
On Sensitive and Weighted Routing and Placement
Schemes for Network Function VirtualizationINFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, MONTH 2017 1

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization

Diogo Oliveira, Jorge Crichigno, Nasir Ghani

Abstract—Virtualization is a fast-growing technology that is
being widely adopted to help improve network and datacenter
resource manageability and usage optimization. However, given
increasing deployments, new challenges are starting to arise,
e.g., such as management complexity. Hence in order to deliver
a higher degree of service provisioning flexibility, two key
technologies have attracted attention, namely network function
virtualization (NFV) and software defined networking (SDN).
The former enables the implementation of network functions
(NFs) via top-of-the-shelf commodity servers in datacenters. The
latter decouples the data and control planes, centralizing flow
rules definitions in a controller system to facilitate management
and routing. Although recent NFV studies have focused on
minimizing resource usage to satisfy a set of requested NFs,
they do not consider scenarios with limited resources. Hence
this paper presents an optimization-based solution for the joint
routing and placement of virtual NFs. In particular, the scheme
tries to maximize the number of satisfied requests as well
as well minimize routing and deployment costs. The model
also introduces weighting factors to allow operators to select
cost preferences. However findings indicate that the proposed
optimization solution can only be solved for smaller networks.
Hence a more scalable greedy heuristic scheme is also developed.

Index Terms—Greedy algorithm; integer linear programming
(ILP); network function virtualization (NFV).

I. INTRODUCTION

NETWORK function virtualization (NFV) is a paradigm
that allows network functions (NFs) to be executed

on commercial-of-the-shelf (COTS) commodity servers, e.g.,
such as firewalls, load balancers, address translation boxes,
etc. Namely, it decouples physical network devices from the
functions that run on them, allowing such functions to be
executed as software instances within datacenters. As such,
NFV reduces capital and operational expenses by replacing
embedded devices and facilitating the deployment and man-
agement of networking services [1].

Meanwhile, software defined networking (SDN) is being
widely adopted due to its dynamic traffic flow management
capabilities. This methodology decouples the data and control
planes, relegating decision-making capacity to a controlling
system called the SDN controller. As such, network control
becomes much more flexible, and the underlying infrastructure

A preliminary version of this paper has been presented at the 2017 40th
International Conference on Telecommunications and Signal Processing (TSP)
[7].

D. Oliveira and N. Ghani are with the Department of Electrical Engineering,
University of South Florida, Tampa, FL, 33620.
E-mail: diogoo@mail.usf.edu, nghani@usf.edu

J. Crichigno is with the College of Engineering and Computing, University
of South Carolina, Columbia, SC, 29208.
E-mail: jcrichigno@sc.edu

can be reduced to a layer of programmable packet forwarding
devices. Namely, SDN controllers can build global network
views and directly compute traffic flow rules for routing
packets from source to destination nodes [2].

In general, NFV and SDN concepts have an orthogonal
relationship. However, even though these two paradigms do
not depend upon each other, they are still very complementary.
Namely, the former dynamically deploys NFs as software
instances, whereas the latter steers traffic to datacenters hosting
the desired NFs associated with a request. Now each service
request is comprised of a source and destination pair, a set
of requested NFs and a load rate. Hence a service provider
instantiates the pertinent NFs (associated with the network
services that are offered) in the datacenters and defines the
proper flow rules in the SDN controller(s). This procedure
helps establish the traffic flow between the source and the
destination. Now clearly each traffic flow must pass through
the datacenters hosting the requested NFs at the minimum
data rate requested. However, the sequence in which desired
functions are applied to a traffic flow is not considered here,
i.e., service function chaining (SFC).

To date, existing studies have focused on the minimization
of resources required for orchestration and placement of NFs
under the assumption that datacenters have infinite resources to
satisfy all requests [3], [4], [5], [6]. However, in resource con-
strained environments, the underlying physical infrastrurcture
may not be able to satisfy all requests, i.e., during periods
of heavy load or after large failure events. To the best of the
authors’ knowledge, the only known work on NF placement
(to maximize the number of satisfied requests) in resource-
constrained environments is presented in [7]. However this
initial study does not consider link capacity constraints, link
load balancing, or weighting factor selection/adjustment.

In light of the above, this paper presents a novel integer
linear programming (ILP) solution for weighted joint routing
and placement of NFs, i.e., termed as the Minimized Link
Load ILP (MLL-ILP) scheme. The proposed scheme tries to
maximize the number of requested NFs, and also minimize
the deployment cost, routing cost and link load. Additionally,
the scheme implements weighting factors for all three mini-
mization costs to allow operators to fine tune NF placement
and routing according to their operational needs. However, the
MLL-ILP formulation is still intractable for larger network
sizes. As a result, a greedy heuristic scheme is also developed
to improve scalability, i.e., termed as the Minimized Link Load
Greedy (MLL-GR) scheme.

This paper is organized as follows. First, Section II discusses
some related work on NF placement, and then Section III

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2017 � VOLUME IX � NUMBER 4 15

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization

Diogo Oliveira, Jorge Crichigno and Nasir Ghani

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization
INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, MONTH 2017 2

formulates the proposed ILP and heuristic algorithms. Next,
Section IV presents some detailed performance evaluation
results, and Section V highlights the overall conclusions.

II. RELATED WORK

As noted earlier, NFV is a very recent technology, the
first white paper on which was published by the European
Telecommunications Standards Institute (ETSI) in October
2012. However since then many researchers have studied the
NF placement problem. For example, Coen et al. [4] present
an ILP to minimize NF deployment cost, making use of
multiple approximation techniques. However, this work does
not consider routing costs. Following the minimization model,
Addis et al. [3] define an ILP scheme to reduce the number of
processors used to satisfy NF requests. However, this solution
can only be applied to a small number of instances due
to its complexity, i.e., high numbers of variables/constraints.
Focusing on heterogeneous Layer 1 networks, Xia et al.
[5] propose a method to minimize NF placement cost in
hybrid networks comprised of optical and electronic network
elements, i.e., optical-to-electronic and electronic-to-optical
conversion costs. As a complementary solution, the authors
also present a heuristic algorithm. Finally, Gebert et al. [6]
present a heuristic NF placement scheme to allow service
providers to optimize cellular coverage for large events.

However, to the best of the authors’ knowledge, the only
work which addresses the problem of maximizing the number
of requested NFs while minimizing infrastructure (node, link)
load and routing costs is presented in [7]. This technique
is particularly germane in scenarios where datacenters may
not have enough resources to satisfy all requests. Extending
upon this, the work herein proposes additional schemes that
incorporate link capacity constraints as well as load balancing.
Furthermore, the proposed solution can also be adapted to suit
provider needs. These flexible characteristics allows providers
to fine tune NF placement according to their requirements, i.e.,
both in terms of routing cost and NF deployment cost. Addi-
tionally, link capacity constraints and load balancing features
deliver a more realistic solution, i.e., since both physical node
and transmission link resources can be limited in real-world
settings. These solutions are now presented.

