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Abstract—In this paper we describe an approach for optimiz-
ing multi-hop broadcast protocols in ad-hoc mobile networks
with an online, distributed machine intelligence solution. In
our proposed framework not only runtime parameters of a
predefined protocol are optimized, but the protocol logic itself
also emerges dynamically. The model is based on genetic pro-
gramming and natural selection: protocol candidates compete
for being picked (natural selection), then survivors get combined
with each other and/or mutated (genetic operators), forming
the next generation of protocol instances. To achieve this we
created (i) a genetic programming language to describe protocols,
and (ii) defined a distributed, communication-wise non-intensive,
stigmergic feed-forward evaluation and selection mechanism over
protocol instances, and (iii) a budget based fair execution model
for competing protocols. We show that the result of the online, au-
tonomous protocol evolution outperforms traditional approaches,
by adapting to the local situation, when used for multi-hop
broadcast problem in ad-hoc mobile networks. Experiments
confirmed 50% improvement with a random movement mobility
pattern, and 66% improvement with a group based mobility
pattern. The evolution also protected the system from the negative
effects of initially present harmful protocols.

I. INTRODUCTION

HE choice of communication protocol is always of high

importance in telecommunication networks, typically a
tradeoff between the messaging overhead and the transmitted
information content needs to be found. While too chatty proto-
cols waste resources such as bandwidth and processing power,
unnecessarily tight-lipped communication strategies hinder
the flow of information, and as a consequence, impede the
effective operation of the system. The protocol selection prob-
lem becomes especially challenging in networks with highly
dynamic structure and highly dynamic load characteristics, for
example in opportunistic ad-hoc networks where mobile nodes
are present. Recent studies indicate that while there is no clear
answer for the protocol selection riddle in general, it makes
sense to evaluate the goodness of communication protocols
for a certain problem case [18], [7], [4], [1]. In this paper we
focus our research on a specific subset of protocols, namely the
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multi-hop broadcast protocols where the aim is to efficiently
distribute a set of messages to all of the nodes in the system.

The idea behind this article is to abandon the classic ap-
proach, where the communication protocol is a static building
block of the system, and, instead, introduce the principle of
autonomous protocol selection and protocol evolution:

* Protocol selection means that existing protocol instances
compete for being selected for use.

* Protocol evolution means that new protocol instances get
created systematically, by combining and modifying existing
protocols, in order to enable the emergence of even more
successful instances.

Our vision is a system with a high degree of distributedness
and autonomy. Nodes of the system pick their protocols
autonomously, based only on locally available information.
Moreover, we introduce the idea of inverted decision, that
enables decision making without straining the network with
explicit information collection messages.

This is a drastic departure from traditional protocol en-
gineering: clearly, the vision of communication protocols
changing and shaping in an online manner during the system’s
normal operation is a drastic image, and rather different form
the mainstream of the state of the art. However, we believe that
the communication, as being a heart of the problem in many
cases, is also a place for being autonomous. One advantage is
that the evolution mechanism removes the burden of designing
communication protocols manually. The use of machine intel-
ligence not only reduces costs but with a suitable evolution and
selection model also guarantees the emergence of successful
protocols in the end. Another advantage is that the distributed,
purely local selection mechanism adds flexibility and fault
tolerance: enables nodes to adapt to the very local challenges,
and the presence of multitudes of protocols in the system at
each moment guarantee that there will always be (or emerge)
suitable protocols for unseen situations.

In [14], as a precursor to the current work, we used natural
selection to achieve self-adaptation of multi-hop broadcast
protocols in ad hoc networks, through automatically selecting
the optimal one from a predefined set of protocols, however,
no protocol evolution was present in that work. In [17] we
published an early version of the on-line genetic programming
framework, and demonstrated that the global goodness of
a protocol can be reliably approximated with pure local
measurements under certain circumstances. In this paper we
introduce our matured model and demonstrate its mechanisms
by showing the situation dependency and dynamics of the
evolution through excessive simulation.

The structure of the paper is as follows. In section II we
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discuss the background of the problem as well as related
work. Section III describes the vision of autonomous protocol
selection and its main ideas. In section IV we focus on
the genetic programming framework created for the multi-
hop broadcast problem. Section V presents the results of
the experimental evaluation where we analyzed the course of
evolution under different environmental conditions. In section
VI we give our overall conclusions.

II. BACKGROUND AND RELATED WORK

This section discusses the background and related work in
connection to our problem. We define multi-hop broadcast and
present the difficulties implementing such protocols, then we
investigate the known directions for optimization.

A. Multi-Hop Broadcast

It is a common task in ad hoc networks to distribute
messages globally to all, or almost all, participants. This is
basically an extension of local broadcast, usually referred to as
multi-hop broadcast. By nature, this kind of service consumes
a significant amount of resources (channel usage, collisions),
therefore optimization is of high importance.

Channel usage is just one of the difficulties that present
themselves when one implements global scale broadcast pro-
tocols. One dangerous phenomenon is the so called Broadcast
Storm [13] that happens when multiple nodes start forwarding
a message simultaneously after receiving it from a common
source node, leading to excessive collisions. The common
presumption used in protocol design, that traffic patterns of
neighboring nodes are uncorrelated with each other, is not
valid for this case. In the case of multi-hop broadcast, several
nodes may decide to transmit at the same time, and collide
even after several backoff events. To avoid this outcome,
protocols have means to de-correlate the traffic of neighbors,
for example by waiting for a random time before forwarding
the message.

Multi-hop broadcast algorithms typically exploit the local
broadcast channel to reduce channel usage and the number
of collisions in the system. This way, as one transmission
may be overheard by multiple devices, it is possible to
drastically reduce the amount of transmissions. The essence
of this optimization is to identify or approximate a Minimal
Connected Dominating Set (MCDS) [10], [7] in the network,
and broadcast the message once per set.

A set for a graph G(V, E) is a Connected Dominating Set
if M is a connected subgraph of G(V, E) and for each vertex
either or there exists an edge so that . A Connected Dominating
Set M is a minimal CDS (MDCS) if |M| is minimal. An
additional constraint in multi-hop broadcast is that if B is the
set of vertices containing the nodes that initially possess the
payload to be broadcasted, then must hold. If the vertices V' of
the graph G(V, E) stand for nodes in the network and an edge
e = v, w represents that v and w are in radio range, then an
MCDS gives the smallest set of nodes needed to accomplish
a successful global broadcast.

