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Algorithm for Spectral Shaping of Binary Data Streams

A Novel Algorithm for Spectral Shaping of Binary
Data Streams

Peter Vamos

Abstract—By generalizing the accumulated charge concept,
we introduce a new class of constraints, the generalized charge
constraint to control the spectral properties of a binary sequence.
The new constraint limits the level at the output of a digital filter,
diminishing those spectral components of the channel sequence
being enhanced by the filter. A suitable coder structure, a feed-
back controlled bit stuff encoder is suggested to implement the
new constraint. We demonstrate the spectral shaping property
of the new coder structure and derive an approximate formula
for the spectrum of the output binary signal. We also show that
the coder performs a sigma-delta-like operation and the method
is capable of implementing spectral and run-length constraints
simultaneously. As a demonstration, we present a few particular
spectral characteristics shaped by different examples of loop
filters.

Index Terms: Channel coding, Modulation codes, Run-length
codes, Signal processing, Sigma-delta modulation.

[. INTRODUCTION

In many applications it is either impossible or at least
difficult to shape the digital pulse. Typical examples are
digital optical transmission and magnetic recording. In such
applications it is important to perform an appropriate spectral
shaping of the binary data stream [1], [2], [3]. Moreover,
there are usually additional constraints on the code, such as a
bound of the number of consecutive identical symbols, i.e., the
run-length. The run-length upper bound (k constraint) ensures
the reliable clock recovery, while establishing a lower bound
(d constraint) diminishes the intersymbol interference, both
practically important [4]. The d and k constraints together are
referred to as run-length limiting or RLL constraints.

The most code constructions in the literature concentrate
on dc-suppression [Chapters 7 and 8 of 2], and one can
find only a few general purpose spectrum shaping algorithm,
and even less capable to control the spectrum and the run-
length simultaneously. In 1987 Marcus and Siegel published
an algorithm which can produce spectral nulls at rational
submultiples of the signalling frequency [5].

The guided scrambling algorithm developed by Fair et al.
[6] makes dc-suppression by adding one or more redundant
bits to the blocks of data stream. It minimize the accumulated
charge on the output of a scrambler over the possible values of
the redundant bits. Applying the weighted running digital sum
(WRDS) concept introduced in present paper, the algorithm
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can be used even for general purpose spectral shaping. It is also
claimed that algorithm limits the run-length as well, however,
it is carried out partly by limiting the block length, and the
k constraint can not be prescribed explicitly. It makes further
difficulties to keep the run-length limit at the block boundaries,
and guided scrambling is not suitable for imposing d constraint
at all.

The algorithm proposed by Cavers and Marchetto can be
taken as special case of guided scrambling with enhanced
spectral shaping properties [7]. It minimizes (or maximizes)
the output of a digital FIR filter representing the spectral
constraint by inverting some data blocks along the filter. The
inversion is marked on flag bits added to each block. By this
method, however, can not be handled RLL constraints at all,
and it uses the computationally expensive Viterbi algorithm
for the encoding.

The bit stuffing approach has been applied for decades to
control the run-length in binary sequences. The well known
HDLC (High-level Data Link Control) protocol inserts a ‘0’
bit after each sequence of five consecutive ‘1’ bits [8]. In 1993
Bender and Wolf suggested a bit stuffing algorithm for gen-
erating run-length limited (RLL) sequences with spectral null
at zero frequency [9]. However, their solution can scarcely be
applied in practice due to its bent for infinite error propagation
caused by the infinite memory of the decoder. Next to the error
propagation, what can be kept under control by limiting the
coder’s memory, the only drawback of the bit stuff algorithm is
that it requires buffering to keep the transmission rate constant.

In the second half of the 2000s many authors published
improvements to the bit stuffing algorithm for coding (d, k)
constrained channels [10], [11], [12]. The rates of these im-
proved algorithms are very close to the channel capacity, and,
in some specific cases, even they reach it. However, all they
use that the bound of the current run-length is constant, what
doesn’t hold for charge and generalized charge constrained
codes [13] presented in this paper.

In Section II-A of this paper we generalize the accumulated
charge concept used for generating dc-suppressed code spec-
trum and introduce a new class of constraints the generalized
charge constraint. The new constraint limits the level at the
output of a digital filter, so the spectral requirements can be
described easily. A feedback controlled bit stuff encoder with
loop filter is suggested in Section II-B to implement the new
constraint. This structure can perform a very effective and
flexible spectrum shaping, and moreover, it can also control
the run-length of the output bit stream. The flexibility is
due to the digital loop filter, that can be implemented by
inexpensive and readily available DSP components. In contrast
to guided scrambling, the coder controls the output sequence
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continuously, what makes easy to implement both £ and d
constraints, allows the application of IIR filters, and enhances
the effectiveness of spectral shaping.

In Section II-C we give a brief analysis of the coder
demonstrating its spectral shaping property and supply an
approximate formula for the spectrum of the output binary
signal in case of i.i.d. input. We also show that the coder
performs a sigma-delta converter-like operation. We present
that the coder can enforce spectral and run-length constraint
simultaneously, and we extend the approximate formula for
the spectrum for the case when k and spectral constraint are
applied together.

In Section III we give a detailed analysis of coders with FIR
loop filters. The performance of those coders can be described
as finite sate machine (FSM) with the corresponding discrete
Markov model. We also deal with the case when explicit run-
length constraints are imposed next to the spectral one. As an
example, we scrutinize an actual coder scheme with low-pass
window filter generating dc-suppressed code for ac-coupled
channels.

