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So the conclusion for a real noisy environment is that the 
longer the codes the better the Gold code sets are, but under a 
certain code length the performance of Gold codes and OOCs 
may be similar.  

VII. CONCLUSION 

In this paper the VLC related CDM problems are 
discussed, focusing on the asynchronous mode CDM which is 
more suitable for a simple VLC system. The description of the 
most common code set types, the unipolar OOCs and bipolar 
PN codes, showed the benefits, disadvantages and 
possibilities of these codes. Obtaining information about a 
CDM channel quality is not as easy as measuring RSS on a 
single RF signal. It was showed that the most common quality 
indicator measure, the crest factor, may be misleading in some 
cases. A possible solution is proposed for this problem, 
introducing two novel advanced quality indicator (AQI) 
measures. Computing these new measures along with the crest 
factor gives a better approximation to the CDM channel 
quality. With AQI1 the noise immunity of a CDM 
transmission using Gold codes and OOCs are compared, in 
function of the code length. These AQIs, for example, may 
improve the precision of a channel quality based VLC CDM 
indoor positioning system, and allows more reliable practical 
comparison between various code sets. 
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I. INTRODUCTION 
EVERAL  [1] were developed 
 to support the transition from IPv4 to IPv6, which we are 

currently faced with, and which is expected to last for several 

years or even decades.  On the one hand, IPv6 transition 
technologies are important solutions for several different 
problems, which arise from the incompatibility of IPv4 and 
IPv6: they can enable communication in various scenarios [2]. 
However, on the other hand, they also involve a high number of 
security issues [3]. We have surveyed 26 IPv6 transition 
technologies, and prioritized them in order to be able to analyze 
the security vulnerabilities of the most important ones first [2]. 
DNS64 [4] and stateful NAT [5] were classified as having 
utmost importance, because they together provide the only 
solution for a communication scenario, which is very important 
now because of the exhaustion of the public IPv4 address pool, 
namely, they enable IPv6only clients to communicate with 
IPv4only servers. 

We have also developed a methodology for the identification 
of potential security issues of different IPv6 transition 
technologies [6]. Ref. [3] follows the STRIDE approach, which 
is a general software security solution and it uses the DFD (Data 
Flow Diagram) model of the systems to facilitate the discovery 
of various threats. We have found this approach useful and 
amended the method in [6], where we have also shown that it is 
necessary to examine the most important implementations of 
the given IPv6 transition technologies, whether they are 
susceptible to the various threats that were discovered by using 
the STRIDE approach. We have pointed out that DNS64 is 
theoretically susceptible to  [7], and now 
the important practical question is, whether its different 
implementations are actually susceptible to DNS cache 
poisoning or not. 

The purpose of this paper is to develop a simple and efficient 
methodology for DNS cache poisoning vulnerability analysis of 
DNS64 implementations. This paper is based on our workshop 
paper [8], in which we have presented our testbed and our 
method for Transaction ID prediction attack as well as our 
results for some specific DNS64 implementations. Now we 
give a more detailed introduction to cache poisoning including 
its further two components (source port number prediction, and 
the birthday paradox based attack), and also design and carry 
out their testing methods. Besides the DNS64 implementations 
included in our workshop paper, now we also include Unbound, 
because it showed much better performance than BIND [9]. 

The remainder of this paper is organized as follows. In 
section II, we examine, why DNS cache poisoning is so crucial 
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   

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        
       
      
       

        
        
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      
          
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I. INTRODUCTION 
EVERAL  [1] were developed 
 to support the transition from IPv4 to IPv6, which we are 

currently faced with, and which is expected to last for several 

years or even decades.  On the one hand, IPv6 transition 
technologies are important solutions for several different 
problems, which arise from the incompatibility of IPv4 and 
IPv6: they can enable communication in various scenarios [2]. 
However, on the other hand, they also involve a high number of 
security issues [3]. We have surveyed 26 IPv6 transition 
technologies, and prioritized them in order to be able to analyze 
the security vulnerabilities of the most important ones first [2]. 
DNS64 [4] and stateful NAT [5] were classified as having 
utmost importance, because they together provide the only 
solution for a communication scenario, which is very important 
now because of the exhaustion of the public IPv4 address pool, 
namely, they enable IPv6only clients to communicate with 
IPv4only servers. 

We have also developed a methodology for the identification 
of potential security issues of different IPv6 transition 
technologies [6]. Ref. [3] follows the STRIDE approach, which 
is a general software security solution and it uses the DFD (Data 
Flow Diagram) model of the systems to facilitate the discovery 
of various threats. We have found this approach useful and 
amended the method in [6], where we have also shown that it is 
necessary to examine the most important implementations of 
the given IPv6 transition technologies, whether they are 
susceptible to the various threats that were discovered by using 
the STRIDE approach. We have pointed out that DNS64 is 
theoretically susceptible to  [7], and now 
the important practical question is, whether its different 
implementations are actually susceptible to DNS cache 
poisoning or not. 

The purpose of this paper is to develop a simple and efficient 
methodology for DNS cache poisoning vulnerability analysis of 
DNS64 implementations. This paper is based on our workshop 
paper [8], in which we have presented our testbed and our 
method for Transaction ID prediction attack as well as our 
results for some specific DNS64 implementations. Now we 
give a more detailed introduction to cache poisoning including 
its further two components (source port number prediction, and 
the birthday paradox based attack), and also design and carry 
out their testing methods. Besides the DNS64 implementations 
included in our workshop paper, now we also include Unbound, 
because it showed much better performance than BIND [9]. 

The remainder of this paper is organized as follows. In 
section II, we examine, why DNS cache poisoning is so crucial 
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concerning the DNS64 technology and we also elaborate the 
attack model of DNS cache poisoning. In section III, we survey 
the available test tools for DNS cache poisoning analysis and 
point out that they are not suitable for our purposes. In section 
IV, we design and implement a testbed for security analysis of 
DNS64 implementations. In section V, we select the DNS64 
implementations to be tested and also present their setup. In 
sections VI, VII, and VIII, we design and carry out different 
tests for the possible components of the DNS cache poisoning 
vulnerability, namely, we test Transaction ID and source port 
predictability, as well as whether the DNS64 implementations 
send out multiple equivalent queries simultaneously, which 
would give an opportunity for an attack based on the birthday 
paradox. In section IX, we summarize and discuss our results, 
as well as we make suggestions for the elimination of the 
uncovered vulnerabilities. Section X concludes our paper. 

II. CACHE POISONING VULNERABILITY OF DNS64 
The trustworthy operation of the DNS service is a very 

important precondition for a secure Internet. The ultimate 
mitigation for DNS cache poisoning, as well as for all other 
tampering type attacks against DNS, is DNSSEC [10]. 
However, concerning the cache poisoning vulnerability of 
DNS64 servers we cannot rely on DNSSEC for two reasons. 
First of all, its deployment rate is still very low. (As of 2016, it 
was 1.7% among the Alexa top 1 million web servers [11].) The 
other reason is DNS64 specific. The task of a DNS64 server is 
to synthesize an    [12] for the 
domain names that do not have a AAAA record (IPv6 address). 
However, this a forged address from the DNSSEC point of 
view. Thus, a  and  DNS client has to 
discard it. The best possible mode of operation is, when a 
security aware client asks the DNS64 server to perform the 
validation, see section 3 of [4]. In this case, the client has to 
trust in the DNS64 server. (And of course, tampering may 
happen while the packet travels from the DNS64 server to the 
client.) 

Thus for protecting our DNS64 servers from DNS cache 
poisoning, we need to rely on the guidelines laid down in RFC 
5452 [13]. Before addressing them, we need to clarify the attack 
model, that is, the conditions of a DNS cache poisoning attack. 
We always consider  , which means that the 
attacker may not intercept the DNS requests from the attacked 
DNS server to the authoritative DNS server. The attacker may 
send DNS requests (for any domain name) and forged replies to 
the attacked DNS server. 

Now, we first quote the most important conditions from RFC 
5452, when a DNS server (called as “resolver” in the text) may 
accept information from a DNS reply packet, and then interpret 
them for our situation. 

“DNS data is to be accepted by a resolver if and only if: 
1. The question section of the reply packet is equivalent to 

that of a question packet currently waiting for a 
response. 

2. The ID field of the reply packet matches that of the 
question packet. 

3. The response comes from the same network address to 
which the question was sent. 

4. The response comes in on the same network address, 
including port number, from which the question was 
sent. 

In general, the first response matching these four conditions 
is accepted.” (from section 3 of [13]) 

Condition 1 gives a very important protection against 
spoofed answers by setting up a time limit. This  is 
equal to the round trip time between the given DNS server and 
the authoritative DNS server plus the response time of the 
authoritative DNS server. (The latter may be increased by the 
attacker by a DoS attack against the authoritative DNS server.) 
In its calculations, the RFC uses 100ms as a typical value for 
the length of this time interval. Of course, an attacker may 
attempt to initiate the opening of this time window at any time 
by sending a request for an arbitrarily chosen domain name. 
However, if a domain name is already cached, it is usually 
protected, until its TTL expires. 

Condition 2 significantly hardens the task of the attacker: the 
attacker has to guess the  for a successful attack. 
To support guessing, the attacker may send DNS resolution 
requests to the DNS server for any domain names, including 
domain names, the authoritative DNS servers of which is under 
the control of the attacker, thus the attacker may observe an 
arbitrarily long sequence of the Transaction IDs generated by 
the attacked DNS server. Therefore, DNS servers must use hard 
to predict (cryptographic) random number generators to prevent 
the attacker from being able to predict the Transaction IDs. 
Thus, on average, a number of 215 trials are necessary for a 
successful guess for the 16 bit long Transaction ID (within the 
given time period of about 100ms). 

Condition 3 further hardens the task of the attacker, but not 
very significantly. There may be a few authoritative DNS 
servers for a domain, the IP address of which are known for the 
attacker, and the DNS server may use them in a round robin 
manner. The attacker needs to spoof exactly the right one. As 
their number is usually small, this condition contributes only 
with a small multiplication factor. As for the spoofing itself, 
there are some countermeasures against source IP address 
spoofing, such as reverse path checking by routers or firewalls. 
However, we may not rely on this optional protection: we 
suppose that it is not switched on, or the attacker is able to send 
the forged replies from the “right” direction. 

Condition 4 has two contributions. The attacked DNS server 
may have more than one network interfaces (or more than one 
IP addresses may be assigned to the same interface), but this 
number is limited, thus it may be only a small factor. The 
 can be another significant factor, if the DNS server 
uses different, hard to predict source port numbers for sending 
out its every single request. As port numbers from 0 to 1023 
cannot be used, the entropy is somewhat less than 16 bits. 

We note that NAT (more exactly: NAPT) devices may 
remove the entropy of the source port numbers, thus DNS 
servers should never be placed behind NAPT devices unless the 
NAPT devices are known to comply with RFC 6056 [14], 
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which requires randomized source port number selection. 
RFC 5452 [13] describes another form of attack, which is 

based on the birthday paradox. If the attacker may achieve that 
the DNS server sends out  , that is 
queries with identical QNAME, QTYPE, and QCLASS fields, 
 (a new query is sent while another one still waits 
for an answer) then the forged replies of the attacker may match 
any of them, which significantly eases the attack. For further 
details, please refer to the CERT vulnerability note [15]. 

To sum up the essence of the above conditions, we need to 
check whether the analyzed DNS64 server implementations use 
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concerning the DNS64 technology and we also elaborate the 
attack model of DNS cache poisoning. In section III, we survey 
the available test tools for DNS cache poisoning analysis and 
point out that they are not suitable for our purposes. In section 
IV, we design and implement a testbed for security analysis of 
DNS64 implementations. In section V, we select the DNS64 
implementations to be tested and also present their setup. In 
sections VI, VII, and VIII, we design and carry out different 
tests for the possible components of the DNS cache poisoning 
vulnerability, namely, we test Transaction ID and source port 
predictability, as well as whether the DNS64 implementations 
send out multiple equivalent queries simultaneously, which 
would give an opportunity for an attack based on the birthday 
paradox. In section IX, we summarize and discuss our results, 
as well as we make suggestions for the elimination of the 
uncovered vulnerabilities. Section X concludes our paper. 

II. CACHE POISONING VULNERABILITY OF DNS64 
The trustworthy operation of the DNS service is a very 

important precondition for a secure Internet. The ultimate 
mitigation for DNS cache poisoning, as well as for all other 
tampering type attacks against DNS, is DNSSEC [10]. 
However, concerning the cache poisoning vulnerability of 
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which requires randomized source port number selection. 
RFC 5452 [13] describes another form of attack, which is 

based on the birthday paradox. If the attacker may achieve that 
the DNS server sends out  , that is 
queries with identical QNAME, QTYPE, and QCLASS fields, 
 (a new query is sent while another one still waits 
for an answer) then the forged replies of the attacker may match 
any of them, which significantly eases the attack. For further 
details, please refer to the CERT vulnerability note [15]. 

To sum up the essence of the above conditions, we need to 
check whether the analyzed DNS64 server implementations use 
hard to predict random numbers for both Transaction IDs and 
source port numbers and they do not send multiple equivalent 
queries concurrently. 

III. TOOLS FOR CACHE POISONING VULNERABILITY 
TESTING 

Although Daniel J. Bernstein already disclosed the 
vulnerability of the DNS system as well as the possible solution 
in 1999 [16], and there was a CERT notification about the 
possibility of the birthday paradox based attacks in 2002 [15], 
some mainstream DNS servers implementations including 

BIND did not address the issue properly until the CERT 
notification in 2008 [17], which was triggered by Dan 
Kaminsky, who invented a more powerful cache poisoning 
method. His attack is built upon two ideas: it bypasses the 
protection of the TTL by using different random names from 
the attacked domain, and goes one hierarchy level higher: 
instead of trying to insert a forged “A” record into the cache of 
the attacked DNS server, it hijacks the whole attacked zone by 
including the IP address of a DNS server controlled by the 
attacker as an IP address of a DNS server for the attacked 
domain into an Authority record of a forged answer for a query 
for a random name from the attacked zone (to trick the bailiwick 
rule), see [18] for an in depth and wellillustrated description of 
the attack.  

Then the alert was taken seriously, and patches were 
prepared for all those major DNS implementations that were 
still vulnerable. Also vulnerability testing tools were prepared 
and released. 

