
Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2018 • VOLUME X • NUMBER 2 13

INFOCOMMUNICATIONS JOURNAL 6

So the conclusion for a real noisy environment is that the
longer the codes the better the Gold code sets are, but under a
certain code length the performance of Gold codes and OOCs
may be similar.

VII. CONCLUSION

In this paper the VLC related CDM problems are
discussed, focusing on the asynchronous mode CDM which is
more suitable for a simple VLC system. The description of the
most common code set types, the unipolar OOCs and bipolar
PN codes, showed the benefits, disadvantages and
possibilities of these codes. Obtaining information about a
CDM channel quality is not as easy as measuring RSS on a
single RF signal. It was showed that the most common quality
indicator measure, the crest factor, may be misleading in some
cases. A possible solution is proposed for this problem,
introducing two novel advanced quality indicator (AQI)
measures. Computing these new measures along with the crest
factor gives a better approximation to the CDM channel
quality. With AQI1 the noise immunity of a CDM
transmission using Gold codes and OOCs are compared, in
function of the code length. These AQIs, for example, may
improve the precision of a channel quality based VLC CDM
indoor positioning system, and allows more reliable practical
comparison between various code sets.

ACKNOWLEDGMENT

The authors would like to thank Dr. Kari Kärkkäinen from
the University of Oulu, Finland for the freely downloadable
bipolar pseudo-noise code bank, which was a great help for
the CDM simulations.

REFERENCES

[1] B. M. Masini, A. Bazzi and A. Zanella, "Vehicular Visible Light
Networks with Full Duplex Communications," IEEE International
Conference on Models and Technologies for Intelligent
Transportation Systems (MT-ITS), pp. 98-103, 2017.

[2] S. Randel, F. Breyer, S. C. Lee, and J. W. Walewski, “Advanced
Modulation Schemes for Short-Range Optical Communications”,
IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no.
5, pp. 1280–1289, 2010.

[3] A. Street, P. Stavrinou, D. O’brien, and D. Edwards, “Indoor optical
wireless systems – a review”, Optical and Quantum Electronics, vol.
29, no. 3, pp. 349–378, 1997.

[4] T. Komine and M. Nakagawa, “Integrated system of white LED
visible-light communication and power-line communication”, IEEE
Transactions on Consumer Electronics, vol. 49, no. 1, pp. 71–79,
2003.

[5] S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible
light communication: modulation schemes and dimming support”,
IEEE Communications Magazine, vol. 50, no. 3, pp. 72–82, 2012.

[6] M. Kavehrad, “Broadband Room Service by Light”, Scientific
American, vol. 297, no. 1, pp. 82–87, 2007.

[7] T. Do, J. Hwang, and M. Yoo, “TDoA Based Indoor Visible Light
Positioning System”, Fifth International Conference on Ubiquitous
and Future Networks (ICUFN), 2013.

[8] W. D. Zhong, C. Chen, H. Yang and P. Du, “Performance Analysis of
Angle Diversity Multi-Element Receiver in Indoor Multi-Cell Visible
Light Communication Systems”, International Conference on
Transparent Optical Networks (ICTON), 2017.

[9] S. Shawky, M.A. El-Shimy, Z. A. El-Sahn, M. R. M. Rizk and M. H.
Aly, “Improved VLC-based Indoor Positioning System Using a
Regression Approach with Conventional RSS Techniques”,
International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 904-909, June 2017.

[10] S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor
three-dimensional location estimation based on LED visible light
communication”, Electronics Letters, vol. 49, no. 1, pp. 54–56,
January 2013.

[11] S. Jung, C. Choi, S. Heo, S. Lee, and C. Park, “Received Signal
Strength Ratio Based Optical Wireless Indoor Localization Using
Light Emitting Diodes for Illumination”, IEEE International
Conference on Consumer Electronics (ICCE), pp. 63–64, January
2013.

[12] M. Mukherjee, "Wireless Communication – Moving from RF to
Optical," International Conference on Computing for Sustainable
Global Development (INDIACom), pp. 788-795, 2016.

[13] S. De Lausnay, L. De Strycker, J-P. Goemaere, N. Stevens, B.
Nauwelaers, “Optical CDMA Codes for an Indoor Localization
System using VLC”, 3rd International Workshop on Optical Wireless
Communications (IWOW), pp. 50–54, September 2014.

[14] R. Gold, “Optimal Binary Sequences for Spread Spectrum
Multiplexing”, IEEE Transactions on Information Theory, vol. 13,
no. 4, pp. 619–621, October 1967.

Gábor Szabó was born in Győr, Hungary,
1990. He received his M. Sc. degree from
the Budapest University of Technology and
Economics in 2015. His research interests
include optoelectronics and visible light
communication.

Eszter Udvary was born in Budapest,
Hungary. She received her Ph. D. degree in
2009 from Budapest University of
Technology and Economics. Her research
interests include microwave circuits, fiber
optics and optoelectronics.

Methodology for DNS Cache Poisoning
Vulnerability Analysis of DNS64

Implementations
G. Lencse, and Y. Kadobayashi, Member, IEEE

1
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

       


   

        

        
       
      
       

        
        
      

      
          
    
 
     

        
        




      



I. INTRODUCTION
EVERAL  [1] were developed
 to support the transition from IPv4 to IPv6, which we are

currently faced with, and which is expected to last for several

years or even decades. On the one hand, IPv6 transition
technologies are important solutions for several different
problems, which arise from the incompatibility of IPv4 and
IPv6: they can enable communication in various scenarios [2].
However, on the other hand, they also involve a high number of
security issues [3]. We have surveyed 26 IPv6 transition
technologies, and prioritized them in order to be able to analyze
the security vulnerabilities of the most important ones first [2].
DNS64 [4] and stateful NAT [5] were classified as having
utmost importance, because they together provide the only
solution for a communication scenario, which is very important
now because of the exhaustion of the public IPv4 address pool,
namely, they enable IPv6only clients to communicate with
IPv4only servers.

We have also developed a methodology for the identification
of potential security issues of different IPv6 transition
technologies [6]. Ref. [3] follows the STRIDE approach, which
is a general software security solution and it uses the DFD (Data
Flow Diagram) model of the systems to facilitate the discovery
of various threats. We have found this approach useful and
amended the method in [6], where we have also shown that it is
necessary to examine the most important implementations of
the given IPv6 transition technologies, whether they are
susceptible to the various threats that were discovered by using
the STRIDE approach. We have pointed out that DNS64 is
theoretically susceptible to  [7], and now
the important practical question is, whether its different
implementations are actually susceptible to DNS cache
poisoning or not.

The purpose of this paper is to develop a simple and efficient
methodology for DNS cache poisoning vulnerability analysis of
DNS64 implementations. This paper is based on our workshop
paper [8], in which we have presented our testbed and our
method for Transaction ID prediction attack as well as our
results for some specific DNS64 implementations. Now we
give a more detailed introduction to cache poisoning including
its further two components (source port number prediction, and
the birthday paradox based attack), and also design and carry
out their testing methods. Besides the DNS64 implementations
included in our workshop paper, now we also include Unbound,
because it showed much better performance than BIND [9].

The remainder of this paper is organized as follows. In
section II, we examine, why DNS cache poisoning is so crucial

Methodology for DNS Cache Poisoning
Vulnerability Analysis of DNS64

Implementations
G. Lencse, and Y. Kadobayashi, 

S

Submitted: December 28, 2017. This work was supported by the

International Exchange Program of the National Institute of Information and
Communications Technology (NICT), Japan.

G. Lencse was with the Laboratory of Cyber Resilience, Nara Institute of
Science and Technology, 89165 Takayama, Ikoma, Nara, 6300192 Japan. He
is permanently with the Széchenyi István University, Győr, H9026, Hungary.
(email: lencse@sze.hu)

Y. Kadobayashi, is with the Laboratory of Cyber Resilience, Nara Institute
of Science and Technology, 89165 Takayama, Ikoma, Nara, 6300192 Japan.
(email: youkik@is.naist.jp).

1
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

       


   

        

        
       
      
       

        
        
      

      
          
    
 
     

        
        




      



I. INTRODUCTION
EVERAL  [1] were developed
 to support the transition from IPv4 to IPv6, which we are

currently faced with, and which is expected to last for several

years or even decades. On the one hand, IPv6 transition
technologies are important solutions for several different
problems, which arise from the incompatibility of IPv4 and
IPv6: they can enable communication in various scenarios [2].
However, on the other hand, they also involve a high number of
security issues [3]. We have surveyed 26 IPv6 transition
technologies, and prioritized them in order to be able to analyze
the security vulnerabilities of the most important ones first [2].
DNS64 [4] and stateful NAT [5] were classified as having
utmost importance, because they together provide the only
solution for a communication scenario, which is very important
now because of the exhaustion of the public IPv4 address pool,
namely, they enable IPv6only clients to communicate with
IPv4only servers.

We have also developed a methodology for the identification
of potential security issues of different IPv6 transition
technologies [6]. Ref. [3] follows the STRIDE approach, which
is a general software security solution and it uses the DFD (Data
Flow Diagram) model of the systems to facilitate the discovery
of various threats. We have found this approach useful and
amended the method in [6], where we have also shown that it is
necessary to examine the most important implementations of
the given IPv6 transition technologies, whether they are
susceptible to the various threats that were discovered by using
the STRIDE approach. We have pointed out that DNS64 is
theoretically susceptible to  [7], and now
the important practical question is, whether its different
implementations are actually susceptible to DNS cache
poisoning or not.

The purpose of this paper is to develop a simple and efficient
methodology for DNS cache poisoning vulnerability analysis of
DNS64 implementations. This paper is based on our workshop
paper [8], in which we have presented our testbed and our
method for Transaction ID prediction attack as well as our
results for some specific DNS64 implementations. Now we
give a more detailed introduction to cache poisoning including
its further two components (source port number prediction, and
the birthday paradox based attack), and also design and carry
out their testing methods. Besides the DNS64 implementations
included in our workshop paper, now we also include Unbound,
because it showed much better performance than BIND [9].

The remainder of this paper is organized as follows. In
section II, we examine, why DNS cache poisoning is so crucial

Methodology for DNS Cache Poisoning
Vulnerability Analysis of DNS64

Implementations
G. Lencse, and Y. Kadobayashi, 

S

Submitted: December 28, 2017. This work was supported by the

International Exchange Program of the National Institute of Information and
Communications Technology (NICT), Japan.

G. Lencse was with the Laboratory of Cyber Resilience, Nara Institute of
Science and Technology, 89165 Takayama, Ikoma, Nara, 6300192 Japan. He
is permanently with the Széchenyi István University, Győr, H9026, Hungary.
(email: lencse@sze.hu)

Y. Kadobayashi, is with the Laboratory of Cyber Resilience, Nara Institute
of Science and Technology, 89165 Takayama, Ikoma, Nara, 6300192 Japan.
(email: youkik@is.naist.jp).

DOI: 10.36244/ICJ.2018.2.3

http://doi.org/10.36244/ICJ.2018.2.3

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

JUNE 2018 • VOLUME X • NUMBER 214

INFOCOMMUNICATIONS JOURNAL

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

concerning the DNS64 technology and we also elaborate the
attack model of DNS cache poisoning. In section III, we survey
the available test tools for DNS cache poisoning analysis and
point out that they are not suitable for our purposes. In section
IV, we design and implement a testbed for security analysis of
DNS64 implementations. In section V, we select the DNS64
implementations to be tested and also present their setup. In
sections VI, VII, and VIII, we design and carry out different
tests for the possible components of the DNS cache poisoning
vulnerability, namely, we test Transaction ID and source port
predictability, as well as whether the DNS64 implementations
send out multiple equivalent queries simultaneously, which
would give an opportunity for an attack based on the birthday
paradox. In section IX, we summarize and discuss our results,
as well as we make suggestions for the elimination of the
uncovered vulnerabilities. Section X concludes our paper.

II. CACHE POISONING VULNERABILITY OF DNS64
The trustworthy operation of the DNS service is a very

important precondition for a secure Internet. The ultimate
mitigation for DNS cache poisoning, as well as for all other
tampering type attacks against DNS, is DNSSEC [10].
However, concerning the cache poisoning vulnerability of
DNS64 servers we cannot rely on DNSSEC for two reasons.
First of all, its deployment rate is still very low. (As of 2016, it
was 1.7% among the Alexa top 1 million web servers [11].) The
other reason is DNS64 specific. The task of a DNS64 server is
to synthesize an    [12] for the
domain names that do not have a AAAA record (IPv6 address).
However, this a forged address from the DNSSEC point of
view. Thus, a  and  DNS client has to
discard it. The best possible mode of operation is, when a
security aware client asks the DNS64 server to perform the
validation, see section 3 of [4]. In this case, the client has to
trust in the DNS64 server. (And of course, tampering may
happen while the packet travels from the DNS64 server to the
client.)

Thus for protecting our DNS64 servers from DNS cache
poisoning, we need to rely on the guidelines laid down in RFC
5452 [13]. Before addressing them, we need to clarify the attack
model, that is, the conditions of a DNS cache poisoning attack.
We always consider  , which means that the
attacker may not intercept the DNS requests from the attacked
DNS server to the authoritative DNS server. The attacker may
send DNS requests (for any domain name) and forged replies to
the attacked DNS server.

Now, we first quote the most important conditions from RFC
5452, when a DNS server (called as “resolver” in the text) may
accept information from a DNS reply packet, and then interpret
them for our situation.

“DNS data is to be accepted by a resolver if and only if:
1. The question section of the reply packet is equivalent to

that of a question packet currently waiting for a
response.

2. The ID field of the reply packet matches that of the
question packet.

3. The response comes from the same network address to
which the question was sent.

4. The response comes in on the same network address,
including port number, from which the question was
sent.

In general, the first response matching these four conditions
is accepted.” (from section 3 of [13])

Condition 1 gives a very important protection against
spoofed answers by setting up a time limit. This  is
equal to the round trip time between the given DNS server and
the authoritative DNS server plus the response time of the
authoritative DNS server. (The latter may be increased by the
attacker by a DoS attack against the authoritative DNS server.)
In its calculations, the RFC uses 100ms as a typical value for
the length of this time interval. Of course, an attacker may
attempt to initiate the opening of this time window at any time
by sending a request for an arbitrarily chosen domain name.
However, if a domain name is already cached, it is usually
protected, until its TTL expires.

Condition 2 significantly hardens the task of the attacker: the
attacker has to guess the  for a successful attack.
To support guessing, the attacker may send DNS resolution
requests to the DNS server for any domain names, including
domain names, the authoritative DNS servers of which is under
the control of the attacker, thus the attacker may observe an
arbitrarily long sequence of the Transaction IDs generated by
the attacked DNS server. Therefore, DNS servers must use hard
to predict (cryptographic) random number generators to prevent
the attacker from being able to predict the Transaction IDs.
Thus, on average, a number of 215 trials are necessary for a
successful guess for the 16 bit long Transaction ID (within the
given time period of about 100ms).

Condition 3 further hardens the task of the attacker, but not
very significantly. There may be a few authoritative DNS
servers for a domain, the IP address of which are known for the
attacker, and the DNS server may use them in a round robin
manner. The attacker needs to spoof exactly the right one. As
their number is usually small, this condition contributes only
with a small multiplication factor. As for the spoofing itself,
there are some countermeasures against source IP address
spoofing, such as reverse path checking by routers or firewalls.
However, we may not rely on this optional protection: we
suppose that it is not switched on, or the attacker is able to send
the forged replies from the “right” direction.

Condition 4 has two contributions. The attacked DNS server
may have more than one network interfaces (or more than one
IP addresses may be assigned to the same interface), but this
number is limited, thus it may be only a small factor. The 
 can be another significant factor, if the DNS server
uses different, hard to predict source port numbers for sending
out its every single request. As port numbers from 0 to 1023
cannot be used, the entropy is somewhat less than 16 bits.

We note that NAT (more exactly: NAPT) devices may
remove the entropy of the source port numbers, thus DNS
servers should never be placed behind NAPT devices unless the
NAPT devices are known to comply with RFC 6056 [14],

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2018 • VOLUME X • NUMBER 2 15

2
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

concerning the DNS64 technology and we also elaborate the
attack model of DNS cache poisoning. In section III, we survey
the available test tools for DNS cache poisoning analysis and
point out that they are not suitable for our purposes. In section
IV, we design and implement a testbed for security analysis of
DNS64 implementations. In section V, we select the DNS64
implementations to be tested and also present their setup. In
sections VI, VII, and VIII, we design and carry out different
tests for the possible components of the DNS cache poisoning
vulnerability, namely, we test Transaction ID and source port
predictability, as well as whether the DNS64 implementations
send out multiple equivalent queries simultaneously, which
would give an opportunity for an attack based on the birthday
paradox. In section IX, we summarize and discuss our results,
as well as we make suggestions for the elimination of the
uncovered vulnerabilities. Section X concludes our paper.

