INFOCOMMUNICATIONS JOURNAL

Cost-Efficient Resource Allocation Method for
Heterogeneous Cloud Environments

Cost-Efficient Resource Allocation Method for
Heterogeneous Cloud Environments

Marton Szabo!, David Hajay? and Mark Szalayz®

Abstract—In this paper we present a novel on-line NFV
(Network Function Virtualization) orchestration algorithm for
edge computing infrastructure providers that operate in a het-
erogeneous cloud environment. The goal of our algorithm is to
minimize the usage of computing resources which are offered
by a public cloud provider (e.g., Amazon Web Services), while
fulfilling the required networking related constraints (latency,
bandwidth) of the services to be deployed. We propose a reference
network architecture which acts as a test environment for the
evaluation of our algorithm. During the measurements, we
compare our results to the optimal solution provided by an ILP-
based solver.

Index Terms—orchestration; network algorithm; heteroge-
neous cloud, fog computing, cloud computing

I. INTRODUCTION

In the field of telecommunications many new emerging
trends can be observed. For example, [oT (Internet of Things)
aims to make traditional devices smart and connected to the
Internet; this is a major trend already present nowadays. In
the field of transportation, we can also find many exciting new
solutions (e.g., remote driving, autonomous drones, etc.). The
appearance of 5G networks is expected to enable even more
revolutionary services to be built [1]. These can be for example
the tactile Internet and on-line augmented reality applications,
where the low response time is a crucial prerequisite. These
services require not only the evolution of the radio interface,
but also necessitates certain modifications in the topology of
the back-haul network in order to serve the large number of
new devices and the network traffic generated by them, and
provide near real-time response times.

Today’s widely deployed telecommunications networks are
not flexible enough to fulfill these expected new challenges.
For example, running network functions are currently binded
to the special purpose hardware elements located in the core
of the network (e.g. firewalls, carrier grade NAT platforms),
which means unbearably high latency for most of the new
applications. The NFV (Network Function Virtualization) con-
cept aims to overcome this challenge [2], [3]: virtualization of
the network functions makes it possible to run these services
on general purpose hardware (e.g., x86 based servers with
high compute capacity), thus removing the limitations coming
from the physical location of the devices. The virtual network
functions are expected to be one the fundamental building
blocks of the future 5G networks.

Department of Telecommunications and Media Informatics, Budapest
University of Technology and Economics, Hungary, 1117 Budapest, Magyar
Tudosok krt. 2.

!'szabo.marton@tmit.bme.hu, > yhaja.david@tmit.bme.hu,

* zmark.szalay @tmit.bme.hu

DOI: 10.36244/1CJ.2018.1.3

MARCH 2018 « VOLUME X ¢ NUMBER 1

Service Graph (SG)

Resource Graph (RG) with mapped VNFs

Figure 1. Mapping Service Function Chain to the infrastructure

Furthermore, by extending the traditional cloud concept
with compute nodes at edge of the network — often called
Mobile Edge Computing (MEC) [4] — using together with
the high amount of resources in the core data centers enables
many new applications for the service providers. This way, it is
possible to run certain network functions near to the end-users
with very low latency guaranteed, while other components
of a service — that are not so sensitive to latency — can
be deployed in core data centers instead of placing those in
the limited capacity edge nodes [5]. One service consists of
elementary functions connected with each other in a given
order. This is called Service Function Chaining (SFC), and its
model defines different requirements to the underlying network
and virtualization environments (required CPU, RAM, storage,
constraints on bandwidth, latency between nodes) [6]. The
process that maps multiple service graphs (SGs) composed of
different virtual network functions (VNFs) to a common phys-
ical infrastructure, represented by the Resource Graph (RG),
is called Virtual Network Embedding (VNE). An example of
the placement of VNFs and logical connections to the nodes
and links of the physical infrastructure is shown in Fig. 1.

15

http://doi.org/10.36244/ICJ.2018.1.3

INFOCOMMUNICATIONS JOURNAL

Cost-Efficient Resource Allocation Method for
Heterogeneous Cloud Environments

By applying the previously described technologies together
with dynamically reconfigurable, software-based networks
(Software Defined Networks, SDN), limitations caused by
the current rigid network architectures can be eliminated,
thus making the introduction of the new-generation network
services possible. These can be for example remote driving
cars and industrial robots controlled from the cloud, edge
content caching, smart cities or on-line augmented reality
applications.