A contemporary web based Transaction ID and source port 
randomness tester by DNSOARC is still available [19]. It is 
documented and highly suggested by [20]. Although the 
demonstration screen at the documentation does not seem to be 
so bad, see Fig. 1, our experience was rather poor. When we 
tried it out, among others, we received the results shown in 
Fig. 2. We contend that it is not enough to test only five 
Transaction IDs. But we do not have an opportunity to tune the 
tests. 

Another webbased testing tool is mentioned in the ICANN 
presentation of Kim Davies [21], but the tool is no more 
available at the URL mentioned on slide 33 of the presentation: 
http://recursive.iana.org/. 

And there is another problem with these webbased tools: 
they require that the DNS server is configured in a live system. 

We rather decided to build a , that is, an isolated 
environment, where we can check whether the examined 
DNS64 implementations indeed have the presumed 
vulnerabilities by using any kind of tests with any parameters 
we consider necessary. 

IV. TESTBED DESIGN AND IMPLEMENTATION 

 
Although we intended to design a testbed for the security 

analysis of DNS64 server implementations, we made our 
considerations with a broader mindset, so that the testbed may 
also be used for the security analysis of other IPv6 transition 
technologies, especially NAT64. 

In general, the requirements for such a testbed usually 
include the following: 

1. isolated environment, where attacks may be performed 
2. ease of use 
3. low cost. 
A testbed for the security analysis of different IPv6 transition 

technologies should contain the fundamental basic blocks of the 
systems in which the given solutions are used. Practically it 
means that we need a few computers which are interconnected 
by IPv4 and/or IPv6 network(s). Such systems can be built in 

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC 
DNS entropy testing tool. [20] 

 
Fig. 2. Our Transaction ID randomness test result produced by the DNS

OARC DNS entropy testing tool. 
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by IPv4 and/or IPv6 network(s). Such systems can be built in 

Fig. 1. Sample Transaction ID randomness testing results of the DNSOARC 
DNS entropy testing tool. [20] 
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which requires randomized source port number selection. 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 

4 
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) < 
 

several ways, including the usage of: 
1. server computers 
2. desktop or laptop computers 
3. singleboard computers [22] 
4. virtual machines. 
We contend that the consecutive solutions result in less cost 

and higher comfort in use including easy mobility. Our decision 
was also influenced by the fact that we have been successfully 
using virtual Linux boxes (executed under Windows 7) for the 
practical education of DNS64 and NAT64 IPv6 transition 
technologies at the Budapest University of Technology and 
Economics since 2015. 

As the existing virtual machine images were suitable for our 
current testing purposes, it was a convenient solution to reuse 
them. The virtual machine images were prepared by a script 
called , written by Dániel Bakai [23]. (This script 
creates a small, low memory usage, userdefined Debian virtual 
machine disk image, which can be used in various hypervisors 
including VMware and KVM.) They contain Debian 8 
distributions, which were now updated to Debian version 8.9. 
They were executed by VMware Workstation 12 Player. 

 
We propose the structure of a simple testbed suitable for the 

security analysis of the DNS64 and the stateful NAT64 IPv6 
transition technologies. Similar testbeds can be built for the 
security analysis of other IPv6 transition technologies. 

The testing of DNS64 or NAT64 requires a network of three 

hosts. As for DNS64, they are: client, DNS64 server and 
authoritative DNS server, where the DNS64 server should be 
interconnected with both the client and the authoritative DNS 
server. As for NAT64, only the roles are different: client, 
NAT64 gateway and IPv4only server; the topology is the 
same. Thus the same network can be used for the testing of the 
different implementations of both IPv6 transition technologies, 
only some software components need to be changed. 

As for the attacker, two further hosts could have been added, 
one for tampering with each connections, but we eliminated 
them with a trick. First of all, we used a single shared medium 
to interconnect the three computers, see Fig. 3, thus only one 
extra device would have been enough. However, as in our 
current tests we used only wiretapping, it could be done at any 
of the three computers, thus no further computer was necessary. 

 
We have implemented the test network shown in Fig. 3 by 

three virtual machines, each of which had a single CPU core, 
128MB of RAM, and (theoretically) 40GB of hard disks, but 
the starting size of the images were under 1GB. (They were 
growing during the experiments, but remained under 3GB.) 
Table 1 shows the Linux and WMware settings used for the 
virtual machines. 

We note that the IP version between the client, which is an 
IPv6only client, and the DNS64 server must be 6. There is no 
restriction for the IP version between the DNS64 server and the 
DNS server, but when testing NAT64, IPv4 must be used 

 
Fig. 3. Topology of the test network. 

Table 1.  Linux and VMware Network Settings for Virtual Machines. 

Virtual machine name    

Role IPv6only client  DNS64 server Authoritative DNS server 

 Linux settings  IPv6 static: fd00::1/64  IPv6 static: fd00::2/64 
IPv4 static 10.0.0.2/24 

IPv6 static: fd00::3/64 
IPv4 static: 10.0.0.3/24 

 Linux settings IPv4 DHCP  IPv4 DHCP IPv4 DHCP 

 VMware settings VMnet1  VMnet1 VMnet1 

 VMware settings NAT  NAT NAT 
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several ways, including the usage of: 
1. server computers 
2. desktop or laptop computers 
3. singleboard computers [22] 
4. virtual machines. 
We contend that the consecutive solutions result in less cost 

and higher comfort in use including easy mobility. Our decision 
was also influenced by the fact that we have been successfully 
using virtual Linux boxes (executed under Windows 7) for the 
practical education of DNS64 and NAT64 IPv6 transition 
technologies at the Budapest University of Technology and 
Economics since 2015. 

As the existing virtual machine images were suitable for our 
current testing purposes, it was a convenient solution to reuse 
them. The virtual machine images were prepared by a script 
called , written by Dániel Bakai [23]. (This script 
creates a small, low memory usage, userdefined Debian virtual 
machine disk image, which can be used in various hypervisors 
including VMware and KVM.) They contain Debian 8 
distributions, which were now updated to Debian version 8.9. 
They were executed by VMware Workstation 12 Player. 

 
We propose the structure of a simple testbed suitable for the 

security analysis of the DNS64 and the stateful NAT64 IPv6 
transition technologies. Similar testbeds can be built for the 
security analysis of other IPv6 transition technologies. 

The testing of DNS64 or NAT64 requires a network of three 

hosts. As for DNS64, they are: client, DNS64 server and 
authoritative DNS server, where the DNS64 server should be 
interconnected with both the client and the authoritative DNS 
server. As for NAT64, only the roles are different: client, 
NAT64 gateway and IPv4only server; the topology is the 
same. Thus the same network can be used for the testing of the 
different implementations of both IPv6 transition technologies, 
only some software components need to be changed. 

As for the attacker, two further hosts could have been added, 
one for tampering with each connections, but we eliminated 
them with a trick. First of all, we used a single shared medium 
to interconnect the three computers, see Fig. 3, thus only one 
extra device would have been enough. However, as in our 
current tests we used only wiretapping, it could be done at any 
of the three computers, thus no further computer was necessary. 

 
We have implemented the test network shown in Fig. 3 by 

three virtual machines, each of which had a single CPU core, 
128MB of RAM, and (theoretically) 40GB of hard disks, but 
the starting size of the images were under 1GB. (They were 
growing during the experiments, but remained under 3GB.) 
Table 1 shows the Linux and WMware settings used for the 
virtual machines. 

We note that the IP version between the client, which is an 
IPv6only client, and the DNS64 server must be 6. There is no 
restriction for the IP version between the DNS64 server and the 
DNS server, but when testing NAT64, IPv4 must be used 

 
Fig. 3. Topology of the test network. 

Table 1.  Linux and VMware Network Settings for Virtual Machines. 

Virtual machine name    

Role IPv6only client  DNS64 server Authoritative DNS server 

 Linux settings  IPv6 static: fd00::1/64  IPv6 static: fd00::2/64 
IPv4 static 10.0.0.2/24 

IPv6 static: fd00::3/64 
IPv4 static: 10.0.0.3/24 

 Linux settings IPv4 DHCP  IPv4 DHCP IPv4 DHCP 

 VMware settings VMnet1  VMnet1 VMnet1 

 VMware settings NAT  NAT NAT 
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several ways, including the usage of: 
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4. virtual machines. 
We contend that the consecutive solutions result in less cost 

and higher comfort in use including easy mobility. Our decision 
was also influenced by the fact that we have been successfully 
using virtual Linux boxes (executed under Windows 7) for the 
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hosts. As for DNS64, they are: client, DNS64 server and 
authoritative DNS server, where the DNS64 server should be 
interconnected with both the client and the authoritative DNS 
server. As for NAT64, only the roles are different: client, 
NAT64 gateway and IPv4only server; the topology is the 
same. Thus the same network can be used for the testing of the 
different implementations of both IPv6 transition technologies, 
only some software components need to be changed. 

As for the attacker, two further hosts could have been added, 
one for tampering with each connections, but we eliminated 
them with a trick. First of all, we used a single shared medium 
to interconnect the three computers, see Fig. 3, thus only one 
extra device would have been enough. However, as in our 
current tests we used only wiretapping, it could be done at any 
of the three computers, thus no further computer was necessary. 
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We have implemented the test network shown in Fig. 3 by 

three virtual machines, each of which had a single CPU core, 
128MB of RAM, and (theoretically) 40GB of hard disks, but 
the starting size of the images were under 1GB. (They were 
growing during the experiments, but remained under 3GB.) 
Table 1 shows the Linux and WMware settings used for the 
virtual machines. 

We note that the IP version between the client, which is an 
IPv6only client, and the DNS64 server must be 6. There is no 
restriction for the IP version between the DNS64 server and the 
DNS server, but when testing NAT64, IPv4 must be used 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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several ways, including the usage of: 
1. server computers 
2. desktop or laptop computers 
3. singleboard computers [22] 
4. virtual machines. 
We contend that the consecutive solutions result in less cost 

and higher comfort in use including easy mobility. Our decision 
was also influenced by the fact that we have been successfully 
using virtual Linux boxes (executed under Windows 7) for the 
practical education of DNS64 and NAT64 IPv6 transition 
technologies at the Budapest University of Technology and 
Economics since 2015. 

As the existing virtual machine images were suitable for our 
current testing purposes, it was a convenient solution to reuse 
them. The virtual machine images were prepared by a script 
called , written by Dániel Bakai [23]. (This script 
creates a small, low memory usage, userdefined Debian virtual 
machine disk image, which can be used in various hypervisors 
including VMware and KVM.) They contain Debian 8 
distributions, which were now updated to Debian version 8.9. 
They were executed by VMware Workstation 12 Player. 

 
We propose the structure of a simple testbed suitable for the 

security analysis of the DNS64 and the stateful NAT64 IPv6 
transition technologies. Similar testbeds can be built for the 
security analysis of other IPv6 transition technologies. 

The testing of DNS64 or NAT64 requires a network of three 

hosts. As for DNS64, they are: client, DNS64 server and 
authoritative DNS server, where the DNS64 server should be 
interconnected with both the client and the authoritative DNS 
server. As for NAT64, only the roles are different: client, 
NAT64 gateway and IPv4only server; the topology is the 
same. Thus the same network can be used for the testing of the 
different implementations of both IPv6 transition technologies, 
only some software components need to be changed. 

As for the attacker, two further hosts could have been added, 
one for tampering with each connections, but we eliminated 
them with a trick. First of all, we used a single shared medium 
to interconnect the three computers, see Fig. 3, thus only one 
extra device would have been enough. However, as in our 
current tests we used only wiretapping, it could be done at any 
of the three computers, thus no further computer was necessary. 

 
We have implemented the test network shown in Fig. 3 by 

three virtual machines, each of which had a single CPU core, 
128MB of RAM, and (theoretically) 40GB of hard disks, but 
the starting size of the images were under 1GB. (They were 
growing during the experiments, but remained under 3GB.) 
Table 1 shows the Linux and WMware settings used for the 
virtual machines. 

We note that the IP version between the client, which is an 
IPv6only client, and the DNS64 server must be 6. There is no 
restriction for the IP version between the DNS64 server and the 
DNS server, but when testing NAT64, IPv4 must be used 

 
Fig. 3. Topology of the test network. 

Table 1.  Linux and VMware Network Settings for Virtual Machines. 

Virtual machine name    

Role IPv6only client  DNS64 server Authoritative DNS server 

 Linux settings  IPv6 static: fd00::1/64  IPv6 static: fd00::2/64 
IPv4 static 10.0.0.2/24 

IPv6 static: fd00::3/64 
IPv4 static: 10.0.0.3/24 

 Linux settings IPv4 DHCP  IPv4 DHCP IPv4 DHCP 

 VMware settings VMnet1  VMnet1 VMnet1 

 VMware settings NAT  NAT NAT 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 

5 
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) < 
 

between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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several ways, including the usage of: 
1. server computers 
2. desktop or laptop computers 
3. singleboard computers [22] 
4. virtual machines. 
We contend that the consecutive solutions result in less cost 

and higher comfort in use including easy mobility. Our decision 
was also influenced by the fact that we have been successfully 
using virtual Linux boxes (executed under Windows 7) for the 
practical education of DNS64 and NAT64 IPv6 transition 
technologies at the Budapest University of Technology and 
Economics since 2015. 

As the existing virtual machine images were suitable for our 
current testing purposes, it was a convenient solution to reuse 
them. The virtual machine images were prepared by a script 
called , written by Dániel Bakai [23]. (This script 
creates a small, low memory usage, userdefined Debian virtual 
machine disk image, which can be used in various hypervisors 
including VMware and KVM.) They contain Debian 8 
distributions, which were now updated to Debian version 8.9. 
They were executed by VMware Workstation 12 Player. 

 
We propose the structure of a simple testbed suitable for the 

security analysis of the DNS64 and the stateful NAT64 IPv6 
transition technologies. Similar testbeds can be built for the 
security analysis of other IPv6 transition technologies. 

The testing of DNS64 or NAT64 requires a network of three 

hosts. As for DNS64, they are: client, DNS64 server and 
authoritative DNS server, where the DNS64 server should be 
interconnected with both the client and the authoritative DNS 
server. As for NAT64, only the roles are different: client, 
NAT64 gateway and IPv4only server; the topology is the 
same. Thus the same network can be used for the testing of the 
different implementations of both IPv6 transition technologies, 
only some software components need to be changed. 