II. CACHE POISONING VULNERABILITY OF DNS64
The trustworthy operation of the DNS service is a very

important precondition for a secure Internet. The ultimate
mitigation for DNS cache poisoning, as well as for all other
tampering type attacks against DNS, is DNSSEC [10].
However, concerning the cache poisoning vulnerability of
DNS64 servers we cannot rely on DNSSEC for two reasons.
First of all, its deployment rate is still very low. (As of 2016, it
was 1.7% among the Alexa top 1 million web servers [11].) The
other reason is DNS64 specific. The task of a DNS64 server is
to synthesize an    [12] for the
domain names that do not have a AAAA record (IPv6 address).
However, this a forged address from the DNSSEC point of
view. Thus, a  and  DNS client has to
discard it. The best possible mode of operation is, when a
security aware client asks the DNS64 server to perform the
validation, see section 3 of [4]. In this case, the client has to
trust in the DNS64 server. (And of course, tampering may
happen while the packet travels from the DNS64 server to the
client.)

Thus for protecting our DNS64 servers from DNS cache
poisoning, we need to rely on the guidelines laid down in RFC
5452 [13]. Before addressing them, we need to clarify the attack
model, that is, the conditions of a DNS cache poisoning attack.
We always consider  , which means that the
attacker may not intercept the DNS requests from the attacked
DNS server to the authoritative DNS server. The attacker may
send DNS requests (for any domain name) and forged replies to
the attacked DNS server.

Now, we first quote the most important conditions from RFC
5452, when a DNS server (called as “resolver” in the text) may
accept information from a DNS reply packet, and then interpret
them for our situation.

“DNS data is to be accepted by a resolver if and only if:
1. The question section of the reply packet is equivalent to

that of a question packet currently waiting for a
response.

2. The ID field of the reply packet matches that of the
question packet.

3. The response comes from the same network address to
which the question was sent.

4. The response comes in on the same network address,
including port number, from which the question was
sent.

In general, the first response matching these four conditions
is accepted.” (from section 3 of [13])

Condition 1 gives a very important protection against
spoofed answers by setting up a time limit. This  is
equal to the round trip time between the given DNS server and
the authoritative DNS server plus the response time of the
authoritative DNS server. (The latter may be increased by the
attacker by a DoS attack against the authoritative DNS server.)
In its calculations, the RFC uses 100ms as a typical value for
the length of this time interval. Of course, an attacker may
attempt to initiate the opening of this time window at any time
by sending a request for an arbitrarily chosen domain name.
However, if a domain name is already cached, it is usually
protected, until its TTL expires.

Condition 2 significantly hardens the task of the attacker: the
attacker has to guess the  for a successful attack.
To support guessing, the attacker may send DNS resolution
requests to the DNS server for any domain names, including
domain names, the authoritative DNS servers of which is under
the control of the attacker, thus the attacker may observe an
arbitrarily long sequence of the Transaction IDs generated by
the attacked DNS server. Therefore, DNS servers must use hard
to predict (cryptographic) random number generators to prevent
the attacker from being able to predict the Transaction IDs.
Thus, on average, a number of 215 trials are necessary for a
successful guess for the 16 bit long Transaction ID (within the
given time period of about 100ms).

Condition 3 further hardens the task of the attacker, but not
very significantly. There may be a few authoritative DNS
servers for a domain, the IP address of which are known for the
attacker, and the DNS server may use them in a round robin
manner. The attacker needs to spoof exactly the right one. As
their number is usually small, this condition contributes only
with a small multiplication factor. As for the spoofing itself,
there are some countermeasures against source IP address
spoofing, such as reverse path checking by routers or firewalls.
However, we may not rely on this optional protection: we
suppose that it is not switched on, or the attacker is able to send
the forged replies from the “right” direction.

Condition 4 has two contributions. The attacked DNS server
may have more than one network interfaces (or more than one
IP addresses may be assigned to the same interface), but this
number is limited, thus it may be only a small factor. The 
 can be another significant factor, if the DNS server
uses different, hard to predict source port numbers for sending
out its every single request. As port numbers from 0 to 1023
cannot be used, the entropy is somewhat less than 16 bits.

We note that NAT (more exactly: NAPT) devices may
remove the entropy of the source port numbers, thus DNS
servers should never be placed behind NAPT devices unless the
NAPT devices are known to comply with RFC 6056 [14],

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

3
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

which requires randomized source port number selection.
RFC 5452 [13] describes another form of attack, which is

based on the birthday paradox. If the attacker may achieve that
the DNS server sends out  , that is
queries with identical QNAME, QTYPE, and QCLASS fields,
 (a new query is sent while another one still waits
for an answer) then the forged replies of the attacker may match
any of them, which significantly eases the attack. For further
details, please refer to the CERT vulnerability note [15].

To sum up the essence of the above conditions, we need to
check whether the analyzed DNS64 server implementations use
hard to predict random numbers for both Transaction IDs and
source port numbers and they do not send multiple equivalent
queries concurrently.

III. TOOLS FOR CACHE POISONING VULNERABILITY
TESTING

Although Daniel J. Bernstein already disclosed the
vulnerability of the DNS system as well as the possible solution
in 1999 [16], and there was a CERT notification about the
possibility of the birthday paradox based attacks in 2002 [15],
some mainstream DNS servers implementations including

BIND did not address the issue properly until the CERT
notification in 2008 [17], which was triggered by Dan
Kaminsky, who invented a more powerful cache poisoning
method. His attack is built upon two ideas: it bypasses the
protection of the TTL by using different random names from
the attacked domain, and goes one hierarchy level higher:
instead of trying to insert a forged “A” record into the cache of
the attacked DNS server, it hijacks the whole attacked zone by
including the IP address of a DNS server controlled by the
attacker as an IP address of a DNS server for the attacked
domain into an Authority record of a forged answer for a query
for a random name from the attacked zone (to trick the bailiwick
rule), see [18] for an in depth and wellillustrated description of
the attack.

Then the alert was taken seriously, and patches were
prepared for all those major DNS implementations that were
still vulnerable. Also vulnerability testing tools were prepared
and released.

A contemporary web based Transaction ID and source port
randomness tester by DNSOARC is still available [19]. It is
documented and highly suggested by [20]. Although the
demonstration screen at the documentation does not seem to be
so bad, see Fig. 1, our experience was rather poor. When we
tried it out, among others, we received the results shown in
Fig. 2. We contend that it is not enough to test only five
Transaction IDs. But we do not have an opportunity to tune the
tests.

Another webbased testing tool is mentioned in the ICANN
presentation of Kim Davies [21], but the tool is no more
available at the URL mentioned on slide 33 of the presentation:
http://recursive.iana.org/.

And there is another problem with these webbased tools:
they require that the DNS server is configured in a live system.

We rather decided to build a , that is, an isolated
environment, where we can check whether the examined
DNS64 implementations indeed have the presumed
vulnerabilities by using any kind of tests with any parameters
we consider necessary.

IV. TESTBED DESIGN AND IMPLEMENTATION

 
Although we intended to design a testbed for the security

analysis of DNS64 server implementations, we made our
considerations with a broader mindset, so that the testbed may
also be used for the security analysis of other IPv6 transition
technologies, especially NAT64.

In general, the requirements for such a testbed usually
include the following:

1. isolated environment, where attacks may be performed
2. ease of use
3. low cost.
A testbed for the security analysis of different IPv6 transition

technologies should contain the fundamental basic blocks of the
systems in which the given solutions are used. Practically it
means that we need a few computers which are interconnected
by IPv4 and/or IPv6 network(s). Such systems can be built in

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC
DNS entropy testing tool. [20]

Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool.

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

JUNE 2018 • VOLUME X • NUMBER 216

INFOCOMMUNICATIONS JOURNAL

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

several ways, including the usage of:
1. server computers
2. desktop or laptop computers
3. singleboard computers [22]
4. virtual machines.
We contend that the consecutive solutions result in less cost

and higher comfort in use including easy mobility. Our decision
was also influenced by the fact that we have been successfully
using virtual Linux boxes (executed under Windows 7) for the
practical education of DNS64 and NAT64 IPv6 transition
technologies at the Budapest University of Technology and
Economics since 2015.

As the existing virtual machine images were suitable for our
current testing purposes, it was a convenient solution to reuse
them. The virtual machine images were prepared by a script
called , written by Dániel Bakai [23]. (This script
creates a small, low memory usage, userdefined Debian virtual
machine disk image, which can be used in various hypervisors
including VMware and KVM.) They contain Debian 8
distributions, which were now updated to Debian version 8.9.
They were executed by VMware Workstation 12 Player.

 
We propose the structure of a simple testbed suitable for the

security analysis of the DNS64 and the stateful NAT64 IPv6
transition technologies. Similar testbeds can be built for the
security analysis of other IPv6 transition technologies.

The testing of DNS64 or NAT64 requires a network of three

hosts. As for DNS64, they are: client, DNS64 server and
authoritative DNS server, where the DNS64 server should be
interconnected with both the client and the authoritative DNS
server. As for NAT64, only the roles are different: client,
NAT64 gateway and IPv4only server; the topology is the
same. Thus the same network can be used for the testing of the
different implementations of both IPv6 transition technologies,
only some software components need to be changed.

As for the attacker, two further hosts could have been added,
one for tampering with each connections, but we eliminated
them with a trick. First of all, we used a single shared medium
to interconnect the three computers, see Fig. 3, thus only one
extra device would have been enough. However, as in our
current tests we used only wiretapping, it could be done at any
of the three computers, thus no further computer was necessary.

 
We have implemented the test network shown in Fig. 3 by

three virtual machines, each of which had a single CPU core,
128MB of RAM, and (theoretically) 40GB of hard disks, but
the starting size of the images were under 1GB. (They were
growing during the experiments, but remained under 3GB.)
Table 1 shows the Linux and WMware settings used for the
virtual machines.

We note that the IP version between the client, which is an
IPv6only client, and the DNS64 server must be 6. There is no
restriction for the IP version between the DNS64 server and the
DNS server, but when testing NAT64, IPv4 must be used

Fig. 3. Topology of the test network.

Table 1. Linux and VMware Network Settings for Virtual Machines.

Virtual machine name    

Role IPv6only client DNS64 server Authoritative DNS server

 Linux settings IPv6 static: fd00::1/64 IPv6 static: fd00::2/64
IPv4 static 10.0.0.2/24

IPv6 static: fd00::3/64
IPv4 static: 10.0.0.3/24

 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP

 VMware settings VMnet1 VMnet1 VMnet1

 VMware settings NAT NAT NAT

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

several ways, including the usage of:
1. server computers
2. desktop or laptop computers
3. singleboard computers [22]
4. virtual machines.
We contend that the consecutive solutions result in less cost

and higher comfort in use including easy mobility. Our decision
was also influenced by the fact that we have been successfully
using virtual Linux boxes (executed under Windows 7) for the
practical education of DNS64 and NAT64 IPv6 transition
technologies at the Budapest University of Technology and
Economics since 2015.

As the existing virtual machine images were suitable for our
current testing purposes, it was a convenient solution to reuse
them. The virtual machine images were prepared by a script
called , written by Dániel Bakai [23]. (This script
creates a small, low memory usage, userdefined Debian virtual
machine disk image, which can be used in various hypervisors
including VMware and KVM.) They contain Debian 8
distributions, which were now updated to Debian version 8.9.
They were executed by VMware Workstation 12 Player.

 
We propose the structure of a simple testbed suitable for the

security analysis of the DNS64 and the stateful NAT64 IPv6
transition technologies. Similar testbeds can be built for the
security analysis of other IPv6 transition technologies.

The testing of DNS64 or NAT64 requires a network of three

hosts. As for DNS64, they are: client, DNS64 server and
authoritative DNS server, where the DNS64 server should be
interconnected with both the client and the authoritative DNS
server. As for NAT64, only the roles are different: client,
NAT64 gateway and IPv4only server; the topology is the
same. Thus the same network can be used for the testing of the
different implementations of both IPv6 transition technologies,
only some software components need to be changed.

As for the attacker, two further hosts could have been added,
one for tampering with each connections, but we eliminated
them with a trick. First of all, we used a single shared medium
to interconnect the three computers, see Fig. 3, thus only one
extra device would have been enough. However, as in our
current tests we used only wiretapping, it could be done at any
of the three computers, thus no further computer was necessary.

 
We have implemented the test network shown in Fig. 3 by

three virtual machines, each of which had a single CPU core,
128MB of RAM, and (theoretically) 40GB of hard disks, but
the starting size of the images were under 1GB. (They were
growing during the experiments, but remained under 3GB.)
Table 1 shows the Linux and WMware settings used for the
virtual machines.

We note that the IP version between the client, which is an
IPv6only client, and the DNS64 server must be 6. There is no
restriction for the IP version between the DNS64 server and the
DNS server, but when testing NAT64, IPv4 must be used

Fig. 3. Topology of the test network.

Table 1. Linux and VMware Network Settings for Virtual Machines.

Virtual machine name    

Role IPv6only client DNS64 server Authoritative DNS server

 Linux settings IPv6 static: fd00::1/64 IPv6 static: fd00::2/64
IPv4 static 10.0.0.2/24

IPv6 static: fd00::3/64
IPv4 static: 10.0.0.3/24

 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP

 VMware settings VMnet1 VMnet1 VMnet1

 VMware settings NAT NAT NAT

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

several ways, including the usage of:
1. server computers
2. desktop or laptop computers
3. singleboard computers [22]
4. virtual machines.
We contend that the consecutive solutions result in less cost

and higher comfort in use including easy mobility. Our decision
was also influenced by the fact that we have been successfully
using virtual Linux boxes (executed under Windows 7) for the
practical education of DNS64 and NAT64 IPv6 transition
technologies at the Budapest University of Technology and
Economics since 2015.

As the existing virtual machine images were suitable for our
current testing purposes, it was a convenient solution to reuse
them. The virtual machine images were prepared by a script
called , written by Dániel Bakai [23]. (This script
creates a small, low memory usage, userdefined Debian virtual
machine disk image, which can be used in various hypervisors
including VMware and KVM.) They contain Debian 8
distributions, which were now updated to Debian version 8.9.
They were executed by VMware Workstation 12 Player.

 
We propose the structure of a simple testbed suitable for the

security analysis of the DNS64 and the stateful NAT64 IPv6
transition technologies. Similar testbeds can be built for the
security analysis of other IPv6 transition technologies.

The testing of DNS64 or NAT64 requires a network of three

hosts. As for DNS64, they are: client, DNS64 server and
authoritative DNS server, where the DNS64 server should be
interconnected with both the client and the authoritative DNS
server. As for NAT64, only the roles are different: client,
NAT64 gateway and IPv4only server; the topology is the
same. Thus the same network can be used for the testing of the
different implementations of both IPv6 transition technologies,
only some software components need to be changed.

As for the attacker, two further hosts could have been added,
one for tampering with each connections, but we eliminated
them with a trick. First of all, we used a single shared medium
to interconnect the three computers, see Fig. 3, thus only one
extra device would have been enough. However, as in our
current tests we used only wiretapping, it could be done at any
of the three computers, thus no further computer was necessary.

 
We have implemented the test network shown in Fig. 3 by

three virtual machines, each of which had a single CPU core,
128MB of RAM, and (theoretically) 40GB of hard disks, but
the starting size of the images were under 1GB. (They were
growing during the experiments, but remained under 3GB.)
Table 1 shows the Linux and WMware settings used for the
virtual machines.

We note that the IP version between the client, which is an
IPv6only client, and the DNS64 server must be 6. There is no
restriction for the IP version between the DNS64 server and the
DNS server, but when testing NAT64, IPv4 must be used

Fig. 3. Topology of the test network.

Table 1. Linux and VMware Network Settings for Virtual Machines.

Virtual machine name    

Role IPv6only client DNS64 server Authoritative DNS server

 Linux settings IPv6 static: fd00::1/64 IPv6 static: fd00::2/64
IPv4 static 10.0.0.2/24

IPv6 static: fd00::3/64
IPv4 static: 10.0.0.3/24

 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP

 VMware settings VMnet1 VMnet1 VMnet1

 VMware settings NAT NAT NAT

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

several ways, including the usage of:
1. server computers
2. desktop or laptop computers
3. singleboard computers [22]
4. virtual machines.
We contend that the consecutive solutions result in less cost

and higher comfort in use including easy mobility. Our decision
was also influenced by the fact that we have been successfully
using virtual Linux boxes (executed under Windows 7) for the
practical education of DNS64 and NAT64 IPv6 transition
technologies at the Budapest University of Technology and
Economics since 2015.

As the existing virtual machine images were suitable for our
current testing purposes, it was a convenient solution to reuse
them. The virtual machine images were prepared by a script
called , written by Dániel Bakai [23]. (This script
creates a small, low memory usage, userdefined Debian virtual
machine disk image, which can be used in various hypervisors
including VMware and KVM.) They contain Debian 8
distributions, which were now updated to Debian version 8.9.
They were executed by VMware Workstation 12 Player.

 
We propose the structure of a simple testbed suitable for the

security analysis of the DNS64 and the stateful NAT64 IPv6
transition technologies. Similar testbeds can be built for the
security analysis of other IPv6 transition technologies.