The identification of an MDCS raises several questions.
First of all, it is an NP-complete problem. Another problem
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is that the MCDS model describes a static scenario, where
the connection between nodes do not change. Clearly, if the
network is distributed and dynamic (nodes move, disappear or
new nodes appear), and changes may occur much faster than
they can be discovered, then a centralized model, such as a
centralized MCDS solver is not practically possible. Instead of
tackling with real MCDSs, broadcast protocols typically use
some kind of approximation based on simple heuristics and
local knowledge. These heuristics range in sophistication from
simple counter based solutions to probabilistic methods and
complex graph theoretic approximations [19], [4]. A common
point in these approximations is that they concentrate on the
closest part of the network rather than dealing with the whole
topology. We also followed this approach in our system.

B. Protocol Optimization Directions

Various literature sources investigate possible protocols for
multi-hop-broadcast and their performance characteristics, a
few examples are [18], [7], [4], [1]. Authors in [9] also give
a theoretical upper bound for the worst-case performance of
their algorithm.

Results suggest that there is no general winner; instead,
the performance of a protocol heavily depends on volatile
attributes of the environment. These attributes include mobility
patterns, node speed, node density, transmission technology,
and traffic models. Selecting the suitable protocol, therefore,
requires deep and exact knowledge about the actual environ-
ment. However, that is generally hard to acquire, given the
complex factors involved, such as human behavior influencing
the mobility pattern and the load characteristics. Worse, the
environment will change over time, through appearance and
disappearance of nodes, technology turnovers, or changes in
the usage practice, i.e. human habits; therefore any static off-
line design is just a compromise.

The issues above raise the question whether an automated,
online, adaptive approach could solve the matter of obtaining
the best protocols for a given situation. The use of online,
adaptive techniques for protocol optimization (i.e. fine tuning
of operational parameters on-the-fly) is a known, but not
widely used practice. For protocols, even if machine learning
is applied, this step typically happens during the manual design
phase, and not as part of the operation of the actual system. An
exception is [5], where authors used online machine learning
to approximate the behavior of sophisticated broadcast algo-
rithms and found that simple heuristics were able to reproduce
the sophisticated decision with 87% accuracy. This result
indicates that in practice small but powerful heuristics could
provide good approximations instead of sophisticated calcu-
lations. Note that Colagrosso’s work uses predefined (fixed)
protocol bodies, and aims to optimize the runtime parameters
of these protocols. Our approach goes one step further: in
our work the protocol body itself is also an emergent, ever-
changing element.

The idea of on-the-fly protocol selection or protocol switch-
ing has been present for many years in other areas, such as
in cryptography. In the field of telecommunication protocols,
[5] proposed the idea of using machine learning to switch
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between a small set of predefined protocols in order to accom-
modate to the recent topology changes. In [14] we proposed
stigmergic communication and natural selection for online,
automatic protocol replacement. Natural selection as a tool
is not unheard of in this area, in [2] authors applied a form of
natural selection for parameter optimization of ad-hoc network
protocols, using explicit feedback from neighboring nodes.
Our selection approach is different; our approach does not
require explicit feedback, resulting in a significantly smaller
communication overload, furthermore, the mechanism works
with arbitrary broadcast protocol without modification.

C. Genetic Programming

The basis of our work is genetic programming. Genetic
algorithms are biologically inspired random search algorithms
directed towards a global optimum, based on generations of
solution candidates (individuals). In each round, the algo-
rithm evaluates individuals with a fitness function; then, the
next generation gets produced by applying genetic operators
(crossover and mutation) on the selected individuals of the
current generation. Genetic programming (GP) is a form of ge-
netic algorithm, where individuals are programs composed of
instructions in a particular programming language. When using
GP we generally distinguish on-line and off-line approaches.
‘Off-line’ means that solutions are generated during a design
phase, and the result is then used unmodified in the operational
phase of the system; while in the ‘on-line’ case the evolution
itself is part of the system and new solution instances are
generated continuously, during the system’s normal operation.
According to our knowledge, on-line genetic programming
has not been applied in the area of broadcast communication
protocols before.

The variety of challenges present in multi-hop broadcast
protocols for mobile ad hoc networks, such as the unpre-
dictability of the position or speed of the mobile node,
changing topology and the diversity of devices, makes it
an ideal target for genetic programming. Protocols need to
cope with numerous and more or less distinct aspects of
the problem; hence, these aspects can be freely blended by
the genetic algorithm so that the blend is still likely to
make sense. Human-designed protocols typically have distinct
“sweet spots”: working best under different conditions. By
increasing the diversity of the protocols and enabling them to
adapt freely to the current environmental conditions through
evolution, it is possible to always maintain a protocol or a
family of protocols that works well in the current environment.
This approach can also be considered as an automated protocol
design tool.

While it provides many benefits, the use of GP also has
certain design consequences. Fine-tuning the system becomes
problematic, as evolution tends to produce individuals that
circumvent human imposed rules and design patterns. GP
also generates a large amount of individuals, meaning that
obtaining insight becomes harder (it is impossible to inspect
all the generated individuals manually). However by using
data mining techniques, getting an insight into the mapping
relations becomes easier, as demonstrated later in this chapter.
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The success of any genetic algorithm relies on a carefully
designed fitness function. In ad hoc systems the unavailability
of global, system-wide data demands a careful approach to
fitness calculation, collecting any kind of performance metric
may easily result in a prohibitive amount of channel usage.

III. THE MODEL OF AUTONOMOUS ONLINE PROTOCOL
EVOLUTION

This section describes the model of online, automated
protocol evolution, comprising of four main building blocks:

1) natural selection with decision inversion to select which
protocols survive for the next round

2) a budget based execution model for the current protocol
instances

3) a genetic programming language to a describe protocol
instance

4) genetic operators in order to combine and mutate pro-
tocols.