As for the attacker, two further hosts could have been added, 
one for tampering with each connections, but we eliminated 
them with a trick. First of all, we used a single shared medium 
to interconnect the three computers, see Fig. 3, thus only one 
extra device would have been enough. However, as in our 
current tests we used only wiretapping, it could be done at any 
of the three computers, thus no further computer was necessary. 

 
We have implemented the test network shown in Fig. 3 by 

three virtual machines, each of which had a single CPU core, 
128MB of RAM, and (theoretically) 40GB of hard disks, but 
the starting size of the images were under 1GB. (They were 
growing during the experiments, but remained under 3GB.) 
Table 1 shows the Linux and WMware settings used for the 
virtual machines. 

We note that the IP version between the client, which is an 
IPv6only client, and the DNS64 server must be 6. There is no 
restriction for the IP version between the DNS64 server and the 
DNS server, but when testing NAT64, IPv4 must be used 

 
Fig. 3. Topology of the test network. 

Table 1.  Linux and VMware Network Settings for Virtual Machines. 

Virtual machine name    

Role IPv6only client  DNS64 server Authoritative DNS server 

 Linux settings  IPv6 static: fd00::1/64  IPv6 static: fd00::2/64 
IPv4 static 10.0.0.2/24 

IPv6 static: fd00::3/64 
IPv4 static: 10.0.0.3/24 

 Linux settings IPv4 DHCP  IPv4 DHCP IPv4 DHCP 

 VMware settings VMnet1  VMnet1 VMnet1 

 VMware settings NAT  NAT NAT 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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several ways, including the usage of: 
1. server computers 
2. desktop or laptop computers 
3. singleboard computers [22] 
4. virtual machines. 
We contend that the consecutive solutions result in less cost 

and higher comfort in use including easy mobility. Our decision 
was also influenced by the fact that we have been successfully 
using virtual Linux boxes (executed under Windows 7) for the 
practical education of DNS64 and NAT64 IPv6 transition 
technologies at the Budapest University of Technology and 
Economics since 2015. 

As the existing virtual machine images were suitable for our 
current testing purposes, it was a convenient solution to reuse 
them. The virtual machine images were prepared by a script 
called , written by Dániel Bakai [23]. (This script 
creates a small, low memory usage, userdefined Debian virtual 
machine disk image, which can be used in various hypervisors 
including VMware and KVM.) They contain Debian 8 
distributions, which were now updated to Debian version 8.9. 
They were executed by VMware Workstation 12 Player. 

 
We propose the structure of a simple testbed suitable for the 

security analysis of the DNS64 and the stateful NAT64 IPv6 
transition technologies. Similar testbeds can be built for the 
security analysis of other IPv6 transition technologies. 

The testing of DNS64 or NAT64 requires a network of three 

hosts. As for DNS64, they are: client, DNS64 server and 
authoritative DNS server, where the DNS64 server should be 
interconnected with both the client and the authoritative DNS 
server. As for NAT64, only the roles are different: client, 
NAT64 gateway and IPv4only server; the topology is the 
same. Thus the same network can be used for the testing of the 
different implementations of both IPv6 transition technologies, 
only some software components need to be changed. 

As for the attacker, two further hosts could have been added, 
one for tampering with each connections, but we eliminated 
them with a trick. First of all, we used a single shared medium 
to interconnect the three computers, see Fig. 3, thus only one 
extra device would have been enough. However, as in our 
current tests we used only wiretapping, it could be done at any 
of the three computers, thus no further computer was necessary. 

 
We have implemented the test network shown in Fig. 3 by 

three virtual machines, each of which had a single CPU core, 
128MB of RAM, and (theoretically) 40GB of hard disks, but 
the starting size of the images were under 1GB. (They were 
growing during the experiments, but remained under 3GB.) 
Table 1 shows the Linux and WMware settings used for the 
virtual machines. 

We note that the IP version between the client, which is an 
IPv6only client, and the DNS64 server must be 6. There is no 
restriction for the IP version between the DNS64 server and the 
DNS server, but when testing NAT64, IPv4 must be used 

 
Fig. 3. Topology of the test network. 

Table 1.  Linux and VMware Network Settings for Virtual Machines. 

Virtual machine name    

Role IPv6only client  DNS64 server Authoritative DNS server 

 Linux settings  IPv6 static: fd00::1/64  IPv6 static: fd00::2/64 
IPv4 static 10.0.0.2/24 

IPv6 static: fd00::3/64 
IPv4 static: 10.0.0.3/24 

 Linux settings IPv4 DHCP  IPv4 DHCP IPv4 DHCP 

 VMware settings VMnet1  VMnet1 VMnet1 

 VMware settings NAT  NAT NAT 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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several ways, including the usage of: 
1. server computers 
2. desktop or laptop computers 
3. singleboard computers [22] 
4. virtual machines. 
We contend that the consecutive solutions result in less cost 

and higher comfort in use including easy mobility. Our decision 
was also influenced by the fact that we have been successfully 
using virtual Linux boxes (executed under Windows 7) for the 
practical education of DNS64 and NAT64 IPv6 transition 
technologies at the Budapest University of Technology and 
Economics since 2015. 

As the existing virtual machine images were suitable for our 
current testing purposes, it was a convenient solution to reuse 
them. The virtual machine images were prepared by a script 
called , written by Dániel Bakai [23]. (This script 
creates a small, low memory usage, userdefined Debian virtual 
machine disk image, which can be used in various hypervisors 
including VMware and KVM.) They contain Debian 8 
distributions, which were now updated to Debian version 8.9. 
They were executed by VMware Workstation 12 Player. 

 
We propose the structure of a simple testbed suitable for the 

security analysis of the DNS64 and the stateful NAT64 IPv6 
transition technologies. Similar testbeds can be built for the 
security analysis of other IPv6 transition technologies. 

The testing of DNS64 or NAT64 requires a network of three 

hosts. As for DNS64, they are: client, DNS64 server and 
authoritative DNS server, where the DNS64 server should be 
interconnected with both the client and the authoritative DNS 
server. As for NAT64, only the roles are different: client, 
NAT64 gateway and IPv4only server; the topology is the 
same. Thus the same network can be used for the testing of the 
different implementations of both IPv6 transition technologies, 
only some software components need to be changed. 

As for the attacker, two further hosts could have been added, 
one for tampering with each connections, but we eliminated 
them with a trick. First of all, we used a single shared medium 
to interconnect the three computers, see Fig. 3, thus only one 
extra device would have been enough. However, as in our 
current tests we used only wiretapping, it could be done at any 
of the three computers, thus no further computer was necessary. 

 
We have implemented the test network shown in Fig. 3 by 

three virtual machines, each of which had a single CPU core, 
128MB of RAM, and (theoretically) 40GB of hard disks, but 
the starting size of the images were under 1GB. (They were 
growing during the experiments, but remained under 3GB.) 
Table 1 shows the Linux and WMware settings used for the 
virtual machines. 

We note that the IP version between the client, which is an 
IPv6only client, and the DNS64 server must be 6. There is no 
restriction for the IP version between the DNS64 server and the 
DNS server, but when testing NAT64, IPv4 must be used 

 
Fig. 3. Topology of the test network. 

Table 1.  Linux and VMware Network Settings for Virtual Machines. 

Virtual machine name    

Role IPv6only client  DNS64 server Authoritative DNS server 

 Linux settings  IPv6 static: fd00::1/64  IPv6 static: fd00::2/64 
IPv4 static 10.0.0.2/24 

IPv6 static: fd00::3/64 
IPv4 static: 10.0.0.3/24 

 Linux settings IPv4 DHCP  IPv4 DHCP IPv4 DHCP 

 VMware settings VMnet1  VMnet1 VMnet1 

 VMware settings NAT  NAT NAT 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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between the NAT64 gateway and the IPv4only server. 
Although we used IPv4 between the DNS64 server and the 
authoritative DNS server during our DNS64 vulnerability tests, 
we set also an IPv6 address at the authoritative DNS server to 
be able to reach it directly from the client for testing its 
operability. 

We also note that the  interfaces were not necessary for 
the tests, we used them for providing the virtual machines with 
Internet access, which was sometimes necessary, e.g. for 
installing various packages under Debian Linux. We have 
separated this communication from the testing communication, 
which happened always through the  interfaces of the 
virtual computers. 

 
The purpose of this setup was to check whether the testbed 

works properly. We have installed BIND9 [24] to both the 
 and the  virtual machines. 

 
The  file was used 

to set up the DNS64 function. The relevant settings were: 




 
The  file was used to 

set up the authoritative DNS server. The relevant settings were: 





The content of the  file was: 

















 
In this section, we demonstrate the correct operation of the 

test system, and also introduce the operation of DNS64 servers, 

which will be important later.  
We tested the operation of the testbed by issuing the 

following command on the  computer: 



The  Linux command was used to request a AAAA 
record for the  domain name from the 
DNS64 server executed by the host named . 

The DNS messages were captured by  on the 
 interface using the  capture filter. The six 
captured packets are shown in Fig. 4. Now we shall identify the 
six messages and observe their Transaction IDs, which are used 
to match the answer with the query. We will experiment with 
them later. 

1. Request for a AAAA record from the client to the 
DNS64 server with Transaction ID 0x7c4a, generated by 
the  command. 

2. Request for a AAAA record from the DNS64 server to 
the authoritative DNS server with a different Transaction 
ID, 0xcad0, generated by BIND. 

3. An “empty” reply for the AAAA record request sent by 
the authoritative DNS server to the DNS64 server, and 
its Transaction ID is the same as that of the 
corresponding request. 

4. Request for an A record from the DNS64 server to the 
authoritative DNS server with a different Transaction ID, 
0xee9d, generated by BIND. 

5. A valid reply with an A record sent by the authoritative 
DNS server to the DNS64 server, and its Transaction ID 
is the same as that of the corresponding request. 

6. The reply of the DNS64 server to the client containing 
the synthesized  [12] with 
the same Transaction ID as message 1. 

Thus we have found that the testbed worked fine, and it was 
ready for testing. 

V. DNS64 IMPLEMENTATION SELECTION AND SETUP 
We have laid down our implementations selection guidelines 

in [2] as follows: 
“As for the implementations, we only deal with those that are 

free software [25] (also called open source [26]) for multiple 
reasons: 
 The licenses of certain vendors (e.g. [27] and [28]) do 

not allow reverse engineering and sometimes even the 
publication of benchmarking results is prohibited. 

 Free software can be used by anyone for any purposes 
thus our results can be helpful for anyone. 

 Free software is available free of charge for us, too. 
Within the category of the free software implementations, we 

 
Fig. 4. Wireshark capture taken during the functional checking of the DNS64 testbed. 
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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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where the  string was replaced by the name of the tested 
DNS64 implementation. 

 
Predictability of the Transaction IDs is a hard question. E.g. 

if pseudorandom numbers are used that were generated by a 
linear congruential generator (LCG), then they are predictable. 
There are a high number of methods described for testing 
randomness both in university lecture notes [36] and research 
papers [37]. 

Since our solution of using a testbed ensures us full control 
of the testing method, and gives us access to the raw results, we 
have the possibility to use multiple methods for evaluation if 
needed. We decided to use first a simple, graphical method, 
which is somewhat similar to that of the earlier mentioned 
entropy tester of DNSOARC [19], but we contend that our 

method is more thorough than that. 
We have checked two kinds of correlations using 

visualization. Before introducing them, let us define some 
notations first. Let  denote the ordinal number of a message in 
the message sequence introduced in section IV.E, where  is in 
[1, 6]. Let  denote the ordinal number of the AAAA record 
request sent by the  program, where  is in [0, 
65535]. Let  denote the Transaction ID of the th message 
from the six messages used to resolve the th query of the 
 program. As the test program uses sequential 
Transaction IDs from 0, it is sure that:  =  = . 

We use two graphs. An (x, y) plot of the (, ) pairs may 
reveal correlation between the Transaction ID used by the 
 program and the first Transaction ID generated 
by the DNS64 program. An (x, y) plot of the (, ) pairs may 

 
Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right) 
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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 



7 
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) < 
 

where the  string was replaced by the name of the tested 
DNS64 implementation. 

 
Predictability of the Transaction IDs is a hard question. E.g. 

if pseudorandom numbers are used that were generated by a 
linear congruential generator (LCG), then they are predictable. 
There are a high number of methods described for testing 
randomness both in university lecture notes [36] and research 
papers [37]. 

Since our solution of using a testbed ensures us full control 
of the testing method, and gives us access to the raw results, we 
have the possibility to use multiple methods for evaluation if 
needed. We decided to use first a simple, graphical method, 
which is somewhat similar to that of the earlier mentioned 
entropy tester of DNSOARC [19], but we contend that our 

method is more thorough than that. 
We have checked two kinds of correlations using 

visualization. Before introducing them, let us define some 
notations first. Let  denote the ordinal number of a message in 
the message sequence introduced in section IV.E, where  is in 
[1, 6]. Let  denote the ordinal number of the AAAA record 
request sent by the  program, where  is in [0, 
65535]. Let  denote the Transaction ID of the th message 
from the six messages used to resolve the th query of the 
 program. As the test program uses sequential 
Transaction IDs from 0, it is sure that:  =  = . 

We use two graphs. An (x, y) plot of the (, ) pairs may 
reveal correlation between the Transaction ID used by the 
 program and the first Transaction ID generated 
by the DNS64 program. An (x, y) plot of the (, ) pairs may 

 
Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right) 
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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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where the  string was replaced by the name of the tested 
DNS64 implementation. 

 
Predictability of the Transaction IDs is a hard question. E.g. 

if pseudorandom numbers are used that were generated by a 
linear congruential generator (LCG), then they are predictable. 
There are a high number of methods described for testing 
randomness both in university lecture notes [36] and research 
papers [37]. 

Since our solution of using a testbed ensures us full control 
of the testing method, and gives us access to the raw results, we 
have the possibility to use multiple methods for evaluation if 
needed. We decided to use first a simple, graphical method, 
which is somewhat similar to that of the earlier mentioned 
entropy tester of DNSOARC [19], but we contend that our 

method is more thorough than that. 
We have checked two kinds of correlations using 

visualization. Before introducing them, let us define some 
notations first. Let  denote the ordinal number of a message in 
the message sequence introduced in section IV.E, where  is in 
[1, 6]. Let  denote the ordinal number of the AAAA record 
request sent by the  program, where  is in [0, 
65535]. Let  denote the Transaction ID of the th message 
from the six messages used to resolve the th query of the 
 program. As the test program uses sequential 
Transaction IDs from 0, it is sure that:  =  = . 