III. WEIGHTED JOINT ROUTING AND PLACEMENT OF NFS

As mentioned above, most NF placement schemes focus
on minimizing placement cost by assuming unlimited network
resources to satisfy all requests. Conversely, this paper looks at
resource-limited scenarios and proposes two schemes (MLL-
ILP and MLL-GR) to maximize the number of satisfied
requests and reduce infrastructure and routing costs. Addition-
ally, each cost has appropriately-defined weighting factors to
create an adaptive model. For example if a provider has limited
physical resources but sufficient link and routing capacity,
then deployment cost can be given higher preference. On
the other hand, if link capacities are lower and/or hops and
delay times are higher, then reduced routing costs may be
more favorable. Hence the proposed schemes allow providers
to achieve a proper tradeoff between deployment and routing
costs. Consider the details now.

A. Optimization Model

The network topology is represented as a graph G = (V,E),
where V is the set of nodes and E the set of links. Each link
(i, j)∈E also has an associated cost cij and capacity bij , which
quantifies the cost of using that link and its link capacity,
respectively. Meanwhile, a subset of nodes D ⊆ V represents
the set of datacenters where NFs are implemented, and the set
of NFs is denoted by F . A given datacenter d∈D implements
a subset of functions Fd⊆F . Furthermore, R represents the
set of requests. Namely, each request r∈R is characterized by
a 4-tuple (srcr, dstr, Fr, br), which denotes the source and
destination nodes of the flow, the set of requested functions
Fr⊆F , and the minimum available link capacity, respectively.

The customizable number of resource types is also denoted
by an integer m. For example, m=3 can refer to processor,
storage and memory. It is also assumed that a datacenter d∈D
has a finite amount of resources Wd={wd,1, wd,2, ..., wd,m}.
Hence to implement a function i∈Fd, datacenter d∈D employs
wi

d,1, w
i
d,2, ..., w

i
d,m resources. This resource requirement is

datacenter dependent, which reflects the fact that some dat-
acenters may specialize in supporting certain functions. Also,
the setup cost of locating an instance of a function i∈Fd at
datacenter d is cid, and an instance of function i at datacenter d
can serve λi

d requests. In order to accommodate more requests,
multiple instances of function i can also be deployed at
datacenter d. However each instance will consume additional
resources and entails added setup cost.

Overall, the MLL-ILP objective function tries to maximize
the total number of satisfied NFs and is composed of four
terms weighted by their factors, i.e., w1, w2, w3 and w4:

max F = w1

∑

r∈R

∑

i∈Fr

∑

d∈D|i∈Fd

xi
r,d − w2

∑

d∈D

∑

i∈Fd

cidy
i
d

−w3

∑

r∈R

∑

(i,j)∈E

cij lijr − αw4

(1)
The first term represents the total number of requested NFs.

Meanwhile the second term is the total cost to setup/deploy
NFs at the various datacenters. The third term is the total
routing cost, and the fourth term represents the maximum
overall link load. Note that the second, third and fourth terms
are negative, since maximizing a negative term is equivalent to
minimizing it [8], [9]. Also, the setup cost is directly related to
the number of satisfied functions and number of instances of
each function. Hence the second term (representing setup or
deployment cost) depends upon the number of NFs per request
and on how many datacenters are used to host these NFs. On
the other hand, the third and fourth terms (representing routing
and maximum link load costs, respectively) depend upon the
number of requests and number of links used. These latter two
terms are independent of the number of NFs and NF instances.

Next, Eqs. 2 to 12 list the complete set of model constraints:

xi
r,d ∈ {0, 1} r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd (2)

yid ∈ Z+ d ∈ D, i ∈ Fd (3)

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, MONTH 2017 3

li,jr ∈ {0, 1} r ∈ R, (i, j) ∈ E (4)

0 ≥ α ≤ 1 (5)

∑

d∈D

xi
r,d ≤ 1 r ∈ R, i ∈ Fr (6)

xi
r,d ≤ yid r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd (7)

∑

i∈Fd

wi
d,jy

i
d ≤ wd,j d ∈ D, r ∈ R, j ∈ {1, 2, ...,m}

(8)
∑

r∈R

xi
r,d ≤ λi

dy
i
d d ∈ D, i ∈ Fd (9)

∑

j:(i,j)∈E

lijr −
∑

j:(j,i)∈E

ljir =






−1; i = dstr, srcr %= dstr
1; i = srcr, srcr %= dstr
0; otherwise. i ∈ V, r ∈ R

(10)

∑

(d,j)∈E

ldjr ≥ xi
r,d r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd (11)

∑

r∈R

li,jr br ≤ αbi,j {i, j} ∈ E (12)

The above constraints are now detailed further. Foremost,
variable xi

r,d in Constraint 2 indicates whether function i∈Fr

requested by request r∈R is implemented at datacenter d∈D.
Meanwhile, variable yid in Constraint 3 represents the number
of instances of function i∈F at node d∈D. Variable li,jr in
Constraint 4 indicates whether link (i, j)∈E is used to route
traffic flow for request r∈R, i.e., it is binary. Also, Constraint
5 limits α between 0 and 1 since this variable represents
the highest link usage ratio, i.e., sum of all br using a link
(i, j)∈E divided by link capacity bi,j . Constraint 6 indicates
that a function i requested by request r is serviced by at
most one datacenter d. Since the objective of the ILP is to
maximize the sum of all variables xi

r,d (first term in Eq. 1), the
optimal solution will drive Constraint 6 to equality. Meanwhile
Constraint 7 states that if request r is assigned to function i
at datacenter d, then function i is located at d. Constraint
8 also states that the aggregate amount of type j resources
used by all functions instantiated at datacenter d is limited
by the total amount of resources wd,j∈Wd, j∈{1, 2, ...,m}.
Similarly, Constraint 9 indicates that the total number of
requests for function i served at datacenter d is at most
the number of instances of i at d times the capacity λi

d of
an instance i. Meanwhile, Constraint 10 ensures necessary
flow conservation. Finally, Constraint 11 guarantees that if a
function i requested by request r is placed at datacenter d,
then the traffic flow will be routed through that datacenter.

Now one of the key goals of MLL-ILP is also to avoid link
overload or at least minimize link load. Therefore the fourth

term in Eq. 1 introduces a link load minimization function
variable α, which is linked to Constraint 12. Namely, this
constraint checks if the sum of all links (i, j) used by a traffic
flow associated with request r times the load br demanded by
request r is bounded by the product of the link capacity bi,j
times α. As a result, traffic flows are associated with links that
have little/no load profile (higher available capacity).

Note that a non-link load balancing optimization scheme
can also be defined by eliminating α, i.e., α=0. This instance
is the same as the scheme presented in [7] and is termed as
the standard routing and placement ILP (STD-ILP) scheme.