In Section IV coders with IIR loop filters are covered.
These coders have an infinite state space and the corresponding
Markov chain becomes unstable. So either we use functional
equations for the description, or we approximate the actual
Markov process with a finite space Markov chain. As example,
we present dc-suppression, spectral notches and their combi-
nation shaped by different IIR loop filters.

II. THE CODER’S STRUCTURE AND PERFORMANCE
A. Generalization of the Accumulated Charge Concept

The most common application of spectral shaping is coding
for ac-coupled channel. Those channels have a low frequency
cut-off which affects the low frequency components of the
code, causing a slow fluctuation in level at the receiver. To
avoid this fluctuation, the coded sequence should be poor in
low frequency spectral components. It is carried out by charge
constrained codes when the accumulated charge of the channel

sequence Y7, Ys,... is limited:
n—1
C, = Zy’”—i and |C,| <c forany neN. (1)
i=0

In binary case (Y; € {—1,+1}) the sequence C' is commonly
called as running digital sum (RDS). One can see that the RDS
is generated by a lowpass filter:

_ 1

T 1-21
where Y (z) is the z- or discrete Fourier transform of sequence
Y with z = exp(j27f/ fo) and fo stands for the bit frequency.
By limiting the RDS, we limit the level at the output of a
lowpass filter. So, low frequency components of the channel
sequence enhanced by the filter will be suppressed. (Actually,
the filter in (2) has an infinite enhancement around the zero
frequency, consequently, Y must have zero spectral density at
zero frequency if RDS is limited. Pierobon [14] has proved the
limited RDS is also a necessary condition.) It implies the idea
using filters with other characteristics to form an RDS like

C(2) Y(2), 2

X{-1+1} bit stuff Y{-1L+1}
encoder
—sgn(W,) Y
comparator w digital filter
abs(,) 2 co (WRDS) H(z)

Fig. 1 Feedback controlled bit stuff encoder.

quantity will also shape the spectrum according to the applied
filter. For this purpose, let us generalize the RDS concept by
introducing the weighted running digital sum (WRDS):

Definition The weighted running digital sum is the convolu-
tion of a binary sequence Y; € {—1,+1} and a sequence of
given constants h; € R:

n—1
Wo=> hiYni, or W(2)=H()Y(). @)
=0

WRDS makes direct connection between the binary sequence
and its spectrum. By limiting the WRDS we can enforce
spectral constraints on the code. Those codes with limited
WRDS we will refer to as generalized charge constrained or
spectrum constrained codes.

B. Principle of the Coding Algorithm

For coding WRDS limited channels we are using the coder
structure in Fig. 1. The coder is actually a feedback controlled
bit stuff encoder. The bit stuff encoder has two states: It
either transmits a bit from the input to the output or inserts a
redundant bit. The bit stuffing is controlled by the feedback
loop. Whenever the level at the filter’s output reaches a given
threshold c,, the bit stuff encoder inserts a bit with opposite
sign to the filter’s output signal:

{ Xom+1, it Wy < co;
Vot = _ @
—sgn(W,,), if |Wy| > ¢,

where X;,Y; € {-1,+1}, and W,, = > 2 h; Yn_;. The
indices of the input (X') and output (Y") sequences are different
because of the previously stuffed bits: n = m + s,,, where s,
stands for the number of stuffed bits till Y,,. For threshold ¢,
it must hold that

Co > Cm =min|d € hi|, € e{-1,+1};
€i

co < ey = |hil-

For ¢, < ¢,, the rate would be zero (no information could be
transmitted), while for ¢, > c,, the rate would be 1 (no spec-
tral shaping could be performed). The above structure works
actually as a negative feedback with loop filter. The coder tries
to keep low the output of the filter H(z) = 1+ 2" 'H(z). The
spectral components enhanced by the filter will be dominant in
the control of the bit stuff encoder, so the coder’s interventions
are diminishing their power.

)
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Y{-1,+1} bit stuff X {-1,+1}
decoder
Y
digital filter w comparator
H(z) (WRDS) abs(,) z

Fig. 2 The decoder’s scheme.

The decoding can be performed with a similar, but feed-
forward structure in Fig. 2. Whenever the forward filter’s
output reaches or exceeds the threshold the decoder removes
a bit from the stream. Errors in transmission can cause
additional errors during the decoding. In order to limit this
error propagation we should limit the decoder’s memory:

D Il < o0, (©6)

i.e., all the poles of the loop filter should be outside the
unit circle. It implies that only finite but arbitrarily large
suppressions can be realized in the spectrum. The condition
(6) ensures that the error propagation in the decoder always
remains finite [15]. Further improvement can be reached in
error propagation if we diminish the error probability at the
bit stuff decoder’s input by the application of an outer error
correcting code with a Bliss scheme [16], [17].
Keeping the WRDS high by applying the coding rule

Xm—l—lv if ‘Wn| Z Co;
Yn+1 = .
sgn(Wy,), if |[W,| < co,

instead of (4) can shape the spectrum as well. In this case
the spectral components enhanced by the filter H(z) will be
enhanced in the output signal too, so the spectral density of the
output will emulate the filter’s characteristics. This concept can
be useful when the loop filter suitable for the desired spectrum
doesn’t ensure the stable performance of coder using coding
rule (4).

