INFOCOMMUNICATIONS JOURNAL

Dynamic Log Analysis

Dynamic Log Analysis

Andras Lukacs, Zsolt Nagy

Abstract—This article reviews a new log analysis solution
based on multidimensional data cubes. It introduces the process
of dynamic log analysis, including real-time log compression
during the log management, a new log parsing language, and the
efficient regular expression processing engine for this language.
The article assesses the new online analytic processing (OLAP)
tool implemented for log analysis. The algorithm and software
technology developments appearing in the resulting system are
creating a new class of real time log processing and analysis tools.

Index Terms—Ilog analysis, real-time compression, regular
expression, OLAP, bitmap index

I. INTRODUCTION

The article introduces the log analysis tool developed by
KURT Co. and its technology. This is a professional software
system capable of analyzing log data generated by large
complex IT systems.

Companies and organizations put an increasing emphasis on
the protection of their data and information systems. Log
analysis is a technology-intensive method of IT security
services. Log files describing the operation of computers,
networks and applications are constantly collected. Logs tell
the user what has happened to which system or device and
when the event occurred. Logs data allow important events to
be recognized like attacks to the network, policy violence,
fraud, and technical defaults can also be detected and
predicted. Last, but not least, logs may be suitable for detailed
tracking of business processes.

As logs are generated in large quantities even in middle
sized IT systems (they record as many as a million events per
second), the collection and the storage of logs for longer than
a few days can pose a serious problem. Processing the
accumulated data is a long lasting and resource intensive
challenge. Generally, only a hundred logged events out of a
billion hold information about an incident, and only two of
these require intervention; thus an analysis system is required
that is able to process this large amount of logs automatically
by efficient pattern recognition and filtering.

Manuscript received June 23, 2012. This work was supported in by the
National Development Agency (Hungary) under the grant GOP-1.1.1-09/1-
2009-0034 “Confidentiality-guaranteed, distributed data collection, real-time
log analysis and automatic intervention system™ financed by the European
Union.

A. Lukidcs is with KURT Information Management and Data Recovery Co.
and Department of Computer Science, Edtvés Lorand University (e-mail:
lukacs@cs.elte.hu)

Zs. Nagy is with KURT Information Management and Data Recovery Co.
(e-mail: zsolt.nagy@kurt.hu)

JUNE 2012 ¢ VOLUME |V * NUMBER 2

Current log analysis systems are based on monitoring the
frequency of events (incidents), and the co-occurrence of
particular previously defined events and simple rules. It often
takes several hours to produce alerts and analysis results
because of the limited speed of log processing methodology
hindering timely intervention and damage prevention or even
making them completely impossible. To solve these problems,
we designed a completely novel concept of log analysis
compared to previous solutions. The presented algorithm and
software technology developments appearing in our system
lead to a new class of real time log processing and analysis
tools.

The concept of dynamic log analysis bridges rule based
analysis tools of the past decade and future solutions based on
fully automatic pattern recognition and semantics. The main
idea of dynamic log analysis places human professionals in the
center of decision making and supports them by
(semi)automatic tools in every task.

Implementing the concept of dynamic log analysis involves
many technological challenges. The first problem is the
immense amount of log data which serve as the basis of the
analysis. It is not uncommon to see an IT system producing
more than 100 TB of log data every year. Processing such a
large amount of data is clearly a big data problem [1], [2]. The
second issue is how to read the state of the IT system from the
logs during the (risk-) analysis. A further important criterion is
the openness of the log analysis system. The analysis system
has to be capable of receiving and understanding various types
of log data, while on the other hand it has to be able to
represent the new risks universally. It is also important that the
reports and graphs must be understandable by professionals,
and they have to be casily added to the existing processes of
risk analysis.

The second section of the article describes the necessary
steps for log collection and log normalization, which include
real time compression, a new language for log processing with
its general regular expressions engine effectively processing
complex events composed by multiple log lines. The third
section introduces the online analytic processing (OLAP)
solution used for the analysis, which — besides the ordinary
functions — is able to retrieve the original log lines belonging
to the queried cell due to a multi-level indexing technique.