B. MLL-ILP Complexity
Since the objective function and all constraints are linear,

and all variables are either integer or binary, the MLL-ILP
problem is NP-hard [10]. Furthermore, the complexity of
MLL-ILP can be determined by the number of variables that
the scheme utilizes. Namely, the number of variables xi

r,d, yid
and li,jr , given by Constraints 2, 3 and 4 is upper-bounded by
|R||F ||D|, |F ||D| and |R||E|, respectively. Also, Constraint 5
refers to a single variable, α. Hence the upper-bounds for the
number of variables in Constraints 6, 7, 8 and 9 are |R||F |,
|R||F ||D|, |R||D||Wd| and |F ||D|, respectively. Meanwhile,
the upper-bounds on variable counts for Constraints 10 and
11 are |V ||R| and |R||F ||D|. Also, the upper-bound for
Constraint 12 is |V ||R|+1. Hence the upper-bound for the total
number of variables is dominated by the product |R||F ||D|.
Now in general it is very difficult to pre-define limits on the
number of requests or functions to ensure ILP convergence.
However for small to medium network topologies, the pro-
posed ILP can still be solved in a reasonable amount of time,
i.e., low hundreds of nodes.

C. MLL-GR Heuristic
Although the MLL-ILP approach can provide an optimal

placement solution, its scalability is limited for large/complex
scenarios with many variables. It is here that heuristic schemes
can be developed to provide non-optimal solutions. Now a
broad range of strategies are available here, i.e., such as genetic
algorithms, particle swarm optimization, simulated annealing,
greedy heuristics, etc. Accordingly, the latter approach is
chosen here to solve the NF placement problem for larger
network sizes, as shown in Fig. 1.

Overall, the proposed heuristic scheme implements a two-
stage solution. Namely, given a graph and input parameters
(akin to MLL-ILP; source, destination, set of NFs and min-
imum link capacity), the algorithm returns the values for
variables xi, r, d, yid, li,jr and α. Foremost, the first stage of the
algorithm in Fig. 1 (lines 4-15) places the NFs at datacenters
to reduce deployment cost. For each function i requested by
r∈R, the scheme selects the datacenter dk that implements i
with the lowest setup cost (and at the same time has sufficient
resources to host upcoming requests, line 8). Once a NF is
placed, the resources at datacenter dk are updated accordingly
as follows: if there is an instance of NF i at datacenter dk with
enough instance capacity to satisfy request r, the remaining
capacity is decremented by 1. Otherwise, if there is no instance

DECEMBER 2017 � VOLUME IX � NUMBER 416

INFOCOMMUNICATIONS JOURNAL

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, MONTH 2017 2

formulates the proposed ILP and heuristic algorithms. Next,
Section IV presents some detailed performance evaluation
results, and Section V highlights the overall conclusions.

II. RELATED WORK

As noted earlier, NFV is a very recent technology, the
first white paper on which was published by the European
Telecommunications Standards Institute (ETSI) in October
2012. However since then many researchers have studied the
NF placement problem. For example, Coen et al. [4] present
an ILP to minimize NF deployment cost, making use of
multiple approximation techniques. However, this work does
not consider routing costs. Following the minimization model,
Addis et al. [3] define an ILP scheme to reduce the number of
processors used to satisfy NF requests. However, this solution
can only be applied to a small number of instances due
to its complexity, i.e., high numbers of variables/constraints.
Focusing on heterogeneous Layer 1 networks, Xia et al.
[5] propose a method to minimize NF placement cost in
hybrid networks comprised of optical and electronic network
elements, i.e., optical-to-electronic and electronic-to-optical
conversion costs. As a complementary solution, the authors
also present a heuristic algorithm. Finally, Gebert et al. [6]
present a heuristic NF placement scheme to allow service
providers to optimize cellular coverage for large events.

However, to the best of the authors’ knowledge, the only
work which addresses the problem of maximizing the number
of requested NFs while minimizing infrastructure (node, link)
load and routing costs is presented in [7]. This technique
is particularly germane in scenarios where datacenters may
not have enough resources to satisfy all requests. Extending
upon this, the work herein proposes additional schemes that
incorporate link capacity constraints as well as load balancing.
Furthermore, the proposed solution can also be adapted to suit
provider needs. These flexible characteristics allows providers
to fine tune NF placement according to their requirements, i.e.,
both in terms of routing cost and NF deployment cost. Addi-
tionally, link capacity constraints and load balancing features
deliver a more realistic solution, i.e., since both physical node
and transmission link resources can be limited in real-world
settings. These solutions are now presented.

III. WEIGHTED JOINT ROUTING AND PLACEMENT OF NFS

As mentioned above, most NF placement schemes focus
on minimizing placement cost by assuming unlimited network
resources to satisfy all requests. Conversely, this paper looks at
resource-limited scenarios and proposes two schemes (MLL-
ILP and MLL-GR) to maximize the number of satisfied
requests and reduce infrastructure and routing costs. Addition-
ally, each cost has appropriately-defined weighting factors to
create an adaptive model. For example if a provider has limited
physical resources but sufficient link and routing capacity,
then deployment cost can be given higher preference. On
the other hand, if link capacities are lower and/or hops and
delay times are higher, then reduced routing costs may be
more favorable. Hence the proposed schemes allow providers
to achieve a proper tradeoff between deployment and routing
costs. Consider the details now.

A. Optimization Model

The network topology is represented as a graph G = (V,E),
where V is the set of nodes and E the set of links. Each link
(i, j)∈E also has an associated cost cij and capacity bij , which
quantifies the cost of using that link and its link capacity,
respectively. Meanwhile, a subset of nodes D ⊆ V represents
the set of datacenters where NFs are implemented, and the set
of NFs is denoted by F . A given datacenter d∈D implements
a subset of functions Fd⊆F . Furthermore, R represents the
set of requests. Namely, each request r∈R is characterized by
a 4-tuple (srcr, dstr, Fr, br), which denotes the source and
destination nodes of the flow, the set of requested functions
Fr⊆F , and the minimum available link capacity, respectively.

The customizable number of resource types is also denoted
by an integer m. For example, m=3 can refer to processor,
storage and memory. It is also assumed that a datacenter d∈D
has a finite amount of resources Wd={wd,1, wd,2, ..., wd,m}.
Hence to implement a function i∈Fd, datacenter d∈D employs
wi

d,1, w
i
d,2, ..., w

i
d,m resources. This resource requirement is

datacenter dependent, which reflects the fact that some dat-
acenters may specialize in supporting certain functions. Also,
the setup cost of locating an instance of a function i∈Fd at
datacenter d is cid, and an instance of function i at datacenter d
can serve λi

d requests. In order to accommodate more requests,
multiple instances of function i can also be deployed at
datacenter d. However each instance will consume additional
resources and entails added setup cost.

Overall, the MLL-ILP objective function tries to maximize
the total number of satisfied NFs and is composed of four
terms weighted by their factors, i.e., w1, w2, w3 and w4:

max F = w1

∑

r∈R

∑

i∈Fr

∑

d∈D|i∈Fd

xi
r,d − w2

∑

d∈D

∑

i∈Fd

cidy
i
d

−w3

∑

r∈R

∑

(i,j)∈E

cij lijr − αw4

(1)
The first term represents the total number of requested NFs.

