selectivity of the EBG structures for a particular 
frequency band as any frequency selective surface. 
Nevertheless, varying the distance between the patch 
antenna and the EBG lens shows a significant change 
in the antenna gain. This is due to the fact of focusing 
the electromagnetic radiation at the numerical aperture 
of the lens relative to the electromagnetic aperture of 
the antenna as presented in [8]. Therefore, a numerical 
optimization process is invoked to validate the 
obtained results from the proposed algorithm in [8]. 
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The resonant frequency, |S11| spectra, gain, and 
bandwidth are given in Table II. It is found that the 
number of the EBG has a significant effect on the |S11| 
spectra, bandwidth and the gain. 
 

TABLE II ANTENNA GAIN VERSUS THE NUMBER OF EBG 
PLANNER ARRAY  

Gain 
(dBi) 

B.W 
(MHz) 

S11 
Magnitude 

(dB) 

Resonant 
Frequency 

(GHz) 

Number 
of EBG 
planner 
array 

6.4 31 -15.2 2.47 1 X 1 
10.4 33 -16.8 2.467 3 X 3 
11.1 43.2 -29.6 2.465 5 X 5 
11.9 42.1 -24.1 2.462 7 X 7 
12 42 -23.5 2.468 9 X 9 
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3×3, 5×5, 7×7, and 9×9 respectively. As seen in Fig. 
12, the evaluated 3D radiation patterns are presented. 
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proposed antenna |S11| spectra are affected 
significantly as seen in Fig. 13(a). However, the 
antenna gain is significantly affected as presented in 
Fig. 13(b). 
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The optimal antennae design performances are 
evaluated using HFSS software package for further 
validation [24] based Finite Element Method (FEM). 
The antenna performances in terms of |S11| and 
radiation patterns are presented in Fig. 14. The 
obtained results reveal excellent agreements. 
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In the proposed simulation processes, the number of con-
ducted mesh cells is Nx=280, Ny=225, and Nz=75 along the 
x-, y-, and z-axes, respectively. The required time step is 
3.7×1024ns. However, the HFSS mesh to reach the conver-
gence is found 4.5×105 tetrahedral.

The achieved antenna enhancement is attributed to the fact 
of the summation of the emerging fields from the EBG unit 
cells according to the following equation:

In the proposed simulation processes, the number 
of conducted mesh cells is Nx=280, Ny=225, and Nz=75 
along the x-, y-, and z-axes, respectively. The required 
time step is 3.7×1024ns. However, the HFSS mesh to 
reach the convergence is found 4.5×105 tetrahedral. 

The achieved antenna enhancement is attributed to 
the fact of the summation of the emerging fields from 
the EBG unit cells according to the following equation: 
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where, gtotal is the total gain, hs is the antenna gain, and 
FSL is the unit cell geometrical function to be derived 
as in [8]. S is the central unit cell and So is the 
maximum number of the unit cells. 

The ray tracing is presented in Fig. 15 to describe 
the antenna beam radiation diffraction from the 
proposed EBG structure. It shows that the proposed 
EBG focuses the radiation in the paraxial beam 
direction. 

 
Fig. 15: Ray tracing (a) Angles of the incident and refracted 

electromagnetic radiation rays and (b) Paraxial electromagnetic beam 
ray modified by a zero refractive index lens. 

 
IV.  CONCLUSION 

In this paper, a novel EBG geometry of a single 
layer positioned over a traditional microstrip antenna 
of a square patch is investigated for different wireless 
applications. In this design, the proposed antenna gain 
is improved from 5.6 dBi up to 11.1 dBi at 2.45 GHz 
with an F/B exceeds the 22 dB. It is found that the 
proposed EBG lens shows high improvement 

selectivity around 2.45 GHz up to 2.55 GHz by 
providing a bore-sight gain over 11.1 dBi to fit the 
narrow bandwidth wireless communication systems. 
Insignificant degradation in the radiation efficiency is 
taken place after introducing the proposed EBG lens 
due to the conductor losses. A numerical validation is 
obtained by using both TD and FD solves of CST 
MWS formulations to end up with an excellent 
agreement between the results the two solvers. 
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Abstract—During the analytical design process of wideband
impedance matching major problems may arise, that might lead
to non-realizable matching networks, preventing the successful
impedance matching. In this paper two practical design rules
and a simplified equation is presented, supporting the design of
physically realizable impedance matching networks. The design
rules and calculation technique introduced by this paper is
summarized, and validated by microwave circuit simulation
examples.