The testing of DNS64 or NAT64 requires a network of three

hosts. As for DNS64, they are: client, DNS64 server and
authoritative DNS server, where the DNS64 server should be
interconnected with both the client and the authoritative DNS
server. As for NAT64, only the roles are different: client,
NAT64 gateway and IPv4only server; the topology is the
same. Thus the same network can be used for the testing of the
different implementations of both IPv6 transition technologies,
only some software components need to be changed.

As for the attacker, two further hosts could have been added,
one for tampering with each connections, but we eliminated
them with a trick. First of all, we used a single shared medium
to interconnect the three computers, see Fig. 3, thus only one
extra device would have been enough. However, as in our
current tests we used only wiretapping, it could be done at any
of the three computers, thus no further computer was necessary.

 
We have implemented the test network shown in Fig. 3 by

three virtual machines, each of which had a single CPU core,
128MB of RAM, and (theoretically) 40GB of hard disks, but
the starting size of the images were under 1GB. (They were
growing during the experiments, but remained under 3GB.)
Table 1 shows the Linux and WMware settings used for the
virtual machines.

We note that the IP version between the client, which is an
IPv6only client, and the DNS64 server must be 6. There is no
restriction for the IP version between the DNS64 server and the
DNS server, but when testing NAT64, IPv4 must be used

Fig. 3. Topology of the test network.

Table 1. Linux and VMware Network Settings for Virtual Machines.

Virtual machine name    

Role IPv6only client DNS64 server Authoritative DNS server

 Linux settings IPv6 static: fd00::1/64 IPv6 static: fd00::2/64
IPv4 static 10.0.0.2/24

IPv6 static: fd00::3/64
IPv4 static: 10.0.0.3/24

 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP

 VMware settings VMnet1 VMnet1 VMnet1

 VMware settings NAT NAT NAT

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

several ways, including the usage of:
1. server computers
2. desktop or laptop computers
3. singleboard computers [22]
4. virtual machines.
We contend that the consecutive solutions result in less cost

and higher comfort in use including easy mobility. Our decision
was also influenced by the fact that we have been successfully
using virtual Linux boxes (executed under Windows 7) for the
practical education of DNS64 and NAT64 IPv6 transition
technologies at the Budapest University of Technology and
Economics since 2015.

As the existing virtual machine images were suitable for our
current testing purposes, it was a convenient solution to reuse
them. The virtual machine images were prepared by a script
called , written by Dániel Bakai [23]. (This script
creates a small, low memory usage, userdefined Debian virtual
machine disk image, which can be used in various hypervisors
including VMware and KVM.) They contain Debian 8
distributions, which were now updated to Debian version 8.9.
They were executed by VMware Workstation 12 Player.

 
We propose the structure of a simple testbed suitable for the

security analysis of the DNS64 and the stateful NAT64 IPv6
transition technologies. Similar testbeds can be built for the
security analysis of other IPv6 transition technologies.

The testing of DNS64 or NAT64 requires a network of three

hosts. As for DNS64, they are: client, DNS64 server and
authoritative DNS server, where the DNS64 server should be
interconnected with both the client and the authoritative DNS
server. As for NAT64, only the roles are different: client,
NAT64 gateway and IPv4only server; the topology is the
same. Thus the same network can be used for the testing of the
different implementations of both IPv6 transition technologies,
only some software components need to be changed.

As for the attacker, two further hosts could have been added,
one for tampering with each connections, but we eliminated
them with a trick. First of all, we used a single shared medium
to interconnect the three computers, see Fig. 3, thus only one
extra device would have been enough. However, as in our
current tests we used only wiretapping, it could be done at any
of the three computers, thus no further computer was necessary.

 
We have implemented the test network shown in Fig. 3 by

three virtual machines, each of which had a single CPU core,
128MB of RAM, and (theoretically) 40GB of hard disks, but
the starting size of the images were under 1GB. (They were
growing during the experiments, but remained under 3GB.)
Table 1 shows the Linux and WMware settings used for the
virtual machines.

We note that the IP version between the client, which is an
IPv6only client, and the DNS64 server must be 6. There is no
restriction for the IP version between the DNS64 server and the
DNS server, but when testing NAT64, IPv4 must be used

Fig. 3. Topology of the test network.

Table 1. Linux and VMware Network Settings for Virtual Machines.

Virtual machine name    

Role IPv6only client DNS64 server Authoritative DNS server

 Linux settings IPv6 static: fd00::1/64 IPv6 static: fd00::2/64
IPv4 static 10.0.0.2/24

IPv6 static: fd00::3/64
IPv4 static: 10.0.0.3/24

 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP

 VMware settings VMnet1 VMnet1 VMnet1

 VMware settings NAT NAT NAT

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2018 • VOLUME X • NUMBER 2 17

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

several ways, including the usage of:
1. server computers
2. desktop or laptop computers
3. singleboard computers [22]
4. virtual machines.
We contend that the consecutive solutions result in less cost

and higher comfort in use including easy mobility. Our decision
was also influenced by the fact that we have been successfully
using virtual Linux boxes (executed under Windows 7) for the
practical education of DNS64 and NAT64 IPv6 transition
technologies at the Budapest University of Technology and
Economics since 2015.

As the existing virtual machine images were suitable for our
current testing purposes, it was a convenient solution to reuse
them. The virtual machine images were prepared by a script
called , written by Dániel Bakai [23]. (This script
creates a small, low memory usage, userdefined Debian virtual
machine disk image, which can be used in various hypervisors
including VMware and KVM.) They contain Debian 8
distributions, which were now updated to Debian version 8.9.
They were executed by VMware Workstation 12 Player.

 
We propose the structure of a simple testbed suitable for the

security analysis of the DNS64 and the stateful NAT64 IPv6
transition technologies. Similar testbeds can be built for the
security analysis of other IPv6 transition technologies.

The testing of DNS64 or NAT64 requires a network of three

hosts. As for DNS64, they are: client, DNS64 server and
authoritative DNS server, where the DNS64 server should be
interconnected with both the client and the authoritative DNS
server. As for NAT64, only the roles are different: client,
NAT64 gateway and IPv4only server; the topology is the
same. Thus the same network can be used for the testing of the
different implementations of both IPv6 transition technologies,
only some software components need to be changed.

As for the attacker, two further hosts could have been added,
one for tampering with each connections, but we eliminated
them with a trick. First of all, we used a single shared medium
to interconnect the three computers, see Fig. 3, thus only one
extra device would have been enough. However, as in our
current tests we used only wiretapping, it could be done at any
of the three computers, thus no further computer was necessary.

 
We have implemented the test network shown in Fig. 3 by

three virtual machines, each of which had a single CPU core,
128MB of RAM, and (theoretically) 40GB of hard disks, but
the starting size of the images were under 1GB. (They were
growing during the experiments, but remained under 3GB.)
Table 1 shows the Linux and WMware settings used for the
virtual machines.

We note that the IP version between the client, which is an
IPv6only client, and the DNS64 server must be 6. There is no
restriction for the IP version between the DNS64 server and the
DNS server, but when testing NAT64, IPv4 must be used

Fig. 3. Topology of the test network.

Table 1. Linux and VMware Network Settings for Virtual Machines.

Virtual machine name    

Role IPv6only client DNS64 server Authoritative DNS server

 Linux settings IPv6 static: fd00::1/64 IPv6 static: fd00::2/64
IPv4 static 10.0.0.2/24

IPv6 static: fd00::3/64
IPv4 static: 10.0.0.3/24

 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP

 VMware settings VMnet1 VMnet1 VMnet1

 VMware settings NAT NAT NAT

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

several ways, including the usage of:
1. server computers
2. desktop or laptop computers
3. singleboard computers [22]
4. virtual machines.
We contend that the consecutive solutions result in less cost

and higher comfort in use including easy mobility. Our decision
was also influenced by the fact that we have been successfully
using virtual Linux boxes (executed under Windows 7) for the
practical education of DNS64 and NAT64 IPv6 transition
technologies at the Budapest University of Technology and
Economics since 2015.

As the existing virtual machine images were suitable for our
current testing purposes, it was a convenient solution to reuse
them. The virtual machine images were prepared by a script
called , written by Dániel Bakai [23]. (This script
creates a small, low memory usage, userdefined Debian virtual
machine disk image, which can be used in various hypervisors
including VMware and KVM.) They contain Debian 8
distributions, which were now updated to Debian version 8.9.
They were executed by VMware Workstation 12 Player.

 
We propose the structure of a simple testbed suitable for the

security analysis of the DNS64 and the stateful NAT64 IPv6
transition technologies. Similar testbeds can be built for the
security analysis of other IPv6 transition technologies.

The testing of DNS64 or NAT64 requires a network of three

hosts. As for DNS64, they are: client, DNS64 server and
authoritative DNS server, where the DNS64 server should be
interconnected with both the client and the authoritative DNS
server. As for NAT64, only the roles are different: client,
NAT64 gateway and IPv4only server; the topology is the
same. Thus the same network can be used for the testing of the
different implementations of both IPv6 transition technologies,
only some software components need to be changed.

As for the attacker, two further hosts could have been added,
one for tampering with each connections, but we eliminated
them with a trick. First of all, we used a single shared medium
to interconnect the three computers, see Fig. 3, thus only one
extra device would have been enough. However, as in our
current tests we used only wiretapping, it could be done at any
of the three computers, thus no further computer was necessary.

 
We have implemented the test network shown in Fig. 3 by

three virtual machines, each of which had a single CPU core,
128MB of RAM, and (theoretically) 40GB of hard disks, but
the starting size of the images were under 1GB. (They were
growing during the experiments, but remained under 3GB.)
Table 1 shows the Linux and WMware settings used for the
virtual machines.

We note that the IP version between the client, which is an
IPv6only client, and the DNS64 server must be 6. There is no
restriction for the IP version between the DNS64 server and the
DNS server, but when testing NAT64, IPv4 must be used

Fig. 3. Topology of the test network.

Table 1. Linux and VMware Network Settings for Virtual Machines.

Virtual machine name    

Role IPv6only client DNS64 server Authoritative DNS server

 Linux settings IPv6 static: fd00::1/64 IPv6 static: fd00::2/64
IPv4 static 10.0.0.2/24

IPv6 static: fd00::3/64
IPv4 static: 10.0.0.3/24

 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP

 VMware settings VMnet1 VMnet1 VMnet1

 VMware settings NAT NAT NAT

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

4
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

several ways, including the usage of:
1. server computers
2. desktop or laptop computers
3. singleboard computers [22]
4. virtual machines.
We contend that the consecutive solutions result in less cost

and higher comfort in use including easy mobility. Our decision
was also influenced by the fact that we have been successfully
using virtual Linux boxes (executed under Windows 7) for the
practical education of DNS64 and NAT64 IPv6 transition
technologies at the Budapest University of Technology and
Economics since 2015.

As the existing virtual machine images were suitable for our
current testing purposes, it was a convenient solution to reuse
them. The virtual machine images were prepared by a script
called , written by Dániel Bakai [23]. (This script
creates a small, low memory usage, userdefined Debian virtual
machine disk image, which can be used in various hypervisors
including VMware and KVM.) They contain Debian 8
distributions, which were now updated to Debian version 8.9.
They were executed by VMware Workstation 12 Player.

 
We propose the structure of a simple testbed suitable for the

security analysis of the DNS64 and the stateful NAT64 IPv6
transition technologies. Similar testbeds can be built for the
security analysis of other IPv6 transition technologies.

The testing of DNS64 or NAT64 requires a network of three

hosts. As for DNS64, they are: client, DNS64 server and
authoritative DNS server, where the DNS64 server should be
interconnected with both the client and the authoritative DNS
server. As for NAT64, only the roles are different: client,
NAT64 gateway and IPv4only server; the topology is the
same. Thus the same network can be used for the testing of the
different implementations of both IPv6 transition technologies,
only some software components need to be changed.

As for the attacker, two further hosts could have been added,
one for tampering with each connections, but we eliminated
them with a trick. First of all, we used a single shared medium
to interconnect the three computers, see Fig. 3, thus only one
extra device would have been enough. However, as in our
current tests we used only wiretapping, it could be done at any
of the three computers, thus no further computer was necessary.

 
We have implemented the test network shown in Fig. 3 by

three virtual machines, each of which had a single CPU core,
128MB of RAM, and (theoretically) 40GB of hard disks, but
the starting size of the images were under 1GB. (They were
growing during the experiments, but remained under 3GB.)
Table 1 shows the Linux and WMware settings used for the
virtual machines.

We note that the IP version between the client, which is an
IPv6only client, and the DNS64 server must be 6. There is no
restriction for the IP version between the DNS64 server and the
DNS server, but when testing NAT64, IPv4 must be used

Fig. 3. Topology of the test network.

Table 1. Linux and VMware Network Settings for Virtual Machines.

Virtual machine name    

Role IPv6only client DNS64 server Authoritative DNS server

 Linux settings IPv6 static: fd00::1/64 IPv6 static: fd00::2/64
IPv4 static 10.0.0.2/24

IPv6 static: fd00::3/64
IPv4 static: 10.0.0.3/24

 Linux settings IPv4 DHCP IPv4 DHCP IPv4 DHCP

 VMware settings VMnet1 VMnet1 VMnet1

 VMware settings NAT NAT NAT

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

5
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

between the NAT64 gateway and the IPv4only server.
Although we used IPv4 between the DNS64 server and the
authoritative DNS server during our DNS64 vulnerability tests,
we set also an IPv6 address at the authoritative DNS server to
be able to reach it directly from the client for testing its
operability.

We also note that the  interfaces were not necessary for
the tests, we used them for providing the virtual machines with
Internet access, which was sometimes necessary, e.g. for
installing various packages under Debian Linux. We have
separated this communication from the testing communication,
which happened always through the  interfaces of the
virtual computers.

 
The purpose of this setup was to check whether the testbed

works properly. We have installed BIND9 [24] to both the
 and the  virtual machines.

 
The  file was used

to set up the DNS64 function. The relevant settings were:




 
The  file was used to

set up the authoritative DNS server. The relevant settings were:





The content of the  file was:

















 
In this section, we demonstrate the correct operation of the

test system, and also introduce the operation of DNS64 servers,

which will be important later.
We tested the operation of the testbed by issuing the

following command on the  computer:



The  Linux command was used to request a AAAA
record for the  domain name from the
DNS64 server executed by the host named .

The DNS messages were captured by  on the
 interface using the  capture filter. The six
captured packets are shown in Fig. 4. Now we shall identify the
six messages and observe their Transaction IDs, which are used
to match the answer with the query. We will experiment with
them later.

1. Request for a AAAA record from the client to the
DNS64 server with Transaction ID 0x7c4a, generated by
the  command.

2. Request for a AAAA record from the DNS64 server to
the authoritative DNS server with a different Transaction
ID, 0xcad0, generated by BIND.

3. An “empty” reply for the AAAA record request sent by
the authoritative DNS server to the DNS64 server, and
its Transaction ID is the same as that of the
corresponding request.

4. Request for an A record from the DNS64 server to the
authoritative DNS server with a different Transaction ID,
0xee9d, generated by BIND.

5. A valid reply with an A record sent by the authoritative
DNS server to the DNS64 server, and its Transaction ID
is the same as that of the corresponding request.

6. The reply of the DNS64 server to the client containing
the synthesized  [12] with
the same Transaction ID as message 1.

Thus we have found that the testbed worked fine, and it was
ready for testing.

V. DNS64 IMPLEMENTATION SELECTION AND SETUP
We have laid down our implementations selection guidelines

in [2] as follows:
“As for the implementations, we only deal with those that are

free software [25] (also called open source [26]) for multiple
reasons:
 The licenses of certain vendors (e.g. [27] and [28]) do

not allow reverse engineering and sometimes even the
publication of benchmarking results is prohibited.

 Free software can be used by anyone for any purposes
thus our results can be helpful for anyone.

 Free software is available free of charge for us, too.
Within the category of the free software implementations, we

Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed.

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

JUNE 2018 • VOLUME X • NUMBER 218

INFOCOMMUNICATIONS JOURNAL

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2018 • VOLUME X • NUMBER 2 19

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



6
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

give further priority to those, which are used widespread and/or
are known to be stable and high performance (if such
information is available).” [2]

Although several DNS implementations exist, only very few
of them can do DNS64, thus finding such DNS64
implementations was not an easy task. We selected the
following DNS64 implementations for testing:

1. BIND 9.9.59+deb8u12Debian [24]
2. TOTD 1.5.2 (referred later as OLDTOTD) [29]
3. TOTD 1.5.3 (referred later as NEWTOTD) [30]
4. mtd64ng 1.1.0 [31]
5. PowerDNS Recursor 3.6.2 [32]
6. Unbound 1.6.0 [33]
Remarks:
 Including BIND9 was a must as it is the de facto industry

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too.

 Some years before we have prepared a patch for TOTD,
which resolved some security issues [30], and now we
tested its both patched and unpatched versions.

 We also have a new tiny DNS64 proxy called mtd64ng
[31], which is currently developed in an ongoing
university project. Although it is not yet ready for
deployment, we have also included it.