A. The overall picture

The protocol evolution is a fully distributed, asynchronous
mechanism; each node selects and generates protocols on its
own agenda. The core process is a loop, as visualized in figure
1b.

The evaluated protocols undergo a selection step, deciding
which protocols survive and which end their life time. Once
the surviving generation is selected, genetic operators, i.e.
crossover and mutation, are used in order to introduce further
new protocols by combining and/or modifying survivor in-
stances. The program code of the new protocols gets compiled,
resulting in a new generation of executable protocol instances.
Then each of the protocols is executed, sequencially, using a
budget-based execution scheme, giving equal opportunity to
each individual of the generation to live. Finally, the loop starts
over.

Protocol evolution runs on each node of the network, in
parallel, without any explicit synchronization with other nodes.
No global clock is assumed. On the other hand, an implicit
synchronization is indeed present in the system. Neighbors,
as part of the inverted decision making mechanism, discover
each other’s protocols; thus, a successful protocol instance
may spread over the network from hub to hub. This fully
distributed scheme also brings fault tolerance to the system.

A distributed protocol evolution model needs to answer the
following questions.

« How to measure the goodness of a protocol. The decision
must be made locally, without the aid of global or
wider area help, so only local or nearly-local metrics
are acceptable. We defined a set of locally available
evaluation factors to estimate the overall goodness of a
protocol. In [17] we showed that these local metrics are
linearly dependent, strongly associated with the global
metrics, and are very good approximators for it.

« How to avoid the communication overhead of the mea-
surement. We propose an inverted decision making model
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(b) Flow of protocol evolution at a node.

(c) Network-wide view of protocol evolution.

Figure 1: The Model of Autonomous Online Protocol Evolution

which avoids the sending of feedback messages, sav-
ing bandwidth and also helping the system stay asyn-
chronous.

« How to describe protocols in a way that is robust enough
even for crossover and mutation operators. We do not
only need to avoid syntactic errors, but also need to
facilitate the emergence of presumably sensible new
protocols (semantic correctness). We propose a genetic
programming language.

« How to evaluate a set of protocols at runtime, during
the system’s normal operation. Clearly, the evaluation
should happen in a fully online manner, i.e. by sending
real messages rather then through some kind of internal
simulation. We propose a budget based daisy chain model
to give equal chance to each protocol to show its strength.

B. Natural Selection with Decision Inversion

Natural selection is a fundamental principle in evolutionary
systems. In our case, when the system is equipped with several
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protocol candidates, in order to select the most suitable ones,
we need to measure the performance of each candidate and
push the system towards the use of them.

To realize a lightweight but efficient natural selection mech-
anism is highly non-trivial in our case. Protocols, in order to
be successful, need to address conflicting requirements, i.e.
maximal coverage versus minimal duplication count. These
two requirements not only make the choice of evaluation
metrics hard, but also pose measurability problems, such as:
(1) Only the sender node is able to reliably measure the real
cost of a successful message transmission. Lost messages, by
definition, could not be seen by other nodes, so the amount
of work (total sent messages) is only known by the sender (2)
Only the receiver node is able to reliably measure the number
of redundantly received messages (we call these duplicates).
(3) Each receiver node can measure the number of local
duplications (i.e. the duplications they personally received),
but they can not measure the number of total duplications in
the system. (4) In order to collect the measurement results
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at a designated place, message passing is needed over the
same channel as normal (payload) messages use. Measurement
messages, just like payload messages, may get lost.

To get a clearer picture of the measurement problem,
consider the case when a node sends out the same message
ten times. Although naively we could consider this as ten
duplicates, in reality this is not necessarily the case. If during
the timeframe of the broadcasting of the ten messages ten
nodes pass by, each hearing the message only once, then there
are no duplicates at the receivers. Now consider the case,
when the sender sends out exactly one message, with ten other
nodes in transmission range. If all the neighbor nodes already
received this message in the past then this transmission alone
generates ten duplicates at the receiver nodes. From these
examples it should be clear, that the amount of copies sent
and the amount of duplicates are not the same, and the former
is known by the sender, and the latter is known collectively by
the neighbor nodes. To centralize all this data at a designated
place, further communication is needed. Unfortunately this
generates a large overhead, especially if the reliability of this
procedure is considered.

The above factors imply [14] that implementing a central-
ized (even locally centralized) protocol selector criterion is
impractical, because the reliable collection of performance
data is both technically challenging and wasteful in terms of
channel usage. Instead, we propose a feed-forward selection
method using stigmergy and natural selection.

The solution is based upon the idea of decision inversion.
The naive implementation of natural selection would be that
every sender collects its performance metrics from the sur-
rounding receivers and creates the next protocol generation
according to this information. However, as explained above,
this can not be efficiently implemented in general. Instead of
trying to select locally at the sender, we delegated the task
of decision making to the receivers, because they are in the
optimal position to observe the performance of a protocol.
Nodes score and evaluate all protocols that successfully sent
messages to them. Then, the next generation of the node’s
protocols will be comprised of the highest scoring sender
protocols. This essentially means, that no performance metrics
are disseminated back to the sender, instead, the evaluation is
delegated to the set of receivers, collectively.

To make this possible, receivers must know the protocol
that generated the given payload message. This is achieved
by senders attaching a representation of the protocol itself
to every payload. Such compound packets act as a virtual
seeds where the “nutritional” part of the seed is the payload
and the genetic material is the code of the sender protocol.
Nodes (as receivers) collect seeds from surrounding nodes
and assign scores to the protocol instances they carry. Every
payload that is useful to the receiver node means a score for the
sender protocol. Every unnecessary message (duplicate) means
a penalty to the sender protocol. Seeds with useful nutritional
parts (high scores) will survive on the receiver node. The main
advantage of the inverted selection is that performance results
do not need to travel back over the network to the sender:
instead, the receiver will utilizes them during the creation of
its own next protocol generation. Of course in the next round,
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the sender may meet the offsprings of its own good protocol.
With this approach, both the measurement overhead and the
need for synchronization is minimal.

It is important to see, that this procedure optimizes protocol
instances locally, using local information. This is similar to the
way how static, human-made protocols work, but instead of
only optimizing protocol parameters, our framework is capable
to "invent” new heuristics as well.