Meanwhile the second term is the total cost to setup/deploy
NFs at the various datacenters. The third term is the total
routing cost, and the fourth term represents the maximum
overall link load. Note that the second, third and fourth terms
are negative, since maximizing a negative term is equivalent to
minimizing it [8], [9]. Also, the setup cost is directly related to
the number of satisfied functions and number of instances of
each function. Hence the second term (representing setup or
deployment cost) depends upon the number of NFs per request
and on how many datacenters are used to host these NFs. On
the other hand, the third and fourth terms (representing routing
and maximum link load costs, respectively) depend upon the
number of requests and number of links used. These latter two
terms are independent of the number of NFs and NF instances.

Next, Eqs. 2 to 12 list the complete set of model constraints:

xi
r,d ∈ {0, 1} r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd (2)

yid ∈ Z+ d ∈ D, i ∈ Fd (3)

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, MONTH 2017 3

li,jr ∈ {0, 1} r ∈ R, (i, j) ∈ E (4)

0 ≥ α ≤ 1 (5)

∑

d∈D

xi
r,d ≤ 1 r ∈ R, i ∈ Fr (6)

xi
r,d ≤ yid r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd (7)

∑

i∈Fd

wi
d,jy

i
d ≤ wd,j d ∈ D, r ∈ R, j ∈ {1, 2, ...,m}

(8)
∑

r∈R

xi
r,d ≤ λi

dy
i
d d ∈ D, i ∈ Fd (9)

∑

j:(i,j)∈E

lijr −
∑

j:(j,i)∈E

ljir =






−1; i = dstr, srcr %= dstr
1; i = srcr, srcr %= dstr
0; otherwise. i ∈ V, r ∈ R

(10)

∑

(d,j)∈E

ldjr ≥ xi
r,d r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd (11)

∑

r∈R

li,jr br ≤ αbi,j {i, j} ∈ E (12)

The above constraints are now detailed further. Foremost,
variable xi

r,d in Constraint 2 indicates whether function i∈Fr

requested by request r∈R is implemented at datacenter d∈D.
Meanwhile, variable yid in Constraint 3 represents the number
of instances of function i∈F at node d∈D. Variable li,jr in
Constraint 4 indicates whether link (i, j)∈E is used to route
traffic flow for request r∈R, i.e., it is binary. Also, Constraint
5 limits α between 0 and 1 since this variable represents
the highest link usage ratio, i.e., sum of all br using a link
(i, j)∈E divided by link capacity bi,j . Constraint 6 indicates
that a function i requested by request r is serviced by at
most one datacenter d. Since the objective of the ILP is to
maximize the sum of all variables xi

r,d (first term in Eq. 1), the
optimal solution will drive Constraint 6 to equality. Meanwhile
Constraint 7 states that if request r is assigned to function i
at datacenter d, then function i is located at d. Constraint
8 also states that the aggregate amount of type j resources
used by all functions instantiated at datacenter d is limited
by the total amount of resources wd,j∈Wd, j∈{1, 2, ...,m}.
Similarly, Constraint 9 indicates that the total number of
requests for function i served at datacenter d is at most
the number of instances of i at d times the capacity λi

d of
an instance i. Meanwhile, Constraint 10 ensures necessary
flow conservation. Finally, Constraint 11 guarantees that if a
function i requested by request r is placed at datacenter d,
then the traffic flow will be routed through that datacenter.

Now one of the key goals of MLL-ILP is also to avoid link
overload or at least minimize link load. Therefore the fourth

term in Eq. 1 introduces a link load minimization function
variable α, which is linked to Constraint 12. Namely, this
constraint checks if the sum of all links (i, j) used by a traffic
flow associated with request r times the load br demanded by
request r is bounded by the product of the link capacity bi,j
times α. As a result, traffic flows are associated with links that
have little/no load profile (higher available capacity).

Note that a non-link load balancing optimization scheme
can also be defined by eliminating α, i.e., α=0. This instance
is the same as the scheme presented in [7] and is termed as
the standard routing and placement ILP (STD-ILP) scheme.

B. MLL-ILP Complexity
Since the objective function and all constraints are linear,

and all variables are either integer or binary, the MLL-ILP
problem is NP-hard [10]. Furthermore, the complexity of
MLL-ILP can be determined by the number of variables that
the scheme utilizes. Namely, the number of variables xi

r,d, yid
and li,jr , given by Constraints 2, 3 and 4 is upper-bounded by
|R||F ||D|, |F ||D| and |R||E|, respectively. Also, Constraint 5
refers to a single variable, α. Hence the upper-bounds for the
number of variables in Constraints 6, 7, 8 and 9 are |R||F |,
|R||F ||D|, |R||D||Wd| and |F ||D|, respectively. Meanwhile,
the upper-bounds on variable counts for Constraints 10 and
11 are |V ||R| and |R||F ||D|. Also, the upper-bound for
Constraint 12 is |V ||R|+1. Hence the upper-bound for the total
number of variables is dominated by the product |R||F ||D|.
Now in general it is very difficult to pre-define limits on the
number of requests or functions to ensure ILP convergence.
However for small to medium network topologies, the pro-
posed ILP can still be solved in a reasonable amount of time,
i.e., low hundreds of nodes.

C. MLL-GR Heuristic
Although the MLL-ILP approach can provide an optimal

placement solution, its scalability is limited for large/complex
scenarios with many variables. It is here that heuristic schemes
can be developed to provide non-optimal solutions. Now a
broad range of strategies are available here, i.e., such as genetic
algorithms, particle swarm optimization, simulated annealing,
greedy heuristics, etc. Accordingly, the latter approach is
chosen here to solve the NF placement problem for larger
network sizes, as shown in Fig. 1.

Overall, the proposed heuristic scheme implements a two-
stage solution. Namely, given a graph and input parameters
(akin to MLL-ILP; source, destination, set of NFs and min-
imum link capacity), the algorithm returns the values for
variables xi, r, d, yid, li,jr and α. Foremost, the first stage of the
algorithm in Fig. 1 (lines 4-15) places the NFs at datacenters
to reduce deployment cost. For each function i requested by
r∈R, the scheme selects the datacenter dk that implements i
with the lowest setup cost (and at the same time has sufficient
resources to host upcoming requests, line 8). Once a NF is
placed, the resources at datacenter dk are updated accordingly
as follows: if there is an instance of NF i at datacenter dk with
enough instance capacity to satisfy request r, the remaining
capacity is decremented by 1. Otherwise, if there is no instance

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2017 � VOLUME IX � NUMBER 4 17

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization

of i to serve request r, another instance is created at cost
cidk

. Either way, the available resources wdk,j (j=1, 2, ...,m,
where m is the number of resources) at dk are reduced by
wi

dk,j
(line 9). Each newly-created instance can serve λi

dk
-1

requests. Carefully note that serving a request does not incur
any cost, i.e., only new instantiations of i do. Additionally, for
each new instance of i, the total number of instances yidk

at
dk are incremented by 1 (line 10) and for each deployed NF,
xi
r,dk

is set to 1 (line 11). To conclude NF placement (first
stage), datacenter dk is also added to the subset of datacenters
that serve request r, D(r).