C. Demonstration of the Spectral Shaping Property

To demonstrate the spectral shaping property, let us suppose
that the input sequence X is a series of independent and
identically distributed (i.i.d.) random variables, i.e. the input
is a binary white noise. Under this circumstance, as far as the

z'H(z)

(@)

statistical properties of the output signal are concerned, there
is no matter whether the coder inserts a bit or overwrites the
incoming one, so the following coding rule can be set instead
of (4):

1
Y1 = sgn(Xnt1 — - W).

0

To analyze the corresponding nonlinear system in Fig. 3.a,
let us replace the one-bit quantizer by a quantization noise
generator (Fig. 3.b). On the basis of the figure we can write:

Y(2) = X(2) - 2 W(2) + Q(2)
W(z)=H(2)Y(2)

Expressing Y (z), for the z-transform of the output signal we

get:
X(2)+Q(z
]. + ZC—O H(Z)
Now, supposing that process () is an uncorrelated

white noise [18], which is more or less satisfied while
0<(co — em)/(ca — em) K1, ie. when the coder performs
definitely, for the spectral density of the output we have

1
Sy (f) ~ 5 - ®)

—j2m z
14 % H(e—i2nf/1o)

The above formula is an approximation, but one that describes
well the main features of the code spectrum in most cases, and
thus good basis for the coder’s design.

To determine the suitable loop filter characteristics for the
desired code spectrum, let us fix ¢, as 1. We can do it without
loss of generality since the threshold’s value can be included
into the loop filter’s characteristics, and it only trims the
dynamics of the output spectrum, as can be seen in Fig. 8.
So, the main features of the output spectrum are determined
by the characteristics H(z) = 14271 H(z), and the loop filter
can be designed on the basis of

H(z) = (H(z) —1)/z""

From (7) one can see that the same filtering is applied both
for the input signal X and the quantization noise Q. Using
the notations

Fz)= —— and X'(z) = F(z) X(2),
1+ ZC—O H(z)
0
RN Y
5 D

Co Z—l
o i)

(b)

Fig. 3 The coder’s nonlinear equivalent circuitry (a); and its linearization (b).
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F(z)

e
NN

1- F(z2)

Fig. 4 The sigma-delta modulator-like equivalent of the coder structure.

as well as introducing the re-quantization noise as
Q'(2) =Y (2) - X'(2) = F(2) Q(2),

we can transform the layout in Fig. 3. The feedback quantizer
on the right side of the yielding structure in Fig. 4 is exactly the
circuitry suggested by Spang and Schultheiss for shaping the
spectrum of the quantization noise [19], are widely used these
days. It demonstrates the coder’s performance well: the input
binary signal is filtered according to the spectral requirements,
then the resulted signal, in general with a continuous amplitude
distribution, is re-quantized by a quantizer which also shapes
the quantization noise spectrum in the same manner. We call
the attention of the reader for the structural similarity of the
layout in Fig. 4 and sigma-delta converters [20].

D. Mixing the Constraints

For a process with finite set of values there can be defined
a corresponding run-length process:

Definition A run is a substring of identical symbols. Let us
define the transition times of the process Y as

t; = mll’l{j = t¢,1|ij 75 }/371} and tqg=0.

Then the run-lengths are given as the differences T; =t; —t;_1,
and the process T(Y) is called as the run-length process
associated with Y.

In most applications it is also important to limit the run-
length [1], [2]. In addition to some spectral constraint, now
let us impose a (d, k) constraint as well upon the code, so
no runs shorter than d+ 1 bits and longer than k -+ 1 bits
are allowed. (d < k is always required.) To implement these
constraints we should insert additional feedback loops into the
coder for monitoring the run-length. The coding rule will be
the following:

—sgn(Wy,), if |Wh| > c,; (spectral constraint)
-Y,, if ‘Zf:() Y,_i| =k + 1; (k constraint)

Vo= ®
Y,, if ’Z?:o Y, _i| < d+1; (d constraint)

Xm+1, otherwise. (no stuffing)

Some kind of spectral constraints may occasionally clash
with one or other run-length constraints, and they are forcing
the bit stuff encoder inserting bit with different sign at the same

time. This can be either prevented by imposing an auxiliary
constraint upon the code, or resolved by setting priorities
for the constraints. An example for the former solution is
presented in Section III-D when a low-pass window-filter
is applied in the feedback loop to form a dc-suppressed
(d, k) constrained code. When priorities are set, usually it is
advisable to order higher priority to the run-length constraints
since those are more crucial if they are set and generally the
false interventions will not deteriorate the spectrum too much.

From (9) one can see that we are using low-pass FIR
loop filters for monitoring the run-length both for d and k
constraints. Moreover, k£ constraint is implemented with a
coding rule that complies with (4), which maintains the WRDS
low, similarly to one applied for the spectral constraint. It
implies that when only & constraint is applied with spectral
constraint, in case of independent binary white noise input, the
bit stuff encoder can be replaced with summing circuits and
one-bit quantizers, similarly as we did in the previous section,
so the output spectrum can be estimated as

1
Sy (z) ~

(10)

.

27! 271 1—p=(k+D)
L+ HE) + i1 7T
The above formula is less accurate than (8) due to the fact that
for k£ constraint the bit stuff threshold is set to k+1, i.e. the
condition (¢, — ¢,)/(cy — €m) < 1 is barely satisfied since
the loop works at the performance limit.