An other interesting aspect of the future 5G networks is the
resource sharing between different service providers, which
would enable their users to be served independently of their
actual physical location (e.g., in case of roaming). In such a
multi-provider cloud environment the goal of the participants
is to utilize their own infrastructure the most efficiently, thus
minimizing the expenses caused by using external resources.

In this paper, we propose a new online resource orchestra-
tion algorithm which finds proper placement for the network
functions of online services while minimizing the costs to be
paid for external resources taken at third-party infrastructure
providers. In order to evaluate our algorithm, we implemented
a framework where we tested its performance in various
simulation scenarios. We compare our results to an ILP-
provided optimal offline solution.

The paper is organized as follows: Sec. II overviews the
related work. Sec. III describes our reference architecture
and the the optimization problem in the form of an ILP
to be solved. Our online heuristic algorithm is explained in
Sec. IV. Performance measurements are evaluated in Sec. V.
We conclude our work in Sec. VI.

II. RELATED WORK

Virtual Network Embedding (VNE) is known to be NP-hard
[7], which means finding the optimal solution cannot be done
within reasonable time in case of large input, for example,
when many services are deployed in a large infrastructure.
Two different approaches exist to solve the VNE problem:
1) exact solutions that find the optimum but these can be
applied to limited scale problems, ii) approximation-based
algorithms that trade the optimal solution for better runtime.
[8] summarizes many of the possible solutions to the VNE
problem.

Several approaches use Integer Linear Programming (ILP)
to solve the VNE problem. In [9] the authors implemented an
ILP formula to minimize the cost of embedding in terms of
edge costs while maximizing the acceptance ratio. Reconfig-
uration of the existing mapping by enabling VNF migrations
formed as MILP (Mixed ILP) were studied in [10].

Many different approaches solve the VNE problem with
heuristic algorithms. Most of them perform the mapping in
two steps: node mapping stage and edge mapping stage, thus
physical nodes that have been selected to host neighboring
network functions in the node mapping state may be multiple
hops away from each other. Many algorithms aim to solve
this problem by minimizing link utilization, e.g., [11], [12].

16

Authors of [13] proposed a hybrid algorithm, which first
solves a relaxation of the original problem by using linear
programming in polynomial time. Then they use deterministic
and randomized rounding techniques on the solution of the
linear program to approximate the values of the variables in the
original MILP. A decomposing mapping algorithm proposed in
[14] aims to minimize the mapping cost by making a selection
of the available decompositions during the node mapping
stage.

By Edge Computing, we mean a new network function-
ality, that extends the traditional cloud computing paradigm
with additional computing capacity placed close to the end
users. These resources are distributed in the service provider’s
network edge, for example co-located with an Internet Edge
PoP (Point of Presence). This new approach makes possible to
serve the users at the edge of the network rather than routing
over the whole Internet backbone to the data centers located
in the core, where all the computing capacity is concentrated.
This ensures significant latency reduction and bandwidth
savings on the backbone links, thus better QoS (Quality of
Service) can be provided. The Open Edge Computing Initiative
[15] is the responsible for driving the development of the Edge
Computing technology.

The Open Fog Consortium [16] has proposed a possible
reference architecture for the 5G ecosystem, called Fog Com-
puting. The architecture [17] can be divided into three main
layers. The top layer includes the central clouds that can be
either the ISP’s own private cloud or a public cloud provider’s
(e.g., Amazon Web Services, Microsoft Azure) infrastructure.
The Fog Nodes, which can be found distributed in the ISP’s
network are located in the middle layer. They have less
computing capacity compared to the previous layer, but can
host applications with strict requirement on response time.
While having limited resources, Fog Nodes can be used to
enhance the performance of the end devices, or to offload the
computation intensive tasks from them, thus ensuring better
battery lifetime and response times. The bottom layer hosts the
end-devices that consume the compute and network resources
of the ISP. The devices are usually connected to the network
via wireless interface. Further features of the end equipment
are location-independence, limited hardware resources and
large quantity.