Meanwhile, the second stage in Fig. 1 (lines 16-32) com-
putes the shortest path between the source and destination
nodes that passes through all datacenters dk∈D(r). Initially,
the algorithm connects the source node srcr to the first
datacenter d1 of D(r). In particular the constrained Dijkstra’s
shortest path algorithm is used here to compute the connection
route (line 22). This approach first verifies whether each link
has enough capacity to support the requested br. All variables
li,jr along the path are then set to 1 (line 23), and datacenter
d1 is also added to the subset C(r) (line 24). This subset
defines the datacenters that serve request r and are already
connected to their respective neighbors within the srcr and
dstr path. Now if there is another datacenter j∈D in the path
between src and dst, it is also added to C(r) (line 25). This
method avoids duplicate path computation for datacenters yet
to be analyzed in upcoming iterations. Before returning to the
beginning of the loop, the src variable is replaced by the
destination datacenter dst (line 27), which was initially set
to dk (line 20). At the top of the loop, dst is reset to the
next datacenter dk∈D(r). Hence a shortest path is computed
between the previous destination and the following datacenter,
i.e., in the second iteration a path is computed between d1 and
d2. In the two final steps, a shortest path is computed between
the last datacenter and the destination dst (line 30), and all
links li,jr within that traffic flow are set to 1 (line 31).

Akin to the STD-ILP scheme detailed at the end of Section
III-A, a non-load balancing greedy heuristic scheme is also
defined, i.e., α=0. Again this solution is similar to the approach
presented in [7] and is termed as the standard routing and
placement greedy (STD-GR) heuristic.

D. MLL-GR Complexity

The run-time complexity of the heuristic scheme is now
analyzed. Conceptually, the greedy algorithm tries to lower
complexity by finding the first acceptable solution. Therefore
in the first stage it selects the datacenter d that can implement
function i∈Fr at the lowest cost cid (line 8). Note that NF
placement here is done in a serialized manner, i.e., each NF
placement is independent of the following NFs requirements.
Meanwhile, the second stage of the heuristic has higher com-
plexity, i.e., since link-weighted shortest paths are computed
between the datacenters and endpoints. To achieve this, the
routing cost is defined as the sum of the setup cost of all
links associated with a traffic flow and each respective link
capacity/request load ratio, as shown in Eq. 13.

1: INPUT: G(V, E), cij∀(i, j) ∈ E,R, F,D
2: OUTPUT: xi

r,d, y
i
d, l

ij
r values

3: set xi
r,d = 0, yi

d = 0, lijr = 0 for all r ∈ R, i ∈ Fr, d ∈
D, (i, j) ∈ E
{BEGIN FIRST STAGE}

4: for all r ∈ R do
5: D(r) = {}
6: k = 1
7: for all i ∈ Fr do
8: dk = datacenter that implements i at minimum cost and

has enough resources to serve an additional request
9: update resources of dk

10: update yi
dk

11: set xi
r,dk

= 1
12: D(r) = D(r) ∪ dk
13: k = k + 1
14: end for
15: end for

{END FIRST STAGE}
{BEGIN SECOND STAGE}

16: for all r ∈ R do
17: src = srcr
18: C(r) = {src}
19: for k = 1 to |D(r)| do
20: dst = dk
21: if dk /∈ C(r) then
22: SP = constrained Dijkstra(src, dst)
23: set lijr = 1 for all link (i, j) ∈ SP
24: C(r) = C(r) ∪ dk
25: C(r) ∪ j, for all datacenter j ∈ SP, j ∈ D(r)
26: end if
27: src = dst
28: end for
29: dst = dstr
30: SP = constrained Dijkstra(src, dst)
31: set lijr = 1 for all (i, j) ∈ SP
32: end for

{END SECOND STAGE}
33: return xi

r,d, y
i
d, l

ij
r

Fig. 1: MLL-GR Algorithm

Fig. 2: NSF network topology

∑

(i,j)∈E

cij + br/bij (13)

Since the constrained Dijkstra algorithm is executed within
a double loop in Fig. 1, the second stage poses higher
complexity than the first stage. Hence the MLL-GR run-time
complexity is dominated by the second stage. In particular, this
stage is invoked |R||D| times, D(r)≤D. Assuming a binary
heap Dijkstra implementation complexity of O(|E|log|V |)
[10], the overall run time is of order O(|R||D||E|log|V |).

DECEMBER 2017 � VOLUME IX � NUMBER 418

INFOCOMMUNICATIONS JOURNAL

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization

(a) Average deployment cost for differing w1 and w2 (b) Average routing cost for differing w1 and w2

(c) Average deployment cost for varying w4 (d) Average routing cost for varying w4

Fig. 3: First testcase (weight selection)

IV. PERFORMANCE EVALUATION

In order to evaluate the proposed NF placement schemes, a
realistic network topology and a set of metrics must be defined.
Hence the NSF topology is chosen here, as shown in Fig. 2.
This topology has 16 nodes, and it is assumed that each node is
also a datacenter. Three overall testcases are also defined and
tested here. In particular, the first testcase is used to perform
sensitivity analysis and fine tune the weighting factors to be
used in the second and third testcases. Meanwhile, the second
and third testcases are used to evaluate the proposed schemes
for varying physical and links resource levels. Specifically, the
second testcase, termed as an under-resourced scenario, uses
lower values for both datacenters and connectivity resources.
Meanwhile, the third testcase, termed as an highly-resourced
scenario, emulates settings with higher resources levels.

All testcases assume three different datacenter resources,
i.e., Wd={wd,1, wd,2, wd,3}, representing processor, memory
and storage. Namely, the first and second testcases set these
values to wd,1=wd,2=wd,3=500 units, respectively. Meanwhile,
the third testcase sets all resource levels to 5,000 units.
Similarly, in the first and second testcases, all links capacities
are set to 1,000 units, for all li,jd , where (i, j)∈E. Meanwhile,

in the third testcase, these levels are increased to 10,000 units.
Finally, all other testcase values are defined as follows.

First, the function set F has five types, F={f0, f1, ..., f4}. The
amount of resources wi

d,j required to implement a function
i∈Fd is also uniformly distributed between 30 ≤ wi

d,j ≤ 70
units. Meanwhile the setup cost of placing an instance of
function i∈Fd at datacenter d∈D is set to cid=50. The instance
capacity λi

d of a function i at datacenter d is also set to 2. It
is also assumed that the set of functions Fd implemented by
a datacenter d is comprised of all NFs i∈F . In other words,
Fd=F . Finally, each request r requests four NFs, namely Fr

is randomly selected from F (Fr⊆F).