E. Coding Biased Sources

So far we have tacitly supposed that the input sequence
is unbiased, i.e., the probabilities p = Pr(X = +1) and
g = Pr(X = —1) are both 1/2. If this is not satisfied
(or we have no information about it), the input signal has
(or might have) a discrete component in dc proportional to
the square of the bias p —q. Since the coder can produce
only finite suppression, the discrete components can not be
fully suppressed, and moreover, they stimulate the coder for
unnecessarily large number of interventions diminishing the
code rate. The usual solution to this problem is the precoding
of the biased source [2], [21]. The precoded signal X' is
defined as X/, = X, X/, 4, (X, X" e{-1,+1}). With the
mapping +1—0 and —1—1 one can see that the precoding
process is a mod?2 integration: X, = X, & X/ _,. If the
input process is i.i.d., the output is an i.i.d. run-length process
with geometrical distribution: Pr(7;(X’) = n) = gp™~! for
any ¢ € N, which has really no discrete spectral components.
When p=q=1/2, the statistical properties of the output signal
are the same as that of the input.

For the sake of simple implementation, we have integrated
the precoder with the bit stuff encoder by changing the coding
rule of “no stuffing” cases using Y,,+1=X,,+1 Y, instead of
Y,+1=Xm+1 in coding rules (4) and (9):

v { Xm-f—lyna if |Wn| < Cp;
n+1l — .
—sgn(W,,), if |[W,|> co.

The new coding rule will continue the current run with
probability p (when “+1” inputted), and will start a new one

an
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with probability ¢ (when “—1” inputted) when no stuffing is
applied. However, when the bias is non-zero, the precoded
signal will not be uncorrelated, so (8) and (10) can not be
used to estimate the output signal’s spectrum.

III. CopING WITH FIR FILTERS

According to coding rules (4) and (11) the output is deter-
mined by the WRDS and the input. For coders applying FIR
filters, the momentary WRDS W,, is given by the sequence
Yr =Y. .Y, rq1,...,Y,, where r is the filter’s order.
Since Y is a binary sequence, the coder may have only 27+!
states, so it can be described as FSM with the corresponding
state transition matrix Q. Let s; denote a particular state of the
coder, then the elements of Q, i.e. the transition probabilities
are given as ¢; ; = Pr(Y,", =s; | Y, =s;).

A. The Special Properties of the Transition Matrix

For the analysis we will use the following symmetry prop-
erties of the transition matrix.

Property 1 Let denote N the number of internal states of the
coder and 3; the bitwise inverse of the state s; Then with the
labelling

, V) (12

the coder’s transition probability matrix is centrosymmetric,
i.e., Gij = (n+4i—i,n+1—j, OF With the exchange matrix J
having ones only on the reverse diagonal:

JQJ=qQ. (13)

Proof: The states s; and 5; have WRDS with the same
magnitude but with opposite sign. The coding rule (11) implies
that if s; transits into s; for a given input, then 5; transits into
5; for that very same input. So we can write:

G =Pr(Yr =5 | Y1 =5;)

Si = SN+1—i» (Z: 1,27"'

o el -
= Pr(Y;?—r =Sj | Yv:L—r—l :'131) (]4)
=Pr(Y; , =sn+1-;5 | Y, 01 =8n41-4)
= 4gN+1—i,N+1—j -

| ]

(13) implies that the transition matrix can be given in the
following form [22]:

Q1 Q2J ] 15)

&= [JQ2 JQ,J

Property 2 It is a necessary and sufficient condition for cen-
trosymmetry if the matrix has two invariant subspaces orthog-
onal to each other. An even one (€) consisting of ve= [v, vJ|
even, and an odd one (O) consisting of vo= [v, —vJ] odd
vectors.

Proof : The necessity can be proven with the help of decom-
position (15):

viQ = [v(Q1+Q2), v(Q1+Q2)J] = [vQe, vQ.J]; (16.2)
vQ = [v(Q1—Q2), —v(Q1—Q2)J] =[vQ,,—vQ,J], (16.b)
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where Q. =Q1 + Q2 and Q,=Q; — Q> are the equivalent

transformations of the N/2 dimensional reduced subspaces.
The sufficiency follows from that for any v € EUO:

vQ = vJQJ, that is, Q and JQJ are equivalent. |

There are two important corollaries of the above properties:

— From (14) one can see that each state can be joined with
its inverse, due to the symmetry. Then the state transition
probability matrix reads as Q1+ Q2 = Q..

— Since a matrix and its any power have the same eigenvec-
tors, if Q is centrosymmetric, Q*™ is alike, and (Qi”)e =
Qétn and (Qin)o = Qétn

Property 3 Labelling the states according to the last output

bit Y,, too as

1 <i<N/2, if Y,=+I;

if Y,=-1;

(17)
N/2<i< N,

matrices Q1 and Qo have actual physical meaning: Q, stands
for repeating the last input bit, i.e. continuing the current run,
while Qs stands for adding an inverse bit to the last one
starting a new run with opposite sign. According to coding
rule (11), it implies that any non-zero and non-one elements
of Q1 and Qs are p and q respectively.

Commonly, applying an order r FIR loop filter, the most
plausible labelling satisfying both (12) and (17) is the lexico-
graphical ordering of the filter’s states:

k=0
s1=[+1,...,41],...,89r+1 = [—1,...

ie., ,—1].