A unique feature of the developed OLAP engine is the
extremely fast query response time for the regular OLAP
operations, and for the log line retrieval too. The fourth
section deals with analysis techniques based on the data stored
in the OLAP cube. Finally in the fifth section we sum up the
novelties of the log analysis tool, and we mention its use
cases.

37

INFOCOMMUNICATIONS JOURNAL

Dynamic Log Analysis

09 colocion || comp® i
]
L4
log s creating OLAP
normalisation cube
i
¥
o
:"' - —>| viewing reports
operations

Fig. 1. Proposed process of dynamic log analysis.

II. LOG COLLECTION AND LOG NORMALIZATION

The collection process of logs generated by IT systems is
supported by many well developed solutions [3]. Thus the first
step in log processing is the long term storage of collected logs
while maintaining efficient data access. Most log collection
systems apply lossless compressors, for example gzip, to store
the log files in a compressed format. Although such solutions
can compress the log data to the tenth in size and so the
reading speed from disk can increase with an order of
magnitude, the data access speed of a log analysis tool also
depends on the speed of decompression. Since compression
rate and (de)compression speed are basically inversely
proportional, it is a non-trivial problem to find the optimal
solution for data compression and implementation,
respectively.

The data access speeds can be well characterized with the
achieved acceleration for data access speed of compressed
logs compared to the data access speed of uncompressed logs.
We have examined several real-time, extreme high-speed
compressors, and /z4 [4] showed the best results, which is
optimized for data access based on a Lempel-Ziv algorithm.
This comparison also included standard gzip (version 1.3.12)
[5], lzop (version 1.02rcl) based on Lempel-Ziv-Oberhumer
algorithm to optimize decompression [6], and pigz [7], which
utilises the gzip parallel multi core architectures effectively.

Collected and stored logs are generated by heterogeneous
devices (different operation systems, network devices,
applications), thus the log formats are not standard; there are
thousands of different log types to work with. On the other
hand, logs are usually simple text files with information pieces
separated by a character; they generally do not hold any
deeper structures (like nested parentheses). This means that
log parsing is typically a text processing problem. During this
process, it has to be decided whether an input log matches a
previous format or not, and then the needed data must be
retrieved from the log for further processing. Because of the
heterogenity of logs, the log analysis system must be easily

38

expandable with new log formats, and log format descriptors
created in an environment must be easily transferable to other
similar environments.

S
8
7 4
6 =
5 -
4--
3
2 4
1 4
0+

24 Eop S kop5 Eopl pigz5 pigz 1 pigz S gzip S geip 5 gzip S

Fig. 2. Data access speed achieved by the use of different compressors
evaluated on two data sets (light and dark columns). The height of columns
show the achieved acceleration rate on compressed logs compared to the
data access speed of uncompressed logs. Numbers behind gzip, lzop and
pigz indicate the applied compression ratio (1 is the smallest and fastest; 9 is
the largest and slowest). The compression speed of lzop 9 és gzip 9 is
substantially worse than the results for other compressors.

Empirical evidence shows that log formats can be described
with regular grammars like formal languages [8]. Furthermore
it is known that a deterministic finite automaton (DFA) can be
created for every regular language, and this automaton allows
words belonging to a certain language to be recognized in
linear time [9]. This theoretical solution also ensures that these
automata are actually feasible in practice, and that they scale
adequately in case of grammars describing log formats. The
next step of pre-processing involves a further difficulty, since
the data actually needed for the analysis must be retrieved
from the log lines. In that phase, the filtering and
transformation steps determined by professionals give the
opportunity to introduce available risk analyst knowledge into
the log analysis tool. Although the recognition of defined
patterns can be tackled by the DFA-based algorithms, the
extraction of a recognized pattern in itself surpasses the
boundaries of DFA-based approaches. Therefore, the
empirical testing of the available implementations for
evaluating regular expressions was necessary.