Fog Computing also defines an ideal architecture for one
of today’s most important emerging paradigm, which is the
IoT (Internet of Things) [18], [19]. In IoT, sensor devices
in the bottom layer usually monitor different environmental
variables, then send the measurement data to a central entity
located in the network. This entity may send control messages
back to the devices in order to change their state, then it
aggregates and transmits the data to an other unit, that for
example stores the data for later data processing and big-data
applications. This other unit may be suitable to be placed in
the central cloud infrastructure, because of the high storage
requirements and the computational intensive data processing

methods that can be performed more efficiently there. Other

MARCH 2018 « VOLUME X ¢ NUMBER 1

INFOCOMMUNICATIONS JOURNAL

Fog Computing related use-cases and challenges, for example
from security point of view can be read in [20] and [21].

III. HETEROGENEOUS NETWORKS

By heterogeneous networks we mean an infrastructure,
where different service providers are present. In this section,
we introduce our network model based on Fog/Edge Com-
puting, then we give the formal statement of the emerging
resource allocation problem in heterogeneous networks.

A. Reference network

Based on the previously described considerations we cre-
ated our own simplified network model for the three-tier
Fog Computing architecture: a network consists of a given
number of Fog Nodes (or Edge Computing Clusters) and
Central Clouds. Each Fog Node contains a random number
of servers with given computing capabilities (CPU, RAM and
storage) and two gateway nodes. Each Fog Node has a SAP
(Service Access Point) attached to it via the SAP-Gateway.
The SAP represents the connection point to the network from
the perspective of the end devices. They can reach the network
resources through this interface (the SAP can be understood
as for example a mobile base station). Within a Fog Node the
servers are connected in a full mesh topology. We assume
that bandwidth is not the bottleneck therein, because the
nodes that belong to the same Fog Node are located close to
each other and the blocking-less feature can be provided by
choosing the right data center topology. The Fog Nodes and
the central data centers are interconnected with each other
via the Core Network. Each link has its custom delay and
bandwidth characteristics assigned to it. The central cloud can
be hosted by a public infrastructure provider (e.g., Amazon
Web Services, Microsoft Azure) or the ISP’s own data center.
A topology may contain any number of central clouds. We
assume that they have unlimited compute, storage and memory
capacity, but the service provider may needs to pay a fee for
the consumed resources. Fig. 2 shows an example topology
with four fog clusters and one central cloud node.

B. Problem statement

We are searching for a solution to the following problem:
How can we deploy service chains to a previously described
heterogeneous cloud environment in a cost effective way? Let
us assume that we are an ISP with Fog Nodes scattered around
our network with given computing capabilities. Furthermore,
we have access to one or more public cloud provider’s infras-
tructure through the Internet. Because of economic reasons,
it may be beneficial to have a contract with more than one
provider, thus better prices can be achieved for the allocation.
We expose our network to the end-users, who can then initiate
SFC deployments with various QoS requirements. In this case,
an efficient algorithm, which allocates physical resources to
the components of the SFC, is necessary. The goal of the
algorithm is to minimize the cost to be payed for consuming
external resources by fulfilling the QoS requirements and

MARCH 2018 « VOLUME X ¢ NUMBER 1

Cost-Efficient Resource Allocation Method for
Heterogeneous Cloud Environments

X xR

ore Networl

Fog Ned@i A A »
XX XX

Figure 2. Example to the modeled architecture

other constraints that are dictated by the capabilities of the
network. Finding an optimal solution is known to be NP-hard
as this problem can be treated as a generalized version of
the previously described VNE problem (arbitrary resource cost
assigned to each node).