B. The Properties of Bit-Stuff Generated Finite State Codes

The redundancy of a bit stuff encoder stems from stuffings,
so the coder’s rate can be calculated from the stuffing proba-
bility Pstuf

R =1 — Pstusr-

The stuffing probability is given by the sum of stationary
probabilities of states where stuffing is applied:

§ s

[WRDS(s;)|>co,i< &

Pstuff —

where ; is the stationary probability of state s;, i.e., the
element of eigenvector 7, of Q. associated with the maximal
eigenvalue 1. (Due to the symmetry the stationary distribution
7 of Q must be element of & 7 = J[m., wJ]; so it is
determined by Q. only.)

If the coding algorithm is greedy, i.e., it can generate all
the possible sequences obeying the given constraint, the set
of edges of the coder’s and the constrained channel’s state
transition graph are identical. So, one can get the constrained
channel’s adjacency matrix from the transition probability
matrix by substituting ones in places of its nonzero elements:
A = [Q # 0]. Since A is centrosymmetric too, and
A, = [Q. # 0] is non-negative, so it comes into the maximal
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eigenvalue \p,x of A, which determines the channel capacity
given as C' = logy Amax [2], [23].

The spectral density of a Markov chain is defined as the
Fourier transform of the autocorrelation:

S()= Y Rlkje kst

k=—o00

(18)

So, to get the spectral density, first we should determine the
autocorrelation Ry (k) = E(Y,, Y,,4x). Using that the coder’s
states are ordered such a manner that Y,, =+1 for S; ... S%
and Y,,=—1for S Nii--- S, and moreover, the symmetry of
the stationary distribution 7r, the autocorrelation can be written
as i
Ry (0) = 3 lm—m3] Q@ 1],

where 1 denotes the full-of-one vector [1,1,...,1]*. Since
the vector on the left is element of O, according to (16.b), the
autocorrelation can be expressed with Q,:

Ry (k) = % (7, Q. —w Ql¥lJ] [_i] =7, Q1. (19

Substituting (19) into (18), for the spectrum we get:
Sy (2) = me[(I— 2Qo) '+ (I - 271Q,) ' - I]1.

C. Taking the Run-Length into Account

To describe the simultaneously spectrum and (d, k) con-
strained channel, let us set out from the state transition graph
of the RLL channel in Fig. 5. The labelling of the vertices
corresponds to the current run-length. Taking into account
the spectral constraint, we should use a hyper graph: Each

Fig. 5 The state transition graph of the (d, k) constrained channel.

vertex contains a set of states with same length of closing
run represented by vectors, and each edge corresponds to an
edge adjacency matrix describing the connection between the
state vectors of neighboring vertices. There are two kinds of
edge matrices: A; which continues the current run, and A,
which closes it, starting a new run with opposite sign, as Q1
and Qs do. So, those can be derived from the original state
transition probability matrix Q by putting ones in place of
nonzero elements of Q; and Q- respectively:

Ay =[Q #0]
Ar =[Q2 # 0]
Using the variable length symbol representation [24], [25],
i.e. the edges can correspond to sequences of different length,
the state transition diagram can be reduced into a one-vertex

graph (Fig. 6), which is described with the following adjacency
matrix:

(the run is continuing);

(a new run is starting).

ko (kD)
ATA,z

Fig. 6 The variable length graph of the simultaneously spectrum and (d, k)
constrained channel.

k
Agr(z) =) 2 TDALA,.
i=d
Then the channel capacity is given as the base two log-
arithm of the largest root of the characteristic polynomial
det[Ad’k(z) - I] [23], [24].

The zero capacity indicates that the spectral and run-
length constraints can not be matched without breaching either
of them, so setting priorities is inevitable. Conversely, the
non-zero capacity means that the constraints can be straight
matched or with the help of some auxiliary constraints at most.

The state transition diagram of a coder for simultaneously
spectrum and (d, k) constrained channel can be seen in Fig. 7,
which is a hyper graph too. The edge matrix Q; corresponds
to continuing the current run, while Q2 stands for closing it by
inserting d+1 bits with opposite sign, and Ay does the same
but unconditionally. If the run-length and spectral constraints
never clash, these matrices can be straight derived from the
original spectrum constrained system’s transition matrix:

Q,=Q; Q,=QA}; A,=A,AL

The clash of constraints means that there are states with
transition probability less than 1. Making the matrix Q; + Q,
stochastic by successive removing the dead end states or

Fig. 7 The state transition diagram of the coder.
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inserting new transitions, and then setting the probability of
lonely transitions to 1, we can patch the broken Markov chain
in vertices “d+1%,...,“k”. Establishing new transitions in Q,
corresponds to setting priority of d constraint over the spectral
constraint, while by removing dead end states or turning
the probability of the single transitions to 1, we implement
auxiliary constraints which can preserve the validity of both
constraints. Moreover, we should secure the prevailing of &
constraint in vertex “k + 1” by adding transitions to A, in
states where k£ and spectral constraints collide.

On the basis of Fig. 7 we can construct the variable length
transition matrix of the coder:

k—d—1 o L
Qqi(2) = Z gk QIQ, + gt Qlf_dAz
=0

Let 7, = m;,Q,(1) the stationary distribution vector
for vertex “d + 17, i.e., the stationary distribution under the
condition that a new run has started. Then the generating
function of the distribution of run-length can be given as

g(z) = T"d,de,k(z) 1.