Examining multiple regular expression processing
softwares, we came to the following conclusions. The flex
(Fast Lexical Analyzer) [10] is well suited to log format
recognition. Flex provides the user with the opportunity to
build a DFA from several regular expressions, which enables
quick recognition. However, a technical problem is posed by
the limited size of useable DFA, and the code does not support
UTF8 coding, therefore the source code might require some
modifications. A further problem of the conditional rules
applicable to the extraction of patterns required to the analysis
is that these rules reduce the speed of processing drastically.

Google RE2 [11] is a regular expression matching library
based on a highly efficient automaton theory. It offers high
speed DFA and NFA (Non-deterministic finite automaton)
based analysis. In case of NFA analysis, it is possible to
retrieve parts from the input. In DFA mode, the matching

JUNE 2012 ¢ VOLUME |V ¢ NUMBER 2

INFOCOMMUNICATIONS JOURNAL

algorithm reads through the input once, pacing the automaton
by characters. If we would like to retrieve the data, the DFA
matching will not be appropriate. In that case NFA matching
will be done, but the speed will be reduced to such an extent
that it will be inadequate for log analysis.

The RE2 offered a good basis for the development of a
prototype suitable for matching numerous samples
simultaneously. The Set interface of RE2 made it possible to
match multiple regular expressions with one DFA
simultaneously. The speed of matching several thousand
patterns simultaneously with such a DFA was similar to the
speed of recognizing only one pattern. Although the size of the
automaton can grow exponentially with the number of
patterns, the size of a DFA built from almost a hundred
thousand patterns still remains under 1 GB.

0,5 =

)

0,4 -

)

0,3

)

0,2 -

g

0,1+

d

0 T T T

Flex RE2 Spirit Recursive

Descent Parser

Fig. 3. Comparison of solutions applicable during the log normalization
step. Lighter columns show the speed of pattern recognition, darker columns
show the speed of pattern retrieval measured in GB/s when processing the
test data set.

The Spirit [12] template metaprogram library developed for
text parsing is part of the Boost program library [14]. With the
help of Spirit, parsers can be generated in compile time for
environment independent and regular language classes. An
advantage of that is the possibility to optimize the parser
during the translation, which may result in a significant
increase in speed. The Spirit uses the recursive descent parser
strategy [15], which - complemented by a state of the art
programming approach — proved to be efficient in log format
recognition and retrieval, too.

As text parsing rules are defined by a professional, a C++
translation step is required in case of Spirit for creating an
actual text parsing program; this is not acceptable because the
special (e.g.: legal) requirements of log analysis demand a
high degree of stability. Although the compilation of the
parser is feasible during run-time, optimizations during the
translation were not possible in that case, so the speed
decreased significantly. This led to the re-implementation of
the recursive descent parser used by Spirit. The processing
speed fell to the quarter, however, the resulting speed of text
parsing and aggregation — measured in EPS (events per

JUNE 2012 ¢ VOLUME |V * NUMBER 2

Dynamic Log Analysis

second) unit used by log analysis tools — was around 100 000
EPS on one core evaluated on a test data sample. This
performance is comparable with the performance of the fastest
log analysis tools available on the market. At the same time
the log analysis tool has its own modular descriptive language
designed for log analysis; highly efficient analyzers can be
compiled during run-time.

III. MEANS OF ACHIEVING THE DATA MODEL

The starting point of the data model used in the log analysis
is the multidimensional data cube applied in the OLAP (online
analytical processing) tools [16]. Log records are represented
in an aggregated form in the data cube. The log lines are
represented with numbers in the data cube. Each number
shows the corresponding counts of log lines where all special
fields are the same. This comes from the experience of log
analysis professionals; counts and other derived data based on
counts (like statistics) provide excellent input for efficient
analysis. Compared to the amount of log lines, there are
generally much less nonzero numbers in the data cubes, so the
data cube is a significant compression of the parsed log data.
An important advantage of the multidimensional data model is
the hierarchy of dimensions, which appears naturally in most
cases, and can be exploited during the analysis. An example
for this is the date, where the structure is the following: month,
day, hour, minute etc. An extension compared to the ordinary
OLAP implementations is that for each cell the corresponding
log lines can be searched and retrieved due to a multiple
inverse indexing.