We have already introduced the DNS64 configuration of
BIND in section IV.D.1.

The configuration of both versions of TOTD was done in the
 file, the relevant settings
were:



The configuration of the mtd64ng DNS proxy was done in
the  file, where the relevant settings
were:




The DNS64 configuration of PowerDNS was a bit more
complex.

In the  file, we made
the following relevant settings:





The content of the  file
was:






As for Unbound, its 1.4.22 version distributed in Debian 8.9
did not contain the DNS64 module, which was included from
its next version, namely 1.5.0. Therefore we upgraded the
 host to Debian 9.3 after the execution of all the

experiments with the other DNS64 implementations.
As for its configuration, we have added the following lines

to the  file:









VI. TRANSACTION ID PREDICTION VULNERABILITY
TESTING

 
We extended the configuration of our testbed to be able to

examine the Transaction IDs of a high number of messages
even if the examined DNS64 implementations use caching.

 
To be able to perform a high number of tests, we needed a

name space which can be generated systematically. We have
found that the name space used in our earlier DNS64 tests [34]
would be appropriate. It was the following name space:

10abc.dns64perf.test, where a, b, c are integers from the
[0, 255] interval.

We have used only the 100{0..255}{0..225} part of it. For
generating the zone file, we used the modified version of the
zone file generator script called , which is
shipped together with the  program (documented
in [34] and available from [35]).

The  file of the
authoritative DNS server was modified as follows:





Thus, BIND used our newly generated zone file after its
being restarted.

 
The measurements were performed by the  [34]

program, which used sequential Transaction IDs from 0 to
65535. The command line of the test program was:



The first argument specified the “a” parameter described
above, the second argument meant that the test program needed
to use only one thread, the third one specified the timeout of 1
second, and the last one was the host name of the DNS64 server
to be tested.

The traffic was captured by the  program executed
by the  host, the memory size of which was raised to
256MB, because 128MB was not enough and the 
program exited during the measurement. All the packets from
the  interface that matched the   capture filter
were saved to a file. The following command line was used:



7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

JUNE 2018 • VOLUME X • NUMBER 220

INFOCOMMUNICATIONS JOURNAL

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

7
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

where the  string was replaced by the name of the tested
DNS64 implementation.

 
Predictability of the Transaction IDs is a hard question. E.g.

if pseudorandom numbers are used that were generated by a
linear congruential generator (LCG), then they are predictable.
There are a high number of methods described for testing
randomness both in university lecture notes [36] and research
papers [37].

Since our solution of using a testbed ensures us full control
of the testing method, and gives us access to the raw results, we
have the possibility to use multiple methods for evaluation if
needed. We decided to use first a simple, graphical method,
which is somewhat similar to that of the earlier mentioned
entropy tester of DNSOARC [19], but we contend that our

method is more thorough than that.
We have checked two kinds of correlations using

visualization. Before introducing them, let us define some
notations first. Let  denote the ordinal number of a message in
the message sequence introduced in section IV.E, where  is in
[1, 6]. Let  denote the ordinal number of the AAAA record
request sent by the  program, where  is in [0,
65535]. Let  denote the Transaction ID of the th message
from the six messages used to resolve the th query of the
 program. As the test program uses sequential
Transaction IDs from 0, it is sure that:  =  = .

We use two graphs. An (x, y) plot of the (, ) pairs may
reveal correlation between the Transaction ID used by the
 program and the first Transaction ID generated
by the DNS64 program. An (x, y) plot of the (, ) pairs may

Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right)

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2018 • VOLUME X • NUMBER 2 21

10
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

be used to perform multiple tests with a different domain name
in each test. It is for convenience: when multiple tests are done,
the DNS64 server may cache the previously used domain names
and it is easier to use a different one for a new test, than
restarting the DNS64 server. Parameter  specifies the number
of queries to be sent. The rest of the parameters are to be
interpreted as that of the original test program, that is,
,  and  specify the timeout value of
the receive function, the IPv6 address (or host name) of the
DNS64 server to be tested and the port number, where the
DNS64 server listens, respectively. (The port number is
optional, its default value is 53.)

The program sends  number of AAAA record requests for
the 100b0.dns64perf.test domain name, where  and 
should be in the [0, 255] interval. After sending all the queries,
it also receives the replies, but it does not use them for any
purposes. It receives them only to avoid the annoying
“Destination Unreachable (Port Unreachable)” ICMP error
messages.

The source code of the test program is available from [39].

 
The concurrently sent multiple equivalent queries

vulnerability tests were performed in the same testbed as the
previous two measurements. Wireshark (executed on the host
computer under Windows) was used to monitor the behavior of
the DNS64 implementations. We captured the packets on the

VMnet1 interface using the  capture filter.
The usual command line was:



(However, sometimes different values were used for , e.g.
3 instead of 0 in the case shown in Fig. 9.)

The results produced by BIND can be seen in Fig. 9.
Although we sent two queries for the AAAA record of the same
domain name, BIND sent only one request to the authoritative
DNS server for the AAAA record of the given domain name.
(Its next query is for the A record.) Thus BIND is not vulnerable
to the “birthday attack”.

The results produced by OLDTOTD can be seen in Fig. 10.
It sent two equivalent queries for the same resource records
(first for AAAA records and then for A records). It can be also
observed that the Transaction IDs were incremented by 0x100,
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9.

We note that none of them is a serious problem, because
TOTD does not use caching. Thus no cache poisoning attack
against TOTD is possible. The attacker can at most achieve that
a single client receives forged answer.

The results produced by NEWTOTD can be seen in Fig. 11.
The only improvement over OLDTOTD is the proper
Transaction ID randomization.

We performed two measurements with mtd64ng because of
the following reasons. As only one CPU core was assigned to
the  virtual machine in the testbed, originally we set the

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND.

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD.

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD.

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

8
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

reveal correlation between the consecutive Transaction IDs
generated by the DNS64 program. For simplicity, we will refer
to the first one as  , and the second one as
.

We used  scripts to extract the appropriate Transaction
IDs from the text file output of the  program, and the
graphs were prepared by .

 
Fig. 5 shows the input correlation and the autocorrelation of

the Transaction IDs of BIND. They seem to be like noise, thus
we can say that no predictability problems were revealed by our
simple evaluation method.

The left graph of Fig. 6 shows the input correlation of the
Transaction IDs of OLDTOTD. The regular patterns indicate
that there is a problem with the predictability of the Transaction

IDs. Before giving the explanation, let us have a look at the
autocorrelation of the Transaction IDs of OLDTOTD on the
right side of Fig. 6. Now, the predictability is even more
deliberate. Let us look into the CSV file containing the (, )
pairs for input correlation checking:

0, 55745
1, 56257
2, 56769
3, 57281
4, 57793
Whereas the  Transaction IDs start from 0 and increase by

1, the  Transaction IDs start from a different number and
increase by 512. The CSV file containing the (, ) pairs for
autocorrelation checking can give us further help:

55745, 56001
56257, 56513

Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right)

Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right)

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

9
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

56769, 57025
57281, 57537
57793, 58049
It is well visible that the consecutive Transaction IDs always

increase by 256. And now we give the explanation. As we
disclosed it in [30], the old version of TOTD generated
sequential numbers as Transaction IDs. The increase of 256 is
the result of the facts that the notebook used for testing has an
Intel CPU, which uses LSB byte order (least significant byte
first), whereas the network byte order is MSB (most significant
byte first). The programmer could have been used the standard
 function for the conversion, but omitting it is just a
feature and not a bug, as Transaction IDs are just identifiers and
they do not convey any special meaning. For more information
about the bug, which randomly caused an unresponsiveness of
the old version of TOTD, and for its correction, please refer to
[30], where we have also described the elimination of its
vulnerability for Transaction ID prediction attack.

Fig. 7 shows the input correlation and autocorrelation of the
Transaction IDs of NEWTOTD. They seem to be like noise,
which is exactly what we expected.

Fig. 8 shows the input correlation and autocorrelation of the
Transaction IDs of mtd64ng. They are two completely
identical graphs, as the two CSV files were found also
completely identical. It is visibly the graph of y=x function,
because mtd64ng reuses the Transaction ID of the received
query and sends both of its own queries with the same
Transaction ID, which is a serious vulnerability.

As we already mentioned, mtd64ng is a result of an ongoing
university project and it not yet ready to be used in production
systems [31].

As for PowerDNS and Unbound, we have also performed the
tests and evaluated the results. All their plots looked like the
plots of BIND or NEWTOTD, thus we can state that we found
no signs of Transaction ID predictability. (We omit the four
plots, because we see no point in including further four “random
art” images.)

VII. SOURCE PORT NUMBER RANDOMNESS TESTING
The results of the Transaction ID prediction tests could have

been used also for port number randomness tests, but 
did not include the port numbers in its output. (Its default output
contains the same data as the Wireshark screen shown in

Fig. 4.) Therefore, we had to make a new series of
measurements using a different command line for  as
follows:





The capture filter ensured that only IPv4 packets sent from
the DNS64 server program at  (with source IP address
10.0.0.2) to the authoritative DNS server program (listening at
port 53 of ) be included. The output file contained only the
source port numbers. As expected, the result files contained
131072 numbers, except for BIND, in the case of which there
were 131073 numbers in the file. We have investigated the case
and found that it was so because BIND also sent a query for the
IP addresses of the root DNS servers. None of the other
implementations did so.

We have summarized our results in Table 2. BIND,
PowerDNS and Unbound follow the guidelines of RFC 5452
[13] and choose a source port number randomly from the largest
available range of [1024, 65535]. Both versions of TOTD use
source port 53 for all outgoing queries. This is trivially
predictable. As for mtd64ng, what can be seen from Table 2,
is that the source port number range is [32768, 61000]. What
cannot be seen from the table is that the same source ports are
used for querying the AAAA record and the A record for the
same domain name. This is deliberate from the raw
measurement results, we show only the first 6 lines:

48926
48926
41556
41556
42713
42713
And it is also deliberate from the source code [38]. Although,

this phenomenon does not mean predictability in the bind
spoofing attack model, we recommend the usage of different
source ports for the AAAA and A record queries.

It can also be seen from the source code, that mtd64ng
entrusts the source port selection to the operating system. It can
be satisfactory, if the operating system complies with RFC 6056
[14], but we contend that is safer if source port randomization
is done by the DNS or DNS64 implementation itself.

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY
TESTING

To be able to test, whether the examined DNS64
implementations send multiple equivalent queries concurrently,
we had to modify the test program so that it can send multiple
queries for the same domain name.

      


The  [35] test program was used as a starting
point of our new  program. Its arguments
are: , , ,  and . Parameter  can

Table 2. Source Port Randomness Test Results

DNS64
Implementation

source ports observed in the experiments

minimum maximum std. dev.

BIND 1024 65535 18635

OLDTOTD 53 53 0

NEWTOTD 53 53 0

mtd64ng 32768 61000 8136

PowerDNS 1025 65534 18655

Unbound 1024 65535 17467

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

JUNE 2018 • VOLUME X • NUMBER 222

INFOCOMMUNICATIONS JOURNAL

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

10
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

be used to perform multiple tests with a different domain name
in each test. It is for convenience: when multiple tests are done,
the DNS64 server may cache the previously used domain names
and it is easier to use a different one for a new test, than
restarting the DNS64 server. Parameter  specifies the number
of queries to be sent. The rest of the parameters are to be
interpreted as that of the original test program, that is,
,  and  specify the timeout value of
the receive function, the IPv6 address (or host name) of the
DNS64 server to be tested and the port number, where the
DNS64 server listens, respectively. (The port number is
optional, its default value is 53.)

The program sends  number of AAAA record requests for
the 100b0.dns64perf.test domain name, where  and 
should be in the [0, 255] interval. After sending all the queries,
it also receives the replies, but it does not use them for any
purposes. It receives them only to avoid the annoying
“Destination Unreachable (Port Unreachable)” ICMP error
messages.

The source code of the test program is available from [39].

 
The concurrently sent multiple equivalent queries

vulnerability tests were performed in the same testbed as the
previous two measurements. Wireshark (executed on the host
computer under Windows) was used to monitor the behavior of
the DNS64 implementations. We captured the packets on the

VMnet1 interface using the  capture filter.
The usual command line was:



(However, sometimes different values were used for , e.g.
3 instead of 0 in the case shown in Fig. 9.)

The results produced by BIND can be seen in Fig. 9.
Although we sent two queries for the AAAA record of the same
domain name, BIND sent only one request to the authoritative
DNS server for the AAAA record of the given domain name.
(Its next query is for the A record.) Thus BIND is not vulnerable
to the “birthday attack”.

The results produced by OLDTOTD can be seen in Fig. 10.
It sent two equivalent queries for the same resource records
(first for AAAA records and then for A records). It can be also
observed that the Transaction IDs were incremented by 0x100,
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9.

We note that none of them is a serious problem, because
TOTD does not use caching. Thus no cache poisoning attack
against TOTD is possible. The attacker can at most achieve that
a single client receives forged answer.

The results produced by NEWTOTD can be seen in Fig. 11.
The only improvement over OLDTOTD is the proper
Transaction ID randomization.

We performed two measurements with mtd64ng because of
the following reasons. As only one CPU core was assigned to
the  virtual machine in the testbed, originally we set the

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND.

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD.

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD.

10
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

be used to perform multiple tests with a different domain name
in each test. It is for convenience: when multiple tests are done,
the DNS64 server may cache the previously used domain names
and it is easier to use a different one for a new test, than
restarting the DNS64 server. Parameter  specifies the number
of queries to be sent. The rest of the parameters are to be
interpreted as that of the original test program, that is,
,  and  specify the timeout value of
the receive function, the IPv6 address (or host name) of the
DNS64 server to be tested and the port number, where the
DNS64 server listens, respectively. (The port number is
optional, its default value is 53.)

The program sends  number of AAAA record requests for
the 100b0.dns64perf.test domain name, where  and 
should be in the [0, 255] interval. After sending all the queries,
it also receives the replies, but it does not use them for any
purposes. It receives them only to avoid the annoying
“Destination Unreachable (Port Unreachable)” ICMP error
messages.

The source code of the test program is available from [39].

 
The concurrently sent multiple equivalent queries

vulnerability tests were performed in the same testbed as the
previous two measurements. Wireshark (executed on the host
computer under Windows) was used to monitor the behavior of
the DNS64 implementations. We captured the packets on the

VMnet1 interface using the  capture filter.
The usual command line was:



(However, sometimes different values were used for , e.g.
3 instead of 0 in the case shown in Fig. 9.)

The results produced by BIND can be seen in Fig. 9.
Although we sent two queries for the AAAA record of the same
domain name, BIND sent only one request to the authoritative
DNS server for the AAAA record of the given domain name.
(Its next query is for the A record.) Thus BIND is not vulnerable
to the “birthday attack”.

The results produced by OLDTOTD can be seen in Fig. 10.
It sent two equivalent queries for the same resource records
(first for AAAA records and then for A records). It can be also
observed that the Transaction IDs were incremented by 0x100,
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9.

We note that none of them is a serious problem, because
TOTD does not use caching. Thus no cache poisoning attack
against TOTD is possible. The attacker can at most achieve that
a single client receives forged answer.

The results produced by NEWTOTD can be seen in Fig. 11.
The only improvement over OLDTOTD is the proper
Transaction ID randomization.

We performed two measurements with mtd64ng because of
the following reasons. As only one CPU core was assigned to
the  virtual machine in the testbed, originally we set the

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND.

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD.

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

10
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

be used to perform multiple tests with a different domain name
in each test. It is for convenience: when multiple tests are done,
the DNS64 server may cache the previously used domain names
and it is easier to use a different one for a new test, than
restarting the DNS64 server. Parameter  specifies the number
of queries to be sent. The rest of the parameters are to be
interpreted as that of the original test program, that is,
,  and  specify the timeout value of
the receive function, the IPv6 address (or host name) of the
DNS64 server to be tested and the port number, where the
DNS64 server listens, respectively. (The port number is
optional, its default value is 53.)

The program sends  number of AAAA record requests for
the 100b0.dns64perf.test domain name, where  and 
should be in the [0, 255] interval. After sending all the queries,
it also receives the replies, but it does not use them for any
purposes. It receives them only to avoid the annoying
“Destination Unreachable (Port Unreachable)” ICMP error
messages.

The source code of the test program is available from [39].

 
The concurrently sent multiple equivalent queries

vulnerability tests were performed in the same testbed as the
previous two measurements. Wireshark (executed on the host
computer under Windows) was used to monitor the behavior of
the DNS64 implementations. We captured the packets on the

VMnet1 interface using the  capture filter.
The usual command line was:



(However, sometimes different values were used for , e.g.
3 instead of 0 in the case shown in Fig. 9.)

The results produced by BIND can be seen in Fig. 9.
Although we sent two queries for the AAAA record of the same
domain name, BIND sent only one request to the authoritative
DNS server for the AAAA record of the given domain name.
(Its next query is for the A record.) Thus BIND is not vulnerable
to the “birthday attack”.