We use two graphs. An (x, y) plot of the (, ) pairs may 
reveal correlation between the Transaction ID used by the 
 program and the first Transaction ID generated 
by the DNS64 program. An (x, y) plot of the (, ) pairs may 

 
Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right) 
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reveal correlation between the consecutive Transaction IDs 
generated by the DNS64 program. For simplicity, we will refer 
to the first one as  , and the second one as 
. 

We used  scripts to extract the appropriate Transaction 
IDs from the text file output of the  program, and the 
graphs were prepared by .  

 
Fig. 5 shows the input correlation and the autocorrelation of 

the Transaction IDs of BIND. They seem to be like noise, thus 
we can say that no predictability problems were revealed by our 
simple evaluation method. 

The left graph of Fig. 6 shows the input correlation of the 
Transaction IDs of OLDTOTD. The regular patterns indicate 
that there is a problem with the predictability of the Transaction 

IDs. Before giving the explanation, let us have a look at the 
autocorrelation of the Transaction IDs of OLDTOTD on the 
right side of Fig. 6. Now, the predictability is even more 
deliberate. Let us look into the CSV file containing the (, ) 
pairs for input correlation checking: 

0, 55745 
1, 56257 
2, 56769 
3, 57281 
4, 57793 
Whereas the  Transaction IDs start from 0 and increase by 

1, the  Transaction IDs start from a different number and 
increase by 512. The CSV file containing the (, ) pairs for 
autocorrelation checking can give us further help: 

55745, 56001 
56257, 56513 

 
Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
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256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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where the  string was replaced by the name of the tested 
DNS64 implementation. 

 
Predictability of the Transaction IDs is a hard question. E.g. 

if pseudorandom numbers are used that were generated by a 
linear congruential generator (LCG), then they are predictable. 
There are a high number of methods described for testing 
randomness both in university lecture notes [36] and research 
papers [37]. 

Since our solution of using a testbed ensures us full control 
of the testing method, and gives us access to the raw results, we 
have the possibility to use multiple methods for evaluation if 
needed. We decided to use first a simple, graphical method, 
which is somewhat similar to that of the earlier mentioned 
entropy tester of DNSOARC [19], but we contend that our 

method is more thorough than that. 
We have checked two kinds of correlations using 

visualization. Before introducing them, let us define some 
notations first. Let  denote the ordinal number of a message in 
the message sequence introduced in section IV.E, where  is in 
[1, 6]. Let  denote the ordinal number of the AAAA record 
request sent by the  program, where  is in [0, 
65535]. Let  denote the Transaction ID of the th message 
from the six messages used to resolve the th query of the 
 program. As the test program uses sequential 
Transaction IDs from 0, it is sure that:  =  = . 

We use two graphs. An (x, y) plot of the (, ) pairs may 
reveal correlation between the Transaction ID used by the 
 program and the first Transaction ID generated 
by the DNS64 program. An (x, y) plot of the (, ) pairs may 

 
Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right) 
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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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give further priority to those, which are used widespread and/or 
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which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  
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[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 



6 
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) < 
 

give further priority to those, which are used widespread and/or 
are known to be stable and high performance (if such 
information is available).” [2] 

Although several DNS implementations exist, only very few 
of them can do DNS64, thus finding such DNS64 
implementations was not an easy task. We selected the 
following DNS64 implementations for testing: 

1. BIND 9.9.59+deb8u12Debian [24] 
2. TOTD 1.5.2 (referred later as OLDTOTD) [29] 
3. TOTD 1.5.3 (referred later as NEWTOTD) [30] 
4. mtd64ng 1.1.0 [31] 
5. PowerDNS Recursor 3.6.2 [32] 
6. Unbound 1.6.0 [33] 
Remarks: 
 Including BIND9 was a must as it is the de facto industry 

standard DNS server, therefore, it is very likely wide
spread used for DNS64 purposes, too. 

 Some years before we have prepared a patch for TOTD, 
which resolved some security issues [30], and now we 
tested its both patched and unpatched versions.  

 We also have a new tiny DNS64 proxy called mtd64ng 
[31], which is currently developed in an ongoing 
university project. Although it is not yet ready for 
deployment, we have also included it. 

We have already introduced the DNS64 configuration of 
BIND in section IV.D.1. 

The configuration of both versions of TOTD was done in the 
 file, the relevant settings 
were: 



The configuration of the mtd64ng DNS proxy was done in 
the  file, where the relevant settings 
were: 




The DNS64 configuration of PowerDNS was a bit more 
complex. 

In the  file, we made 
the following relevant settings: 





The content of the  file 
was: 






As for Unbound, its 1.4.22 version distributed in Debian 8.9 
did not contain the DNS64 module, which was included from 
its next version, namely 1.5.0. Therefore we upgraded the 
 host to Debian 9.3 after the execution of all the 

experiments with the other DNS64 implementations.  
As for its configuration, we have added the following lines 

to the  file: 









VI. TRANSACTION ID PREDICTION VULNERABILITY 
TESTING 

 
We extended the configuration of our testbed to be able to 

examine the Transaction IDs of a high number of messages 
even if the examined DNS64 implementations use caching. 

 
To be able to perform a high number of tests, we needed a 

name space which can be generated systematically. We have 
found that the name space used in our earlier DNS64 tests [34] 
would be appropriate. It was the following name space: 

10abc.dns64perf.test, where a, b, c are integers from the 
[0, 255] interval. 

We have used only the 100{0..255}{0..225} part of it. For 
generating the zone file, we used the modified version of the 
zone file generator script called , which is 
shipped together with the  program (documented 
in [34] and available from [35]). 

The  file of the 
authoritative DNS server was modified as follows: 





Thus, BIND used our newly generated zone file after its 
being restarted. 

 
The measurements were performed by the  [34] 

program, which used sequential Transaction IDs from 0 to 
65535. The command line of the test program was: 



The first argument specified the “a” parameter described 
above, the second argument meant that the test program needed 
to use only one thread, the third one specified the timeout of 1 
second, and the last one was the host name of the DNS64 server 
to be tested. 

The traffic was captured by the  program executed 
by the  host, the memory size of which was raised to 
256MB, because 128MB was not enough and the  
program exited during the measurement. All the packets from 
the  interface that matched the   capture filter 
were saved to a file. The following command line was used: 


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where the  string was replaced by the name of the tested 
DNS64 implementation. 

 
Predictability of the Transaction IDs is a hard question. E.g. 

if pseudorandom numbers are used that were generated by a 
linear congruential generator (LCG), then they are predictable. 
There are a high number of methods described for testing 
randomness both in university lecture notes [36] and research 
papers [37]. 

Since our solution of using a testbed ensures us full control 
of the testing method, and gives us access to the raw results, we 
have the possibility to use multiple methods for evaluation if 
needed. We decided to use first a simple, graphical method, 
which is somewhat similar to that of the earlier mentioned 
entropy tester of DNSOARC [19], but we contend that our 

method is more thorough than that. 
We have checked two kinds of correlations using 

visualization. Before introducing them, let us define some 
notations first. Let  denote the ordinal number of a message in 
the message sequence introduced in section IV.E, where  is in 
[1, 6]. Let  denote the ordinal number of the AAAA record 
request sent by the  program, where  is in [0, 
65535]. Let  denote the Transaction ID of the th message 
from the six messages used to resolve the th query of the 
 program. As the test program uses sequential 
Transaction IDs from 0, it is sure that:  =  = . 

We use two graphs. An (x, y) plot of the (, ) pairs may 
reveal correlation between the Transaction ID used by the 
 program and the first Transaction ID generated 
by the DNS64 program. An (x, y) plot of the (, ) pairs may 

 
Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right) 
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56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 





The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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reveal correlation between the consecutive Transaction IDs 
generated by the DNS64 program. For simplicity, we will refer 
to the first one as  , and the second one as 
. 

We used  scripts to extract the appropriate Transaction 
IDs from the text file output of the  program, and the 
graphs were prepared by .  

 
Fig. 5 shows the input correlation and the autocorrelation of 

the Transaction IDs of BIND. They seem to be like noise, thus 
we can say that no predictability problems were revealed by our 
simple evaluation method. 

The left graph of Fig. 6 shows the input correlation of the 
Transaction IDs of OLDTOTD. The regular patterns indicate 
that there is a problem with the predictability of the Transaction 

IDs. Before giving the explanation, let us have a look at the 
autocorrelation of the Transaction IDs of OLDTOTD on the 
right side of Fig. 6. Now, the predictability is even more 
deliberate. Let us look into the CSV file containing the (, ) 
pairs for input correlation checking: 

0, 55745 
1, 56257 
2, 56769 
3, 57281 
4, 57793 
Whereas the  Transaction IDs start from 0 and increase by 

1, the  Transaction IDs start from a different number and 
increase by 512. The CSV file containing the (, ) pairs for 
autocorrelation checking can give us further help: 

55745, 56001 
56257, 56513 

 
Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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reveal correlation between the consecutive Transaction IDs 
generated by the DNS64 program. For simplicity, we will refer 
to the first one as  , and the second one as 
. 

We used  scripts to extract the appropriate Transaction 
IDs from the text file output of the  program, and the 
graphs were prepared by .  

 
Fig. 5 shows the input correlation and the autocorrelation of 

the Transaction IDs of BIND. They seem to be like noise, thus 
we can say that no predictability problems were revealed by our 
simple evaluation method. 

The left graph of Fig. 6 shows the input correlation of the 
Transaction IDs of OLDTOTD. The regular patterns indicate 
that there is a problem with the predictability of the Transaction 

IDs. Before giving the explanation, let us have a look at the 
autocorrelation of the Transaction IDs of OLDTOTD on the 
right side of Fig. 6. Now, the predictability is even more 
deliberate. Let us look into the CSV file containing the (, ) 
pairs for input correlation checking: 

0, 55745 
1, 56257 
2, 56769 
3, 57281 
4, 57793 
Whereas the  Transaction IDs start from 0 and increase by 

1, the  Transaction IDs start from a different number and 
increase by 512. The CSV file containing the (, ) pairs for 
autocorrelation checking can give us further help: 

55745, 56001 
56257, 56513 

 
Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 





The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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reveal correlation between the consecutive Transaction IDs 
generated by the DNS64 program. For simplicity, we will refer 
to the first one as  , and the second one as 
. 

We used  scripts to extract the appropriate Transaction 
IDs from the text file output of the  program, and the 
graphs were prepared by .  

 
Fig. 5 shows the input correlation and the autocorrelation of 

the Transaction IDs of BIND. They seem to be like noise, thus 
we can say that no predictability problems were revealed by our 
simple evaluation method. 

The left graph of Fig. 6 shows the input correlation of the 
Transaction IDs of OLDTOTD. The regular patterns indicate 
that there is a problem with the predictability of the Transaction 

IDs. Before giving the explanation, let us have a look at the 
autocorrelation of the Transaction IDs of OLDTOTD on the 
right side of Fig. 6. Now, the predictability is even more 
deliberate. Let us look into the CSV file containing the (, ) 
pairs for input correlation checking: 

0, 55745 
1, 56257 
2, 56769 
3, 57281 
4, 57793 
Whereas the  Transaction IDs start from 0 and increase by 

1, the  Transaction IDs start from a different number and 
increase by 512. The CSV file containing the (, ) pairs for 
autocorrelation checking can give us further help: 

55745, 56001 
56257, 56513 

 
Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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1, the  Transaction IDs start from a different number and 
increase by 512. The CSV file containing the (, ) pairs for 
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reveal correlation between the consecutive Transaction IDs 
generated by the DNS64 program. For simplicity, we will refer 
to the first one as  , and the second one as 
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We used  scripts to extract the appropriate Transaction 
IDs from the text file output of the  program, and the 
graphs were prepared by .  
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the Transaction IDs of BIND. They seem to be like noise, thus 
we can say that no predictability problems were revealed by our 
simple evaluation method. 

The left graph of Fig. 6 shows the input correlation of the 
Transaction IDs of OLDTOTD. The regular patterns indicate 
that there is a problem with the predictability of the Transaction 

IDs. Before giving the explanation, let us have a look at the 
autocorrelation of the Transaction IDs of OLDTOTD on the 
right side of Fig. 6. Now, the predictability is even more 
deliberate. Let us look into the CSV file containing the (, ) 
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0, 55745 
1, 56257 
2, 56769 
3, 57281 
4, 57793 
Whereas the  Transaction IDs start from 0 and increase by 
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9 
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLECLICK HERE TO EDIT) < 
 

56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 





The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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reveal correlation between the consecutive Transaction IDs 
generated by the DNS64 program. For simplicity, we will refer 
to the first one as  , and the second one as 
. 

We used  scripts to extract the appropriate Transaction 
IDs from the text file output of the  program, and the 
graphs were prepared by .  

 
Fig. 5 shows the input correlation and the autocorrelation of 

the Transaction IDs of BIND. They seem to be like noise, thus 
we can say that no predictability problems were revealed by our 
simple evaluation method. 

The left graph of Fig. 6 shows the input correlation of the 
Transaction IDs of OLDTOTD. The regular patterns indicate 
that there is a problem with the predictability of the Transaction 

IDs. Before giving the explanation, let us have a look at the 
autocorrelation of the Transaction IDs of OLDTOTD on the 
right side of Fig. 6. Now, the predictability is even more 
deliberate. Let us look into the CSV file containing the (, ) 
pairs for input correlation checking: 

0, 55745 
1, 56257 
2, 56769 
3, 57281 
4, 57793 
Whereas the  Transaction IDs start from 0 and increase by 

1, the  Transaction IDs start from a different number and 
increase by 512. The CSV file containing the (, ) pairs for 
autocorrelation checking can give us further help: 

55745, 56001 
56257, 56513 

 
Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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IDs. Before giving the explanation, let us have a look at the 
autocorrelation of the Transaction IDs of OLDTOTD on the 
right side of Fig. 6. Now, the predictability is even more 
deliberate. Let us look into the CSV file containing the (, ) 
pairs for input correlation checking: 

0, 55745 
1, 56257 
2, 56769 
3, 57281 
4, 57793 
Whereas the  Transaction IDs start from 0 and increase by 

1, the  Transaction IDs start from a different number and 
increase by 512. The CSV file containing the (, ) pairs for 
autocorrelation checking can give us further help: 

55745, 56001 
56257, 56513 

 
Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 





The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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where the  string was replaced by the name of the tested 
DNS64 implementation. 