C. Budget Based Protocol Execution Model

As the selection of new algorithms happens at the receiver
it is impossible to implement explicit cost calculation without
expensive control overhead. To overcome this, we adopted a
stigmergic solution: by assigning a limited transmission budget
(called quota) to each protocol instance at the sender, protocols
are forced to make good use of the channel resources. Any lost
or duplicate message is a lost opportunity for reproduction;
therefore transmission has an implicit cost function, even if
it is not expressed directly. Similarly, we added a timer that
upon firing, removes the current protocol, and replaces it with
the next instance, forcing protocols to use the available time
efficiently, we call this the time limit of a protocol

D. A Genetic Programming Language for Protocols

Natural selection implemented by decision inversion, along
with the budget based execution mode, answers the question
how protocols should be executed, evaluated and selected for
survival in a distributed fashion. In this section we introduce
our choice protocol representation and the tools used in
protocol composition.

In order to make Genetic Programming and evolution pos-
sible, the representation of protocols needs careful considera-
tion. As the protocols in the system are no longer engineered
by humans, a lightweight, flexible and robust formal descrip-
tion is needed which suits genetic operators.

In a GP environment protocols must be represented by
their program code. However, to use a general purpose pro-
gramming language as the protocol representation would be
problematic because the application of genetic operators could
result in frequent syntactic errors and uninterpretable code.
To avoid these issues several GP specific languages were
designed. We selected the Push language [15] as a starting
point for the design of our own language, called GPDISS.

Push is a natural choice, as it is a widely known and used
language in GP related research, and Push code is relatively
easy to interpret by humans. Artificial chemistries were also
considered [8], particularly the Fraglets language by [16],
which was used to conduct experiments in protocol evolution
in [11]. However, artificial chemistry based languages are
notoriously hard to analyze manually, therefore we decided
to exclude these languages from our experiments.

Push is a stack based language, meaning, that its instructions
do not have explicit arguments, instead, they are taken from
the corresponding stack. For example, an ‘if” instruction takes
its argument from the top of the Boolean stack. This enables
a mutation and crossover friendly, flexible syntax.
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When defining our custom programming language,
GPDISS, we borrowed ideas from Push, but augmented it with
new instructions and introduced new concepts in order to pro-
vide a better fit for our particular problem. Our modifications
include:

« Extended instruction set in order to match the multi-hop

broadcast problem.

o« A new data type (relation type) to describe complex
data relationships. This is particularly useful for modeling
graph-like structures

o The concept of typed event handlers that simplify the
crossover of message handling routines

1) Extended instruction set: The most important instruc-
tions of GPDISS are shown in table I. The set of operations in-
clude control instructions, basic arithmetic and logic operators,
control flow, messaging, timers, and the handling of complex
data using relations. Note that this particular instruction set
was designed for the multi-hop broadcast problem. For a
different problem a slightly different instruction set may be
required but without affecting the basic principles.

Table I: Most important instructions in GPDISS.

Stack Instruction Description
dup, drop, Common instructions available on
i swap,rotate, hold, all stacks implementingcommon
release stack manipulation operators.
add, div, mult, Simple floating point arithmetic
number .
random and random number generation.
and, or, not, if, Boolean logic (usually for control
bool .
while flow).
additem, nth, . .
i Typed list handling. Common
list remove_first, 3 :
2 operations are available.
delete_duplicates
addpair, union, Typed relations are like two
relation join, remove_first, column tables. They can be
invert, intersect filtered, joined, intersected, etc.
Common instructions for handling
messages send, sender
all types of messages.
Timers can be used to schedule
timers id, start_timer different tasks at different points
in time.
else, endif, do,
- Control flow constructs.
return

2) Relation type: A new data type, called relation type,
and a set of accompanying instructions were devised in order
to enable efficient calculations on graph structures, tabular
data, or trees, as these are common in broadcast protocols.
On the relation stack ordered, typed pairs of objects can be
stored. Relations can be imagined as two column tables, the
first column being the key, and the second column being the
value. The key and the value columns are typed, which means
they receive their content from the appropriate typed stack.
Relations give a new dimension to stored data by describing
relationships between the objects on the stacks. Relations are
immutable: every operation creates a new instance on the
relation stack. With the help of the operations defined on
relations sophisticated data manipulations are possible, such
as filtering by key or value, intersecting, joining, subtracting
or creating the union of two relations. The code snippet in
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Table II: Event handlers in GPDISS

Moessage Event handler
type
The common wrapper for all data messages in
it the system. Data messages contain payload
originating from a node with the goal of
reaching all nodes in the system.
Neighbor messages contain neighbor information
neighbor of the sender nodes. This can be used to locally

map the connectivity graph of the network
Internal event handler. A protocol receives a
timer event when one of its timers fire. One can
timer use it to implement features such as Random
Assessment Delay (a transmission delay used in
broadcast protocols)
Internal event handler. Protocols receive this
init event once upon initialization, before the first
message arrives to them.

Figure 4 creates a new relation containing our direct neighbors,
supposing that we already have a neighbor map (node-node
pairs) of the network in our vicinity on top of our relation
stack.

3) Event handlers: Instead of defining programs mono-
lithically, we defined multiple hooks, called event handlers,
that protocols may use to implement their logic. Therefore,
the code of a protocol is a list of assembly-like instructions
grouped into event handlers.

Each message type has its own event handler (illustrated
in table II), which gets activated when a message of that
type arrives. The activation is controlled by an underlying
meta-protocol, shared by all nodes. The purpose of this meta-
protocol is to ensure that the result of the evolution, i.e. the
messages, remain interpretable for all possible receiver nodes.
The meta-protocol defines how to decode and interpret the
messages sent by other nodes. The possible most basic meta-
protocol simply defines the format of messages, and ensures
that the incoming message is forwarded to the corresponding
event handler. In GPDISS, the meta-protocol defines the
format of payload messages, and a few control messages,
although it does not define the ordering, timing of them. This
choice reflects our conservative approach to GP, restricting
the protocols to use control primitives we already know and
consider to be useful. It is currently impossible for protocols
to “grow” their own custom messages. It is important to note,
however, that the meta-protocol does not restrict the order
of messages, nor does it enforce messages to get processed
(event handlers may skip any message); therefore there is still a
large degree of freedom for protocols to explore. Furthermore,
with a different meta-protocol, we could easily enable the
emergence of new message types, as well.