Table I

NOTATIONS USED
Notation Description
Vs, Es NFs and links of the service graph
Vi, Er Nodes and links of the resource graph
(4,7) € Es SG link between NF i and j
(u,v) € Er RG link between node u and v
z: 1€ Vs, u €V, 1 if NF i has been mapped to node u
yz’fv 1 if (u,v) is in the physical path of (i.j)
Iz Resources required by NF i
p; Available resources in Node j
Ou,v Delay of physical link (u,v)
drd Maximal delay between NF i and j
Bu,v Available bandwidth on (u,v) link
bHJ Required bandwidth between NF i and j
0s C Vs SAPs in the SG
or C Vi SAPs in the RG
0s C or SG sAPs can be found in the RG also
c, The cost of running NF i on Node u
yCVr Core Cloud nodes

Equations 1-8 describe the problem as an ILP in the
following section. The notations we use in the formal problem
description are summarized in Table I. We provide the intuitive
meaning of each line of the ILP in the following.

VieVe: Y al=1 (1)

ueV,

V(i,j) € Es,Yu eV, :

>

vi(u—v)EV,

>

w:(w—u)EVy

hj L2 R e |
yu,v yw,u - xu :Eu (2)

17

INFOCOMMUNICATIONS JOURNAL

Cost-Efficient Resource Allocation Method for
Heterogeneous Cloud Environments

VueV, Vi€ Vi Y alii < g ©)
1€Vs

V(i j) €Es: Y yildu, <dV 4
(u,v)€E,

V) € Bri Yy S Bus 5)
(1,5)€EEs

Vi € g,: 1t =1 (6)

min Z Z :c’ucz)
ueV, ieV;

As the result of the mapping, each VNF is assigned to
exactly one physical node (1). The flow constraint is given
by (2). The total amount of resources required by the VNFs
mapped to a given node cannot exceed the resources available
at the node (3). The total delay on the physical path of a SG
link cannot exceed the requested delay between the two VNFs
(4). Similarly, the total bandwidth of virtual links mapped to
the same physical link cannot be greater than the available
bandwidth (5). The SG SAPs are mapped to the RG SAPs with
the same ID (6). The objective function of the optimization
is to minimize the external resource costs (7). The cost of
deploying a VNF is calculated based on the formula:

¢ = ayxCPU 4 B, x RAM' +~,«* BW' +5,%STR, (8)

where «, 3,7 and 0 are the cost parameters of the given
physical node. The CPU,RAM,BW and STR are the
resources requested by the VNF, where BW is the sum
bandwidth on all links connected to the VNF, and ST R is the
allocated storage. In that case, when a node belongs to a fog
nodes, we set the parameters to 0, thus ensuring that using our
own infrastructure does not imply any cost. However, in real
cloud environments currently Virtual machines usually created
by using instance types with predefined CPU and memory
resources and the additional bandwidth costs calculated based
on the data volume moved to/from the cloud. In our model,
we are using a more granular cost function. We entered the
problem to an ILP solver by customizing the program that was
used in [22] with our own cost calculation method.

IV. OUR ONLINE ALGORITHM

In this section we propose a novel orchestration algorithm
that aims to minimize resource usage from the external core
clouds, thus utilizing our own infrastructure in the most
efficient way. VNF migration is an important feature of our
approach, which gives option to migrate a given set of network
functions to the cloud, thus freeing up network resources in
the fog nodes in order to serve more latency and bandwidth
sensitive requests. We introduce the migrationcost attribute

in (9):

migrationcost’ = min A, * STRY,u € Y, 9

18

as there is a cost penalty to be payed for moving VN F;
to the cloud from one of the fogs. The rationale is that a
migration process requires redundant resources to be allocated
caused by the duplicating the state of the network function
to be transfered to the cloud. We derive this cost from the
migration coefficient of a node (\) and the allocated storage to
VN F?. The main steps of our algorithm taking into account
migration costs are described in the following, and pseudo-
code is provided in Alg. 1 and 2.

A. SG preprocessing

In the first step of our algorithm, we calculate the order
of execution. The ORDERSUBCHAINS method splits the
incoming service request to the list of triplets containing
the links and their connected nodes, i.e., the VNFs. The
method starts with the first available SAP and collects all the
neighboring nodes and connected edges, then appends the link
with the strictest bandwidth requirement to the list together
with its endpoints. After that it collects the available nodes
and edges that became reachable via the new node.

B. VNF mapping

The next step step is the mapping of the service requests to
the physical infrastructure. The MAP method iterates trough
the previously ordered list of edges. Depending on the status
of the nodes connected by the link, three different cases
are possible. If both ends have already been allocated to a
computing resource previously, then only a suitable path for
the virtual edge needs to be found. To achieve this we run a
Dijkstra algorithm between the hosts in the physical topology.