The results produced by OLDTOTD can be seen in Fig. 10.
It sent two equivalent queries for the same resource records
(first for AAAA records and then for A records). It can be also
observed that the Transaction IDs were incremented by 0x100,
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9.

We note that none of them is a serious problem, because
TOTD does not use caching. Thus no cache poisoning attack
against TOTD is possible. The attacker can at most achieve that
a single client receives forged answer.

The results produced by NEWTOTD can be seen in Fig. 11.
The only improvement over OLDTOTD is the proper
Transaction ID randomization.

We performed two measurements with mtd64ng because of
the following reasons. As only one CPU core was assigned to
the  virtual machine in the testbed, originally we set the

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND.

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD.

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD.

10
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

be used to perform multiple tests with a different domain name
in each test. It is for convenience: when multiple tests are done,
the DNS64 server may cache the previously used domain names
and it is easier to use a different one for a new test, than
restarting the DNS64 server. Parameter  specifies the number
of queries to be sent. The rest of the parameters are to be
interpreted as that of the original test program, that is,
,  and  specify the timeout value of
the receive function, the IPv6 address (or host name) of the
DNS64 server to be tested and the port number, where the
DNS64 server listens, respectively. (The port number is
optional, its default value is 53.)

The program sends  number of AAAA record requests for
the 100b0.dns64perf.test domain name, where  and 
should be in the [0, 255] interval. After sending all the queries,
it also receives the replies, but it does not use them for any
purposes. It receives them only to avoid the annoying
“Destination Unreachable (Port Unreachable)” ICMP error
messages.

The source code of the test program is available from [39].

 
The concurrently sent multiple equivalent queries

vulnerability tests were performed in the same testbed as the
previous two measurements. Wireshark (executed on the host
computer under Windows) was used to monitor the behavior of
the DNS64 implementations. We captured the packets on the

VMnet1 interface using the  capture filter.
The usual command line was:



(However, sometimes different values were used for , e.g.
3 instead of 0 in the case shown in Fig. 9.)

The results produced by BIND can be seen in Fig. 9.
Although we sent two queries for the AAAA record of the same
domain name, BIND sent only one request to the authoritative
DNS server for the AAAA record of the given domain name.
(Its next query is for the A record.) Thus BIND is not vulnerable
to the “birthday attack”.

The results produced by OLDTOTD can be seen in Fig. 10.
It sent two equivalent queries for the same resource records
(first for AAAA records and then for A records). It can be also
observed that the Transaction IDs were incremented by 0x100,
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9.

We note that none of them is a serious problem, because
TOTD does not use caching. Thus no cache poisoning attack
against TOTD is possible. The attacker can at most achieve that
a single client receives forged answer.

The results produced by NEWTOTD can be seen in Fig. 11.
The only improvement over OLDTOTD is the proper
Transaction ID randomization.

We performed two measurements with mtd64ng because of
the following reasons. As only one CPU core was assigned to
the  virtual machine in the testbed, originally we set the

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND.

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD.

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

10
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

be used to perform multiple tests with a different domain name
in each test. It is for convenience: when multiple tests are done,
the DNS64 server may cache the previously used domain names
and it is easier to use a different one for a new test, than
restarting the DNS64 server. Parameter  specifies the number
of queries to be sent. The rest of the parameters are to be
interpreted as that of the original test program, that is,
,  and  specify the timeout value of
the receive function, the IPv6 address (or host name) of the
DNS64 server to be tested and the port number, where the
DNS64 server listens, respectively. (The port number is
optional, its default value is 53.)

The program sends  number of AAAA record requests for
the 100b0.dns64perf.test domain name, where  and 
should be in the [0, 255] interval. After sending all the queries,
it also receives the replies, but it does not use them for any
purposes. It receives them only to avoid the annoying
“Destination Unreachable (Port Unreachable)” ICMP error
messages.

The source code of the test program is available from [39].

 
The concurrently sent multiple equivalent queries

vulnerability tests were performed in the same testbed as the
previous two measurements. Wireshark (executed on the host
computer under Windows) was used to monitor the behavior of
the DNS64 implementations. We captured the packets on the

VMnet1 interface using the  capture filter.
The usual command line was:



(However, sometimes different values were used for , e.g.
3 instead of 0 in the case shown in Fig. 9.)

The results produced by BIND can be seen in Fig. 9.
Although we sent two queries for the AAAA record of the same
domain name, BIND sent only one request to the authoritative
DNS server for the AAAA record of the given domain name.
(Its next query is for the A record.) Thus BIND is not vulnerable
to the “birthday attack”.

The results produced by OLDTOTD can be seen in Fig. 10.
It sent two equivalent queries for the same resource records
(first for AAAA records and then for A records). It can be also
observed that the Transaction IDs were incremented by 0x100,
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9.

We note that none of them is a serious problem, because
TOTD does not use caching. Thus no cache poisoning attack
against TOTD is possible. The attacker can at most achieve that
a single client receives forged answer.

The results produced by NEWTOTD can be seen in Fig. 11.
The only improvement over OLDTOTD is the proper
Transaction ID randomization.

We performed two measurements with mtd64ng because of
the following reasons. As only one CPU core was assigned to
the  virtual machine in the testbed, originally we set the

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND.

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD.

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2018 • VOLUME X • NUMBER 2 23

12
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

eliminate the possibility of sending out multiple equivalent
queries concurrently.

We note that all the examined DNS64 implementations are
free software [25] (also called open source [26]), thus their
source code may also be studied, as we did it in the case of
TOTD [30]. The significance of our testing method is that it
may also be used for closed source software, or in the cases
when the subject of the study also includes the interaction with
the random number generator of the operating system.

The very same framework could be used for the analysis of
NAT64 gateways.

X. CONCLUSION
We have shown that DNS cache poisoning may be a crucial

vulnerability of DNS64 servers and we have given an
introduction to the three main components of DNS cache
poisoning vulnerability, namely Transaction ID prediction,
source port number prediction, and a birthday paradox based
attack, which is possible if a DNS or DNS64 server sends out
multiple equivalent queries concurrently.

After surveying the available test tools for DNS cache
poisoning vulnerability analysis and pointing out that they are
not suitable for our purposes, we have designed a methodology
and implemented it in a testbed, which can be used for the
systematic testing of DNS or DNS64 implementations, whether
they are susceptible to the above mentioned three
vulnerabilities.

We have selected BIND, PowerDNS, Unbound two versions
of TOTD, and mtd64ng for testing and also presented their
setup. We have carried out their testing concerning the three
possible components of the DNS cache poisoning vulnerability.
We have pointed out several vulnerabilities in TOTD and
mtd64ng. As they do not currently support caching, thus, cache
poisoning is not possible in their cases. As the implementation
of caching is included in the midterm development plans of
mtd64ng, we have also given recommendations for the
elimination of its uncovered vulnerabilities.

As for BIND, PowerDNS, and Unbound, we have not found
any vulnerabilities that could lead to cache poisoning.

REFERENCES
[1] E. Nordmark, R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers”, IETF RFC 4213, October 2005. DOI:
10.17487/rfc4213

[2] G. Lencse, Y. Kadobayashi, “Survey of IPv6 transition
technologies for security analysis”, IEICE Technical Committee
on Internet Architecture (IA) Workshop, Tokyo Japan, Aug. 28,
2017,  vol. 117, no. 187, pp. 19–24.

[3] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, and S.
Yamaguchi, “The STRIDE towards IPv6: A comprehensive
threat model for IPv6 transition technologies”,  
     
, Rome, Feb. 2016. DOI: 10.13140/RG.2.1.2781.6085

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64:
DNS extensions for network address translation from IPv6 clients
to IPv4 servers”, RFC 6147, Apr. 2011. DOI: 10.17487/rfc6147

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:
Network address and protocol translation from IPv6 clients to
IPv4 servers”, IETF RFC 6146, Apr. 2011. DOI:
10.17487/rfc6146

[6] G. Lencse, Y. Kadobayashi, “Methodology for the identification
of potential security issues of different IPv6 transition
technologies: Threat analysis of DNS64 and stateful NAT64”,
 , vol. 77, no. 1, pp. 397411, August 1,
2018, DOI: 10.1016/j.cose.2018.04.012

[7] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache
poisoning”, in      
      
, Singapore, Sep. 7–9, 2010, pp. 466–483, DOI:
10.1007/9783642161612_27

[8] G. Lencse and Y. Kadobayashi, “Testbed for security analysis of
the DNS64 IPv6 transition technology in virtual environment”,
IEICE Communications Society Internet Architecture Workshop,
Tokyo, Japan, Oct. 13, 2017, , vol. 117, no. 239,
pp. 1924.

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, 
, vol. 127, no. 1, pp. 6174, September 1, 2018,
DOI: 10.1016/j.comcom.2018.05.005

[10]R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS
Security Introduction and Requirements”, IETF RFC 4033, Mar.
2005. DOI: 10.17487/rfc4033

[11]J. Linkova, “Let’s talk about IPv6 DNS64 & DNSSEC”, APNIC
Blog, 2016, https://blog.apnic.net/2016/06/09/letstalkipv6
dns64dnssec/

[12]C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010.
DOI: 10.17487/rfc6052

[13]A. Hubert, R. van Mook, “Measures for making DNS more
resilient against forged answers”, IETF RFC 5452, Jan. 2009.
DOI: 10.17487/rfc5452

[14]M. Larsen, F. Gont, “Recommendations for transportprotocol
port randomization”, IETF RFC 6056, Jan. 2011. DOI:
10.17487/rfc6056

Table 3. Summary of the Vulnerability Test Results

DNS64 Implementation

Attack Type

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning

BIND 9.9.5 no problem found no problem found protected no problem found

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable

TOTD 1.5.3 protected vulnerable vulnerable not applicable

mtd64ng 1.1.0 vulnerable vulnerable vulnerable not applicable

PowerDNS 3.6.2 no problem found no problem found protected no problem found

Unbound 1.6.0 no problem found no problem found protected no problem found

10
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

be used to perform multiple tests with a different domain name
in each test. It is for convenience: when multiple tests are done,
the DNS64 server may cache the previously used domain names
and it is easier to use a different one for a new test, than
restarting the DNS64 server. Parameter  specifies the number
of queries to be sent. The rest of the parameters are to be
interpreted as that of the original test program, that is,
,  and  specify the timeout value of
the receive function, the IPv6 address (or host name) of the
DNS64 server to be tested and the port number, where the
DNS64 server listens, respectively. (The port number is
optional, its default value is 53.)

The program sends  number of AAAA record requests for
the 100b0.dns64perf.test domain name, where  and 
should be in the [0, 255] interval. After sending all the queries,
it also receives the replies, but it does not use them for any
purposes. It receives them only to avoid the annoying
“Destination Unreachable (Port Unreachable)” ICMP error
messages.

The source code of the test program is available from [39].

 
The concurrently sent multiple equivalent queries

vulnerability tests were performed in the same testbed as the
previous two measurements. Wireshark (executed on the host
computer under Windows) was used to monitor the behavior of
the DNS64 implementations. We captured the packets on the

VMnet1 interface using the  capture filter.
The usual command line was:



(However, sometimes different values were used for , e.g.
3 instead of 0 in the case shown in Fig. 9.)

The results produced by BIND can be seen in Fig. 9.
Although we sent two queries for the AAAA record of the same
domain name, BIND sent only one request to the authoritative
DNS server for the AAAA record of the given domain name.
(Its next query is for the A record.) Thus BIND is not vulnerable
to the “birthday attack”.

The results produced by OLDTOTD can be seen in Fig. 10.
It sent two equivalent queries for the same resource records
(first for AAAA records and then for A records). It can be also
observed that the Transaction IDs were incremented by 0x100,
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9.

We note that none of them is a serious problem, because
TOTD does not use caching. Thus no cache poisoning attack
against TOTD is possible. The attacker can at most achieve that
a single client receives forged answer.

The results produced by NEWTOTD can be seen in Fig. 11.
The only improvement over OLDTOTD is the proper
Transaction ID randomization.

We performed two measurements with mtd64ng because of
the following reasons. As only one CPU core was assigned to
the  virtual machine in the testbed, originally we set the

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND.

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD.

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

10
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

be used to perform multiple tests with a different domain name
in each test. It is for convenience: when multiple tests are done,
the DNS64 server may cache the previously used domain names
and it is easier to use a different one for a new test, than
restarting the DNS64 server. Parameter  specifies the number
of queries to be sent. The rest of the parameters are to be
interpreted as that of the original test program, that is,
,  and  specify the timeout value of
the receive function, the IPv6 address (or host name) of the
DNS64 server to be tested and the port number, where the
DNS64 server listens, respectively. (The port number is
optional, its default value is 53.)

The program sends  number of AAAA record requests for
the 100b0.dns64perf.test domain name, where  and 
should be in the [0, 255] interval. After sending all the queries,
it also receives the replies, but it does not use them for any
purposes. It receives them only to avoid the annoying
“Destination Unreachable (Port Unreachable)” ICMP error
messages.

The source code of the test program is available from [39].

 
The concurrently sent multiple equivalent queries

vulnerability tests were performed in the same testbed as the
previous two measurements. Wireshark (executed on the host
computer under Windows) was used to monitor the behavior of
the DNS64 implementations. We captured the packets on the

VMnet1 interface using the  capture filter.
The usual command line was:



(However, sometimes different values were used for , e.g.
3 instead of 0 in the case shown in Fig. 9.)

The results produced by BIND can be seen in Fig. 9.
Although we sent two queries for the AAAA record of the same
domain name, BIND sent only one request to the authoritative
DNS server for the AAAA record of the given domain name.
(Its next query is for the A record.) Thus BIND is not vulnerable
to the “birthday attack”.

The results produced by OLDTOTD can be seen in Fig. 10.
It sent two equivalent queries for the same resource records
(first for AAAA records and then for A records). It can be also
observed that the Transaction IDs were incremented by 0x100,
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9.

We note that none of them is a serious problem, because
TOTD does not use caching. Thus no cache poisoning attack
against TOTD is possible. The attacker can at most achieve that
a single client receives forged answer.

The results produced by NEWTOTD can be seen in Fig. 11.
The only improvement over OLDTOTD is the proper
Transaction ID randomization.

We performed two measurements with mtd64ng because of
the following reasons. As only one CPU core was assigned to
the  virtual machine in the testbed, originally we set the

Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND.

Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD.

Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

11
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

number of working threads of mtd64ng to 1. Due to this
setting, mtd64ng serialized the processing of the requests from
our test program, as shown in Fig. 12. However, the DNS64
server of a large network with a high number of users should
use multiple threads, therefore we executed the test also with
two threads. The results in Fig. 13 reveal that mtd64ng sends
separate AAAA and A record requests for each client request.
Although mtd64ng currently does not support caching, thus it
is not a serious vulnerability, the problem must be addressed
later, because including caching is among the midterm
development plans of mtd64ng.

The results of PowerDNS and Unbound are shown in Fig. 14
and Fig. 15, respectively. None of them send out multiple
equivalent queries, thus they are not vulnerable to birthday
attacks.

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION
We have summarized the results of the three kind of

measurements in Table 3. As for BIND, PowerDNS, and
Unbound, we have not found any vulnerabilities that could lead
to cache poisoning. Although TOTD and mtd64ng have
several vulnerabilities that could lead to cache poisoning, they
do not implement caching, thus cache poisoning is not possible
in their cases.

As the implementation of caching is included in the midterm
development plans of mtd64ng, the protection against all three
vulnerabilities must also be included. We recommend the usage
of cryptographically secure random number generators [40] for
generating Transaction IDs and source port numbers. The
elimination of the vulnerability to birthday attacks seems to be
a more difficult problem, as now the performance of mtd64ng
benefits from the solution that the requests from the clients are
not stored in a central database, but they are distributed to the
working threads. However, it will be necessary to centrally keep
track of the queries sent by mtd64ng to the authoritative DNS
servers and are currently awaiting for an answer, in order to

Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread.

Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads.

Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS.

Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound.

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

JUNE 2018 • VOLUME X • NUMBER 224

INFOCOMMUNICATIONS JOURNAL

12
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

eliminate the possibility of sending out multiple equivalent
queries concurrently.

We note that all the examined DNS64 implementations are
free software [25] (also called open source [26]), thus their
source code may also be studied, as we did it in the case of
TOTD [30]. The significance of our testing method is that it
may also be used for closed source software, or in the cases
when the subject of the study also includes the interaction with
the random number generator of the operating system.

The very same framework could be used for the analysis of
NAT64 gateways.

X. CONCLUSION
We have shown that DNS cache poisoning may be a crucial

vulnerability of DNS64 servers and we have given an
introduction to the three main components of DNS cache
poisoning vulnerability, namely Transaction ID prediction,
source port number prediction, and a birthday paradox based
attack, which is possible if a DNS or DNS64 server sends out
multiple equivalent queries concurrently.

After surveying the available test tools for DNS cache
poisoning vulnerability analysis and pointing out that they are
not suitable for our purposes, we have designed a methodology
and implemented it in a testbed, which can be used for the
systematic testing of DNS or DNS64 implementations, whether
they are susceptible to the above mentioned three
vulnerabilities.