To get the coder’s rate, first we determine the average run-
length at the output, what is given by ¢'(1):

(20)

k—d—1
Now=mqr| > (d+14i)QiQ, + (k+1) QF"A,[1.
i=0
Introducing the indicator vector i =1-[Q1==1]-[Q,1==1],
which selects the states when no stuffing is applied and the
coder gets a bit from the input, the average number of input
bits during an output run reads as
k—d—1

- ~, .
Nin:Wd,k E Q1 1.
=0

Then the rate is given as R = Nin/ Nout-

The spectral density of the output signal can also be
calculated with the help of generating function (20) by the
formula published in [26]:

= Ama,[ +Qd’k(z))_l+ (I +Qd,k(z_1))_1—l] 1
e Nous |1 — 2|2 .

D. An Example: The Window-Charge Constraint

In many applications (e.g. ac-coupled channels) it is an
important requirement that the code spectrum should be poor
around the zero frequency [2], [27], [28]. With the application
of a low-pass loop filter we can satisfy this requirement. Using
the order r window filter H(z) = > ;_,2"* as loop filter,
according to (8), the output sequence will have a dc-suppressed
spectrum with ripples in passband region (Fig. 8). Increasing
the order of the filter, the suppression will grow, while
the width of the suppressed region will diminish. Certainly,
diminishing the threshold will enhance the suppression. To
reach the same suppression the filter with higher order will
result in a higher code rate.

Now the WRDS is defined as W,, = Z;:o Y,.—;. The values
of possible W,’s form a finite set of even or odd integers
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depending on the value of r. Without loss of generality, we
can confine the coders’s threshold value on that very same
set, supposing that ¢, is a mod?2 congruent integer to r+1:
(r+1—c¢,) mod 2 = 0. Then the coding rule reads as

Xm+1Yna if |Z::Q Yn71| < Co;
Yn+1 == -
—sgn(Wy), if |35 _(Ya—il =co.

Taking the incoming bit into account, one can see that the
coder limits the accumulated charge in an r+ 2 bit long
sliding window, and the channel sequence will comply with
the following constraint:

2n

r+1

Z Yn—i
=0

We refer the constraints of above type to as window-charge,
or shortly (w,c) constraint. The w and ¢ code parameters
stand for the window’s length, now w=r+2, and the charge
limit, now ¢ = ¢, —1. The coding algorithm defined by (21)
is greedy for the above constraint, i.e., it can generate all
the possible sequences obeying the constraint with parameters
(r+2,c,—1). Certainly, the output sequence will also comply
with the constraint (r+1,¢,), however, the coding algorithm
will not be greedy for that constraint because it makes an
unnecessary stuffing when |W,,| = ¢, and the outgoing bit
Y, —»=sgn(W,,). It implies that a sequence obeying the con-
straint (r+1, ¢,) will not necessarily comply with (742, c,—1),
i.e., the latter one is a stronger condition.

The performance of the coder can be analyzed with the help
of the loop filter’s states. Let us call a state light if its disparity
is smaller than the bound: |W| < ¢,; and heavy if those are
equal: |W|=c,. Introducing the notations ny = (r+1—c,)/2
and ny = (r+1+c¢,)/2 for the minimum and maximum number
of identical bits in the window, the number of light and heavy
states are

no—1
Ni= Z <r—i‘—1>; Nh=<r+1>+<r+1>= 2(7‘-}—1).
A ni N2 ni
i=ni+1
In case of unbiased, i.i.d. input the stationary distribution can
be determined simply:

< ¢, —1 for any neN.

Theorem If the input process X is i.i.d. with Pr(X =+1) =
Pr(X =—1) = 1/2, the stationary distribution of the coder’s
states depends only on the weight of the states. The probabil-
ities of all light states and the probabilities of all heavy states
are equal, and the probability of a light state is the double of
a heavy one:

2 1
PEoN+N PPT AN N,
Proof: According to coding rule, each light state has two
parents and two children, while a heavy state has only one
of each. Since the input process is i.i.d. and Pr(X = +1) =
Pr(X = —1) = 1/2, the stationary probability distribution is
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Fig. 8 Dc-suppressed code spectra generated by an order 13 window filter.

determined by the set of following four kinds of equations:

T = %Tf‘j + %wk, if state 4, 7 and k are each light;

T = m; + mk, if state ¢ and j are light while k is heavy;
T = 375, if state 4 is heavy and j is light;

T3 = Ty, if state ¢ and j are both heavy.

The above system of linear equations can be satisfied with any
m;’s such that

|

Then the probability p; can be determined by the condition

ZTFZ' = 1

2pp, if state ¢ is light;

pp, if state ¢ is heavy.

1

Ph = oON + Ny

According to Perron—Frobenius theorem [29], the above solu-
tion is unique as well. |

The redundancy is given by the stuffing probability
Pr(|W| = ¢), so the rate can be calculated as

2N,
2N; + Ny, '

R = 1—PI‘(|W‘ :Co) = 1_thh =

The error propagation, i.e., the expected value of the number
of false detections induced by a single error, can be calculated
under the condition that the error and the channel process are
independent. An error during the transmission can cause two
kinds of errors at the decoder. The type one error is when an
originally light state with disparity c,—2 is detected as heavy,
causing a false removal. Its probability is

1
L <T+1>:2ph£

Pex Np,.

P i1 \ng+1 r+1

The type two error occurs when a heavy state is detected as
light, leaving a redundant bit in the stream. The probability of
this error is

De2 =

Then the total decoding error probability, under the condition
that a single error has occurred during the transmission, reads

as
3 (1+ Co

r+1> (1-R).

Since the erroneous bit remains in the memory of the decoder
for r+1 steps, the expected value of the number of false
detections induced by a single error is

n
Pe = Per + De2 ZSH%thh = 5

E(ne) = (r+1) pe

g(r—i—l—i-co) (1-R).