If one of the end nodes is not in mapped_vnodes yet and it
is not a SAP either, then the node needs to be mapped. In the
MAPVNF method the program tries to find a suitable place for
the VNF. First, it filters the available physical nodes based on
computing resources, and after that it checks if the candidate is
reachable from the previous node via any sequence of edges.
If the path does not satisfy the delay requirement, or any
of the edges does not have enough free bandwidth, then the
node is removed from the list of candidates. When the list of
compatible physical nodes is available, they are sorted based
on the resource cost of hosting the actual VNF. After the host
node is determined, the link can also be mapped with the
previously seen method. In that case, when the actual element
is a SAP, then the algorithm calculates the path with the
lowest latency, where the required bandwidth is available on all
edges. If the path fulfills the latency requirement between the
previously mapped VNF and the SAP, then the link mapping
is performed.

It may occur, that one of the steps above fails. For example,
none of the nodes have enough resource to host a given VNF,
or the network related requirements cannot be met. In that
case, the algorithm tries to step back to a previous state. This
step is performed by the ROLLBACK method. In order to
ensure better runtime, limiting the number of rollback steps
may be necessary. We can do that by setting the max_rollback
constant to an appropriate value. The ROLLBACK method

MARCH 2018 « VOLUME X ¢ NUMBER 1

INFOCOMMUNICATIONS JOURNAL

Cost-Efficient Resource Allocation Method for
Heterogeneous Cloud Environments

Algorithm 1 Service graph mapping to resource graph

Algorithm 2 VNF migration from fog to cloud

1: running < copy(RG)

2: mapped_vnodes <)

3: map_list +~ORDERSUBCHAINS(SG)

4: mapped_vnodes.insert(os. first)

5: rollback_level = 0

6: for all (u,v,link) € map_list do

7: if (u,v) € mapped_vnodes then

8: success < MAPVIRTUALLINK(link)
9: else if u & p; then

10: success < MAPVNF(u, v, link)

11: else > This means actual_element is a SAP
12: success < MAPVLINK2SAP(u, v, link)
13: end if

14: if —success and rb_level > max_rb then
15: success < MIGRATINGEDGE2CORE(cable, u, v)
16: else

17: success < ROLLBACK (u, v, link)

18: rollback_level+ = 1

19: end if

20: if success then

21: mapped_vnodes.insert(v)

22: end if

23: end fordone

restores the state when the previous VNF was mapped, then
chooses an other candidate from the list of the suitable nodes,
and continues the mapping from the modified state. If the
number of rollbacks exceeds the limit, then the algorithm
tries to migrate one or more already mapped VNFs to the
central cloud, thus freeing up resources in the fog nodes. The
migration process is described in the next section.

C. Migrating VNFs to the cloud

The method that performs the migration can be divided
into three parts. The first part collects the possible fog nodes
containing VNFs that can be moved to the central cloud
without violating the latency and bandwidth constraints. The
GETFOGSFROMVNEFS method returns the fog nodes which
contain movable VNFs. If the fog node of the previously
mapped VNFs is in the result, then that fog node is surely
suitable to host the actual VNF in terms of network related
constraints. In other cases, the GETPATH method collects the
sequence of the physical links between the host of the previous
VNF and the actual fog node. After that, if the performance of
the physical path is conform with the virtual link requirements,
then the fog node is stored as a possible element.

The second part of the method determines the migration
options from the fog nodes selected previously. The DELUN-
COMPVNF method removes the VNFs that belong to incom-
patible fog nodes from the list containing movable VNFs.
After that, iterating through the list of the physical nodes that
have movable VNFs on it, if by migrating the VNF from a
node enough resources can be freed up, then we calculate
the migration cost of the VNF and insert it to the migration

MARCH 2018 « VOLUME X ¢ NUMBER 1

1: procedure MIGRATINGEDGE2CORE(cable, u, v)
2: compatible_fogs + 0

3: fog_list < GETFOGSFROMVNES(cable)