Although the idea to use multidimensional data cubes and
OLAP tools for special types of log lines occurred at the end
of the second millennium especially in case of web server logs
[17] [18], the OLAP has not been used yet for general purpose
log analysis. The main reason for that might be the insufficient
scaling of the available OLAP engines on big data.
Nevertheless an early and sporadic source mentioning the use
of OLAP tools in log analysis is worth noting [19].

In course of implementing the multidimensional data model
of the log analysis tool, we posed and examined the question
of applicability for several existing OLAP tools. We examined
the applicability of OLAP implemented with relational
database manager (ROLAP), and the use of memory resident
OLAP (MOLAP) in log analysis. The examined ROLAP
solution was an application executing the required OLAP
functions needed for log analysis. This ROLAP solution is
based on a MySQL [20] relational database manager. During
the tests we used the icCube MOLAP tool [21]. As the
performance of the tested tools was not sufficient for using it
in a dynamic log analysis tool, a new OLAP engine
implementation made it possible to fully meet the diverse
needs (Fig. 4.)

The implemented OLAP engine (Colap vI) can quickly
answer the count cube queries with the help of so-called

39

INFOCOMMUNICATIONS JOURNAL

Dynamic Log Analysis

100

0,1

0,01 — —— T
MySQL ROLAP icCube Colap v1

Colap v2

Fig. 4. Comparison of performances measured with different OLAP engines.
The test data set was a log file with 6.5 million lines, it was 1.5 GB in raw
size. Light columns indicate the loading speed of the gzip compressed test
data from the memory to the OLAP tool and the building time of the data
cube measured in seconds. Dark columns indicate the average time of OLAP
operations on the built-up data cube measured in seconds. In case of MySQL
ROLAP, the data loading time is not applicable.

compressed bitmap indexes. On one hand, the bitmap index is
an incidence vector built upon all of the possible values of all
the dimensions as coordinates; this vector describes one
particular cell of the data cube by giving the values of the
defining dimensions. On the other hand, the value of the
corresponding cell also appears as the last element of the
vector. This model is called indexed count cube model [21].
The bitmap index is a true representation of the cube. Every
OLAP query can be traced back to the product of AND
operations on the bit vectors of indexed count cube and of
additions on the count values of cube record set. Vectors can
be stored in a compressed format, AND operations can be
done effectively even in this compressed format.

There are numerous methods for compressing bitmap
indexes. Most solutions are based on run-length encoding,
where sequences of the same values following each other in
the bit vector are given with two data; the element of the
sequence and the number of repetitions. The Byte-aligned

Log Sources
. e
» Normalization
Matrix Search query:
30.J40. Filter events W 4
& New Malrix
host1|GETH04
Seaich
hosLlGET|302
Filter host1GETR01
testl hast1{POST]302
gen_web) host1|GE T304
gen_httper hos11GET}403
15155 host1GETH00

u hosI1POSTI00
host1jPOSTI301
hostLPOSTH04
host1HEAD04

host1HEAD{302

“aggregationFunction™="AVG" “colNum®="-1" "colOffset"="0" "columnRegexpFilter"="30.}40." "countData"="true" “from"="1294354800000" "matrixRegexpFilter"="gen_web" "

Bitmap Code is used in most relational database
management system. Another option is the application of
Word-Aligned Hybrid (WAH) coding [22]. In case of
particular fields like time, columns based bitmap vector
encoding increases speed significantly [23]. This solution is
the base of the OLAP engine version implemented by us,
which could be further improved in terms of operation time by
fine tuning the applied encoding (Colap v2).