We have selected BIND, PowerDNS, Unbound two versions
of TOTD, and mtd64ng for testing and also presented their
setup. We have carried out their testing concerning the three
possible components of the DNS cache poisoning vulnerability.
We have pointed out several vulnerabilities in TOTD and
mtd64ng. As they do not currently support caching, thus, cache
poisoning is not possible in their cases. As the implementation
of caching is included in the midterm development plans of
mtd64ng, we have also given recommendations for the
elimination of its uncovered vulnerabilities.

As for BIND, PowerDNS, and Unbound, we have not found
any vulnerabilities that could lead to cache poisoning.

REFERENCES
[1] E. Nordmark, R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers”, IETF RFC 4213, October 2005. DOI:
10.17487/rfc4213

[2] G. Lencse, Y. Kadobayashi, “Survey of IPv6 transition
technologies for security analysis”, IEICE Technical Committee
on Internet Architecture (IA) Workshop, Tokyo Japan, Aug. 28,
2017,  vol. 117, no. 187, pp. 19–24.

[3] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, and S.
Yamaguchi, “The STRIDE towards IPv6: A comprehensive
threat model for IPv6 transition technologies”,  
     
, Rome, Feb. 2016. DOI: 10.13140/RG.2.1.2781.6085

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64:
DNS extensions for network address translation from IPv6 clients
to IPv4 servers”, RFC 6147, Apr. 2011. DOI: 10.17487/rfc6147

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:
Network address and protocol translation from IPv6 clients to
IPv4 servers”, IETF RFC 6146, Apr. 2011. DOI:
10.17487/rfc6146

[6] G. Lencse, Y. Kadobayashi, “Methodology for the identification
of potential security issues of different IPv6 transition
technologies: Threat analysis of DNS64 and stateful NAT64”,
 , vol. 77, no. 1, pp. 397411, August 1,
2018, DOI: 10.1016/j.cose.2018.04.012

[7] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache
poisoning”, in      
      
, Singapore, Sep. 7–9, 2010, pp. 466–483, DOI:
10.1007/9783642161612_27

[8] G. Lencse and Y. Kadobayashi, “Testbed for security analysis of
the DNS64 IPv6 transition technology in virtual environment”,
IEICE Communications Society Internet Architecture Workshop,
Tokyo, Japan, Oct. 13, 2017, , vol. 117, no. 239,
pp. 1924.

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, 
, vol. 127, no. 1, pp. 6174, September 1, 2018,
DOI: 10.1016/j.comcom.2018.05.005

[10]R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS
Security Introduction and Requirements”, IETF RFC 4033, Mar.
2005. DOI: 10.17487/rfc4033

[11]J. Linkova, “Let’s talk about IPv6 DNS64 & DNSSEC”, APNIC
Blog, 2016, https://blog.apnic.net/2016/06/09/letstalkipv6
dns64dnssec/

[12]C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010.
DOI: 10.17487/rfc6052

[13]A. Hubert, R. van Mook, “Measures for making DNS more
resilient against forged answers”, IETF RFC 5452, Jan. 2009.
DOI: 10.17487/rfc5452

[14]M. Larsen, F. Gont, “Recommendations for transportprotocol
port randomization”, IETF RFC 6056, Jan. 2011. DOI:
10.17487/rfc6056

Table 3. Summary of the Vulnerability Test Results

DNS64 Implementation

Attack Type

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning

BIND 9.9.5 no problem found no problem found protected no problem found

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable

TOTD 1.5.3 protected vulnerable vulnerable not applicable

mtd64ng 1.1.0 vulnerable vulnerable vulnerable not applicable

PowerDNS 3.6.2 no problem found no problem found protected no problem found

Unbound 1.6.0 no problem found no problem found protected no problem found

12
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

eliminate the possibility of sending out multiple equivalent
queries concurrently.

We note that all the examined DNS64 implementations are
free software [25] (also called open source [26]), thus their
source code may also be studied, as we did it in the case of
TOTD [30]. The significance of our testing method is that it
may also be used for closed source software, or in the cases
when the subject of the study also includes the interaction with
the random number generator of the operating system.

The very same framework could be used for the analysis of
NAT64 gateways.

X. CONCLUSION
We have shown that DNS cache poisoning may be a crucial

vulnerability of DNS64 servers and we have given an
introduction to the three main components of DNS cache
poisoning vulnerability, namely Transaction ID prediction,
source port number prediction, and a birthday paradox based
attack, which is possible if a DNS or DNS64 server sends out
multiple equivalent queries concurrently.

After surveying the available test tools for DNS cache
poisoning vulnerability analysis and pointing out that they are
not suitable for our purposes, we have designed a methodology
and implemented it in a testbed, which can be used for the
systematic testing of DNS or DNS64 implementations, whether
they are susceptible to the above mentioned three
vulnerabilities.

We have selected BIND, PowerDNS, Unbound two versions
of TOTD, and mtd64ng for testing and also presented their
setup. We have carried out their testing concerning the three
possible components of the DNS cache poisoning vulnerability.
We have pointed out several vulnerabilities in TOTD and
mtd64ng. As they do not currently support caching, thus, cache
poisoning is not possible in their cases. As the implementation
of caching is included in the midterm development plans of
mtd64ng, we have also given recommendations for the
elimination of its uncovered vulnerabilities.

As for BIND, PowerDNS, and Unbound, we have not found
any vulnerabilities that could lead to cache poisoning.

REFERENCES
[1] E. Nordmark, R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers”, IETF RFC 4213, October 2005. DOI:
10.17487/rfc4213

[2] G. Lencse, Y. Kadobayashi, “Survey of IPv6 transition
technologies for security analysis”, IEICE Technical Committee
on Internet Architecture (IA) Workshop, Tokyo Japan, Aug. 28,
2017,  vol. 117, no. 187, pp. 19–24.

[3] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, and S.
Yamaguchi, “The STRIDE towards IPv6: A comprehensive
threat model for IPv6 transition technologies”,  
     
, Rome, Feb. 2016. DOI: 10.13140/RG.2.1.2781.6085

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64:
DNS extensions for network address translation from IPv6 clients
to IPv4 servers”, RFC 6147, Apr. 2011. DOI: 10.17487/rfc6147

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:
Network address and protocol translation from IPv6 clients to
IPv4 servers”, IETF RFC 6146, Apr. 2011. DOI:
10.17487/rfc6146

[6] G. Lencse, Y. Kadobayashi, “Methodology for the identification
of potential security issues of different IPv6 transition
technologies: Threat analysis of DNS64 and stateful NAT64”,
 , vol. 77, no. 1, pp. 397411, August 1,
2018, DOI: 10.1016/j.cose.2018.04.012

[7] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache
poisoning”, in      
      
, Singapore, Sep. 7–9, 2010, pp. 466–483, DOI:
10.1007/9783642161612_27

[8] G. Lencse and Y. Kadobayashi, “Testbed for security analysis of
the DNS64 IPv6 transition technology in virtual environment”,
IEICE Communications Society Internet Architecture Workshop,
Tokyo, Japan, Oct. 13, 2017, , vol. 117, no. 239,
pp. 1924.

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, 
, vol. 127, no. 1, pp. 6174, September 1, 2018,
DOI: 10.1016/j.comcom.2018.05.005

[10]R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS
Security Introduction and Requirements”, IETF RFC 4033, Mar.
2005. DOI: 10.17487/rfc4033

[11]J. Linkova, “Let’s talk about IPv6 DNS64 & DNSSEC”, APNIC
Blog, 2016, https://blog.apnic.net/2016/06/09/letstalkipv6
dns64dnssec/

[12]C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010.
DOI: 10.17487/rfc6052

[13]A. Hubert, R. van Mook, “Measures for making DNS more
resilient against forged answers”, IETF RFC 5452, Jan. 2009.
DOI: 10.17487/rfc5452

[14]M. Larsen, F. Gont, “Recommendations for transportprotocol
port randomization”, IETF RFC 6056, Jan. 2011. DOI:
10.17487/rfc6056

Table 3. Summary of the Vulnerability Test Results

DNS64 Implementation

Attack Type

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning

BIND 9.9.5 no problem found no problem found protected no problem found

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable

TOTD 1.5.3 protected vulnerable vulnerable not applicable

mtd64ng 1.1.0 vulnerable vulnerable vulnerable not applicable

PowerDNS 3.6.2 no problem found no problem found protected no problem found

Unbound 1.6.0 no problem found no problem found protected no problem found

12
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

eliminate the possibility of sending out multiple equivalent
queries concurrently.

We note that all the examined DNS64 implementations are
free software [25] (also called open source [26]), thus their
source code may also be studied, as we did it in the case of
TOTD [30]. The significance of our testing method is that it
may also be used for closed source software, or in the cases
when the subject of the study also includes the interaction with
the random number generator of the operating system.

The very same framework could be used for the analysis of
NAT64 gateways.

X. CONCLUSION
We have shown that DNS cache poisoning may be a crucial

vulnerability of DNS64 servers and we have given an
introduction to the three main components of DNS cache
poisoning vulnerability, namely Transaction ID prediction,
source port number prediction, and a birthday paradox based
attack, which is possible if a DNS or DNS64 server sends out
multiple equivalent queries concurrently.

After surveying the available test tools for DNS cache
poisoning vulnerability analysis and pointing out that they are
not suitable for our purposes, we have designed a methodology
and implemented it in a testbed, which can be used for the
systematic testing of DNS or DNS64 implementations, whether
they are susceptible to the above mentioned three
vulnerabilities.

We have selected BIND, PowerDNS, Unbound two versions
of TOTD, and mtd64ng for testing and also presented their
setup. We have carried out their testing concerning the three
possible components of the DNS cache poisoning vulnerability.
We have pointed out several vulnerabilities in TOTD and
mtd64ng. As they do not currently support caching, thus, cache
poisoning is not possible in their cases. As the implementation
of caching is included in the midterm development plans of
mtd64ng, we have also given recommendations for the
elimination of its uncovered vulnerabilities.

As for BIND, PowerDNS, and Unbound, we have not found
any vulnerabilities that could lead to cache poisoning.

REFERENCES
[1] E. Nordmark, R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers”, IETF RFC 4213, October 2005. DOI:
10.17487/rfc4213

[2] G. Lencse, Y. Kadobayashi, “Survey of IPv6 transition
technologies for security analysis”, IEICE Technical Committee
on Internet Architecture (IA) Workshop, Tokyo Japan, Aug. 28,
2017,  vol. 117, no. 187, pp. 19–24.

[3] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, and S.
Yamaguchi, “The STRIDE towards IPv6: A comprehensive
threat model for IPv6 transition technologies”,  
     
, Rome, Feb. 2016. DOI: 10.13140/RG.2.1.2781.6085

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64:
DNS extensions for network address translation from IPv6 clients
to IPv4 servers”, RFC 6147, Apr. 2011. DOI: 10.17487/rfc6147

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:
Network address and protocol translation from IPv6 clients to
IPv4 servers”, IETF RFC 6146, Apr. 2011. DOI:
10.17487/rfc6146

[6] G. Lencse, Y. Kadobayashi, “Methodology for the identification
of potential security issues of different IPv6 transition
technologies: Threat analysis of DNS64 and stateful NAT64”,
 , vol. 77, no. 1, pp. 397411, August 1,
2018, DOI: 10.1016/j.cose.2018.04.012

[7] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache
poisoning”, in      
      
, Singapore, Sep. 7–9, 2010, pp. 466–483, DOI:
10.1007/9783642161612_27

[8] G. Lencse and Y. Kadobayashi, “Testbed for security analysis of
the DNS64 IPv6 transition technology in virtual environment”,
IEICE Communications Society Internet Architecture Workshop,
Tokyo, Japan, Oct. 13, 2017, , vol. 117, no. 239,
pp. 1924.

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, 
, vol. 127, no. 1, pp. 6174, September 1, 2018,
DOI: 10.1016/j.comcom.2018.05.005

[10]R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS
Security Introduction and Requirements”, IETF RFC 4033, Mar.
2005. DOI: 10.17487/rfc4033

[11]J. Linkova, “Let’s talk about IPv6 DNS64 & DNSSEC”, APNIC
Blog, 2016, https://blog.apnic.net/2016/06/09/letstalkipv6
dns64dnssec/

[12]C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010.
DOI: 10.17487/rfc6052

[13]A. Hubert, R. van Mook, “Measures for making DNS more
resilient against forged answers”, IETF RFC 5452, Jan. 2009.
DOI: 10.17487/rfc5452

[14]M. Larsen, F. Gont, “Recommendations for transportprotocol
port randomization”, IETF RFC 6056, Jan. 2011. DOI:
10.17487/rfc6056

Table 3. Summary of the Vulnerability Test Results

DNS64 Implementation

Attack Type

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning

BIND 9.9.5 no problem found no problem found protected no problem found

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable

TOTD 1.5.3 protected vulnerable vulnerable not applicable

mtd64ng 1.1.0 vulnerable vulnerable vulnerable not applicable

PowerDNS 3.6.2 no problem found no problem found protected no problem found

Unbound 1.6.0 no problem found no problem found protected no problem found

12
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

eliminate the possibility of sending out multiple equivalent
queries concurrently.

We note that all the examined DNS64 implementations are
free software [25] (also called open source [26]), thus their
source code may also be studied, as we did it in the case of
TOTD [30]. The significance of our testing method is that it
may also be used for closed source software, or in the cases
when the subject of the study also includes the interaction with
the random number generator of the operating system.

The very same framework could be used for the analysis of
NAT64 gateways.

X. CONCLUSION
We have shown that DNS cache poisoning may be a crucial

vulnerability of DNS64 servers and we have given an
introduction to the three main components of DNS cache
poisoning vulnerability, namely Transaction ID prediction,
source port number prediction, and a birthday paradox based
attack, which is possible if a DNS or DNS64 server sends out
multiple equivalent queries concurrently.

After surveying the available test tools for DNS cache
poisoning vulnerability analysis and pointing out that they are
not suitable for our purposes, we have designed a methodology
and implemented it in a testbed, which can be used for the
systematic testing of DNS or DNS64 implementations, whether
they are susceptible to the above mentioned three
vulnerabilities.

We have selected BIND, PowerDNS, Unbound two versions
of TOTD, and mtd64ng for testing and also presented their
setup. We have carried out their testing concerning the three
possible components of the DNS cache poisoning vulnerability.
We have pointed out several vulnerabilities in TOTD and
mtd64ng. As they do not currently support caching, thus, cache
poisoning is not possible in their cases. As the implementation
of caching is included in the midterm development plans of
mtd64ng, we have also given recommendations for the
elimination of its uncovered vulnerabilities.

As for BIND, PowerDNS, and Unbound, we have not found
any vulnerabilities that could lead to cache poisoning.

REFERENCES
[1] E. Nordmark, R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers”, IETF RFC 4213, October 2005. DOI:
10.17487/rfc4213

[2] G. Lencse, Y. Kadobayashi, “Survey of IPv6 transition
technologies for security analysis”, IEICE Technical Committee
on Internet Architecture (IA) Workshop, Tokyo Japan, Aug. 28,
2017,  vol. 117, no. 187, pp. 19–24.

[3] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, and S.
Yamaguchi, “The STRIDE towards IPv6: A comprehensive
threat model for IPv6 transition technologies”,  
     
, Rome, Feb. 2016. DOI: 10.13140/RG.2.1.2781.6085

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64:
DNS extensions for network address translation from IPv6 clients
to IPv4 servers”, RFC 6147, Apr. 2011. DOI: 10.17487/rfc6147

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:
Network address and protocol translation from IPv6 clients to
IPv4 servers”, IETF RFC 6146, Apr. 2011. DOI:
10.17487/rfc6146

[6] G. Lencse, Y. Kadobayashi, “Methodology for the identification
of potential security issues of different IPv6 transition
technologies: Threat analysis of DNS64 and stateful NAT64”,
 , vol. 77, no. 1, pp. 397411, August 1,
2018, DOI: 10.1016/j.cose.2018.04.012

[7] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache
poisoning”, in      
      
, Singapore, Sep. 7–9, 2010, pp. 466–483, DOI:
10.1007/9783642161612_27

[8] G. Lencse and Y. Kadobayashi, “Testbed for security analysis of
the DNS64 IPv6 transition technology in virtual environment”,
IEICE Communications Society Internet Architecture Workshop,
Tokyo, Japan, Oct. 13, 2017, , vol. 117, no. 239,
pp. 1924.