4 for fog € fog_list do

5 if fog == u.fog then

6: compatible_fogs.insert(fog)

7 else

8 vlink <+ GETVLINK(u, v)

9 phy_path < GETPATH(u. fog, fog)

if CHECKPATH(phy_path, vlink) then
11: compatible_fogs.insert(fog)
12: end if
13: end if
14: end for

15: DELUNCOMPVNES(cable, compatible_fogs)
possible_nodes < GETPHYNODES(cable)
mig_list <— ordered empty list

18: for node € possible_nodes do

19: vnf_list < ordered empty list

20: for vnf € node.corable_vnfs do

21: if ISMIGRABLE(vnf) then

22: vn f.mig_cost < GETMIGCOST(vn f)
23: mig_list.add(vnf)

24: end if

25: end for

26: EXPANDMIGLIST(mig_list, node.cable_vn fs)
27: end for

28: for mig_opt € mig_list do

29: DOMIGRATING(mig_opt)

30: if ISMIGWASSUC(mig_opt) then

31: return True

32: else

33: RESTOREMIG(mig_opt)

34: end if

35: end for

36: return False

37: end procedure

list. The migration list is ordered by the migration cost of the
contained elements. It may occur that by moving only one
VNF to the cloud at a time the required amount of resources
cannot be provided to the new NF. Because of that, checking
different subset of VNFs mapped to the same physical node
may be necessary. Instead of checking all the possible subsets,
in order to reduce runtime we only test the neighboring pairs,
triplets, and so on in the EXPANDMIGLIST method. If any
of these subsets grants enough free resources, then we insert
it to the migration list with the total migration cost of all the
affected VNFs. The result of the process is an ordered list that
contains the possible migrating options.

In the last step, the DOMIGRATING method tries to execute
the migrating options from the migration list, starting with the
cheapest option. The ISMIGRATING method checks in each
iteration if the migration was successful. If the remapped phys-

19

INFOCOMMUNICATIONS JOURNAL

Cost-Efficient Resource Allocation Method for
Heterogeneous Cloud Environments

ical paths fulfill the corresponding virtual link requirements,
then the method returns true. Else in RESTOREMIG we
restore the previous state and continue with the next migration
option from the list.

V. MEASUREMENT RESULTS

We have run measurements to demonstrate how our algo-
rithm works in different topology setups with various requests.
We had six scenarios each of them contained different number
of fog nodes between 1 and 20. During our simulations we
posted the requests (the service graphs) one by one, till the
first failure occurred. We indicated failure when there was no
way to deploy a service graph completely to the remaining
available resource set.

First of all, we compared our algorithm’s efficiency with
and without the migration function. In the comparison we
examined how many CPUs our algorithm can deploy to the
same resource set. It is easy to see that migrating is mostly
used for cost efficiency, because if we turn off this feature
then our algorithm has two options for deploying VNFs. First
option: our algorithm deploys cloud compatible VNFs directly
in the cloud. This is obviously not cost efficient because we
have to pay for allocated resources to the third-party from
the beginning. Second option: we want our algorithm to be
cost efficient, so it puts all the VNFs in the fog nodes. It is
definitely cheap for us, however our resources in the fog nodes
will quickly get exhausted.

Average mapped CPU cores

1200

1000
w300
4
8 o B with migrating
2 . .
5 o ® w/o migrating

Topologyl Topology2 Topology3 Topology4 Topology5

Figure 3. CPUs mapped with and without migration

Fig. 3 shows how many virtual CPU our algorithm can
deploy with migrating and without migrating them if we want
to keep our cost efficiency. Each bar on the figure represents
the average number of mapped virtual CPUs on the quoted
topologies. As you can see, we deploy more virtual CPUs
when the migration feature is turned on.

