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Abstract—Modeling and parameter estimation of spectrum
usage in the ISM band would allow the competing networking
technologies to adjust their medium access control accordingly,
leading to the more efficient use of the shared spectrum. In this
paper we address the problem of WLAN spectrum activity model
parameter estimation. We propose a solution based on discrete
stochastic optimization, that allows accurate spectrum activity
modeling and can be implemented even in wireless sensor nodes
with limited computational and energy resources.
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[. INTRODUCTION

MERGING wireless technologies for local and personal

area communication all use the open Industrial, Scientific
and Medical (ISM) band. While the variety of introduced
solutions increases, the protocol stacks are usually optimized
for a given application area, and at the same time assume the
exclusive use of the spectrum space. However, most of the
time the different technologies coexist, and communication
efficiency and performance guarantees can only be achieved,
if the networks have cognitive capabilities [1], that is, they are
aware of each other and optimize their transmission parameters
and communication protocols accordingly.

Key technologies operating in the ISM band are the IEEE
802.11 wireless local area networks (WLANs). As WLAN
carrier sensing is designed to detect WLAN signals, it is
blind towards the low power, narrow band WSN transmissions.
Consequently, if the WSN does not adjust itself to the WLAN
operation, it will experience harmful interference from the
WLAN, while the WLAN itself is not affected significantly
by the narrow band low power WSN interferers.

Previous work in the area of cognitive WSNs includes
proposals for novel carrier sensing and medium access control,
and the characterization of the channel usage in WLAN cells.
In [2] the interfering technology is identified based on spectral
signature. In the case of WLAN interferers, the sensors force
the WLAN to back off by sending short, high power jamming
signals. The POMDP framework [3] introduces the concept
of partial channel knowledge and proposes optimal sensing
and channel access strategies considering a Markovian channel
occupancy model. A Markovian model, however, may lead to
suboptimal WSN operation, and therefore several works deal
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with a more accurate channel characterization, considering
sub-geometric [4], hyper-exponential [5] and Pareto [6] idle
time distributions.

In [7][8] it is recognized, that the characterization of the
idle time can lead to more efficient cognitive access control,
if it captures the two basic sources of WLAN inactivity, the
short, almost uniformly distributed contention windows and
the long, heavy-tailed white space periods, when the WLAN
users are inactive. We follow this approach in our previous
work, where we propose cognitive medium access control and
next hop selection for the WSN [9], given the known WLAN
channel idle time distribution. In [10] we define the Local View
model of WLAN channel activity that extends the solution
of [7] and takes into account the limited detection range
of the WSN nodes, and propose computationally efficient
ways to estimate the model parameters based on time limited
continuous sensing at the sensors.

In this paper we provide a deep analysis of the Local View
parameter estimation based on discrete stochastic optimization.
We follow the approach presented in [11], show that the
algorithm converges almost surely to the optimal parameter
set, and evaluate how the size of the state space, the size of the
sample set and the number of iterations affect the estimation
accuracy.

The rest of the paper is organized as follows. Section II
defines the considered networking scenario along with the
WLAN channel activity models and formulates the parameter
estimation as an optimization problem. In Section III we give
an overview of the discrete stochastic optimization algorithm
proposed in [11]. In Section IV we show that the algorithm
converges in the case of the considered parameter estimation
problem and in V we evaluate the performance of the algo-
rithm under practical constraints. We conclude the paper in
Section V1.

II. WLAN IDLE TIME MODELING

We consider an TEEE 802.15.4 compliant WSN operating
in the transmission area of an IEEE 802.11 WLAN. The
transmission power of the WLAN terminals is orders of
magnitude higher than that of the coexisting WSN, and the
WLAN terminals are blind towards the WSN transmissions.
The protocol stack of the energy constrained WSN is enhanced
by cognitive functionality to optimize the WSN operation.
To perform cognitive control, the WSN needs to know the
WLAN channel occupancy distribution. For this, the sensors
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Fig. 1. The Global View model with all channel states and the reduced
two-state semi-Markovian model.
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Fig. 2. The 3-state semi-Markovian chain and its 2-state equivalent for the
Local View channel activity modeling.

perform continuous sensing and collect samples of busy and
idle WLAN period lengths. The sensing is based on the
usual Clear Channel Assessment (CCA) process with energy
detection, resulting in a limited sensing range.