A. Weighting Factors Selection
Proper selection of the weighting factors for each term in

the objective function, Eq. 1, is crucial for effective NF place-
ment. Therefore the first challenge is to evaluate the impact
(sensitivity) of these factors in order to maximize the number
of satisfied requests, w1, and minimize the deployment, routing
and link load costs, i.e., w2, w3 and w4, respectively.

Now recall that the first term in Eq. 1 represents the
number of satisfied NFs, which is typically a small value.

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2017 � VOLUME IX � NUMBER 4 19

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization

(a) Number of satisfied NFs (b) Deployment cost

(c) Average deployment cost (d) Number of links

Fig. 4: Second testcase (under-resourced): request batch size 30

Meanwhile, the other terms represent costs with negative
values (minimization). Hence it is imperative to assign a
higher value to w1. Therefore sensitivity analysis has to be
done for the other weight values, i.e., w2, w3 and w4. Now
the deployment cost (second term) relates to the number of
satisfied NFs i and their respective costs. Hence deploying
multiple NFs in the same datacenter reduces the deployment
cost of each instance capacity, λi

d, at a datacenter. On the other
hand, the routing cost (third term) and the link load cost (fourth
term) are associated with the number of links determined for
each traffic flow. Although both of these costs are related to
the number of hops, minimizing link load cost can result in
longer paths. Clearly this trade-off needs to be studied further.

In general, deployment and routing costs are associated
with a number of variables, i.e., up to |D||F | and |R||E|,
respectively. Hence increasing one of these minimization term
factors minimizes the associated overall cost. However this
approach may also increase the other costs. Accordingly, Figs.
3a and 3b show the trade-off between deployment and routing

costs. Namely, for the first testcase, Fig. 3a compares the
deployment cost for different values of w2 and w3. Overall, a
larger routing cost weight (w3=10) gives increased deployment
costs, whereas a larger deployment cost weight (w2=10) results
in lower deployment cost. Next, Fig. 3b shows that higher
routing cost weights result in lower routing cost and higher
deployment cost. Finally, the link load minimization term
(fourth term) only has a single variable α (ranging from 0
to 1). Therefore w4 can be used as a balancing factor to
select between one of the other two minimization terms, i.e.,
deployment or routing. Additionally, w4 introduces increased
sensitivity due to its decimal value (greater range). Note that
this fourth term is also directly related to the third term, i.e.,
routing cost, since both use variables lijd and br. Therefore
minimizing α reduces routing cost and increases deployment
cost. Furthermore, increasing w4 decreases routing cost and
increases deployment cost.

Next, to demonstrate the effect of varying w4, an empirical
methodology is deployed where two different values are used,

DECEMBER 2017 � VOLUME IX � NUMBER 420

INFOCOMMUNICATIONS JOURNAL

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization

(a) MLL-ILP and STD-ILP (b) MLL-GR and STD-GR

Fig. 5: Third testcase (highly-resourced): Number of satisfied NFs for request batch sizes from 1-40

i.e., w4=10 and w4=1, 000. Tests are then performed in order
to satisfy a number of requests, ranging from 1 to 20, i.e., 20
placement solutions with the values for w1, w2 and w3 set
to 1, 000, 1 and 1, respectively. Here, Fig. 3c compares the
average deployment cost for both values of w4, i.e., computed
as deployment cost/number of requests. Overall, these results
show that the two costs are very similar. However Fig. 3d also
shows that the average routing cost for w=10 is 2 to 4 times
larger than the routing cost for w4=1, 000, i.e., computed as
routing cost/number of requests.

Overall, the maximum link load variable α can be used to
define the placement solution according to service provider
needs. For example, some may prefer placing NFs to reduce
deployment costs due to physical datacenter resource limita-
tions. Meanwhile others may prefer to reduce routing cost due
to network link transmission constraints, i.e., low link capacity,
delay and management complexity, etc.

B. Under-Resourced Scenarios (Second Testcase)
Based upon the above sensitivity analysis, the first three

weighting factors are set to w1=1, 000 and w2=w3=1. All other
parameters are defined as per the start of Section IV. Now
the second (under-resourced) testcase assumes a total of 30
arriving requests. Fig. 4a plots the number of satisfied NFs for
this scenario and shows that all four schemes begin to drop
demands after 24 requests, i.e., due to resource limitations.
However, note that both the STD-ILP and STD-GR schemes
(yellow and green lines) fail to satisfy the 15th request due
to their inability to minimize link loads. Specifically, these
non-MLL schemes do not perform load balancing. Hence for
subsequent plots, results are only shown for up to 23 requests.

Now the next plot in Fig. 4b compares the deployment cost.
Clearly all schemes here yield very similar values (note STD-
ILP and STD-GR drop to zero for request 15 since they cannot
satisfy the requested NFs). It is also noted that from request
19 and onwards, the MLL-ILP scheme (blue) and STD-ILP

scheme (yellow) introduce negligibly higher deployment cost
(about 5%). However in terms of routing cost there is a huge
gap between the ILP (blue and yellow) and greedy heuristic
schemes (red and green), as shown in Fig. 4c. Namely, the
greedy heuristics yield about twice as much routing cost than
the ILP solutions. Clearly the latter are more efficient.

Note that the routing cost is directly related to the number
of links used. Along these lines, Fig. 4d also plots the number
of links associated with the deployed traffic flows. Again, there
is notable similarity between the routing costs (about 100%).
Additionally, for over 19 requests the MLL-ILP scheme starts
to stabilize, whereas the STD-ILP scheme maintains its linear
growth. Initially one may postulate that the MLL-ILP scheme
should use more links than the STD-ILP scheme since it
implements link load minimization. However, the MLL-ILP
solution tries to minimize routing cost, which is directly
related to link setup cost. Hence this scheme is more capable
of minimizing routing cost and the number of links as well.

C. Highly-Resourced Scenarios (Third Testcase)

Most service providers deploy highly-resourced nodes in
order to achieve rapid demand scalability. Along these lines
the third testcase is designed to evaluate these scenarios.
Foremost, initial tests are done to determine if all four schemes
are appropriate for this type of network scenario, e.g., to
differentiate between the MLL and STD schemes. Namely,
Fig. 5a compares the two ILP schemes with regards to the
number of satisfied NFs (for request batch sizes ranging from
1-40 requests). Here it is seen that the STD-ILP scheme fails to
satisfy requests 11, 13 and 38 (unlike the MLL-ILP scheme).
Equivalent results for the greedy heuristics in Fig. 5b also
show that the STD-GR scheme fails to satisfy the above-noted
requests as well (unlike the MLL-GR scheme). These findings
clearly indicate that schemes which do not minimize link load
exhibit higher blocking rates (by approximately 5 to 7.5%),

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2017 � VOLUME IX � NUMBER 4 21

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization

(a) MLL schemes deployment costs (b) MLL schemes routing costs

Fig. 6: Third testcase (highly-resourced): MLL costs for request batch sizes from 1-40

even in such high-resourced testcases. In light of this, further
tests are only done for the MLL-based schemes.