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, 
, vol. 127, no. 1, pp. 6174, September 1, 2018,
DOI: 10.1016/j.comcom.2018.05.005

[10]R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS
Security Introduction and Requirements”, IETF RFC 4033, Mar.
2005. DOI: 10.17487/rfc4033

[11]J. Linkova, “Let’s talk about IPv6 DNS64 & DNSSEC”, APNIC
Blog, 2016, https://blog.apnic.net/2016/06/09/letstalkipv6
dns64dnssec/

[12]C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010.
DOI: 10.17487/rfc6052

[13]A. Hubert, R. van Mook, “Measures for making DNS more
resilient against forged answers”, IETF RFC 5452, Jan. 2009.
DOI: 10.17487/rfc5452

[14]M. Larsen, F. Gont, “Recommendations for transportprotocol
port randomization”, IETF RFC 6056, Jan. 2011. DOI:
10.17487/rfc6056

Table 3. Summary of the Vulnerability Test Results

DNS64 Implementation

Attack Type

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning

BIND 9.9.5 no problem found no problem found protected no problem found

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable

TOTD 1.5.3 protected vulnerable vulnerable not applicable

mtd64ng 1.1.0 vulnerable vulnerable vulnerable not applicable

PowerDNS 3.6.2 no problem found no problem found protected no problem found

Unbound 1.6.0 no problem found no problem found protected no problem found

13
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

[15]CERT, “Various DNS service implementations generate multiple
simultaneous queries for the same resource record”, Vulnerability
Note VU#457875, [Online]. Available:
https://www.kb.cert.org/vuls/id/457875

[16]D. J. Bernstein, “DNS forgery”, [Online]. Available:
http://cr.yp.to/djbdns/forgery.html

[17]CERT, “Multiple DNS implementations vulnerable to cache
poisoning”, Vulnerability Note VU#800113 [Online]. Available:
http://www.kb.cert.org/vuls/id/800113

[18]S. Friendl, “An Illustrated Guide to the Kaminsky DNS
Vulnerability”, , [Online]. Available:
http://unixwiz.net/techtips/iguidekaminskydnsvuln.html

[19]DNSOARC, “Test my DNS”, web based Transaction ID and
source port randomness tester, [Online]. Available:
https://www.dnsoarc.net/oarc/services/dnsentropy

[20]InfosecEvents, “More DNS cache poisoning testing tools”,
[Online]. Available: http://infosecevents.net/2008/07/24/more
dnscachepoisoningtestingtools/

[21]Kim, Davies, “DNS cache poisoning vulnerability: Explanation
and remedies”, ICANN presentation, Viareggio, Italy, Oct. 2008,
[Online]. Available:
https://www.iana.org/about/presentations/daviesviareggio
entropyvuln081002.pdf

[22]G. Lencse, S. Répás, “Benchmarking further single board
computers for building a mini supercomputer for simulation of
telecommunication systems”, 
     ,
vol. 5. no. 1, 2016, pp. 29–36, DOI: 10.11601/ijates.v5i1.138

[23]D. Bakai, “DebianVM”, [Online]. Available:
https://git.sch.bme.hu/bakaid/debianvm

[24]Internet Systems Consortium, “BIND: Versatile, Classic,
Complete Name Server Software”, [Online]. Available:
https://www.isc.org/downloads/bind

[25]Free Software Foundation, “The free software definition”,
[Online]. Available: http://www.gnu.org/philosophy/free
sw.en.html

[26]Open Source Initiative, “The open source definition”, [Online].
Available: http://opensource.org/docs/osd

[27]Cisco, “End user license agreement”, [Online]. Available:
http://www.cisco.com/c/en/us/products/enduserlicense
agreement.html

[28]Juniper Networks, “End user license agreement”, [Online].
Available: http://www.juniper.net/support/eula/

[29]The 6NET Consortium, Ed. M. Dunmore, “An IPv6 Deployment
Guide”, Sep. 2005. [Online]. Available:
http://www.6net.org/book/deploymentguide.pdf

[30]G. Lencse and S. Répás, “Improving the performance and security
of the TOTD DNS64 implementation”,   
 (, Argentina), vol. 14, no. 1, Apr.
2014, ISSN: 16666038, pp. 9–15.
http://journal.info.unlp.edu.ar/journal/

[31]G. Lencse and D. Bakai, “Design, implementation and
performance estimation of mtd64ng a new tiny DNS64 proxy”,
, vol. 25, no.
2, Jun. 2017, pp. 91–102, DOI:10.20532/cit.2017.1003419

[32]Powerdns.com BV, “PowerDNS”, [Online]. Available:
http://www.powerdns.com

[33]NLnet Labs, “Unbound”, [Online]. Available: http://unbound.net
[34]G. Lencse, “Test program for the performance analysis of DNS64

servers”,     
, vol.
4, no. 3, 2015, pp 60–65. DOI: 10.11601/ijates.v4i3.121

[35]G. Lencse, “dns64perf source code”,
http://ipv6.tilb.sze.hu/dns64perf/

[36]R. Jain, “Testing random number generators”, Washington
University, Saint Louis, lecture notes, 2008, [Online]. Available:
https://www.cse.wustl.edu/~jain/cse56708/ftp/k_27trg.pdf

[37]I. Petrila, V. Manta, F. Ungureanu, “Uniformity and correlation
test parameters for random numbers generators”, 
      
, Sinaia, Romania, Oct. 17–19, 2014, DOI:
10.1109/ICSTCC.2014.6982421

[38]D. Bakai, “mtd64ng: A lightweight multithreaded C++11
DNS64 server”, [Online]. Available:
https://github.com/bakaid/mtd64ng/

[39]G. Lencse, “birthdaytest source code”,
http://ipv6.tilb.sze.hu/DNSbirthdaytest/

[40]M. Welschenbach, “Large Random Numbers”, In: 
    2nd Ed, Apress, Berkeley, CA, 2013. DOI:
10.1007/9781430250999_12

  received his MSc and
PhD in computer science from the
Budapest University of Technology and
Economics, Budapest, Hungary in 1994
and 2001, respectively.

He has been working full time for the
Department of Telecommunications,
Széchenyi István University, Győr,
Hungary since 1997. Now, he is an

Associate Professor. He has been working part time for the
Department of Networked Systems and Services, Budapest
University of Technology and Economics, Budapest, Hungary
as a Senior Research Fellow since 2005. At the time of writing
this paper he was a Guest Researcher at the Laboratory for
Cyber Resilience, Nara Institute of Science and Technology,
Japan, where his research area was the security analysis of IPv6
transition technologies.

Dr. Lencse is a member of IEICE (Institute of Electronics,
Information and Communication Engineers, Japan).

  received his
Ph.D. degree in computer science from
Osaka University, Japan, in 1997.

He is currently a Professor in the
Graduate School of Information
Science, Nara Institute of Science and
Technology, Japan. Since 2013, he has
also been working as the Rapporteur of
ITUT Q.4/17 for cybersecurity

standardization. His research interests include cybersecurity,
web security, and distributed systems.

Dr. Kadobayashi is a member of IEEE Communications
society.

13
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

[15]CERT, “Various DNS service implementations generate multiple
simultaneous queries for the same resource record”, Vulnerability
Note VU#457875, [Online]. Available:
https://www.kb.cert.org/vuls/id/457875

[16]D. J. Bernstein, “DNS forgery”, [Online]. Available:
http://cr.yp.to/djbdns/forgery.html

[17]CERT, “Multiple DNS implementations vulnerable to cache
poisoning”, Vulnerability Note VU#800113 [Online]. Available:
http://www.kb.cert.org/vuls/id/800113

[18]S. Friendl, “An Illustrated Guide to the Kaminsky DNS
Vulnerability”, , [Online]. Available:
http://unixwiz.net/techtips/iguidekaminskydnsvuln.html

[19]DNSOARC, “Test my DNS”, web based Transaction ID and
source port randomness tester, [Online]. Available:
https://www.dnsoarc.net/oarc/services/dnsentropy

[20]InfosecEvents, “More DNS cache poisoning testing tools”,
[Online]. Available: http://infosecevents.net/2008/07/24/more
dnscachepoisoningtestingtools/

[21]Kim, Davies, “DNS cache poisoning vulnerability: Explanation
and remedies”, ICANN presentation, Viareggio, Italy, Oct. 2008,
[Online]. Available:
https://www.iana.org/about/presentations/daviesviareggio
entropyvuln081002.pdf

[22]G. Lencse, S. Répás, “Benchmarking further single board
computers for building a mini supercomputer for simulation of
telecommunication systems”, 
     ,
vol. 5. no. 1, 2016, pp. 29–36, DOI: 10.11601/ijates.v5i1.138

[23]D. Bakai, “DebianVM”, [Online]. Available:
https://git.sch.bme.hu/bakaid/debianvm

[24]Internet Systems Consortium, “BIND: Versatile, Classic,
Complete Name Server Software”, [Online]. Available:
https://www.isc.org/downloads/bind

[25]Free Software Foundation, “The free software definition”,
[Online]. Available: http://www.gnu.org/philosophy/free
sw.en.html

[26]Open Source Initiative, “The open source definition”, [Online].
Available: http://opensource.org/docs/osd

[27]Cisco, “End user license agreement”, [Online]. Available:
http://www.cisco.com/c/en/us/products/enduserlicense
agreement.html

[28]Juniper Networks, “End user license agreement”, [Online].
Available: http://www.juniper.net/support/eula/

[29]The 6NET Consortium, Ed. M. Dunmore, “An IPv6 Deployment
Guide”, Sep. 2005. [Online]. Available:
http://www.6net.org/book/deploymentguide.pdf

[30]G. Lencse and S. Répás, “Improving the performance and security
of the TOTD DNS64 implementation”,   
 (, Argentina), vol. 14, no. 1, Apr.
2014, ISSN: 16666038, pp. 9–15.
http://journal.info.unlp.edu.ar/journal/

[31]G. Lencse and D. Bakai, “Design, implementation and
performance estimation of mtd64ng a new tiny DNS64 proxy”,
, vol. 25, no.
2, Jun. 2017, pp. 91–102, DOI:10.20532/cit.2017.1003419

[32]Powerdns.com BV, “PowerDNS”, [Online]. Available:
http://www.powerdns.com

[33]NLnet Labs, “Unbound”, [Online]. Available: http://unbound.net
[34]G. Lencse, “Test program for the performance analysis of DNS64

servers”,     
, vol.
4, no. 3, 2015, pp 60–65. DOI: 10.11601/ijates.v4i3.121

[35]G. Lencse, “dns64perf source code”,
http://ipv6.tilb.sze.hu/dns64perf/

[36]R. Jain, “Testing random number generators”, Washington
University, Saint Louis, lecture notes, 2008, [Online]. Available:
https://www.cse.wustl.edu/~jain/cse56708/ftp/k_27trg.pdf

[37]I. Petrila, V. Manta, F. Ungureanu, “Uniformity and correlation
test parameters for random numbers generators”, 
      
, Sinaia, Romania, Oct. 17–19, 2014, DOI:
10.1109/ICSTCC.2014.6982421

[38]D. Bakai, “mtd64ng: A lightweight multithreaded C++11
DNS64 server”, [Online]. Available:
https://github.com/bakaid/mtd64ng/

[39]G. Lencse, “birthdaytest source code”,
http://ipv6.tilb.sze.hu/DNSbirthdaytest/

[40]M. Welschenbach, “Large Random Numbers”, In: 
    2nd Ed, Apress, Berkeley, CA, 2013. DOI:
10.1007/9781430250999_12

  received his MSc and
PhD in computer science from the
Budapest University of Technology and
Economics, Budapest, Hungary in 1994
and 2001, respectively.

He has been working full time for the
Department of Telecommunications,
Széchenyi István University, Győr,
Hungary since 1997. Now, he is an

Associate Professor. He has been working part time for the
Department of Networked Systems and Services, Budapest
University of Technology and Economics, Budapest, Hungary
as a Senior Research Fellow since 2005. At the time of writing
this paper he was a Guest Researcher at the Laboratory for
Cyber Resilience, Nara Institute of Science and Technology,
Japan, where his research area was the security analysis of IPv6
transition technologies.

Dr. Lencse is a member of IEICE (Institute of Electronics,
Information and Communication Engineers, Japan).

  received his
Ph.D. degree in computer science from
Osaka University, Japan, in 1997.

He is currently a Professor in the
Graduate School of Information
Science, Nara Institute of Science and
Technology, Japan. Since 2013, he has
also been working as the Rapporteur of
ITUT Q.4/17 for cybersecurity

standardization. His research interests include cybersecurity,
web security, and distributed systems.

Dr. Kadobayashi is a member of IEEE Communications
society.

Methodology for DNS Cache Poisoning Vulnerability
Analysis of DNS64 Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2018 • VOLUME X • NUMBER 2 25

12
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

eliminate the possibility of sending out multiple equivalent
queries concurrently.

We note that all the examined DNS64 implementations are
free software [25] (also called open source [26]), thus their
source code may also be studied, as we did it in the case of
TOTD [30]. The significance of our testing method is that it
may also be used for closed source software, or in the cases
when the subject of the study also includes the interaction with
the random number generator of the operating system.

The very same framework could be used for the analysis of
NAT64 gateways.

X. CONCLUSION
We have shown that DNS cache poisoning may be a crucial

vulnerability of DNS64 servers and we have given an
introduction to the three main components of DNS cache
poisoning vulnerability, namely Transaction ID prediction,
source port number prediction, and a birthday paradox based
attack, which is possible if a DNS or DNS64 server sends out
multiple equivalent queries concurrently.

After surveying the available test tools for DNS cache
poisoning vulnerability analysis and pointing out that they are
not suitable for our purposes, we have designed a methodology
and implemented it in a testbed, which can be used for the
systematic testing of DNS or DNS64 implementations, whether
they are susceptible to the above mentioned three
vulnerabilities.

We have selected BIND, PowerDNS, Unbound two versions
of TOTD, and mtd64ng for testing and also presented their
setup. We have carried out their testing concerning the three
possible components of the DNS cache poisoning vulnerability.
We have pointed out several vulnerabilities in TOTD and
mtd64ng. As they do not currently support caching, thus, cache
poisoning is not possible in their cases. As the implementation
of caching is included in the midterm development plans of
mtd64ng, we have also given recommendations for the
elimination of its uncovered vulnerabilities.

As for BIND, PowerDNS, and Unbound, we have not found
any vulnerabilities that could lead to cache poisoning.

REFERENCES
[1] E. Nordmark, R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers”, IETF RFC 4213, October 2005. DOI:
10.17487/rfc4213

[2] G. Lencse, Y. Kadobayashi, “Survey of IPv6 transition
technologies for security analysis”, IEICE Technical Committee
on Internet Architecture (IA) Workshop, Tokyo Japan, Aug. 28,
2017,  vol. 117, no. 187, pp. 19–24.

[3] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, and S.
Yamaguchi, “The STRIDE towards IPv6: A comprehensive
threat model for IPv6 transition technologies”,  
     
, Rome, Feb. 2016. DOI: 10.13140/RG.2.1.2781.6085

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64:
DNS extensions for network address translation from IPv6 clients
to IPv4 servers”, RFC 6147, Apr. 2011. DOI: 10.17487/rfc6147

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:
Network address and protocol translation from IPv6 clients to
IPv4 servers”, IETF RFC 6146, Apr. 2011. DOI:
10.17487/rfc6146

[6] G. Lencse, Y. Kadobayashi, “Methodology for the identification
of potential security issues of different IPv6 transition
technologies: Threat analysis of DNS64 and stateful NAT64”,
 , vol. 77, no. 1, pp. 397411, August 1,
2018, DOI: 10.1016/j.cose.2018.04.012

[7] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache
poisoning”, in      
      
, Singapore, Sep. 7–9, 2010, pp. 466–483, DOI:
10.1007/9783642161612_27

[8] G. Lencse and Y. Kadobayashi, “Testbed for security analysis of
the DNS64 IPv6 transition technology in virtual environment”,
IEICE Communications Society Internet Architecture Workshop,
Tokyo, Japan, Oct. 13, 2017, , vol. 117, no. 239,
pp. 1924.