The (w,c) constraint also imposes an upper bound on the
run-length, since a run can not be longer than (w + ¢)/2 bits
and the special case when w = c¢+2 exactly corresponds to the
run-length constraint £ = c¢. However, we can prescribe RRL
constraints explicitly as well. According to (9), the coding rule
will be the following:

—sgn(Wy), if [ Yn—il =co;
Yo, i [Tk Yami| = k41
Yoi1 = Yo, if [Tl Yaud| <d+1;
Y,, if Y, YV, i <d—co; (%)
Xm+1Yn, otherwise  (no stuffing).

The last stuffing case denoted by (*) is an auxiliary constraint.
It is applied to avoid the collision of (w,c) and d constraints
after short runs, forcing the coder to lengthen the current run.
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The coder’s transition matrix should be modified accordingly
by turning the probabilities of lonely transitions to 1 making
the matrix stochastic:

Q1 = diag(1 — 621)A1~

The spectrum of the coded signal can be seen in Fig. 8.

IV. CoDING WITH IIR FILTERS

In case of IIR loop filters, there are infinite many non-
zero among the coefficients h; in definition of WRDS. So,
as the process advances, the number of possible values of W,
i.e., state space of the Markov chain is growing permanently
and tends to infinite. Moreover, along with that growing, the
Markov chain is getting unstable, i.e., the probabilities of the
states tend to zero, so the discrete Markov model can not
be used anymore. For the exact mathematical description the
process should be taken as Markov process with a multidimen-
sional continuous state space. The dimension of sate space
corresponds to the applied filter’s order. The transitions are
described as functions of the state space, and the stationary
distribution can be earned as the solution of a functional
equation. We present the method with first order low-pass loop
filter, however, the whole method is cumbersome and hard to
solve even in this simplest case.

Rather than following the exact model, we can approach the
original Markov process with a Markov chain by discretizing
the state space. Then it can be handled with the matrix method
applied for coders with FIR loop filters. It can fairly model the
original system since, in the strict sense, the actual coder also
performs as Markov chain rather than Markov process due to
the roundoff errors of the filter circuits. The only difficulty
with the method is the state space is prone to getting fast
unmanageably large by growing the filter’s order. Therefore,
it is useful to find the exact support of the multidimensional
distribution function before the discretization, which can be
itself a hard problem.

A. The a-Charge Constrained Code
Applying the IIR low-pass filter H(z) = 1/(1 — az™1)
(0<a<1) as loop filter, the WRDS is defined as

n—1

Wn=) oYy i=Y,+aWn 1.
=0

(22)

In accordance with (8), it will also result in a DC-suppressed
code spectrum, as can be seen in Fig. 9. The greater o we use,
the deeper and steeper suppression, but the error propagation
is also increased. On the basis of (5), for threshold ¢, it should
hold that 1/(1 + «) < ¢, < 1/(1 — ). According to coding
rule (4), the WRDS defined by (22) is bound by ¢ = ac, + 1,
and the output sequence will obey the following constraint:

n—1

Z Oéi Yn—i

i=0

< ¢ forany neN.

This constraint will be referred to as a-charge or shortly («, ¢)
constraint. When o = 1, we get the conventional charge (RDS)
constraint, however, this value of « should not be used with
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the bit stuffing method since it breaches the finite memory
condition (6) causing an infinite error propagation with a
probability of 1 for any finite error rate. The coding algorithm
defined by (4) and (22) is greedy in generating (v, aco+1)
constrained sequences.

To find the capacity of a-charge constrained channel, let
us consider the set A™ of n dimensional binary vectors:
[a1, az,...,ay], a;€{—1,+1}, and define the rectified WRDS
(RWRDS) on the elements of A" as

aZZ] Oa a;i—; (i=1,...,n)

= (23)
OzWi_l (i:2,...

=1+ ,n) and W = 1.

ai—1
The RWRDS of an a-charge constrained sequence is confined
within the interval (1—ac, c¢). For the lower bound we will
use the shortcut ¢/ = 1—ae. It is convenient to rectify the
WRDS according to the sign of the current run since RWRDS
is always increasing during a run, so it is enough to set an
upper bound:

n—1
E o' Ynﬁi
i=0

Now let us consider the subset A7 of A" where the RWRDS
is limited: Wl, Wg, . W < c. Let S(n) denote the number
of elements in A? and F,(x) the distribution of W, on the
set, i.e., the probability that the RWRDS of a randomly chosen
element of A7 is smaller than z: F),(z) = Pr(W <x). Then,
on the basis of (23), we can write:

Sm)Fu(z) = S(n—1)F,1 (5= z—1)
+S(n =11 = Foa(=%2)]

The term F,_ 1(’3 1) in the above equation refers to the case
when the current run is continued, while 1— F},_ 1(——)
is standing for starting a new run, and the arguments are
the values of RWRDS of the step before. Specially, for
x=c F,(c)=1, while, since the value of the second ar-
gument (1 —c¢)/a=—c, is always below ¢, the probability

Fn_l(—C;l) is zero. Thus for x=c (24) reads as

S(n) = S(n—1) 1+ Fua(5H)].

Combining (24) and (25), function F,,(z) can be given recur-
rently:

n—1
<c & ZYno/Yn_i<c
i=0

24

(25)

Fro1(81) 4+ 1 = Foor (-%1)]
1+Fn~l(c;1) .