E. Genetic Operators

Event handlers are the basic units used by genetic operators.
The crossover operator mixes the bodies of two event handlers;
while the mutation operator changes the instruction sequence
of a single handler. Implementing a protocol via event handlers
is a natural and practical choice because it enables the genetic
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operators to modify corresponding parts of a protocol by
mixing code snippets of similar task or extending protocols
by adding new event handlers (or removing ones).

Although syntax is maintained, the semantic correctness
of a program can not be guaranteed after the application of
genetic operators. If an instruction is impossible to execute
(such as pop on an empty stack), it defaults to a no-op
instruction, which does nothing, and the execution of the code
continues undisturbed. This results in a quasi-linear [3] genetic
programming language.

IV. GENETIC PROGRAMMING FRAMEWORK FOR
MULTI-HOP BROADCAST

This section demonstrates how the introduced described
protocol evolution model can be used for implementing multi-
hop broadcast. Note that multi-hop broadcast is especially
suitable for genetic programming as it has several, more or
less independent aspects, and several good and combinable
solution strategies.

First we describe the initial population of protocols used as
the starting point of the evolution; then, we elaborate on the
details of the execution and selection mechanism and the used
genetic operators. Finally, we discuss the metrics we used to
investigate the course of evolution.

A. Initial Protocol Population

The initial population was selected from a small set of well-
known protocols that are simple enough to be the starting point
of evolution.

o Adaptive Periodic Flood (APF) is an optimization of
blind flood. An APF node periodically transmits all the
messages it possesses to all neighbors it encounters,
after a random waiting period. However, when it detects
that there is another node sending the same message, it
increases the period of broadcasting to reduce the total
channel usage.

o Gossiping (Gos). A gossiping node forwards the received
message to its neighbors with a given probability. Gos-
siping is easy to analyze mathematically, as neighboring
nodes have minimal effect each other’s operation.

« Density sensitive adaptive gossiping (AGos). In adaptive
gossiping the probability of propagating the message
depends on some condition. We used a density sensitive
model, where the probability decreases as the number of
neighbors gets higher.

o Aggressive flood (AgrF). In case of aggressive blind
flood the node propagates each received message to its
neighbors n times, with a certain waiting time between
the repetitions. We used two different repetition amounts
to analyze how the evolution can protect the system from
aggressive attackers, trying to propagate their codes by
sending messages in an aggressive manner.

The criteria for the choice of protocols in the initial gen-
eration were to include simple but versatile algorithms to
see if evolution is able to improve them and to include a
proven ‘dangerous’ algorithm to see if the evolution process
can eliminate it by the use of strictly local metrics. Highly
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effective, but overly complex protocols were excluded from
our experiments, as they are usually not good candidates for
Genetic Programming.

Note that AgrF is a particularly dangerous protocol from the
viewpoint of this stigmergic feed-forward evolution model, as
it attempts to spread its seeds at the highest possible rate.

B. Selection

Every protocol generation is created from the previous
locally available protocol generation and those non-local pro-
tocols that were discovered in the previous round. We used
SUS (Stochastic Universal Sampling) with a score function
that gives priority to better performing individuals [12]. SUS
provides zero bias and minimum spread, meaning that the
actual and expected probabilities of selecting an individual
are equal and the range in the possible number of trials that
an individual can achieve is minimal. SUS is a variant of the
roulette wheel selection. The steps are as follows. (1) Order
the individuals by their fitness score in non-increasing order.
(2) Allocate slices on the wheel proportional to the fitness of
the individuals. (3) Calculate the step-width. For example if
we want to select n elements the step-with is (sum of fitness
values)/n. (4) Choose a starting point on the wheel between
0 and step-width. The corresponding protocol is selected for
the next generation. (5) Make n-1 step-width wide steps, and
always select the protocol assigned to the given slice. Selecting
an individual means making a copy of it and adding that copy
to the new generation.

The new generation is then shuffled, individuals are coupled
into pairs, and with a certain probability the crossover and
mutation operators are applied. Crossover is applied on the
pairs, and mutation on the instances.

C. Crossover and Mutation

A modified one-point crossover is used for combining two
event handlers. Given that the protocol pair (A, B) is selected
for crossover, the algorithm is the following:

o Choose an event handler from A randomly. If B has no

such event handler, then return.

e Select a cutting point randomly in A’s handler, and
another point in B’s handler. Cut the handlers along the
cutting points, resulting in four fragments: A-head, A-tail,
B-head, and B-tail.

o With 0.5 probability exchange the head and the tail
fragment of the original handlers.

e Glue fragments together forming two new handlers, an
(A-head, B-tail) and a (B-head, A-tail). To protect han-
dlers from growing indefinitely, we limited the maximal
size of event handlers; bodies above the limit were
chunked.

We use constant parameter mutation, meaning that instead
of modifying instructions in the event handler body, the
mutation affects the constants, i.e. the runtime parameters of
the algorithm. For example such a runtime parameter is the
message propagation probability in the Gos. When a parameter
with current value x is mutated, the new value is chosen from
the (0,2z] range with a Gaussian distribution, favoring fine-
tuning but also allowing larger changes.

27




INFOCOMMUNICATIONS JOURNAL

Autonomous Online Evolution of Communication Protocols

D. Execution and Parallelism

We used a simulation with completely independent node en-
tities, each running its own Virtual Machine executing GPDISS
code and implementing our meta-protocol. The clocks of
the nodes were not synchronized, and the VMs had slightly
differing opcode execution times.

A new payload unit was generated periodically and nodes
had the task of broadcasting it over the network.

E. Measurement Metrics

During simulations we collected various metrics about the
protocol instances that appeared in the system. Recording
of measurements happens whenever a protocol finishes its
execution, either because it depleted its messaging quota or
because the time limit expired.