IV. ANALYSIS

Aggregated data cubes created from logs are the basis of the
next steps in the analysis. Because of the diversity of log
source systems, other tools were needed for the expansion and
merging of the data cubes. Several operations available on
multidimensional data cubes were implemented for the final
phase of the analysis. Some of these are regular OLAP
operations, others are statistical, event pattern comparison
tools. What these tools have in common is that they create a
low (two or three) dimension aggregate of the data cube
storing the most detailed information, which thus can be
visualized. OLAP queries can be done in a language similar to
MDX (MultiDimensional Expressions) query language [25].

The log analysis tool can be managed via a web page,
which is also the locus of displaying generated reports and
visualizations (Fig. 5.). The number of feasible reports are
inexhaustible, essentially all the information demanded by the
analysts can be supplied by the system in real time. With the
aid of the reporting system, one can configure other services
starting from alerts to the periodic summary reports through
the interface for defining reports.

The attained OLAP engine of the log analysis tool makes
interactive analysis possible even when dealing with large data
sets. Operations on the data cube are finished typically under
one second. If the analyst wishes to look at the original log
lines from the count cube cells, the indexing technology
makes it possible to reach them under one second no matter
how large the data set is.

Search

2011 Jan 7 00:00:00 - 2011 Jan 12 230000 *» MW AVG ¥

0
host3{POSTI401

2011 Jan 9 05.00:00
2011 Jan 9 06:00:00

i
TR T

Fig. 5. A typical screen image from the analysis module of the system: With color mapping, the heat map visualizes the frequencies of log patterns given in the

data cube in hourly breakdown.

The lighter (originally red) color indicates large number of occurrences, the darker (originally blue) indicates low occurrence

rate or no occurrences. The sample represents information from logs collected about a week long period.

40

JUNE 2012 ¢ VOLUME |V ¢ NUMBER 2

INFOCOMMUNICATIONS JOURNAL

V. CONCLUSION

In the article we introduced a new log analysis solution
based on multidimensional data cubes. We described the
structure of the log analysis tool and explained the new
technologies in modules attaining some steps in log
management. According to that, we described in detail the
real-time compression, the new log processing language able
to represent professional knowledge for log normalization
with the corresponding regular expressions, and the engine
processing complex events described by multiple log lines. A
new solution is the online analytic processing (OLAP) used
for the analysis. Important features of the developed OLAP
engine is the extremely fast response time for the queries, for
regular OLAP cube operations, and also for data retrieval.

The presented log analysis tool offers effective monitoring
technology for all companies using information technology
extensively. Possible use cases cover multiple areas from
traditional security monitoring, through real time exploration
of operational risks, to business intelligence analysis of the
monitored IT devices, helping to enhance efficiency.

Methods and algorithms developed during our research
might be utilized in many areas outside log analysis. One of
the promising alternative use cases is the processing of large
amount of short text messages, or the analysis of extreme large
data sets, which allows us to analyze the general behavior of
many systems outside the field of informatics.

REFERENCES

[1] C. Lynch, “Big data: How do your data grow?” Nature, vol. 455, no.
7209, pp. 28-29, 2008.

[2] K. Cukier, "Data, data everywhere”, The Economist, 25 February 2010.
http://www.economist.com/specialreports/displaystory.cfm?story id=15
557443

[3] K. Scarfone and P. Hoffman, “Guide to computer security log
management: Recommendations of the National Institute of Standards
and Technology™”, 2006. http://purl.fdlp.gov/GPO/LPS115454

[4] http://code.google.com/p/lz4/

[5] http://www.oberhumer.com/opensource/1zo/

[6] http://www.lzop.org/

[7] http://zlib.net/pigz/

[8] S. Srinivasan, A. Amir, P. Deshpande, and V. Zbarsky, “On business
activity modeling using grammars”, 14th International Conference on
World Wide Web (WWW '05), ACM, New York, pp. 1046-1047, 2005.

[9] K. Thompson, "Regular expression search algorithm”, Communications
of the ACM vol. 11, no. 6, pp. 419-422, 1968.