 
Predictability of the Transaction IDs is a hard question. E.g. 

if pseudorandom numbers are used that were generated by a 
linear congruential generator (LCG), then they are predictable. 
There are a high number of methods described for testing 
randomness both in university lecture notes [36] and research 
papers [37]. 

Since our solution of using a testbed ensures us full control 
of the testing method, and gives us access to the raw results, we 
have the possibility to use multiple methods for evaluation if 
needed. We decided to use first a simple, graphical method, 
which is somewhat similar to that of the earlier mentioned 
entropy tester of DNSOARC [19], but we contend that our 

method is more thorough than that. 
We have checked two kinds of correlations using 

visualization. Before introducing them, let us define some 
notations first. Let  denote the ordinal number of a message in 
the message sequence introduced in section IV.E, where  is in 
[1, 6]. Let  denote the ordinal number of the AAAA record 
request sent by the  program, where  is in [0, 
65535]. Let  denote the Transaction ID of the th message 
from the six messages used to resolve the th query of the 
 program. As the test program uses sequential 
Transaction IDs from 0, it is sure that:  =  = . 

We use two graphs. An (x, y) plot of the (, ) pairs may 
reveal correlation between the Transaction ID used by the 
 program and the first Transaction ID generated 
by the DNS64 program. An (x, y) plot of the (, ) pairs may 

 
Fig. 5. BIND, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 6. OLDTOTD, Transaction ID input correlation (left) and autocorrelation (right) 
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reveal correlation between the consecutive Transaction IDs 
generated by the DNS64 program. For simplicity, we will refer 
to the first one as  , and the second one as 
. 

We used  scripts to extract the appropriate Transaction 
IDs from the text file output of the  program, and the 
graphs were prepared by .  

 
Fig. 5 shows the input correlation and the autocorrelation of 

the Transaction IDs of BIND. They seem to be like noise, thus 
we can say that no predictability problems were revealed by our 
simple evaluation method. 

The left graph of Fig. 6 shows the input correlation of the 
Transaction IDs of OLDTOTD. The regular patterns indicate 
that there is a problem with the predictability of the Transaction 

IDs. Before giving the explanation, let us have a look at the 
autocorrelation of the Transaction IDs of OLDTOTD on the 
right side of Fig. 6. Now, the predictability is even more 
deliberate. Let us look into the CSV file containing the (, ) 
pairs for input correlation checking: 

0, 55745 
1, 56257 
2, 56769 
3, 57281 
4, 57793 
Whereas the  Transaction IDs start from 0 and increase by 

1, the  Transaction IDs start from a different number and 
increase by 512. The CSV file containing the (, ) pairs for 
autocorrelation checking can give us further help: 

55745, 56001 
56257, 56513 

 
Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 





The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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be used to perform multiple tests with a different domain name 
in each test. It is for convenience: when multiple tests are done, 
the DNS64 server may cache the previously used domain names 
and it is easier to use a different one for a new test, than 
restarting the DNS64 server. Parameter  specifies the number 
of queries to be sent. The rest of the parameters are to be 
interpreted as that of the original test program, that is, 
,  and  specify the timeout value of 
the receive function, the IPv6 address (or host name) of the 
DNS64 server to be tested and the port number, where the 
DNS64 server listens, respectively. (The port number is 
optional, its default value is 53.)  

The program sends  number of AAAA record requests for 
the 100b0.dns64perf.test domain name, where  and  
should be in the [0, 255] interval. After sending all the queries, 
it also receives the replies, but it does not use them for any 
purposes. It receives them only to avoid the annoying 
“Destination Unreachable (Port Unreachable)” ICMP error 
messages. 

The source code of the test program is available from [39]. 

 
The concurrently sent multiple equivalent queries 

vulnerability tests were performed in the same testbed as the 
previous two measurements. Wireshark (executed on the host 
computer under Windows) was used to monitor the behavior of 
the DNS64 implementations. We captured the packets on the 

VMnet1 interface using the  capture filter. 
The usual command line was: 



(However, sometimes different values were used for , e.g. 
3 instead of 0 in the case shown in Fig. 9.) 

The results produced by BIND can be seen in Fig. 9. 
Although we sent two queries for the AAAA record of the same 
domain name, BIND sent only one request to the authoritative 
DNS server for the AAAA record of the given domain name. 
(Its next query is for the A record.) Thus BIND is not vulnerable 
to the “birthday attack”. 

The results produced by OLDTOTD can be seen in Fig. 10. 
It sent two equivalent queries for the same resource records 
(first for AAAA records and then for A records). It can be also 
observed that the Transaction IDs were incremented by 0x100, 
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9. 

We note that none of them is a serious problem, because 
TOTD does not use caching. Thus no cache poisoning attack 
against TOTD is possible. The attacker can at most achieve that 
a single client receives forged answer. 

The results produced by NEWTOTD can be seen in Fig. 11. 
The only improvement over OLDTOTD is the proper 
Transaction ID randomization. 

We performed two measurements with mtd64ng because of 
the following reasons. As only one CPU core was assigned to 
the  virtual machine in the testbed, originally we set the 

 
Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND. 

 
Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD. 

 
Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD. 
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56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 





The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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reveal correlation between the consecutive Transaction IDs 
generated by the DNS64 program. For simplicity, we will refer 
to the first one as  , and the second one as 
. 

We used  scripts to extract the appropriate Transaction 
IDs from the text file output of the  program, and the 
graphs were prepared by .  
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Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 
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The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 
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The  [35] test program was used as a starting 
point of our new  program. Its arguments 
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disclosed it in [30], the old version of TOTD generated 
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they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
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university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 
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The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 
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disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
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the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
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Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
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completely identical. It is visibly the graph of y=x function, 
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tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
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The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
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131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
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cannot be seen from the table is that the same source ports are 
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spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 
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sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 





The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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reveal correlation between the consecutive Transaction IDs 
generated by the DNS64 program. For simplicity, we will refer 
to the first one as  , and the second one as 
. 

We used  scripts to extract the appropriate Transaction 
IDs from the text file output of the  program, and the 
graphs were prepared by .  

 
Fig. 5 shows the input correlation and the autocorrelation of 

the Transaction IDs of BIND. They seem to be like noise, thus 
we can say that no predictability problems were revealed by our 
simple evaluation method. 

The left graph of Fig. 6 shows the input correlation of the 
Transaction IDs of OLDTOTD. The regular patterns indicate 
that there is a problem with the predictability of the Transaction 

IDs. Before giving the explanation, let us have a look at the 
autocorrelation of the Transaction IDs of OLDTOTD on the 
right side of Fig. 6. Now, the predictability is even more 
deliberate. Let us look into the CSV file containing the (, ) 
pairs for input correlation checking: 

0, 55745 
1, 56257 
2, 56769 
3, 57281 
4, 57793 
Whereas the  Transaction IDs start from 0 and increase by 

1, the  Transaction IDs start from a different number and 
increase by 512. The CSV file containing the (, ) pairs for 
autocorrelation checking can give us further help: 

55745, 56001 
56257, 56513 

 
Fig. 7. NEWTOTD, Transaction ID input correlation (left) and autocorrelation (right) 

 

 
Fig. 8. mtd64ng, Transaction ID initial correlation (left) and autocorrelation (right) 
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56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 





The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 


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

The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
first), whereas the network byte order is MSB (most significant 
byte first). The programmer could have been used the standard 
 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
[30], where we have also described the elimination of its 
vulnerability for Transaction ID prediction attack. 

Fig. 7 shows the input correlation and autocorrelation of the 
Transaction IDs of NEWTOTD. They seem to be like noise, 
which is exactly what we expected. 

Fig. 8 shows the input correlation and autocorrelation of the 
Transaction IDs of mtd64ng. They are two completely 
identical graphs, as the two CSV files were found also 
completely identical. It is visibly the graph of y=x function, 
because mtd64ng reuses the Transaction ID of the received 
query and sends both of its own queries with the same 
Transaction ID, which is a serious vulnerability. 

As we already mentioned, mtd64ng is a result of an ongoing 
university project and it not yet ready to be used in production 
systems [31]. 

As for PowerDNS and Unbound, we have also performed the 
tests and evaluated the results. All their plots looked like the 
plots of BIND or NEWTOTD, thus we can state that we found 
no signs of Transaction ID predictability. (We omit the four 
plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
did not include the port numbers in its output. (Its default output 
contains the same data as the Wireshark screen shown in 

Fig. 4.) Therefore, we had to make a new series of 
measurements using a different command line for  as 
follows: 





The capture filter ensured that only IPv4 packets sent from 
the DNS64 server program at  (with source IP address 
10.0.0.2) to the authoritative DNS server program (listening at 
port 53 of ) be included. The output file contained only the 
source port numbers. As expected, the result files contained 
131072 numbers, except for BIND, in the case of which there 
were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 

      


The  [35] test program was used as a starting 
point of our new  program. Its arguments 
are: , , ,  and . Parameter  can 

Table 2.  Source Port Randomness Test Results 

DNS64 
Implementation 

source ports observed in the experiments 

minimum maximum std. dev. 

BIND 1024 65535 18635 

OLDTOTD 53 53 0 

NEWTOTD 53 53 0 

mtd64ng 32768 61000 8136 

PowerDNS 1025 65534 18655 

Unbound 1024 65535 17467 
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56769, 57025 
57281, 57537 
57793, 58049 
It is well visible that the consecutive Transaction IDs always 

increase by 256. And now we give the explanation. As we 
disclosed it in [30], the old version of TOTD generated 
sequential numbers as Transaction IDs. The increase of 256 is 
the result of the facts that the notebook used for testing has an 
Intel CPU, which uses LSB byte order (least significant byte 
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 function for the conversion, but omitting it is just a 
feature and not a bug, as Transaction IDs are just identifiers and 
they do not convey any special meaning. For more information 
about the bug, which randomly caused an unresponsiveness of 
the old version of TOTD, and for its correction, please refer to 
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vulnerability for Transaction ID prediction attack. 
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plots, because we see no point in including further four “random 
art” images.) 

VII. SOURCE PORT NUMBER RANDOMNESS TESTING 
The results of the Transaction ID prediction tests could have 

been used also for port number randomness tests, but  
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were 131073 numbers in the file. We have investigated the case 
and found that it was so because BIND also sent a query for the 
IP addresses of the root DNS servers. None of the other 
implementations did so. 

We have summarized our results in Table 2. BIND, 
PowerDNS and Unbound follow the guidelines of RFC 5452 
[13] and choose a source port number randomly from the largest 
available range of [1024, 65535]. Both versions of TOTD use 
source port 53 for all outgoing queries. This is trivially 
predictable. As for mtd64ng, what can be seen from Table 2, 
is that the source port number range is [32768, 61000]. What 
cannot be seen from the table is that the same source ports are 
used for querying the AAAA record and the A record for the 
same domain name.  This is deliberate from the raw 
measurement results, we show only the first 6 lines: 

48926 
48926 
41556 
41556 
42713 
42713 
And it is also deliberate from the source code [38]. Although, 

this phenomenon does not mean predictability in the bind 
spoofing attack model, we recommend the usage of different 
source ports for the AAAA and A record queries. 

It can also be seen from the source code, that mtd64ng 
entrusts the source port selection to the operating system. It can 
be satisfactory, if the operating system complies with RFC 6056 
[14], but we contend that is safer if source port randomization 
is done by the DNS or DNS64 implementation itself. 

VIII. MULTIPLE EQUIVALENT QUERIES VULNERABILITY 
TESTING 

To be able to test, whether the examined DNS64 
implementations send multiple equivalent queries concurrently, 
we had to modify the test program so that it can send multiple 
queries for the same domain name. 
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The  [35] test program was used as a starting 
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number of working threads of mtd64ng to 1. Due to this 
setting, mtd64ng serialized the processing of the requests from 
our test program, as shown in Fig. 12. However, the DNS64 
server of a large network with a high number of users should 
use multiple threads, therefore we executed the test also with 
two threads. The results in Fig. 13 reveal that mtd64ng sends 
separate AAAA and A record requests for each client request. 
Although mtd64ng currently does not support caching, thus it 
is not a serious vulnerability, the problem must be addressed 
later, because including caching is among the midterm 
development plans of mtd64ng. 

The results of PowerDNS and Unbound are shown in Fig. 14 
and Fig. 15, respectively. None of them send out multiple 
equivalent queries, thus they are not vulnerable to birthday 
attacks. 

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION 
We have summarized the results of the three kind of 

measurements in Table 3. As for BIND, PowerDNS, and 
Unbound, we have not found any vulnerabilities that could lead 
to cache poisoning. Although TOTD and mtd64ng have 
several vulnerabilities that could lead to cache poisoning, they 
do not implement caching, thus cache poisoning is not possible 
in their cases.  

As the implementation of caching is included in the midterm 
development plans of mtd64ng, the protection against all three 
vulnerabilities must also be included. We recommend the usage 
of cryptographically secure random number generators [40] for 
generating Transaction IDs and source port numbers. The 
elimination of the vulnerability to birthday attacks seems to be 
a more difficult problem, as now the performance of mtd64ng 
benefits from the solution that the requests from the clients are 
not stored in a central database, but they are distributed to the 
working threads. However, it will be necessary to centrally keep 
track of the queries sent by mtd64ng to the authoritative DNS 
servers and are currently awaiting for an answer, in order to 

 
Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread. 

 
Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads. 

 
Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS. 

 

 
Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound. 
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be used to perform multiple tests with a different domain name 
in each test. It is for convenience: when multiple tests are done, 
the DNS64 server may cache the previously used domain names 
and it is easier to use a different one for a new test, than 
restarting the DNS64 server. Parameter  specifies the number 
of queries to be sent. The rest of the parameters are to be 
interpreted as that of the original test program, that is, 
,  and  specify the timeout value of 
the receive function, the IPv6 address (or host name) of the 
DNS64 server to be tested and the port number, where the 
DNS64 server listens, respectively. (The port number is 
optional, its default value is 53.)  

The program sends  number of AAAA record requests for 
the 100b0.dns64perf.test domain name, where  and  
should be in the [0, 255] interval. After sending all the queries, 
it also receives the replies, but it does not use them for any 
purposes. It receives them only to avoid the annoying 
“Destination Unreachable (Port Unreachable)” ICMP error 
messages. 

The source code of the test program is available from [39]. 