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, 
, vol. 127, no. 1, pp. 6174, September 1, 2018,
DOI: 10.1016/j.comcom.2018.05.005

[10]R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS
Security Introduction and Requirements”, IETF RFC 4033, Mar.
2005. DOI: 10.17487/rfc4033

[11]J. Linkova, “Let’s talk about IPv6 DNS64 & DNSSEC”, APNIC
Blog, 2016, https://blog.apnic.net/2016/06/09/letstalkipv6
dns64dnssec/

[12]C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010.
DOI: 10.17487/rfc6052

[13]A. Hubert, R. van Mook, “Measures for making DNS more
resilient against forged answers”, IETF RFC 5452, Jan. 2009.
DOI: 10.17487/rfc5452

[14]M. Larsen, F. Gont, “Recommendations for transportprotocol
port randomization”, IETF RFC 6056, Jan. 2011. DOI:
10.17487/rfc6056

Table 3. Summary of the Vulnerability Test Results

DNS64 Implementation

Attack Type

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning

BIND 9.9.5 no problem found no problem found protected no problem found

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable

TOTD 1.5.3 protected vulnerable vulnerable not applicable

mtd64ng 1.1.0 vulnerable vulnerable vulnerable not applicable

PowerDNS 3.6.2 no problem found no problem found protected no problem found

Unbound 1.6.0 no problem found no problem found protected no problem found

13
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

[15]CERT, “Various DNS service implementations generate multiple
simultaneous queries for the same resource record”, Vulnerability
Note VU#457875, [Online]. Available:
https://www.kb.cert.org/vuls/id/457875

[16]D. J. Bernstein, “DNS forgery”, [Online]. Available:
http://cr.yp.to/djbdns/forgery.html

[17]CERT, “Multiple DNS implementations vulnerable to cache
poisoning”, Vulnerability Note VU#800113 [Online]. Available:
http://www.kb.cert.org/vuls/id/800113

[18]S. Friendl, “An Illustrated Guide to the Kaminsky DNS
Vulnerability”, , [Online]. Available:
http://unixwiz.net/techtips/iguidekaminskydnsvuln.html

[19]DNSOARC, “Test my DNS”, web based Transaction ID and
source port randomness tester, [Online]. Available:
https://www.dnsoarc.net/oarc/services/dnsentropy

[20]InfosecEvents, “More DNS cache poisoning testing tools”,
[Online]. Available: http://infosecevents.net/2008/07/24/more
dnscachepoisoningtestingtools/

[21]Kim, Davies, “DNS cache poisoning vulnerability: Explanation
and remedies”, ICANN presentation, Viareggio, Italy, Oct. 2008,
[Online]. Available:
https://www.iana.org/about/presentations/daviesviareggio
entropyvuln081002.pdf

[22]G. Lencse, S. Répás, “Benchmarking further single board
computers for building a mini supercomputer for simulation of
telecommunication systems”, 
     ,
vol. 5. no. 1, 2016, pp. 29–36, DOI: 10.11601/ijates.v5i1.138

[23]D. Bakai, “DebianVM”, [Online]. Available:
https://git.sch.bme.hu/bakaid/debianvm

[24]Internet Systems Consortium, “BIND: Versatile, Classic,
Complete Name Server Software”, [Online]. Available:
https://www.isc.org/downloads/bind

[25]Free Software Foundation, “The free software definition”,
[Online]. Available: http://www.gnu.org/philosophy/free
sw.en.html

[26]Open Source Initiative, “The open source definition”, [Online].
Available: http://opensource.org/docs/osd

[27]Cisco, “End user license agreement”, [Online]. Available:
http://www.cisco.com/c/en/us/products/enduserlicense
agreement.html

[28]Juniper Networks, “End user license agreement”, [Online].
Available: http://www.juniper.net/support/eula/

[29]The 6NET Consortium, Ed. M. Dunmore, “An IPv6 Deployment
Guide”, Sep. 2005. [Online]. Available:
http://www.6net.org/book/deploymentguide.pdf

[30]G. Lencse and S. Répás, “Improving the performance and security
of the TOTD DNS64 implementation”,   
 (, Argentina), vol. 14, no. 1, Apr.
2014, ISSN: 16666038, pp. 9–15.
http://journal.info.unlp.edu.ar/journal/

[31]G. Lencse and D. Bakai, “Design, implementation and
performance estimation of mtd64ng a new tiny DNS64 proxy”,
, vol. 25, no.
2, Jun. 2017, pp. 91–102, DOI:10.20532/cit.2017.1003419

[32]Powerdns.com BV, “PowerDNS”, [Online]. Available:
http://www.powerdns.com

[33]NLnet Labs, “Unbound”, [Online]. Available: http://unbound.net
[34]G. Lencse, “Test program for the performance analysis of DNS64

servers”,     
, vol.
4, no. 3, 2015, pp 60–65. DOI: 10.11601/ijates.v4i3.121

[35]G. Lencse, “dns64perf source code”,
http://ipv6.tilb.sze.hu/dns64perf/

[36]R. Jain, “Testing random number generators”, Washington
University, Saint Louis, lecture notes, 2008, [Online]. Available:
https://www.cse.wustl.edu/~jain/cse56708/ftp/k_27trg.pdf

[37]I. Petrila, V. Manta, F. Ungureanu, “Uniformity and correlation
test parameters for random numbers generators”, 
      
, Sinaia, Romania, Oct. 17–19, 2014, DOI:
10.1109/ICSTCC.2014.6982421

[38]D. Bakai, “mtd64ng: A lightweight multithreaded C++11
DNS64 server”, [Online]. Available:
https://github.com/bakaid/mtd64ng/

[39]G. Lencse, “birthdaytest source code”,
http://ipv6.tilb.sze.hu/DNSbirthdaytest/

[40]M. Welschenbach, “Large Random Numbers”, In: 
    2nd Ed, Apress, Berkeley, CA, 2013. DOI:
10.1007/9781430250999_12

  received his MSc and
PhD in computer science from the
Budapest University of Technology and
Economics, Budapest, Hungary in 1994
and 2001, respectively.

He has been working full time for the
Department of Telecommunications,
Széchenyi István University, Győr,
Hungary since 1997. Now, he is an

Associate Professor. He has been working part time for the
Department of Networked Systems and Services, Budapest
University of Technology and Economics, Budapest, Hungary
as a Senior Research Fellow since 2005. At the time of writing
this paper he was a Guest Researcher at the Laboratory for
Cyber Resilience, Nara Institute of Science and Technology,
Japan, where his research area was the security analysis of IPv6
transition technologies.

Dr. Lencse is a member of IEICE (Institute of Electronics,
Information and Communication Engineers, Japan).

  received his
Ph.D. degree in computer science from
Osaka University, Japan, in 1997.

He is currently a Professor in the
Graduate School of Information
Science, Nara Institute of Science and
Technology, Japan. Since 2013, he has
also been working as the Rapporteur of
ITUT Q.4/17 for cybersecurity

standardization. His research interests include cybersecurity,
web security, and distributed systems.

Dr. Kadobayashi is a member of IEEE Communications
society.

12
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

eliminate the possibility of sending out multiple equivalent
queries concurrently.

We note that all the examined DNS64 implementations are
free software [25] (also called open source [26]), thus their
source code may also be studied, as we did it in the case of
TOTD [30]. The significance of our testing method is that it
may also be used for closed source software, or in the cases
when the subject of the study also includes the interaction with
the random number generator of the operating system.

The very same framework could be used for the analysis of
NAT64 gateways.

X. CONCLUSION
We have shown that DNS cache poisoning may be a crucial

vulnerability of DNS64 servers and we have given an
introduction to the three main components of DNS cache
poisoning vulnerability, namely Transaction ID prediction,
source port number prediction, and a birthday paradox based
attack, which is possible if a DNS or DNS64 server sends out
multiple equivalent queries concurrently.

After surveying the available test tools for DNS cache
poisoning vulnerability analysis and pointing out that they are
not suitable for our purposes, we have designed a methodology
and implemented it in a testbed, which can be used for the
systematic testing of DNS or DNS64 implementations, whether
they are susceptible to the above mentioned three
vulnerabilities.

We have selected BIND, PowerDNS, Unbound two versions
of TOTD, and mtd64ng for testing and also presented their
setup. We have carried out their testing concerning the three
possible components of the DNS cache poisoning vulnerability.
We have pointed out several vulnerabilities in TOTD and
mtd64ng. As they do not currently support caching, thus, cache
poisoning is not possible in their cases. As the implementation
of caching is included in the midterm development plans of
mtd64ng, we have also given recommendations for the
elimination of its uncovered vulnerabilities.

As for BIND, PowerDNS, and Unbound, we have not found
any vulnerabilities that could lead to cache poisoning.

REFERENCES
[1] E. Nordmark, R. Gilligan, “Basic transition mechanisms for IPv6

hosts and routers”, IETF RFC 4213, October 2005. DOI:
10.17487/rfc4213

[2] G. Lencse, Y. Kadobayashi, “Survey of IPv6 transition
technologies for security analysis”, IEICE Technical Committee
on Internet Architecture (IA) Workshop, Tokyo Japan, Aug. 28,
2017,  vol. 117, no. 187, pp. 19–24.

[3] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, and S.
Yamaguchi, “The STRIDE towards IPv6: A comprehensive
threat model for IPv6 transition technologies”,  
     
, Rome, Feb. 2016. DOI: 10.13140/RG.2.1.2781.6085

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64:
DNS extensions for network address translation from IPv6 clients
to IPv4 servers”, RFC 6147, Apr. 2011. DOI: 10.17487/rfc6147

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64:
Network address and protocol translation from IPv6 clients to
IPv4 servers”, IETF RFC 6146, Apr. 2011. DOI:
10.17487/rfc6146

[6] G. Lencse, Y. Kadobayashi, “Methodology for the identification
of potential security issues of different IPv6 transition
technologies: Threat analysis of DNS64 and stateful NAT64”,
 , vol. 77, no. 1, pp. 397411, August 1,
2018, DOI: 10.1016/j.cose.2018.04.012

[7] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache
poisoning”, in      
      
, Singapore, Sep. 7–9, 2010, pp. 466–483, DOI:
10.1007/9783642161612_27

[8] G. Lencse and Y. Kadobayashi, “Testbed for security analysis of
the DNS64 IPv6 transition technology in virtual environment”,
IEICE Communications Society Internet Architecture Workshop,
Tokyo, Japan, Oct. 13, 2017, , vol. 117, no. 239,
pp. 1924.

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64
Implementations: Theory and Practice”, 
, vol. 127, no. 1, pp. 6174, September 1, 2018,
DOI: 10.1016/j.comcom.2018.05.005

[10]R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS
Security Introduction and Requirements”, IETF RFC 4033, Mar.
2005. DOI: 10.17487/rfc4033

[11]J. Linkova, “Let’s talk about IPv6 DNS64 & DNSSEC”, APNIC
Blog, 2016, https://blog.apnic.net/2016/06/09/letstalkipv6
dns64dnssec/

[12]C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6
addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010.
DOI: 10.17487/rfc6052

[13]A. Hubert, R. van Mook, “Measures for making DNS more
resilient against forged answers”, IETF RFC 5452, Jan. 2009.
DOI: 10.17487/rfc5452

[14]M. Larsen, F. Gont, “Recommendations for transportprotocol
port randomization”, IETF RFC 6056, Jan. 2011. DOI:
10.17487/rfc6056

Table 3. Summary of the Vulnerability Test Results

DNS64 Implementation

Attack Type

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning

BIND 9.9.5 no problem found no problem found protected no problem found

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable

TOTD 1.5.3 protected vulnerable vulnerable not applicable

mtd64ng 1.1.0 vulnerable vulnerable vulnerable not applicable

PowerDNS 3.6.2 no problem found no problem found protected no problem found

Unbound 1.6.0 no problem found no problem found protected no problem found

13
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) <

[15]CERT, “Various DNS service implementations generate multiple
simultaneous queries for the same resource record”, Vulnerability
Note VU#457875, [Online]. Available:
https://www.kb.cert.org/vuls/id/457875

[16]D. J. Bernstein, “DNS forgery”, [Online]. Available:
http://cr.yp.to/djbdns/forgery.html

[17]CERT, “Multiple DNS implementations vulnerable to cache
poisoning”, Vulnerability Note VU#800113 [Online]. Available:
http://www.kb.cert.org/vuls/id/800113

[18]S. Friendl, “An Illustrated Guide to the Kaminsky DNS
Vulnerability”, , [Online]. Available:
http://unixwiz.net/techtips/iguidekaminskydnsvuln.html

[19]DNSOARC, “Test my DNS”, web based Transaction ID and
source port randomness tester, [Online]. Available:
https://www.dnsoarc.net/oarc/services/dnsentropy

[20]InfosecEvents, “More DNS cache poisoning testing tools”,
[Online]. Available: http://infosecevents.net/2008/07/24/more
dnscachepoisoningtestingtools/

[21]Kim, Davies, “DNS cache poisoning vulnerability: Explanation
and remedies”, ICANN presentation, Viareggio, Italy, Oct. 2008,
[Online]. Available:
https://www.iana.org/about/presentations/daviesviareggio
entropyvuln081002.pdf

[22]G. Lencse, S. Répás, “Benchmarking further single board
computers for building a mini supercomputer for simulation of
telecommunication systems”, 
     ,
vol. 5. no. 1, 2016, pp. 29–36, DOI: 10.11601/ijates.v5i1.138

[23]D. Bakai, “DebianVM”, [Online]. Available:
https://git.sch.bme.hu/bakaid/debianvm

[24]Internet Systems Consortium, “BIND: Versatile, Classic,
Complete Name Server Software”, [Online]. Available:
https://www.isc.org/downloads/bind

[25]Free Software Foundation, “The free software definition”,
[Online]. Available: http://www.gnu.org/philosophy/free
sw.en.html

[26]Open Source Initiative, “The open source definition”, [Online].
Available: http://opensource.org/docs/osd

[27]Cisco, “End user license agreement”, [Online]. Available:
http://www.cisco.com/c/en/us/products/enduserlicense
agreement.html

[28]Juniper Networks, “End user license agreement”, [Online].
Available: http://www.juniper.net/support/eula/

[29]The 6NET Consortium, Ed. M. Dunmore, “An IPv6 Deployment
Guide”, Sep. 2005. [Online]. Available:
http://www.6net.org/book/deploymentguide.pdf

[30]G. Lencse and S. Répás, “Improving the performance and security
of the TOTD DNS64 implementation”,   
 (, Argentina), vol. 14, no. 1, Apr.
2014, ISSN: 16666038, pp. 9–15.
http://journal.info.unlp.edu.ar/journal/

[31]G. Lencse and D. Bakai, “Design, implementation and
performance estimation of mtd64ng a new tiny DNS64 proxy”,
, vol. 25, no.
2, Jun. 2017, pp. 91–102, DOI:10.20532/cit.2017.1003419

[32]Powerdns.com BV, “PowerDNS”, [Online]. Available:
http://www.powerdns.com

[33]NLnet Labs, “Unbound”, [Online]. Available: http://unbound.net
[34]G. Lencse, “Test program for the performance analysis of DNS64

servers”,     
, vol.
4, no. 3, 2015, pp 60–65. DOI: 10.11601/ijates.v4i3.121

[35]G. Lencse, “dns64perf source code”,
http://ipv6.tilb.sze.hu/dns64perf/

[36]R. Jain, “Testing random number generators”, Washington
University, Saint Louis, lecture notes, 2008, [Online]. Available:
https://www.cse.wustl.edu/~jain/cse56708/ftp/k_27trg.pdf

[37]I. Petrila, V. Manta, F. Ungureanu, “Uniformity and correlation
test parameters for random numbers generators”, 
      
, Sinaia, Romania, Oct. 17–19, 2014, DOI:
10.1109/ICSTCC.2014.6982421

[38]D. Bakai, “mtd64ng: A lightweight multithreaded C++11
DNS64 server”, [Online]. Available:
https://github.com/bakaid/mtd64ng/

[39]G. Lencse, “birthdaytest source code”,
http://ipv6.tilb.sze.hu/DNSbirthdaytest/

[40]M. Welschenbach, “Large Random Numbers”, In: 
    2nd Ed, Apress, Berkeley, CA, 2013. DOI:
10.1007/9781430250999_12

  received his MSc and
PhD in computer science from the
Budapest University of Technology and
Economics, Budapest, Hungary in 1994
and 2001, respectively.

He has been working full time for the
Department of Telecommunications,
Széchenyi István University, Győr,
Hungary since 1997. Now, he is an

Associate Professor. He has been working part time for the
Department of Networked Systems and Services, Budapest
University of Technology and Economics, Budapest, Hungary
as a Senior Research Fellow since 2005. At the time of writing
this paper he was a Guest Researcher at the Laboratory for
Cyber Resilience, Nara Institute of Science and Technology,
Japan, where his research area was the security analysis of IPv6
transition technologies.

Dr. Lencse is a member of IEICE (Institute of Electronics,
Information and Communication Engineers, Japan).

  received his
Ph.D. degree in computer science from
Osaka University, Japan, in 1997.

He is currently a Professor in the
Graduate School of Information
Science, Nara Institute of Science and
Technology, Japan. Since 2013, he has
also been working as the Rapporteur of
ITUT Q.4/17 for cybersecurity

standardization. His research interests include cybersecurity,
web security, and distributed systems.

Dr. Kadobayashi is a member of IEEE Communications
society.

Gábor Lencse received his MSc and PhD in
computer science from the Budapest University of
Technology and Economics, Budapest, Hungary in
1994 and 2001, respectively.
He has been working full time for the Department of
Telecommunications, Széchenyi István University,
Győr, Hungary since 1997. Now, he is an Associate
Professor. He has been working part time for the
Department of Networked Systems and Services,
Budapest University of Technology and Economics,
Budapest, Hungary as a Senior Research Fellow

since 2005. At the time of writing this paper he was a Guest Researcher
at the Laboratory for Cyber Resilience, Nara Institute of Science and
Technology, Japan, where his research area was the security analysis of
IPv6 transition technologies.
Dr. Lencse is a member of IEICE (Institute of Electronics, Information and
Communication Engineers, Japan).

Youki Kadobayashi received his Ph.D. degree in
computer science from Osaka University, Japan, in
1997. He is currently a Professor in the Graduate
School of Information Science, Nara Institute
of Science and Technology, Japan. Since 2013,
he has also been working as the Rapporteur of
ITU-T Q.4/17 for cybersecurity standardization.
His research interests include cybersecurity, web
security, and distributed systems.
Dr. Kadobayashi is a member of IEEE
Communications society.