- J

~ ‘ \
Presence of the Mutation Protocol
original protocols counter age

Figure 2: Protocol fingerprint for the case of 4 initial protocols.
This protocol instance is the result of 20 evolution rounds,
with 3 mutations. The original protocols are present in it in
the amounts of 0.2, 0.2, 0, and 0.6.

The first metric, the protocol fingerprint is a vector, describ-
ing the genetic constitution, mutation count and the age of the
protocol instance, as shown in figure 2. The first segment,
the genetic constitution part, approximates the presence of the
code parts of the initial protocols in the current instance. For
example, a pure Oth initial protocolfor example APF, has a
[1,0,0,0] genetic constitution part, while the mixture of the
Oth and l1st initial protocols is represented as [0.5,0.5,0,0].
The length of the constitution part equals to the number of
initial protocols, and the sum of the constitution values is
always 1. The second section of the fingerprint is the mutation
counter. The third section is an age indicator, containing the
local generation number at the node that created the instance.

In addition, we measured a set of local and global met-
rics for each protocol instance. In [17] we showed that the
aggregate of certain local metrics could be very efficient
approximators for the global ones, so we will not differentiate
between local and global scores in the current analysis. The
list of measured metrics is the following:

o GEN: Generation of a protocol, i.e. the value of the local
evolution counter on the generating node. Note that as the
system is asynchronous, new generations get produced by
different rates at the different nodes

e SCORE: Score of the protocol instance, particularly,
the number of useful messages minus the number of
duplicates it generated.
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o TIME_SLICE: Global time divided into epochs. The total
simulation time was divided into 20 equal time segments,
assigning the numbers 0..19 to each.

« PROTOCOL_ID: Protocols were assigned identifiers in
the order of their deaths. There were approximately
100, 000 observed protocols per experiment

It was a deliberate decision not to measure which protocol
instances survive and which does not. This is because the
actual performance of the system in the current round depends
on the executed protocol instances and not on the surviving
ones.

V. EXPERIMENTAL EVALUATION

We executed several simulations to evaluate our protocol
evolution model in the context of the multi-hop broadcast
problem. First we describe the environment used in our
experiments including the different scenarios used. Then, the
results of the measurements using different mobility models
are discussed. Finally, we illustrate the asynchrony of the
system.

A. Simulation Environment

For the experiment we used a custom created discrete-event
simulation engine, written in the Scala language [6], and our
implementation of the GPDISS language and VM in Java.
The compiler for the GPDISS was created with the ANTLR
compiler generator.

Experiments were conducted on a laptop PC with 222 GHz
processor and 6 GByte memory, out of which 1 GByte was
used for the simulation.

The general settings were the following:

e Mutation probability: 0.1

o Crossover probability: 0.2

« Node count: 500

o Simulation time: 7000s

o New information message to be broadcasted over the

network is generated every 20s

e Maximum age of broadcasted payload: 20s

o Maximum time budget for protocol instances: 7s

e Messaging quota for a protocol: 5000byte

o Average size of a payload message: 250byte

o Average size of an instruction: 4byte

 Channel bandwidth: 1Mb/s

« Initial population: 5% AgrF, and equal proportions of the

other three protocols.

B. Scenarios

The attributes common for all scenarios:

« Nodes move within a geographic area (800 x 1200 m)
according to a mobility pattern. Nodes within 50m see
each other, i.e. are neighbors. The movement of the nodes
cause the connectivity graph to change over time

« The nodes of the system are independent entities, without
any global knowledge or synchronization

« Initially, each node starts with a single, randomly selected
protocol. This single protocol is the local initial popula-
tion.
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o A new payload message is injected in the system period-
ically. The overall goal is to broadcast the payload with
the possible highest total coverage and lowest duplicate
count before the payload expires.

« Nodes execute the decision inversion algorithm locally.
By sending messages, protocols have the chance to spread
over the network.

C. Mobility patterns

We used two highly different mobility patters for the evalua-
tion: a simple random movement pattern (M1) and a scale-free
group pattern (M2). The initial distribution of the nodes over
the area was random in bothy cases.

1) M1: Random direction mobility pattern: In M1, nodes
randomly choose a direction and distance and move with 1m/s
speed until they reach the desired distance. After reaching the
destination, the process starts over.

2) M2: Competing groups pattern: In M2, nodes have
colors assigned. Each node tends to join nearby matching-
color groups with a given probability. Groups, when a new
member joins, relocate towards the new mass center. Nodes
with different colors repel each other, and nodes with matching
colors attract each other (until reaching a minimum distance),
using a spring model. When the group becomes stable, i.e. no
new member joins, the whole group tries to get nearer to a
point of interest (top left corner of the area). Groups compete
for this area.

We used 10 colors, 5m as a minimum distance between
matching-color nodes, 30m as maximum distance from the
group center, 30m as desired minimum distance between non-
matching nodes, 0.5 probability for solitary nodes to join a
nearby group, and 0.02 probability for a grouped node to leave
its current group.

The dynamics of the model is shown in figures 3a and 3b,
visualizing the two phases of the pattern: (i) group expansion
and (ii) competition between groups. Note that even though
the group expansion phase results in large movements and
a high amount of topology changes, the second phase, the
competition of groups for the point of interest even exaggerates
that by causing massive-size local changes (e.g. the collision
of two dense groups). Groups may temporarily even tear up
due to a collision, controlled by to the spring model. Also note
that some nodes do not join groups at all.

D. Aggressor transmission rates

We used two different AgrF repetition values in different
simulation scenarios: n = 1 and n = 3. The 3-fold repetition
makes the protocol more robust against transmission failures
at the cost of significantly reduced performance.

E. Experiments using the M1 mobility pattern

The first set of experiments analyses the random movement
based M1 mobility pattern. The goal to examine was twofold:
(i) whether the evolution works, i.e. produces better scores
than the situation without evolution, and (ii) to analyze how
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the genetic constitution of protocols changes with time. An
interesting question here is whether AgrF, the aggressive
protocol manages to survive or the evolution purges it. We
analyzed the scores and the constitution of protocols with time.

1) Scores: Figure 4a shows the score chart of the n = 1,
M1 mobility pattern setting without evolution. This setting
serves a reference for comparison. The variance of the scores
is very high, so a moving average line (light blue) was added to
emphasize the trend. The average does not change significantly
over time, it stays around the initial —20 value meaning that
for example for 25 useful messages typically also 45 duplicates
got produced.