 
The concurrently sent multiple equivalent queries 

vulnerability tests were performed in the same testbed as the 
previous two measurements. Wireshark (executed on the host 
computer under Windows) was used to monitor the behavior of 
the DNS64 implementations. We captured the packets on the 

VMnet1 interface using the  capture filter. 
The usual command line was: 



(However, sometimes different values were used for , e.g. 
3 instead of 0 in the case shown in Fig. 9.) 

The results produced by BIND can be seen in Fig. 9. 
Although we sent two queries for the AAAA record of the same 
domain name, BIND sent only one request to the authoritative 
DNS server for the AAAA record of the given domain name. 
(Its next query is for the A record.) Thus BIND is not vulnerable 
to the “birthday attack”. 

The results produced by OLDTOTD can be seen in Fig. 10. 
It sent two equivalent queries for the same resource records 
(first for AAAA records and then for A records). It can be also 
observed that the Transaction IDs were incremented by 0x100, 
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9. 

We note that none of them is a serious problem, because 
TOTD does not use caching. Thus no cache poisoning attack 
against TOTD is possible. The attacker can at most achieve that 
a single client receives forged answer. 

The results produced by NEWTOTD can be seen in Fig. 11. 
The only improvement over OLDTOTD is the proper 
Transaction ID randomization. 

We performed two measurements with mtd64ng because of 
the following reasons. As only one CPU core was assigned to 
the  virtual machine in the testbed, originally we set the 

 
Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND. 

 
Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD. 

 
Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD. 
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be used to perform multiple tests with a different domain name 
in each test. It is for convenience: when multiple tests are done, 
the DNS64 server may cache the previously used domain names 
and it is easier to use a different one for a new test, than 
restarting the DNS64 server. Parameter  specifies the number 
of queries to be sent. The rest of the parameters are to be 
interpreted as that of the original test program, that is, 
,  and  specify the timeout value of 
the receive function, the IPv6 address (or host name) of the 
DNS64 server to be tested and the port number, where the 
DNS64 server listens, respectively. (The port number is 
optional, its default value is 53.)  

The program sends  number of AAAA record requests for 
the 100b0.dns64perf.test domain name, where  and  
should be in the [0, 255] interval. After sending all the queries, 
it also receives the replies, but it does not use them for any 
purposes. It receives them only to avoid the annoying 
“Destination Unreachable (Port Unreachable)” ICMP error 
messages. 

The source code of the test program is available from [39]. 

 
The concurrently sent multiple equivalent queries 

vulnerability tests were performed in the same testbed as the 
previous two measurements. Wireshark (executed on the host 
computer under Windows) was used to monitor the behavior of 
the DNS64 implementations. We captured the packets on the 

VMnet1 interface using the  capture filter. 
The usual command line was: 



(However, sometimes different values were used for , e.g. 
3 instead of 0 in the case shown in Fig. 9.) 

The results produced by BIND can be seen in Fig. 9. 
Although we sent two queries for the AAAA record of the same 
domain name, BIND sent only one request to the authoritative 
DNS server for the AAAA record of the given domain name. 
(Its next query is for the A record.) Thus BIND is not vulnerable 
to the “birthday attack”. 

The results produced by OLDTOTD can be seen in Fig. 10. 
It sent two equivalent queries for the same resource records 
(first for AAAA records and then for A records). It can be also 
observed that the Transaction IDs were incremented by 0x100, 
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9. 

We note that none of them is a serious problem, because 
TOTD does not use caching. Thus no cache poisoning attack 
against TOTD is possible. The attacker can at most achieve that 
a single client receives forged answer. 

The results produced by NEWTOTD can be seen in Fig. 11. 
The only improvement over OLDTOTD is the proper 
Transaction ID randomization. 

We performed two measurements with mtd64ng because of 
the following reasons. As only one CPU core was assigned to 
the  virtual machine in the testbed, originally we set the 

 
Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND. 

 
Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD. 

 
Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD. 
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number of working threads of mtd64ng to 1. Due to this 
setting, mtd64ng serialized the processing of the requests from 
our test program, as shown in Fig. 12. However, the DNS64 
server of a large network with a high number of users should 
use multiple threads, therefore we executed the test also with 
two threads. The results in Fig. 13 reveal that mtd64ng sends 
separate AAAA and A record requests for each client request. 
Although mtd64ng currently does not support caching, thus it 
is not a serious vulnerability, the problem must be addressed 
later, because including caching is among the midterm 
development plans of mtd64ng. 

The results of PowerDNS and Unbound are shown in Fig. 14 
and Fig. 15, respectively. None of them send out multiple 
equivalent queries, thus they are not vulnerable to birthday 
attacks. 

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION 
We have summarized the results of the three kind of 

measurements in Table 3. As for BIND, PowerDNS, and 
Unbound, we have not found any vulnerabilities that could lead 
to cache poisoning. Although TOTD and mtd64ng have 
several vulnerabilities that could lead to cache poisoning, they 
do not implement caching, thus cache poisoning is not possible 
in their cases.  

As the implementation of caching is included in the midterm 
development plans of mtd64ng, the protection against all three 
vulnerabilities must also be included. We recommend the usage 
of cryptographically secure random number generators [40] for 
generating Transaction IDs and source port numbers. The 
elimination of the vulnerability to birthday attacks seems to be 
a more difficult problem, as now the performance of mtd64ng 
benefits from the solution that the requests from the clients are 
not stored in a central database, but they are distributed to the 
working threads. However, it will be necessary to centrally keep 
track of the queries sent by mtd64ng to the authoritative DNS 
servers and are currently awaiting for an answer, in order to 

 
Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread. 

 
Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads. 

 
Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS. 

 

 
Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound. 
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be used to perform multiple tests with a different domain name 
in each test. It is for convenience: when multiple tests are done, 
the DNS64 server may cache the previously used domain names 
and it is easier to use a different one for a new test, than 
restarting the DNS64 server. Parameter  specifies the number 
of queries to be sent. The rest of the parameters are to be 
interpreted as that of the original test program, that is, 
,  and  specify the timeout value of 
the receive function, the IPv6 address (or host name) of the 
DNS64 server to be tested and the port number, where the 
DNS64 server listens, respectively. (The port number is 
optional, its default value is 53.)  

The program sends  number of AAAA record requests for 
the 100b0.dns64perf.test domain name, where  and  
should be in the [0, 255] interval. After sending all the queries, 
it also receives the replies, but it does not use them for any 
purposes. It receives them only to avoid the annoying 
“Destination Unreachable (Port Unreachable)” ICMP error 
messages. 

The source code of the test program is available from [39]. 

 
The concurrently sent multiple equivalent queries 

vulnerability tests were performed in the same testbed as the 
previous two measurements. Wireshark (executed on the host 
computer under Windows) was used to monitor the behavior of 
the DNS64 implementations. We captured the packets on the 

VMnet1 interface using the  capture filter. 
The usual command line was: 



(However, sometimes different values were used for , e.g. 
3 instead of 0 in the case shown in Fig. 9.) 

The results produced by BIND can be seen in Fig. 9. 
Although we sent two queries for the AAAA record of the same 
domain name, BIND sent only one request to the authoritative 
DNS server for the AAAA record of the given domain name. 
(Its next query is for the A record.) Thus BIND is not vulnerable 
to the “birthday attack”. 

The results produced by OLDTOTD can be seen in Fig. 10. 
It sent two equivalent queries for the same resource records 
(first for AAAA records and then for A records). It can be also 
observed that the Transaction IDs were incremented by 0x100, 
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9. 

We note that none of them is a serious problem, because 
TOTD does not use caching. Thus no cache poisoning attack 
against TOTD is possible. The attacker can at most achieve that 
a single client receives forged answer. 

The results produced by NEWTOTD can be seen in Fig. 11. 
The only improvement over OLDTOTD is the proper 
Transaction ID randomization. 

We performed two measurements with mtd64ng because of 
the following reasons. As only one CPU core was assigned to 
the  virtual machine in the testbed, originally we set the 

 
Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND. 

 
Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD. 

 
Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD. 
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be used to perform multiple tests with a different domain name 
in each test. It is for convenience: when multiple tests are done, 
the DNS64 server may cache the previously used domain names 
and it is easier to use a different one for a new test, than 
restarting the DNS64 server. Parameter  specifies the number 
of queries to be sent. The rest of the parameters are to be 
interpreted as that of the original test program, that is, 
,  and  specify the timeout value of 
the receive function, the IPv6 address (or host name) of the 
DNS64 server to be tested and the port number, where the 
DNS64 server listens, respectively. (The port number is 
optional, its default value is 53.)  

The program sends  number of AAAA record requests for 
the 100b0.dns64perf.test domain name, where  and  
should be in the [0, 255] interval. After sending all the queries, 
it also receives the replies, but it does not use them for any 
purposes. It receives them only to avoid the annoying 
“Destination Unreachable (Port Unreachable)” ICMP error 
messages. 

The source code of the test program is available from [39]. 

 
The concurrently sent multiple equivalent queries 

vulnerability tests were performed in the same testbed as the 
previous two measurements. Wireshark (executed on the host 
computer under Windows) was used to monitor the behavior of 
the DNS64 implementations. We captured the packets on the 

VMnet1 interface using the  capture filter. 
The usual command line was: 



(However, sometimes different values were used for , e.g. 
3 instead of 0 in the case shown in Fig. 9.) 

The results produced by BIND can be seen in Fig. 9. 
Although we sent two queries for the AAAA record of the same 
domain name, BIND sent only one request to the authoritative 
DNS server for the AAAA record of the given domain name. 
(Its next query is for the A record.) Thus BIND is not vulnerable 
to the “birthday attack”. 

The results produced by OLDTOTD can be seen in Fig. 10. 
It sent two equivalent queries for the same resource records 
(first for AAAA records and then for A records). It can be also 
observed that the Transaction IDs were incremented by 0x100, 
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9. 

We note that none of them is a serious problem, because 
TOTD does not use caching. Thus no cache poisoning attack 
against TOTD is possible. The attacker can at most achieve that 
a single client receives forged answer. 

The results produced by NEWTOTD can be seen in Fig. 11. 
The only improvement over OLDTOTD is the proper 
Transaction ID randomization. 

We performed two measurements with mtd64ng because of 
the following reasons. As only one CPU core was assigned to 
the  virtual machine in the testbed, originally we set the 

 
Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND. 

 
Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD. 

 
Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD. 
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number of working threads of mtd64ng to 1. Due to this 
setting, mtd64ng serialized the processing of the requests from 
our test program, as shown in Fig. 12. However, the DNS64 
server of a large network with a high number of users should 
use multiple threads, therefore we executed the test also with 
two threads. The results in Fig. 13 reveal that mtd64ng sends 
separate AAAA and A record requests for each client request. 
Although mtd64ng currently does not support caching, thus it 
is not a serious vulnerability, the problem must be addressed 
later, because including caching is among the midterm 
development plans of mtd64ng. 

The results of PowerDNS and Unbound are shown in Fig. 14 
and Fig. 15, respectively. None of them send out multiple 
equivalent queries, thus they are not vulnerable to birthday 
attacks. 

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION 
We have summarized the results of the three kind of 

measurements in Table 3. As for BIND, PowerDNS, and 
Unbound, we have not found any vulnerabilities that could lead 
to cache poisoning. Although TOTD and mtd64ng have 
several vulnerabilities that could lead to cache poisoning, they 
do not implement caching, thus cache poisoning is not possible 
in their cases.  

As the implementation of caching is included in the midterm 
development plans of mtd64ng, the protection against all three 
vulnerabilities must also be included. We recommend the usage 
of cryptographically secure random number generators [40] for 
generating Transaction IDs and source port numbers. The 
elimination of the vulnerability to birthday attacks seems to be 
a more difficult problem, as now the performance of mtd64ng 
benefits from the solution that the requests from the clients are 
not stored in a central database, but they are distributed to the 
working threads. However, it will be necessary to centrally keep 
track of the queries sent by mtd64ng to the authoritative DNS 
servers and are currently awaiting for an answer, in order to 

 
Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread. 

 
Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads. 

 
Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS. 

 

 
Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound. 
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be used to perform multiple tests with a different domain name 
in each test. It is for convenience: when multiple tests are done, 
the DNS64 server may cache the previously used domain names 
and it is easier to use a different one for a new test, than 
restarting the DNS64 server. Parameter  specifies the number 
of queries to be sent. The rest of the parameters are to be 
interpreted as that of the original test program, that is, 
,  and  specify the timeout value of 
the receive function, the IPv6 address (or host name) of the 
DNS64 server to be tested and the port number, where the 
DNS64 server listens, respectively. (The port number is 
optional, its default value is 53.)  

The program sends  number of AAAA record requests for 
the 100b0.dns64perf.test domain name, where  and  
should be in the [0, 255] interval. After sending all the queries, 
it also receives the replies, but it does not use them for any 
purposes. It receives them only to avoid the annoying 
“Destination Unreachable (Port Unreachable)” ICMP error 
messages. 

The source code of the test program is available from [39]. 

 
The concurrently sent multiple equivalent queries 

vulnerability tests were performed in the same testbed as the 
previous two measurements. Wireshark (executed on the host 
computer under Windows) was used to monitor the behavior of 
the DNS64 implementations. We captured the packets on the 

VMnet1 interface using the  capture filter. 
The usual command line was: 



(However, sometimes different values were used for , e.g. 
3 instead of 0 in the case shown in Fig. 9.) 

The results produced by BIND can be seen in Fig. 9. 
Although we sent two queries for the AAAA record of the same 
domain name, BIND sent only one request to the authoritative 
DNS server for the AAAA record of the given domain name. 
(Its next query is for the A record.) Thus BIND is not vulnerable 
to the “birthday attack”. 

The results produced by OLDTOTD can be seen in Fig. 10. 
It sent two equivalent queries for the same resource records 
(first for AAAA records and then for A records). It can be also 
observed that the Transaction IDs were incremented by 0x100, 
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9. 

We note that none of them is a serious problem, because 
TOTD does not use caching. Thus no cache poisoning attack 
against TOTD is possible. The attacker can at most achieve that 
a single client receives forged answer. 

The results produced by NEWTOTD can be seen in Fig. 11. 
The only improvement over OLDTOTD is the proper 
Transaction ID randomization. 

We performed two measurements with mtd64ng because of 
the following reasons. As only one CPU core was assigned to 
the  virtual machine in the testbed, originally we set the 

 
Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND. 

 
Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD. 