Index Terms—physical matching limits, wideband impedance
matching, realizable matching networks

I. INTRODUCTION

Analytical wideband impedance matching techniques have
been thoroughly discussed in previous many studies [1],

but most of these only focus on the theoretical limits of
the matching techniques, by issuing an infinite number of
passive L-C elements for the matching circuit [2]. Several
approaches have been shown to be successful for matching
complex impedances [3] [4], but hardly any of them discuss
the physical realization problems, and practical limitations of
the finite length matching networks [5] [6]. Due to the high
calculation complexity, of the wideband matching networks,
mostly only third-order matching networks are used due to
practical reasons (higher order matching networks have various
problems, such as weak parameter tolerance margins, inhibit-
ing manufacturing processes), thus this paper only discusses
third-order lossless matching networks.

This paper presents two of the practical realization lim-
its of the analytical wideband complex impedance matching
technique, presented by R. M. Fano [1], and H. W. Bode
[2]. Utilising the proposed limitation factors, and simplified
calculations presented in this paper, matching optimalization
goals are easier to define, and a wide range of practically
unrealizable solutions are excluded before the complex calcu-
lation process. The rest of this paper is organized as follows:
first the Bode-Fano matching technique is presented in detail
followed by the practical parameter restrictions in Section IV.
and Section V. Later on in Section VI. the modified matching
algorithm and a simplified caluclation for a certain matching
parameter is introduced as well. Finally the proposed design
rules are validated by two simulation examples in Section VIII.

Deutscher Akademischer Austauschdienst, DAAD, http://www.daad.info

II. ANALYTICAL MATCHING TECHNIQUE (BODE-FANO)

The analytical wideband complex impedance matching
methods are based on the Darlington-theorem, which states,
that a complex load can be substituted, with a passive reactant
network that is terminated in a unity value resistance [7].
This principle allows that the complex wideband impedance
matching task can be redefined as a double-terminated filter
synthesis problem. In most situations complex impedances
are matched (on the largest possible bandwidth) to a purely
real valued generator impedance, thus the matching network’s
purpose is to completely cancel out the imaginary part of
the load impedance, and match the remaining real part to
the generator at the same time. Well-known examples for
analytical matching methods are: Bode-Fano matching [2], and
Youla’s matching technique based on complex normalization
[11]. In this paper an in-depth analysis is presented discussing
the Bode-Fano method for complex terminations, matched to
purely real 50 Ω source impedance.

Within the design equations lies a problem which partially
inhibits the realization of matching networks, at certain initial
parameters. Furthermore the upper, and lower matched fre-
quency should be very carefully chosen, otherwise analytical
matching can result in matching networks that are physically
unrealizable. In the following section the detailed equations
and restrictions are presented for realizable matching net-
works (where matching networks are constructed from shorted
quarter wavelength stubs, that can only represent purely real
valued impedances). Shortly thereafter, the physical design
limitations are taken into consideration during the calculations,
highly restricting the range of complex impedances where
the Bode-Fano analytical method provides adequate matching.
Obeying these design rules during the design process may
help designing load impedances (where allowed), at which the
Bode-Fano method results in acceptable matching (e.g. where
|S11| is less than -10 dB).

III. THE ANALYTICAL MATCHING PROCESS

An important aspect of the Bode-Fano matching method is
that it can only be used for terminations where the impedance-
frequency dependency resembles a single-reactance load’s
impedance or admittance. Thereby the load shall be substituted
with a well chosen single-reactance circuit model, i.e. a series
or parallel R-C, R-L impedance. Substitution model validation
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