Figure 4b visualizes the same setting with evolution en-
abled. The variance of the scores is still high, but lower than
in the no-evolution case. Also, a significant improvement in
the scores can be observed; both the trend line and the minimal
score rise, while the maximal achieved score stays constant. At
the end of the simulation, the moving average is around —10,
compared to the initial —20, which is a 50% improvement.
Figure 4c displays the two previous charts in one figure. The
gap between the two trends lines confirms that the evolution
works.

The results produced by the more aggressive, n = 3 setting
are summarized in figure 4d. The positive effect of the evo-
lution is also confirmed here, with an even higher difference;
because the no-evolution case produces a slightly decreasing
trendline due to the more aggressive message propagation of
the 5% AgrF instances. The trendline of the with-evolution
case suggests that the mechanism starts producing good results
after an initial struggling phase. This is because it takes time
to get known with all protocols (initially, each node knows
only one), and also to find a good blend. However, once a
good combination is there, it is likely to produce further good
offsprings.

2) Genetic constitution: The next set of figures visualizes
how the constitution of protocols changes with time. We
quantized the constitution part of the fingerprint into 5 ranges:
0 — 20%, 20 — 40%, 40 — 60%, 60 — 80% and 80 — 100%.
For example, a [0.1,0.35,0.55,0] fingerprint constitution is
quantized into a [“0— 207,720 — 40,740 — 607, "0 — 20”] sig-
nature. Then, these signatures were summarized by algorithm
type and time slice.

Figure 5a displays the participation chart of the APF pro-
tocol over time. Columns represent the summary of a time
slice. For example, in the time slice 10, APF was present in
0—20% amount in 53% of the protocol population, in 20—40%
amount in 26% of the protocols, in 40 — 60% in the 15% of
the population, and in 60 — 80% and 80 — 100% amount in
3—3% of the population, respectively. The curve suggests that
APF is a surviving constituent; at the end of the simulation
it was present in more than half of the protocols in at least
20%. On the other hand, APF is not a dominant part in the
successful offsprings, only 3% of the final population contains
APF in more than 80%, and only 3 + 5 = 8% contains it in
more than 60%.

The same chart for Gos is shown in figure 5b. Gos is a
much more dominant survivor; in the first 10 time slices it
manages to remain a 80%+ constituent in 35 — 45% of the
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(a) M2 movement model: Group expansion phase.

(b) M2 movement model: Groups competing to approach the
point of interest in the top right corner.

Figure 3: M2 mobility model
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500 nodes, AgrF n =1, M1

Protocol D

(b) Scores with M1, evolution on. 500 nodes, AgrF n = 1,
Ml

+ SCORE (no evoltion) = SCORE (evolution)
— Moving average (no evolution) ——Maving average (2volLtion)

<0
-60

-80

-100

-120

(d) Scores and moving averages with and without evolution.
500 nodes, AgrF n = 3, M1

Figure 4: Scores using the M1 mobility pattern

population. At the end of the simulation, Gos still has a visible
dominant presence (nearly 25% of the protocols is built from
it in 80%-+), but also starts blending with other protocols.
Note that the presence of the protocol does not mean that it
is present in an unmodified form; mutation i.e. fine tuning
of constants is likely to increase the success of a protocol.
This is exactly what happens to Gos, evolution optimizes the
propagation probabilities to the actual neighbors.

AGos offsprings, as shown in figure Sc, are less likely
to be present in offsprings with time than the two previous
protocols. There are a few successful crossover-generated
offsprings, built partially from AGos, they are successful at
certain locations but are not widely spread over the network.
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The participation chart of AgrF in figure 5d, shows that in
case of the M1 movement pattern this protocol is completely
purged from the network in 10 time slices.

Figures 6a to 6d display the same charts for the n = 3
repetition case. Unexpectedly, AgrF here is not purged from
the system, although suppressed quite fast. AgrF serves as a
20 — 40% constituent in 3% of the protocols, constantly, in
a non-increasing manner. Another difference is that the other
three protocols manage to blend better with this setting, re-
sulting in rarer 80%+ presence, and more 20 — 80% presence.
The higher ratio of blends means that the offsprings generated
by crossover are successful.
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Figure 5: Genetic constitution of protocols using the M1 mobility pattern, n = 1
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(b) Participation of Gos offsprings in protocols over time. 500
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(d) Participation of AgrF offsprings in protocols over time.
500 nodes, AgrF n = 3, M1

Figure 6: Genetic constitution of protocols using the M1 mobility pattern, n = 3
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F. Experiments using the M2 mobility pattern

The second set of experiments examines how the use of an
intrinsically different mobility pattern changes the results of
the evolution. Note that in this case the mobility is group
based, meaning that once a node joins a group, a dense
neighborhood is likely to be present for it for the remainder
of the simulation. On the other hand, the competition between
groups, hence collisions with other groups may highly influ-
ence the neighboring topology, also changing what kind of
propagation strategies work well. Scores and the constitution
charts were used for the evaluation, just like in the previous
case.

1) Scores: Figure 7a shows the score curve of the n =
1 setting with and without evolution with the M2 mobility
pattern. The main direction of the trend is the same as in
the M1 case, however, the dynamics of the improvement is
slightly different. The variance of the scores remains high with
M2 throughout the simulation, beacsue M2 causes heavy but
localized changes in the topology while groups compete for
the area around the POI. The evolution is more successful with
M2 than it was with M1, the moving average of the score ends
at —6.5, meaning a 66% improvement compared to the non-
evolution case.

The score chart of the n = 3, M2 case is shown in figure
7b. The improvement in means of average is also around
66% here. Again, in the non-evolving case, the aggressive
flood produces a somewhat decreasing score curve and very
high variance. Note that the worst score of the evolving
population at the end of the simulation is basically the same
as the average score of the non-evolving population, showing
that the difference is really significant. Another interesting
phenomenon observable in the figure is that the initial effect
of the evolution is slightly negative, the score curve decreases
in the beginning, before turning upwards.