 
Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD. 
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number of working threads of mtd64ng to 1. Due to this 
setting, mtd64ng serialized the processing of the requests from 
our test program, as shown in Fig. 12. However, the DNS64 
server of a large network with a high number of users should 
use multiple threads, therefore we executed the test also with 
two threads. The results in Fig. 13 reveal that mtd64ng sends 
separate AAAA and A record requests for each client request. 
Although mtd64ng currently does not support caching, thus it 
is not a serious vulnerability, the problem must be addressed 
later, because including caching is among the midterm 
development plans of mtd64ng. 

The results of PowerDNS and Unbound are shown in Fig. 14 
and Fig. 15, respectively. None of them send out multiple 
equivalent queries, thus they are not vulnerable to birthday 
attacks. 

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION 
We have summarized the results of the three kind of 

measurements in Table 3. As for BIND, PowerDNS, and 
Unbound, we have not found any vulnerabilities that could lead 
to cache poisoning. Although TOTD and mtd64ng have 
several vulnerabilities that could lead to cache poisoning, they 
do not implement caching, thus cache poisoning is not possible 
in their cases.  

As the implementation of caching is included in the midterm 
development plans of mtd64ng, the protection against all three 
vulnerabilities must also be included. We recommend the usage 
of cryptographically secure random number generators [40] for 
generating Transaction IDs and source port numbers. The 
elimination of the vulnerability to birthday attacks seems to be 
a more difficult problem, as now the performance of mtd64ng 
benefits from the solution that the requests from the clients are 
not stored in a central database, but they are distributed to the 
working threads. However, it will be necessary to centrally keep 
track of the queries sent by mtd64ng to the authoritative DNS 
servers and are currently awaiting for an answer, in order to 

 
Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread. 

 
Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads. 

 
Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS. 

 

 
Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound. 
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number of working threads of mtd64ng to 1. Due to this 
setting, mtd64ng serialized the processing of the requests from 
our test program, as shown in Fig. 12. However, the DNS64 
server of a large network with a high number of users should 
use multiple threads, therefore we executed the test also with 
two threads. The results in Fig. 13 reveal that mtd64ng sends 
separate AAAA and A record requests for each client request. 
Although mtd64ng currently does not support caching, thus it 
is not a serious vulnerability, the problem must be addressed 
later, because including caching is among the midterm 
development plans of mtd64ng. 

The results of PowerDNS and Unbound are shown in Fig. 14 
and Fig. 15, respectively. None of them send out multiple 
equivalent queries, thus they are not vulnerable to birthday 
attacks. 

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION 
We have summarized the results of the three kind of 

measurements in Table 3. As for BIND, PowerDNS, and 
Unbound, we have not found any vulnerabilities that could lead 
to cache poisoning. Although TOTD and mtd64ng have 
several vulnerabilities that could lead to cache poisoning, they 
do not implement caching, thus cache poisoning is not possible 
in their cases.  

As the implementation of caching is included in the midterm 
development plans of mtd64ng, the protection against all three 
vulnerabilities must also be included. We recommend the usage 
of cryptographically secure random number generators [40] for 
generating Transaction IDs and source port numbers. The 
elimination of the vulnerability to birthday attacks seems to be 
a more difficult problem, as now the performance of mtd64ng 
benefits from the solution that the requests from the clients are 
not stored in a central database, but they are distributed to the 
working threads. However, it will be necessary to centrally keep 
track of the queries sent by mtd64ng to the authoritative DNS 
servers and are currently awaiting for an answer, in order to 

 
Fig. 12. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 1 working thread. 

 
Fig. 13. Wireshark capture taken during the birthday attack vulnerability test of mtd64ng with 2 working threads. 

 
Fig. 14. Wireshark capture taken during the birthday attack vulnerability test of PowerDNS. 

 

 
Fig. 15. Wireshark capture taken during the birthday attack vulnerability test of Unbound. 
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eliminate the possibility of sending out multiple equivalent 
queries concurrently. 

We note that all the examined DNS64 implementations are 
free software [25] (also called open source [26]), thus their 
source code may also be studied, as we did it in the case of 
TOTD [30]. The significance of our testing method is that it 
may also be used for closed source software, or in the cases 
when the subject of the study also includes the interaction with 
the random number generator of the operating system. 

The very same framework could be used for the analysis of 
NAT64 gateways. 

X. CONCLUSION 
We have shown that DNS cache poisoning may be a crucial 

vulnerability of DNS64 servers and we have given an 
introduction to the three main components of DNS cache 
poisoning vulnerability, namely Transaction ID prediction, 
source port number prediction, and a birthday paradox based 
attack, which is possible if a DNS or DNS64 server sends out 
multiple equivalent queries concurrently. 

After surveying the available test tools for DNS cache 
poisoning vulnerability analysis and pointing out that they are 
not suitable for our purposes, we have designed a methodology 
and implemented it in a testbed, which can be used for the 
systematic testing of DNS or DNS64 implementations, whether 
they are susceptible to the above mentioned three 
vulnerabilities. 

We have selected BIND, PowerDNS, Unbound two versions 
of TOTD, and mtd64ng for testing and also presented their 
setup. We have carried out their testing concerning the three 
possible components of the DNS cache poisoning vulnerability. 
We have pointed out several vulnerabilities in TOTD and 
mtd64ng. As they do not currently support caching, thus, cache 
poisoning is not possible in their cases. As the implementation 
of caching is included in the midterm development plans of 
mtd64ng, we have also given recommendations for the 
elimination of its uncovered vulnerabilities. 

As for BIND, PowerDNS, and Unbound, we have not found 
any vulnerabilities that could lead to cache poisoning. 
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Table 3.  Summary of the Vulnerability Test Results 

 
DNS64 Implementation 

Attack Type 

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning 

BIND 9.9.5 no problem found no problem found protected no problem found 

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable 

TOTD 1.5.3 protected vulnerable vulnerable not applicable 

mtd64ng 1.1.0 vulnerable vulnerable vulnerable not applicable 

PowerDNS 3.6.2 no problem found no problem found protected no problem found 

Unbound 1.6.0 no problem found no problem found protected no problem found 
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be used to perform multiple tests with a different domain name 
in each test. It is for convenience: when multiple tests are done, 
the DNS64 server may cache the previously used domain names 
and it is easier to use a different one for a new test, than 
restarting the DNS64 server. Parameter  specifies the number 
of queries to be sent. The rest of the parameters are to be 
interpreted as that of the original test program, that is, 
,  and  specify the timeout value of 
the receive function, the IPv6 address (or host name) of the 
DNS64 server to be tested and the port number, where the 
DNS64 server listens, respectively. (The port number is 
optional, its default value is 53.)  

The program sends  number of AAAA record requests for 
the 100b0.dns64perf.test domain name, where  and  
should be in the [0, 255] interval. After sending all the queries, 
it also receives the replies, but it does not use them for any 
purposes. It receives them only to avoid the annoying 
“Destination Unreachable (Port Unreachable)” ICMP error 
messages. 

The source code of the test program is available from [39]. 

 
The concurrently sent multiple equivalent queries 

vulnerability tests were performed in the same testbed as the 
previous two measurements. Wireshark (executed on the host 
computer under Windows) was used to monitor the behavior of 
the DNS64 implementations. We captured the packets on the 

VMnet1 interface using the  capture filter. 
The usual command line was: 



(However, sometimes different values were used for , e.g. 
3 instead of 0 in the case shown in Fig. 9.) 

The results produced by BIND can be seen in Fig. 9. 
Although we sent two queries for the AAAA record of the same 
domain name, BIND sent only one request to the authoritative 
DNS server for the AAAA record of the given domain name. 
(Its next query is for the A record.) Thus BIND is not vulnerable 
to the “birthday attack”. 

The results produced by OLDTOTD can be seen in Fig. 10. 
It sent two equivalent queries for the same resource records 
(first for AAAA records and then for A records). It can be also 
observed that the Transaction IDs were incremented by 0x100, 
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9. 

We note that none of them is a serious problem, because 
TOTD does not use caching. Thus no cache poisoning attack 
against TOTD is possible. The attacker can at most achieve that 
a single client receives forged answer. 

The results produced by NEWTOTD can be seen in Fig. 11. 
The only improvement over OLDTOTD is the proper 
Transaction ID randomization. 

We performed two measurements with mtd64ng because of 
the following reasons. As only one CPU core was assigned to 
the  virtual machine in the testbed, originally we set the 

 
Fig. 9. Wireshark capture taken during the birthday attack vulnerability test of BIND. 

 
Fig. 10. Wireshark capture taken during the birthday attack vulnerability test of OLDTOTD. 

 
Fig. 11. Wireshark capture taken during the birthday attack vulnerability test of NEWTOTD. 
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number of working threads of mtd64ng to 1. Due to this 
setting, mtd64ng serialized the processing of the requests from 
our test program, as shown in Fig. 12. However, the DNS64 
server of a large network with a high number of users should 
use multiple threads, therefore we executed the test also with 
two threads. The results in Fig. 13 reveal that mtd64ng sends 
separate AAAA and A record requests for each client request. 
Although mtd64ng currently does not support caching, thus it 
is not a serious vulnerability, the problem must be addressed 
later, because including caching is among the midterm 
development plans of mtd64ng. 

The results of PowerDNS and Unbound are shown in Fig. 14 
and Fig. 15, respectively. None of them send out multiple 
equivalent queries, thus they are not vulnerable to birthday 
attacks. 

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION 
We have summarized the results of the three kind of 

measurements in Table 3. As for BIND, PowerDNS, and 
Unbound, we have not found any vulnerabilities that could lead 
to cache poisoning. Although TOTD and mtd64ng have 
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be used to perform multiple tests with a different domain name 
in each test. It is for convenience: when multiple tests are done, 
the DNS64 server may cache the previously used domain names 
and it is easier to use a different one for a new test, than 
restarting the DNS64 server. Parameter  specifies the number 
of queries to be sent. The rest of the parameters are to be 
interpreted as that of the original test program, that is, 
,  and  specify the timeout value of 
the receive function, the IPv6 address (or host name) of the 
DNS64 server to be tested and the port number, where the 
DNS64 server listens, respectively. (The port number is 
optional, its default value is 53.)  

The program sends  number of AAAA record requests for 
the 100b0.dns64perf.test domain name, where  and  
should be in the [0, 255] interval. After sending all the queries, 
it also receives the replies, but it does not use them for any 
purposes. It receives them only to avoid the annoying 
“Destination Unreachable (Port Unreachable)” ICMP error 
messages. 

The source code of the test program is available from [39]. 

 
The concurrently sent multiple equivalent queries 

vulnerability tests were performed in the same testbed as the 
previous two measurements. Wireshark (executed on the host 
computer under Windows) was used to monitor the behavior of 
the DNS64 implementations. We captured the packets on the 

VMnet1 interface using the  capture filter. 
The usual command line was: 



(However, sometimes different values were used for , e.g. 
3 instead of 0 in the case shown in Fig. 9.) 

The results produced by BIND can be seen in Fig. 9. 
Although we sent two queries for the AAAA record of the same 
domain name, BIND sent only one request to the authoritative 
DNS server for the AAAA record of the given domain name. 
(Its next query is for the A record.) Thus BIND is not vulnerable 
to the “birthday attack”. 

The results produced by OLDTOTD can be seen in Fig. 10. 
It sent two equivalent queries for the same resource records 
(first for AAAA records and then for A records). It can be also 
observed that the Transaction IDs were incremented by 0x100, 
as they took the values: 0x7ca9, 0x7da9, 0x7ea9, 0x7fa9. 

We note that none of them is a serious problem, because 
TOTD does not use caching. Thus no cache poisoning attack 
against TOTD is possible. The attacker can at most achieve that 
a single client receives forged answer. 

The results produced by NEWTOTD can be seen in Fig. 11. 
The only improvement over OLDTOTD is the proper 
Transaction ID randomization. 

We performed two measurements with mtd64ng because of 
the following reasons. As only one CPU core was assigned to 
the  virtual machine in the testbed, originally we set the 
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number of working threads of mtd64ng to 1. Due to this 
setting, mtd64ng serialized the processing of the requests from 
our test program, as shown in Fig. 12. However, the DNS64 
server of a large network with a high number of users should 
use multiple threads, therefore we executed the test also with 
two threads. The results in Fig. 13 reveal that mtd64ng sends 
separate AAAA and A record requests for each client request. 
Although mtd64ng currently does not support caching, thus it 
is not a serious vulnerability, the problem must be addressed 
later, because including caching is among the midterm 
development plans of mtd64ng. 

The results of PowerDNS and Unbound are shown in Fig. 14 
and Fig. 15, respectively. None of them send out multiple 
equivalent queries, thus they are not vulnerable to birthday 
attacks. 

IX. SUMMARY, RECOMMENDATIONS AND DISCUSSION 
We have summarized the results of the three kind of 

measurements in Table 3. As for BIND, PowerDNS, and 
Unbound, we have not found any vulnerabilities that could lead 
to cache poisoning. Although TOTD and mtd64ng have 
several vulnerabilities that could lead to cache poisoning, they 
do not implement caching, thus cache poisoning is not possible 
in their cases.  

As the implementation of caching is included in the midterm 
development plans of mtd64ng, the protection against all three 
vulnerabilities must also be included. We recommend the usage 
of cryptographically secure random number generators [40] for 
generating Transaction IDs and source port numbers. The 
elimination of the vulnerability to birthday attacks seems to be 
a more difficult problem, as now the performance of mtd64ng 
benefits from the solution that the requests from the clients are 
not stored in a central database, but they are distributed to the 
working threads. However, it will be necessary to centrally keep 
track of the queries sent by mtd64ng to the authoritative DNS 
servers and are currently awaiting for an answer, in order to 
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number of working threads of mtd64ng to 1. Due to this 
setting, mtd64ng serialized the processing of the requests from 
our test program, as shown in Fig. 12. However, the DNS64 
server of a large network with a high number of users should 
use multiple threads, therefore we executed the test also with 
two threads. The results in Fig. 13 reveal that mtd64ng sends 
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number of working threads of mtd64ng to 1. Due to this 
setting, mtd64ng serialized the processing of the requests from 
our test program, as shown in Fig. 12. However, the DNS64 
server of a large network with a high number of users should 
use multiple threads, therefore we executed the test also with 
two threads. The results in Fig. 13 reveal that mtd64ng sends 
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eliminate the possibility of sending out multiple equivalent 
queries concurrently. 