Next, we wanted to examine what the cost difference
between our algorithm and an optimal solution is. The optimal
solution comes from the offline algorithm, which solves the
previously defined ILP problem. Both algorithms were used
with the same input, which contained the same resource graph
and the same set of request graphs. We executed our algorithm
and collected all the successfully deployed requests till the
first failure. After that, we executed the offline algorithm with
the same resource graph and the collected request set. Both

20

Cost differences from optimum

a5
® 20 [] @ Topologyl
c o e
— . s ® Topology2
2 = .
c @ Topology3
o A
a 10 - L 4 ® Topologyd
:‘"_;; . L ® s 0 bt . @ Topologys

- \d
.;‘.i ‘.?
ol — % . : .
o 500 1000 1500 2000
CPUs mapped

Figure 4. Differences of cost between the online and offline algorithms

algorithms return with a number that defines the price of the
request set on the given topology. We compared these outputs
and plotted those in a scatter plot shown in Fig. 4: each point
represents a cost difference for a given request sequence. It is
noticeable how the request randomization affects the deployed
CPU number. It is also remarkable how our algorithm scales:
with the increase of the number of fog nodes the difference
between the two solutions does not go higher than 20%.

Table 1T
RELATIVE STANDARD DEVIATION OF COSTS

Mean of cost differences | Relative Standard Dev.
Topology1 0,9841 0,7931
Topology?2 3,8272 0,5235
Topology3 8,0787 0,7032
Topology4 5,2071 0,7231
Topology5 12,1877 0,4061

Table II shows the calculated relative standard deviation
based on the results displayed in Fig. 4. It tells us how the
different results in each measurement are scattered around the
mean cost. We can observe that as we increase the number of
fog nodes significantly, the relative standard deviation starts
to decrease, which also a proof of the good scalability.

Cost difference distribution

100%
80%

60% /
40%

20% /

0% T T T 1
o 5 10 15 20

Difference [%]

Figure 5. Cost difference distribution

In Fig. 5 we depict the distribution of cost differences. The
x axis represents the cost difference (in percentage) between
the offline and our algorithm. The optimal solution contains

MARCH 2018 « VOLUME X ¢ NUMBER 1

INFOCOMMUNICATIONS JOURNAL

Algorithm runtimes
[s] Topologyl Topology2 Topology3 Topology4 Topologys
10000 .

1000
100
10

1 —e—offline

—=-online
0,1

Figure 6. Runtimes of the algorithms

only the price of the allocated resource in the third-party
environment (cloud). In our solution we calculate a migration
cost as well. It is remarkable how the migration cost affects our
final price. If the migration cost is higher than the resource
allocation cost, then it is worthy to put a cloud compatible
VNF directly to the core cloud, so we can avoid high migration
cost.

Finally, we compared the execution times for both al-
gorithms. The result is represented in Fig. 6. The offline
algorithm’s execution time is increasing exponentially with the
number of fog nodes, however our algorithm execution time
grows only linearly.

VI. CONCLUSION

In this work we examined how future networks should
handle IoT services and their deployment. We made network
topology examples that could be used to run such services. For
handling the service creation on these topologies we created
an online algorithm that can deploy services cost efficiently
and that is also able to handle networking requirements of the
services. Our algorithm runs in polynomial time, thus scales as
well, while it provides close-to-optimal orchestration results.

REFERENCES

[1] N. Panwar et al., “A Survey on 5G,” Phys. Commun., vol. 18, no. P2,
pp. 64-84, Mar. 2016. [Online]. Available: http://dx.doi.org/10.1016/j.
phycom.2015.10.006

[2] ETSI, “White Paper: Network Functions Virtualisation (NFV),” 2013.
[Online]. Available: http://portal.etsi.org/nfv/nfv_white_paper2.pdf

[3] ETSI GS NFV-PER 001, Dec 2014, Network Functions Virtualisation
(NFV); Architectural Framework, ETSI, 2014 Dec.

[4] G. Brown, “Mobil edge computing use cases and deployment options,”
Tech. Rep., 2016.03.01. [Online]. Available: https://www.juniper.net/
assets/us/en/local/pdf/whitepapers/2000642-en.pdf

[5] P. Mach et al., “Mobile edge computing: A survey on architecture and
computation offloading,” IEEE Communications Surveys and Tutorials,
vol. 19, no. 3, pp. 1628-1656, 2017.

[6] J. Halpern et al., “Service Function Chaining (SFC) Architecture,” IETF
RFC 7665, Oct. 2015.