Detailed analysis of the score pointed out that, as figure
7c demonstrates, the number of useful messages sent by the
protocols remained the same throughout the experiment, while
the number of duplicate messages declined with time. The
same trend was visible in all experiments.

2) Genetic constitution: Constitution charts for the M2
case show different blending proportions than M1 did; the
difference is especially articulated with the n = 3 setting.

With n = 1 (figure 8) an unexpected result is that AgrF does
not get purged, instead, at the end of the simulation in 4% of
the protocols it is still a 100% constituent. This is because
AgrF can be a beneficial protocol in certain topologies when
only a small portion of nodes use it.
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Figure 8: Participation of AgrF offsprings in protocols over
time. 500 nodes, AgrF n = 1, M2

The charts of the n = 3 case are shown in figures 9a to 9d.
Protocols here, with M2, blend more than they did with the M1
mobility pattern; 80%-+ constituents are very rare, altogether
13%, at the end of the experiment, compared to the 32% of
the same setting with M1.

An interesting wave effect can be observed in the charts
of Gos (figure 9b) and AGos (figure 9c), showing how the
shift from the group expansion phase to the group compe-
tition phase influences the usefulness of these protocol as
constituents. The shift occurs around slice 8 — 9. With AgrF
(figure 9d), the effect of the shift is also visible; AgrF becomes
useful as a 20 —40% constituent when large and stable groups
emerge (around slice 7), and manages to maintain and even
improve this position until the end of the simulation. In the
end, AgrF is present as 20 — 40% constituent in 5% of the
protocols.

G. Comparison with a homogeneous case

For comparison, we examined how the system (without
evolution) would perform if only one non-aggressive protocol
family was present, instead of the three tackled with in the
experiments before. We kept the 5% AgrF presence for this
setting too, as it would not make sense to compare a 100%
homogeneous case with the previously discussed settings,
where an aggressive, harmful protocol was present. Figure
10a visualizes the measured score values over time. The trend
shows no improvement. This confirms that the comparisons
used in the previous experiments, i.e. the use of a four-
protocol setting, were valid. The use of several protocols did
not introduce general bias or disturbance that is not present in
a homogeneous case.

H. Execution metrics

Finally, we demonstrate the asynchrony of the system.
Figure 10b shows the age of each protocol (the value of the
local evolution counter at the generator node) in the order of
measurement, i.e. in the order of the protocols’ death. The
line-like shape suggests that the evolution speed, although
not being synchronized explicitly, is more or less the same
in most nodes. Deviations from the average line suggest a
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Figure 7: Scores using the M2 mobility pattern
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(b) Participation of Gos offsprings in protocols over time. 500
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Figure 9: Genetic constitution using the M2 mobility pattern, n = 3
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local difference in the speed. Deviations typically occur in the
positive direction, i.e. the rounds are executed faster at some
nodes. This happens when a protocol empties its messaging
budget before the time limit expires.

VI. CONCLUSIONS

Simulations confirmed that the autonomous, online protocol
evolution model is a promising approach for using to optimize
and self-adapt multi-hop broadcast networks. In our experi-
ments, evolution produced 50 —66% gain in terms of achieved
average score, and also significantly improved the worst-case
score and the variance of scores.

Our model using evolution and natural selection was able to
neutralize the negative effects of a malicious protocol present
in the system. However, AgrF was not simply eliminated from
the system, but instead, parts of its code got incorporated into
good-performing offsprings in some cases. In one scenario,
a small and non-increasing amount of pure AgrF instances
persisted among the survivors, however they represented a
small percentage.

The evolution resulted different survivor constitutions de-
pending on the mobility pattern and on the set of initial
protocols (rigorously, AgrF n = 1 and AgrF n = 3 are
two different original protocols). The feed-forward selection
mechanism was able to offer enough adaptivity to the changing
requirements, as demonstrated with the M2 mobility pattern
around the phase shift.

Our results affirm our belief, that the demands for the new
forms of networking infrastructure can be effectively addressed
by bio-inspired solutions. Our focus was on presenting an
evolutionary framework for the family of multi-hop broadcast
protocols in ad hoc networks, where it is usually impossible to
find a single absolute candidate, as the optimal protocol choice
always depends on the actual environment and application
conditions. We introduced a novel idea in this field: instead of
human engineered static protocols, autonomous evolutionary
methods were applied to achieve dynamic emergence of new
ones, driven by the current needs and environment of the
communicating nodes. For this purpose we have introduced an
evolutionary model built upon a low-overhead, feed-forward,
fully distributed, stigmergy based natural selection mechanism,
and a genetic programming language GPDISS incorporating
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some nonconventional concepts such and relation types and
event handlers.

We showed that the proposed model of evolving protocols is
applicable for the multi-hop broadcast problem in ad-hoc net-
works: with time, evolution results in better performance than
that the initial, manually engineered, protocols could provide.
The fitness function was defined so that it used only local and
quasi-local input, resulting in a model that is applicable for
fully distributed systems such as ad-hoc sensor networks. Also,
the feed-forward nature of the evaluation and selection process
eliminated most of the communication overhead needed for
the calculation of fitness values. Additionally, the process was
carried out in an online manner, that is, the evolution of
protocols happened continuously during the normal operation
of the system. This is a significant feature, as the process
is able to continuously search for new and better protocols
without interfering with the normal operation of the system.

An important limitation of the model is that being based on
a quasi-random search, it cannot provide any quality guarantee
on the short term; for example, we cannot claim that the
next generation of protocols will always improve the current
one. While guarantees do not exist for the quality of protocol
individuals, the overall performance of the system, especially
for longer time windows, improves with high probability.

Online protocol evolution is a research subject that is in
its infancy at this point. According to our knowledge, there
have not been any initiative that resulted in a fully distributed,
low-overhead, on-line, genetic programming based protocol
evolution framework. Our ideas may be of interest to other
researches for theoretic and practical reasons. It may provide
insights to the solution of similar problems, especially in the
area of ad-hoc, sensor and peer-to-peer networks. Theoreti-
cally, the idea is a fertile area for further research, and we
hope that numerous interesting aspects and derivations will be
introduced in the future.
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