Fig. 6a plots overall deployment costs and confirms similar
performance between the MLL-ILP and MLL-GR schemes.
Furthermore both schemes can satisfy up to 160 requested
NFs across 40 demands, i.e., 4 NFs per request. For example,
the average overall deployment costs are 1,649.3 and 1,569.2
for the MLL-ILP and MLL-GR schemes, respectively (MLL-
ILP deployment cost is 5% higher than MLL-GR). However,
as Fig. 6b shows, the MLL-GR scheme gives much higher
routing costs, i.e., approximately 128% higher (average overall
routing costs are 982 and 2,221.5 for MLL-ILP and MLL-
GR, respectively). Similarly, the MLL-GR heursitic also uses
an average of 111 links to establish all traffic flows, whereas
the MLL-ILP scheme only uses 48.6 links, as shown in
Fig. 7. Finally, additional tests (not shown) are also done
with larger batch sizes of up to 60 requests. Overall findings
confirm successful placement of all NFs and the same relative
performance between the MLL-ILP and MLL-GR schemes.

V. CONCLUSIONS

Network function virtualzation (NFV) is a new technology
that is helping reduce network management cost and com-
plexity. Namely, this approach decouples network services
from embedded hardware devices, enabling the execution of
network functions as software instances on commercial-of-
the-shelf (COTS) systems. However, NFV-based deployments
pose new challenges of their own, including the network
function (NF) placement problem. As a result, various place-
ment schemes have been proposed recently. However, most of
these studies focus on minimizing cost and assume that there
are adequate resources to satisfy all requests. Although some
efforts have looked at maximizing the number of satisfied NFs,
they have not considered link capacity constraints and link
load balancing. To address these concerns, this paper presentes
a novel integer linear programming (ILP) solution to jointly
route and place NFs, termed as the minimized link load ILP
(MLL-ILP) scheme. This strategy guarantees that a traffic flow

Fig. 7: Third testcase (highly-resourced): Link usage

designated to satisfy a request has adequate bandwidth capac-
ity, and it also minimizes link load. The MLL-ILP solution also
includes further provisions to allow service providers to select
between deployment and routing costs. However, owing to
ILP scalability concerns for larger networks, a greedy heuristic
algorithm is also proposed. Both strategies are evaluated for
a range of network testcases, including under-resourced and
highly-resourced scenarios. Overall findings confirm that the
optimization-based MLL-ILP approach gives notable routing
improvements over its heuristic counterpart for both scenarios.
However the deployment costs are very similar.

REFERENCES

[1] Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., De Turck, F., Boutaba,
R., “Network Function Virtualization: State-of-the-Art and Research
Challenges,” IEEE Communications Surveys & Tutorials, Vol. 8 (1), 2016.

[2] Kreutz, D., Ramos, F., Verissimo, P., Rothenberg, C., Azodolmolky, S.,
Uhlig, S., “Software-Defined Networking: A Comprehensive Survey,”
Proceedings of the IEEE, Vol. 103 (1), January 2015, pp. 14-76.

[3] Addis, B., Belabed, D., Bouet, M., Secci, S., “Virtual Network Functions
Placement and Routing Optimization,” IEEE International Conference on
Cloud Networking (CloudNet) 2015, Niagara Falls, Canada, Oct. 2015.

[4] Cohen, R., Lewin-Eytan, L., Naor, J., Raz, D., “Near Optimal Placement
of Virtual Network Functions,” IEEE International Conference on Com-
puter Communications (INFOCOM) 2015, Hong Kong, April 2015.

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, MONTH 2017 9

[5] Xia, M., Shirazipour, M., Zhang, Y., Green, H., Takacs, A., “Network
Function Placement for NFV Chaining in Packet/Optimal Datacenters,”
IEEE/OSA Journal of Lightwave Technology, Vol. 33, Issue 8, April 2015,
pp. 1565-1570.

[6] Bouet, M., Leguay, J., Conan, V., “Cost-Based Placement of Virtualized
Deep Packet Inspection Functions in SDN,” IEEE Military Communica-
tions Conference (MILCOM) 2013, San Diego, CA, November 2013.

[7] Crichigno, J., Oliveira, D., Pourvali, M., Ghani, N., Torres, D., “A
Routing and Placement Scheme for Network Function Virtualization,”
International Conference on Telecom. and Signal Processing (TSP) 2017,
Barcelona, Spain, July 2017.

[8] Crichigno, J., Ghani, N., Khoury, J., Shu, W., Wu, M., “Dynamic
Routing Optimization in WDM networks,” IEEE Global Communications
Conference (GLOBECOM) 2010, Miami, FL, December 2010.

[9] Crichigno, J., Shu, W., Wu, M., “Throughput Optimization and Traffic
Engineering in WDM Networks Considering Multiple Metrics,” IEEE
International Conference on Communications (ICC) 2010, Cape Town,
South Africa, May 2010.

[10] Cormen, T., Leiserson, C., Rivest, R., Stein, C., Introduction to Algo-
rithms, 2nd Edition, McGraw Hill, 2001.

Diogo Oliveira is a Research Assistant in the Dept.
of Electrical Engineering at the University of South
Florida (USF), where he is working towards his
Ph.D. degree. He received his M.Sc. degree from
the Federal University of Goias (UFG), Brazil, in
2009. His current research interests include sofware
defined networking (SDN), network virtualization
and services, disaster recovery, and design and appli-
cation of optimization and meta-heuristic algorithms.

Jorge Crichigno received his Ph.D. in Electrical
and Computer Engineering from the University of
New Mexico, Albuquerque, NM, in 2009. Prior to
that, he received his M.Sc. and B.Sc. in Electrical
Engineering from the University of New Mexico
and from the Catholic University of Asuncion re-
spectively, in 2008 and 2004. Dr. Crichigno is cur-
rently an Associate Professor in the Department of
Integrated Information Technology in the College
of Engineering and Computing at the University of
South Carolina, Columbia, SC. In 2016, he was a

visiting professor in the Florida Center for Cybersecurity, Tampa, FL. His
research interests include wireless and high-speed networks, network security
and Science DMZs, and STEM education. He has served as reviewer and TPC
member for journals and conferences such as IEEE Transactions on Mobile
Computing and IEEE Globecom, and as panelist for NSF STEM education
initiatives. He is a member of the IEEE Computer Society.

Nasir Ghani is a Professor in the Electrical En-
gineering Department at the University of South
Florida and Research Liaison for the Florida Center
for Cybersecurity (FC2). Earlier he was Associate
Chair of the ECE Department at the University
of New Mexico. He has also spent several years
working at large Blue Chip organizations (IBM,
Motorola, Nokia) and hi-tech startups. His research
interests include cyberinfrastructure networks, cy-
bersecurity, cloud computing, and cyber-physical
systems. He has published over 200 articles, and his

research has been supported by many organizations. He is also the recipient of
the NSF CAREER Award and is an Associate Editor for IEEE/OSA Journal
of Optical and Communications and Networking. He has also served on the
editorial boards of IEEE Systems and IEEE Communications Letters. He has
co-chaired many symposia for IEEE GLOBECOM, IEEE ICC, and IEEE
ICCCN. He received the Ph.D. from the University of Waterloo.