[71 E. Amaldi et al., “On the computational complexity of the virtual net-
work embedding problem,” Electronic Notes in Discrete Mathematics,
vol. 52, pp. 213 — 220, 2016, INOC 2015 — 7th International Network
Optimization Conference.

[8] A. Fischer et al., “Virtual network embedding: A survey,” IEEE Com-
munications Surveys and Tutorials, vol. 15, no. 4, pp. 1888-1906, 2013.

[9] 1. Houidi et al., “Virtual network provisioning across multiple substrate
networks,” Computer Networks, vol. 55, no. 4, pp. 1011-1023, 2011.

MARCH 2018 « VOLUME X ¢ NUMBER 1

Cost-Efficient Resource Allocation Method for
Heterogeneous Cloud Environments

[10] G. Schaffrath et al., “Optimizing long-lived cloudnets with migrations,”
in UCC 12, ACM. ACM, 2012, pp. 99-106.

[11] H. Cui et al., “A virtual network embedding algorithm based on virtual
topology connection feature,” Wireless Personal Multimedia Communi-
cations, 2013.

[12] G. Wang et al., “A virtual network embedding algorithm based on
mapping tree,” Communications and Information Technologies, 2013.

[13] M. Chowdhury et al., “Vineyard: Virtual network embedding algorithms
with coordinated node and link mapping,” IEEE/ACM Transactions on
Networking, vol. 20, no. 1, pp. 206-219, 2012.

[14] S. Sahhaf er al., “Network service chaining with optimized network
function embedding supporting service decompositions,” Computer Net-
works, vol. 93, no. 3, pp. 492-505, 2015.

[15] Open Edge Computing Initiative. [Online]. Available: http:
/lopenedgecomputing.org

[16] OpenFog Consortium, “Openfog reference architecture
for fog computing,” Tech. Rep., 2017.02.08. [On-
line]. Available: https://www.openfogconsortium.org/wp-content/

uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf

[17] C. C. Byers, “Architectural imperatives for fog computing: Use cases,
requirements, and architectural techniques for fog-enabled iot networks,”
IEEE Communications Magazine, vol. 55, no. 8, pp. 14-20, 2017.

[18] A. V. Dastjerdi et al., “Fog computing: Helping the internet of things
realize its potential,” IEEE Computer, vol. 49, no. 8, pp. 112-116, 2016.

[19] F. Bonomi et al., “Fog computing and its role in the internet of things,”
MCC 12, pp. 13-16, 2012.

[20] S. Yi et al., “A survey of fog computing: Concepts, applications and
issues,” in Mobildata ’15, ACM. ACM, 2015, pp. 37-42.

[21] L. M. Vaquero et al., “Finding your way in the fog: Towards a com-
prehensive definition of fog computing,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 5, pp. 27-32, 2014.

[22] B. Németh er al., “Efficient Service Graph Embedding: A Practical
Approach,” in Second IEEE International Workshop on Orchestration
for Software Defined Infrastructures (O4SDI @ IEEE NFV-SDN 2016),
Nov 2016.

Marton Szabo received his M.Sc. degree
in informatics from Budapest University of
Technology and Economics (BME) in 2017. During
his studies he was a member of the High Speed
Networks Laboratory hosted by the Department
of Telecommunications and Media Informatics.
After working in the telecom industry for one year
he joined the newly formed MTA-BME Network
Softwarization research group founded by the
Hungarian Academy of Sciences (MTA). His current
research focuses on network softwarization and virtualization in 5G.

Mark Szalay is a graduate student at Budapest
University of Technology and Economics. He is a
member of the High Speed Network Laboratory
(http://hsnlab.tmit.bme.hu/) in the Department of
Telecommunications and Media Informatics. His
main research interests include Hardware (Router/
switch/NIC) design, Network programming,
Software-Defined Networking (SDN) and Network
Function Virtualization (NFV). Mark has been
working in this field for more than two years.

David Haja is an undergraduate student at Budapest
University of Technology and Economics. He is a
member of the High Speed Network Laboratory
(http://hsnlab.tmit.bme.hu/) in the Department of
Telecommunications and Media Informatics. His
main research interests include Software-Defined
Networking (SDN), Network Function Virtualization
(NFV) and Resource Orchestrartion.

21