[10] http:/flex.sourceforge.net/

[11] http://code.google.com/p/re2/

[12] J. de Guzman and D. Nuffer, “The Spirit Library: Inline Parsing in
C++”, C/C++ Users Journal, vol. 21, no. 9, p22, 2003.
http://www.drdobbs.com/cpp/184401692

[13] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming -
Consepts, Tools, and Techniques from Boost and Beyond, Addison
Wesley Professional, 2004.

[14] http://boost-spirit.com/

[15] W. H. Burge, Recursive Programming Techniques, Addison-Wesley,
1975.

[16] S. Chaudhuri and U. Dayal, "An overview of data warehousing and
OLAP technology”, SIGMOD Rec. vol. 26, no. 1, pp. 65-74., 1997.

[17] O.R. Zaiane, M. Xin, and J. Han, "Discovering Web access patterns and
trends by applying OLAP and data mining technology on Web logs”,
Proceedings of the Advances in Digital Libraries Conference, pp. 19-29,
1998.

JUNE 2012 ¢ VOLUME |V * NUMBER 2

Dynamic Log Analysis

[18] Q. Chen, U. Dayal, and M. Hsu, "An OLAP-based Scalable Web Access
Analysis Engine", International conference on data warehousing and
knowledge discovery (DaWakK), LNCS, vol. 1874, pp. 210-223, 2000.

[19] L.Y.S. Clement, "Log Analysis as an OLAP Application - A Cube to
Rule Them All”, SANS Institute,
http://www.sans.org/reading_room/whitepapers/logging/log-analysis-
olap-application-cube-rule 1152, 2003.

[20] http://www.mysql.com/

[21] http://www.iccube.com/

[22] 1. Spiegler, R. Maayan,. "Storage and retrieval considerations of binary
data bases". Information Processing and Management: an International
Journal, vol. 21, no. 3, pp. 233-254, 1985.

[23] K. Wu, E. J. Otoo, and A. Shoshani, "Optimizing bitmap indices with
efficient compression”, ACM Transactions on Database Systems, vol.
31, pp. 1-38, 2006.

[24] E. O'Neil, P. O'Neil, and K. Wu, "Bitmap Index Design Choices and
Their Performance Implications," 11th International Database
Engineering and Applications Symposium (IDEAS 2007), pp. 72-84,
2007

[25] T. Niemi, J. Nummenmaa, and P. Thanisch, "Constructing OLAP cubes
based on queries”. 4th ACM international workshop on Data
warehousing and OLAP (DOLAP '01). ACM, pp. 9-15, 2001.

(All internet sources are as of May 2012.)

Andras Lukics received his M. Sc degree at the Edtvos Lorand University in
1992, and and his Ph. D in mathematics at the Hungarian Academy of
Sciences in 1998. From 1995 to 2011 he was a Research Fellow at the
Computer and Automation Research Institute of the Hungarian Academy of
Sciences, where he was a co-founder and Head of the Data Mining and
Websearch Group. He has been involved in and coordinated several national,
European and industrial data mining related projects. Since 2012 he has been
a Senior Research Fellow at the Department of Computer Science, Edtvos
Lorand University, Budapest, Hungary. Dr. Lukécs current interests include
data mining, networks and algorithms of big data.

Zsolt Nagy received his M. Sc and doctor degree in law from the Faculty of
Law at the University of Debrecen in 2002, and a post gradual degree in 2011
from the Corvinus University of Budapest as jurist-economist. From 2003 he
is a PhD student at the Faculty of Law and Political Science at the University
of Pécs where he is doing research on legal informatics. From 2002 till 2008
he worked at NetLock Ltd as PKI consultant, from 2008 to present he is
working at KURT Co, Budaérs, Hungary. Currently, he is the head of R&D at
KURT Co. Dr. Nagy’s recent interests include electronic signature and time
stamp in the e-business administration, security of critical infrastructures and
log analysis.

41