DECEMBER 2017 � VOLUME IX � NUMBER 422

INFOCOMMUNICATIONS JOURNAL

On Sensitive and Weighted Routing and Placement
Schemes for Network Function Virtualization

INFOCOMMUNICATIONS JOURNAL, VOL. X, NO. X, MONTH 2017 9

[5] Xia, M., Shirazipour, M., Zhang, Y., Green, H., Takacs, A., “Network
Function Placement for NFV Chaining in Packet/Optimal Datacenters,”
IEEE/OSA Journal of Lightwave Technology, Vol. 33, Issue 8, April 2015,
pp. 1565-1570.

[6] Bouet, M., Leguay, J., Conan, V., “Cost-Based Placement of Virtualized
Deep Packet Inspection Functions in SDN,” IEEE Military Communica-
tions Conference (MILCOM) 2013, San Diego, CA, November 2013.

[7] Crichigno, J., Oliveira, D., Pourvali, M., Ghani, N., Torres, D., “A
Routing and Placement Scheme for Network Function Virtualization,”
International Conference on Telecom. and Signal Processing (TSP) 2017,
Barcelona, Spain, July 2017.

[8] Crichigno, J., Ghani, N., Khoury, J., Shu, W., Wu, M., “Dynamic
Routing Optimization in WDM networks,” IEEE Global Communications
Conference (GLOBECOM) 2010, Miami, FL, December 2010.

[9] Crichigno, J., Shu, W., Wu, M., “Throughput Optimization and Traffic
Engineering in WDM Networks Considering Multiple Metrics,” IEEE
International Conference on Communications (ICC) 2010, Cape Town,
South Africa, May 2010.

[10] Cormen, T., Leiserson, C., Rivest, R., Stein, C., Introduction to Algo-
rithms, 2nd Edition, McGraw Hill, 2001.

Diogo Oliveira is a Research Assistant in the Dept.
of Electrical Engineering at the University of South
Florida (USF), where he is working towards his
Ph.D. degree. He received his M.Sc. degree from
the Federal University of Goias (UFG), Brazil, in
2009. His current research interests include sofware
defined networking (SDN), network virtualization
and services, disaster recovery, and design and appli-
cation of optimization and meta-heuristic algorithms.

Jorge Crichigno received his Ph.D. in Electrical
and Computer Engineering from the University of
New Mexico, Albuquerque, NM, in 2009. Prior to
that, he received his M.Sc. and B.Sc. in Electrical
Engineering from the University of New Mexico
and from the Catholic University of Asuncion re-
spectively, in 2008 and 2004. Dr. Crichigno is cur-
rently an Associate Professor in the Department of
Integrated Information Technology in the College
of Engineering and Computing at the University of
South Carolina, Columbia, SC. In 2016, he was a

visiting professor in the Florida Center for Cybersecurity, Tampa, FL. His
research interests include wireless and high-speed networks, network security
and Science DMZs, and STEM education. He has served as reviewer and TPC
member for journals and conferences such as IEEE Transactions on Mobile
Computing and IEEE Globecom, and as panelist for NSF STEM education
initiatives. He is a member of the IEEE Computer Society.

Nasir Ghani is a Professor in the Electrical En-
gineering Department at the University of South
Florida and Research Liaison for the Florida Center
for Cybersecurity (FC2). Earlier he was Associate
Chair of the ECE Department at the University
of New Mexico. He has also spent several years
working at large Blue Chip organizations (IBM,
Motorola, Nokia) and hi-tech startups. His research
interests include cyberinfrastructure networks, cy-
bersecurity, cloud computing, and cyber-physical
systems. He has published over 200 articles, and his

research has been supported by many organizations. He is also the recipient of
the NSF CAREER Award and is an Associate Editor for IEEE/OSA Journal
of Optical and Communications and Networking. He has also served on the
editorial boards of IEEE Systems and IEEE Communications Letters. He has
co-chaired many symposia for IEEE GLOBECOM, IEEE ICC, and IEEE
ICCCN. He received the Ph.D. from the University of Waterloo.

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2017 � VOLUME IX � NUMBER 4 23

Diogo Oliveira is a Research Assistant in the Dept.
of Electrical Engineering at the University of South
Florida (USF), where he is working towards his
Ph.D. degree. He received his M.Sc. degree from the
Federal University of Goias (UFG), Brazil, in 2009.
+LV�FXUUHQW�UHVHDUFK�LQWHUHVWV�LQFOXGH�VRIZDUH�GHÀQHG�
networking (SDN), network virtualization and
services, disaster recovery, and design and application
of optimization and meta-heuristic algorithms.

Jorge Crichigno received his Ph.D. in Electrical
and Computer Engineering from the University of
New Mexico, Albuquerque, NM, in 2009. Prior to
that, he received his M.Sc. and B.Sc. in Electrical
Engineering from the University of New Mexico
and from the Catholic University of Asuncion
respectively, in 2008 and 2004. Dr. Crichigno is
currently an Associate Professor in the Department
of Integrated Information Technology in the College
of Engineering and Computing at the University of

South Carolina, Columbia, SC. In 2016, he was a visiting professor in the
Florida Center for Cybersecurity, Tampa, FL. His research interests include
wireless and high-speed networks, network security and Science DMZs, and
STEM education. He has served as reviewer and TPC member for journals
and conferences such as IEEE Transactions on Mobile Computing and IEEE
Globecom, and as panelist for NSF STEM education initiatives. He is a
member of the IEEE Computer Society.

Nasir Ghani is a Professor in the Electrical
Engineering Department at the University of South
Florida and Research Liaison for the Florida Center
for Cybersecurity (FC2). Earlier he was Associate
Chair of the ECE Department at the University of
New Mexico. He has also spent several years working
at large Blue Chip organizations (IBM, Motorola,
Nokia) and hi-tech startups. His research interests
include cyberinfrastructure networks, cybersecurity,
cloud computing, and cyber-physical systems. He has

published over 200 articles, and his research has been supported by many
organizations. He is also the recipient of the NSF CAREER Award and is
an Associate Editor for IEEE/OSA Journal of Optical and Communications
and Networking. He has also served on the editorial boards of IEEE Systems
and IEEE Communications Letters. He has co-chaired many symposia for
IEEE GLOBECOM, IEEE ICC, and IEEE ICCCN. He received the Ph.D.
from the University of Waterloo.editorial boards of IEEE Systems and
IEEE Communications Letters. He has co-chaired many symposia for IEEE
GLOBECOM, IEEE ICC, and IEEE ICCCN. He received the Ph.D. from
the University of Waterloo.