We note that all the examined DNS64 implementations are 
free software [25] (also called open source [26]), thus their 
source code may also be studied, as we did it in the case of 
TOTD [30]. The significance of our testing method is that it 
may also be used for closed source software, or in the cases 
when the subject of the study also includes the interaction with 
the random number generator of the operating system. 

The very same framework could be used for the analysis of 
NAT64 gateways. 

X. CONCLUSION 
We have shown that DNS cache poisoning may be a crucial 

vulnerability of DNS64 servers and we have given an 
introduction to the three main components of DNS cache 
poisoning vulnerability, namely Transaction ID prediction, 
source port number prediction, and a birthday paradox based 
attack, which is possible if a DNS or DNS64 server sends out 
multiple equivalent queries concurrently. 

After surveying the available test tools for DNS cache 
poisoning vulnerability analysis and pointing out that they are 
not suitable for our purposes, we have designed a methodology 
and implemented it in a testbed, which can be used for the 
systematic testing of DNS or DNS64 implementations, whether 
they are susceptible to the above mentioned three 
vulnerabilities. 

We have selected BIND, PowerDNS, Unbound two versions 
of TOTD, and mtd64ng for testing and also presented their 
setup. We have carried out their testing concerning the three 
possible components of the DNS cache poisoning vulnerability. 
We have pointed out several vulnerabilities in TOTD and 
mtd64ng. As they do not currently support caching, thus, cache 
poisoning is not possible in their cases. As the implementation 
of caching is included in the midterm development plans of 
mtd64ng, we have also given recommendations for the 
elimination of its uncovered vulnerabilities. 

As for BIND, PowerDNS, and Unbound, we have not found 
any vulnerabilities that could lead to cache poisoning. 
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Table 3.  Summary of the Vulnerability Test Results 
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Attack Type 
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BIND 9.9.5 no problem found no problem found protected no problem found 

TOTD 1.5.2 vulnerable vulnerable vulnerable not applicable 

TOTD 1.5.3 protected vulnerable vulnerable not applicable 

mtd64ng 1.1.0 vulnerable vulnerable vulnerable not applicable 

PowerDNS 3.6.2 no problem found no problem found protected no problem found 

Unbound 1.6.0 no problem found no problem found protected no problem found 
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eliminate the possibility of sending out multiple equivalent 
queries concurrently. 

We note that all the examined DNS64 implementations are 
free software [25] (also called open source [26]), thus their 
source code may also be studied, as we did it in the case of 
TOTD [30]. The significance of our testing method is that it 
may also be used for closed source software, or in the cases 
when the subject of the study also includes the interaction with 
the random number generator of the operating system. 

The very same framework could be used for the analysis of 
NAT64 gateways. 

X. CONCLUSION 
We have shown that DNS cache poisoning may be a crucial 

vulnerability of DNS64 servers and we have given an 
introduction to the three main components of DNS cache 
poisoning vulnerability, namely Transaction ID prediction, 
source port number prediction, and a birthday paradox based 
attack, which is possible if a DNS or DNS64 server sends out 
multiple equivalent queries concurrently. 

After surveying the available test tools for DNS cache 
poisoning vulnerability analysis and pointing out that they are 
not suitable for our purposes, we have designed a methodology 
and implemented it in a testbed, which can be used for the 
systematic testing of DNS or DNS64 implementations, whether 
they are susceptible to the above mentioned three 
vulnerabilities. 

We have selected BIND, PowerDNS, Unbound two versions 
of TOTD, and mtd64ng for testing and also presented their 
setup. We have carried out their testing concerning the three 
possible components of the DNS cache poisoning vulnerability. 
We have pointed out several vulnerabilities in TOTD and 
mtd64ng. As they do not currently support caching, thus, cache 
poisoning is not possible in their cases. As the implementation 
of caching is included in the midterm development plans of 
mtd64ng, we have also given recommendations for the 
elimination of its uncovered vulnerabilities. 

As for BIND, PowerDNS, and Unbound, we have not found 
any vulnerabilities that could lead to cache poisoning. 
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eliminate the possibility of sending out multiple equivalent 
queries concurrently. 

We note that all the examined DNS64 implementations are 
free software [25] (also called open source [26]), thus their 
source code may also be studied, as we did it in the case of 
TOTD [30]. The significance of our testing method is that it 
may also be used for closed source software, or in the cases 
when the subject of the study also includes the interaction with 
the random number generator of the operating system. 

The very same framework could be used for the analysis of 
NAT64 gateways. 

X. CONCLUSION 
We have shown that DNS cache poisoning may be a crucial 

vulnerability of DNS64 servers and we have given an 
introduction to the three main components of DNS cache 
poisoning vulnerability, namely Transaction ID prediction, 
source port number prediction, and a birthday paradox based 
attack, which is possible if a DNS or DNS64 server sends out 
multiple equivalent queries concurrently. 

After surveying the available test tools for DNS cache 
poisoning vulnerability analysis and pointing out that they are 
not suitable for our purposes, we have designed a methodology 
and implemented it in a testbed, which can be used for the 
systematic testing of DNS or DNS64 implementations, whether 
they are susceptible to the above mentioned three 
vulnerabilities. 

We have selected BIND, PowerDNS, Unbound two versions 
of TOTD, and mtd64ng for testing and also presented their 
setup. We have carried out their testing concerning the three 
possible components of the DNS cache poisoning vulnerability. 
We have pointed out several vulnerabilities in TOTD and 
mtd64ng. As they do not currently support caching, thus, cache 
poisoning is not possible in their cases. As the implementation 
of caching is included in the midterm development plans of 
mtd64ng, we have also given recommendations for the 
elimination of its uncovered vulnerabilities. 

As for BIND, PowerDNS, and Unbound, we have not found 
any vulnerabilities that could lead to cache poisoning. 

REFERENCES 
[1] E. Nordmark, R. Gilligan, “Basic transition mechanisms for IPv6 

hosts and routers”, IETF RFC 4213, October 2005. DOI: 
10.17487/rfc4213 

[2] G. Lencse, Y. Kadobayashi, “Survey of IPv6 transition 
technologies for security analysis”, IEICE Technical Committee 
on Internet Architecture (IA) Workshop, Tokyo Japan, Aug. 28, 
2017,  vol. 117, no. 187, pp. 19–24. 

[3] M. Georgescu, H. Hazeyama, T. Okuda, Y. Kadobayashi, and S. 
Yamaguchi, “The STRIDE towards IPv6: A comprehensive 
threat model for IPv6 transition technologies”,  
     
, Rome, Feb. 2016. DOI: 10.13140/RG.2.1.2781.6085 

[4] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: 
DNS extensions for network address translation from IPv6 clients 
to IPv4 servers”, RFC 6147, Apr. 2011. DOI: 10.17487/rfc6147 

[5] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: 
Network address and protocol translation from IPv6 clients to 
IPv4 servers”, IETF RFC 6146, Apr. 2011. DOI: 
10.17487/rfc6146 

[6] G. Lencse, Y. Kadobayashi, “Methodology for the identification 
of potential security issues of different IPv6 transition 
technologies: Threat analysis of DNS64 and stateful NAT64”, 
 , vol. 77, no. 1, pp. 397411, August 1, 
2018, DOI: 10.1016/j.cose.2018.04.012 

[7] S. Son and V. Shmatikov, “The hitchhiker’s guide to DNS cache 
poisoning”, in      
      
, Singapore, Sep. 7–9, 2010, pp. 466–483, DOI: 
10.1007/9783642161612_27 

[8] G. Lencse and Y. Kadobayashi, “Testbed for security analysis of 
the DNS64 IPv6 transition technology in virtual environment”, 
IEICE Communications Society Internet Architecture Workshop, 
Tokyo, Japan, Oct. 13, 2017, , vol. 117, no. 239, 
pp. 1924. 

[9] G. Lencse and Y. Kadobayashi, “Benchmarking DNS64 
Implementations: Theory and Practice”, 
, vol. 127, no. 1, pp. 6174, September 1, 2018, 
DOI: 10.1016/j.comcom.2018.05.005 

[10]R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, “DNS 
Security Introduction and Requirements”, IETF RFC 4033, Mar. 
2005. DOI: 10.17487/rfc4033 

[11]J. Linkova, “Let’s talk about IPv6 DNS64 & DNSSEC”, APNIC 
Blog, 2016, https://blog.apnic.net/2016/06/09/letstalkipv6
dns64dnssec/ 

[12]C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6 
addressing of IPv4/IPv6 translators”, IETF RFC 6052, Oct. 2010. 
DOI: 10.17487/rfc6052 

[13]A. Hubert, R. van Mook, “Measures for making DNS more 
resilient against forged answers”, IETF RFC 5452, Jan. 2009. 
DOI: 10.17487/rfc5452 

[14]M. Larsen, F. Gont, “Recommendations for transportprotocol 
port randomization”, IETF RFC 6056, Jan. 2011. DOI: 
10.17487/rfc6056 

Table 3.  Summary of the Vulnerability Test Results 

 
DNS64 Implementation 

Attack Type 

Transaction ID Prediction Source Port Number Prediction Multiple Equivalent Queries DNS Cache Poisoning 

BIND 9.9.5 no problem found no problem found protected no problem found 
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eliminate the possibility of sending out multiple equivalent 
queries concurrently. 

We note that all the examined DNS64 implementations are 
free software [25] (also called open source [26]), thus their 
source code may also be studied, as we did it in the case of 
TOTD [30]. The significance of our testing method is that it 
may also be used for closed source software, or in the cases 
when the subject of the study also includes the interaction with 
the random number generator of the operating system. 

The very same framework could be used for the analysis of 
NAT64 gateways. 

X. CONCLUSION 
We have shown that DNS cache poisoning may be a crucial 

vulnerability of DNS64 servers and we have given an 
introduction to the three main components of DNS cache 
poisoning vulnerability, namely Transaction ID prediction, 
source port number prediction, and a birthday paradox based 
attack, which is possible if a DNS or DNS64 server sends out 
multiple equivalent queries concurrently. 

After surveying the available test tools for DNS cache 
poisoning vulnerability analysis and pointing out that they are 
not suitable for our purposes, we have designed a methodology 
and implemented it in a testbed, which can be used for the 
systematic testing of DNS or DNS64 implementations, whether 
they are susceptible to the above mentioned three 
vulnerabilities. 

We have selected BIND, PowerDNS, Unbound two versions 
of TOTD, and mtd64ng for testing and also presented their 
setup. We have carried out their testing concerning the three 
possible components of the DNS cache poisoning vulnerability. 
We have pointed out several vulnerabilities in TOTD and 
mtd64ng. As they do not currently support caching, thus, cache 
poisoning is not possible in their cases. As the implementation 
of caching is included in the midterm development plans of 
mtd64ng, we have also given recommendations for the 
elimination of its uncovered vulnerabilities. 

As for BIND, PowerDNS, and Unbound, we have not found 
any vulnerabilities that could lead to cache poisoning. 
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eliminate the possibility of sending out multiple equivalent 
queries concurrently. 

We note that all the examined DNS64 implementations are 
free software [25] (also called open source [26]), thus their 
source code may also be studied, as we did it in the case of 
TOTD [30]. The significance of our testing method is that it 
may also be used for closed source software, or in the cases 
when the subject of the study also includes the interaction with 
the random number generator of the operating system. 

The very same framework could be used for the analysis of 
NAT64 gateways. 

X. CONCLUSION 
We have shown that DNS cache poisoning may be a crucial 

vulnerability of DNS64 servers and we have given an 
introduction to the three main components of DNS cache 
poisoning vulnerability, namely Transaction ID prediction, 
source port number prediction, and a birthday paradox based 
attack, which is possible if a DNS or DNS64 server sends out 
multiple equivalent queries concurrently. 

After surveying the available test tools for DNS cache 
poisoning vulnerability analysis and pointing out that they are 
not suitable for our purposes, we have designed a methodology 
and implemented it in a testbed, which can be used for the 
systematic testing of DNS or DNS64 implementations, whether 
they are susceptible to the above mentioned three 
vulnerabilities. 

We have selected BIND, PowerDNS, Unbound two versions 
of TOTD, and mtd64ng for testing and also presented their 
setup. We have carried out their testing concerning the three 
possible components of the DNS cache poisoning vulnerability. 
We have pointed out several vulnerabilities in TOTD and 
mtd64ng. As they do not currently support caching, thus, cache 
poisoning is not possible in their cases. As the implementation 
of caching is included in the midterm development plans of 
mtd64ng, we have also given recommendations for the 
elimination of its uncovered vulnerabilities. 

As for BIND, PowerDNS, and Unbound, we have not found 
any vulnerabilities that could lead to cache poisoning. 
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eliminate the possibility of sending out multiple equivalent 
queries concurrently. 

We note that all the examined DNS64 implementations are 
free software [25] (also called open source [26]), thus their 
source code may also be studied, as we did it in the case of 
TOTD [30]. The significance of our testing method is that it 
may also be used for closed source software, or in the cases 
when the subject of the study also includes the interaction with 
the random number generator of the operating system. 

The very same framework could be used for the analysis of 
NAT64 gateways. 

X. CONCLUSION 
We have shown that DNS cache poisoning may be a crucial 

vulnerability of DNS64 servers and we have given an 
introduction to the three main components of DNS cache 
poisoning vulnerability, namely Transaction ID prediction, 
source port number prediction, and a birthday paradox based 
attack, which is possible if a DNS or DNS64 server sends out 
multiple equivalent queries concurrently. 

After surveying the available test tools for DNS cache 
poisoning vulnerability analysis and pointing out that they are 
not suitable for our purposes, we have designed a methodology 
and implemented it in a testbed, which can be used for the 
systematic testing of DNS or DNS64 implementations, whether 
they are susceptible to the above mentioned three 
vulnerabilities. 

We have selected BIND, PowerDNS, Unbound two versions 
of TOTD, and mtd64ng for testing and also presented their 
setup. We have carried out their testing concerning the three 
possible components of the DNS cache poisoning vulnerability. 
We have pointed out several vulnerabilities in TOTD and 
mtd64ng. As they do not currently support caching, thus, cache 
poisoning is not possible in their cases. As the implementation 
of caching is included in the midterm development plans of 
mtd64ng, we have also given recommendations for the 
elimination of its uncovered vulnerabilities. 

As for BIND, PowerDNS, and Unbound, we have not found 
any vulnerabilities that could lead to cache poisoning. 
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