On the basis of the above recurrence, for the stationary dis-
tribution F(z)= lim F,(z) we get the following functional
n—oo

Fn(z) =

equation:
0, if z<¢;
14+ F(x=L) - p(—2z=L
Fa)y=4 L FET) PP ey e 0)
1+ F(%2)
1, if x>c.

From (25) one can see that the number S(n) of elements in
A7 increases exponentially for large n’s:

S(n) =< [L+F(H)]™,
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Fig. 9 Dc-suppression by IIR low-pass loop filter with no run-length constraint (blue/magenta), and with an additional
(d, k) constraint (green).
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Fig. 10 Spectral notch by IIR band pass loop filter with a single pole at 0.2fy (yellow/red), widened by double
poles at 0.19fp and 0.21 fo (cyan/blue), and combined with dc-suppression (light green/green).

thus the channel capacity is given as

C = lim

N0

kg@ﬁﬁfl = log, [1+ F(£1)).

Using the rectified WRDS, the coding rule for the a-charge
constrained channel with threshold ¢, = (¢ — 1)/« will be the

following:
Yn—l— 1, = {

Supposing that the input process is i.i.d. with Pr(X =+41) =p

and Pr(X= —1/)\: q, for the stationary distribution

G(z) = lim Pr(W,, <x) we can get a functional equation
n—oo

—Ya, if Wy, > ¢,

EN (27
b A0l SO

10

similar to (26):

0, if <1 —ac=¢c;

1-G(-&h), if d<z<l-—ac=2-¢

PG(EL) +q[1 - G(-232)] )
+p[1-G()], if 2—c<z<g

G(z)

AR il

The second row of (28) refers to the transitions when stuffing
is applied forcing to close the current run. The low values
of RWRDS can be reached only this way since, as we
have seen, —c, < ¢, therefore the term G(%=1) standing for
continuing the current run is missing. The third row refers
to the transitions when no stuffing is applied. The constant
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TABLE I The most important parameters of some spectrum constrained codes

loop filter characteristics thresliold chamgel rate SELOL [?ro-
Cy capacity pagation

03 2.0 0.626 0.533 11.2

i
Z’ 77 4.0 0.887 0.825 4.7
=0 r=13
d=1 k;4 2.0 0.297 0.261 53
1 a.=0.98 2.0 0.853 0.808 26.2
—1 -
1~az i 2.0 0.503 | 0468 | 16.3
2]
H(z,p)= l_z:’:f)f(i’;)miézz_z 0=098, p=02| 18 | nodata | 0813 | 363
- 019 Oﬁz 8, oa1l 30 | nodata | 0597 | 424
H(z,p1)+H(z,p2)+H(z,pl)H(z,pz)z_] (XZ’O 99
=0 p _’O 3 1.2 no data 0.684 42.5
1— Y 2— Y.

term [1—G(<1)] provides the continuity of the distribution
: «
function.
Earlier we have showed that the rate of a bit stuff encoder
is given as 1 — Py, S0 according to (27), the coder’s rate is

R=1-Pyug =1—Pr(W > ¢,) = G(c,).

The a-charge constraint, as most of the constraints defined
by low pass filter, constitutes an upper bound on the run-length
in and of itself:

Fog[l —(1—a)e) —log[l + (1 —a)(1+ aco)]—!
Tmax= 1 )
og o

which corresponds to the k constraint k = Ty,.x — 1. However,
explicit RLL constraints can also be given. Neither £ nor d
constraint can collide with (c,c) constraint if the condition
d+1 < Thax is satisfied. The spectrum of a simultaneously a-
charge and (d, k) constrained sequence can be seen in Fig. 9.

B. Forming Spectral Notches

Applying a loop filter which sets bandpass characteristics
to H(z) will result in a bandstop-like code spectrum form-
ing a notch in the spectrum. Such code spectra are used
to accommodate auxiliary information in spectrum [7], e.g.,
pilot tracking tone for head positioning mechanism of digital
magnetic and optical recorders [2]. Applying a notch at f;/2
will suppress the power around the half of the symbol rate
rendering protection against band-edge filter distortion. The
IIR filter

acos(p2m) — afz”
H —
(z,p) 1 —2acos(p2r) 2=t + a2272

2,—1

it will generate a spectral notch at pfy (Fig. 10). It behaves
similarly to the characteristics by the low-pass IIR filter, that
is, the greater «v is chosen, the deeper and steeper suppression
will be, with a higher error propagation susceptibility. Placing
another pole in H (z) next to the first one, we can enhance the
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width of the spectral notch without diminishing the suppres-
sion (Fig. 10):

H(zp1,p2)=H (2 p1)+H (2 p2)+H (2 p1)H(zp2)z"" (29)

Letting p; =0 in (29), the first pole will appear in dc. It com-
bines the spectral notch with a dc-suppressed code spectrum
(Fig. 10), which is often required.

In Table I we have collected the most important parameters
of spectrum constrained codes discussed in this paper. The
error propagation is defined as the average number of false
detections (false removals or remanent stuffed bits) induced
by a single error. It has been measured at a BER of 1074

V. CONCLUSION

In this paper we have generalized the accumulated charge
concept and introduced a new class of constraints the general-
ized charge constraint. With the new constraint the spectral
requirements can be described easily in the time domain.
A feedback controlled bit stuff encoder with loop filter is
suggested to implement the new constraint. We have studied
the performance of the new coder structure and demonstrated
its spectral shaping property. We have presented a few spectral
characteristics of practical interest generated by low- and
bandpass loop filters.
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