According to [7][8], the Global View of WLAN channel
occupancy can be modeled by a semi-Markovian system of
Active and Idle periods [12]. Figure 1 depicts all the states
of the WLAN channel and their merging into a two-state
semi-Markovian chain. The states of Data, SIFS and ACK
transmission are grouped together into a single Active state,
while the states that represent the WLAN Contention Window
period (CW) and the WLAN White Space (WS) due to user
inactivity are merged into a single Idle state. The sojourn times
in the Active state can be modeled by the uniform distribution
fa(t) within [aon, fon], which denote the minimum and
maximum frame-in-the air duration, respectively. The idle
period distribution, f;(t), is a mixture distribution with a
weight p, that is f1(t) 2 p- FEV (1) + (1 —p) - FVS(0).

OW(t) is the distribution of the CW periods, and can be
modeled with a uniform distribution within [0, agg], where
agg denotes the maximum WLAN back-off duration, given
by the WLAN specification. The WS periods, however, ex-
hibit a heavy-tailed behavior, and their distribution f}¥%(t)
is well approximated by a zero-location generalized Pareto
distribution with parameters (£, 7).

Thus, the distribution of the sojourn time in the Idle state,
fr(t), is given as:

p-gw+(1—p>-g(1+gg)('
(1-p) (1+£§)( Y

This Global View, however, is not fully observable at the
individual sensors, that can detect WLAN transmissions only
within a given detection range. Therefore, in [10] we define
the Local View, that describes the WLAN channel occupancy

1)
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as seen by an individual sensor. Assuming that consecutive
WLAN transmissions are not correlated, we introduce a 3-state
semi-Markovian system (Figure 2), distinguishing between
detected, and un-detected WLAN activity, that occurs with
probabilities peca and (1 — peca), respectively. To model
the observable sojourn time distributions f;(¢) and f7(t) we
define the 2-state Local View model by merging the states
at which the sensor detects an idle channel. It holds that
fa(t) = fa(t), but f5(t) # fi(t), Vpcea < 1.

Our objective is to estimate the parameters of f4(¢) and
f1(t) and the observable load, pcea, from a set of samples of
f3(t) and f5(t) obtained through channel sensing.

As the active period distribution, f;(t), is uniform, its
parameters aon and fGon are estimated by the lowest and
the largest measured active period according to Maximum
Likelihood Estimation (MLE). The estimation of the rest
of the parameters is more difficult. An idle channel period
observed by an arbitrary sensor consists of a random number
of WLAN “cycles”, that is, consecutive idle and un-detected
active periods, followed by an additional idle period. The
locally observable idle period distribution, f;(t), is, therefore,
a function of the idle and active time distributions f;(t) and
fa(t), and of the observable load, pcca, and can not be
expressed in a closed form, even if f4(t) and f&" (¢) are
known,

As we show in [10], closed form expression exists in the
Laplace domain and, therefore, we propose to estimate the
parameters of f7(f) in the Laplace domain. Since according
to the semi-Markovian Local View model the number of
consecutive WLAN cycles is geometrically distributed, the
Laplace Transform (LT) of f;(¢) obtains the following form:

* * Pcca
=i i e o "
where f;(s), f4(s) denote the LT of f;(t), fa(t), respectively.

III. AN ALGORITHM FOR DISCRETE STOCHASTIC
OPTIMIZATION FOR PARAMETER ESTIMATION

In this Section we review the algorithm for stochastic
optimization introduced in [11], that we use to estimate the
parameters of the Local View model. First we define the nec-
essary notation and then we give the stochastic optimization
algorithm, along with the constraint on convergence.

Let us define by K £ {K;, K, ..., Kk } the discrete space
of the different alternatives. The number of discrete states,
K = |K|, is finite. The optimization problem we aim at
solving is of the following form:

K" =a in {c(n)=FE[X . 2
arg min_{c(n) = E[Xk,]} 2
That is, the function ¢(n) can not be evaluated analytically and

needs to be estimated through a sequence of random samples
{Xk,}. We denote by:

L={Ly,.,Lr}CK (3)
the set of global minimizers of the function ¢, that is:

VL € L,K, €K\ L, o(L) < e(K,) and .
V%JJ - 132: s L’: C(Li) - C(ﬁj)
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In the following we give the original stochastic optimization
algorithm as it is proposed in [11] (Algorithm 1). The search
process starts from an arbitrary state, /C;. In each iteration step,
m, it selects a new state C; uniformly at random and obtains
the obqervation of a random variable Z;i ;'_’,C" to compare the
two states. 7 =™ i a function of the random variables
{Xk, .. {XK }; Thus, its value can depend on the two
states, KC;, KC;, and on [,,,, which is a function of the iteration
step m. The algorithm moves to the new state if Z, K=k 0.

Let denote KC,,, the state after iteration m and Q,”(IC,L) the

“popularity” of state K, € K, i.e. the number of times the
algorithm has visited state &C,, until iteration m. The output
of the algorithm, ¥, is chosen as the most visited state.

Algorithm 1 A global search for discrete stochastic optimiza-
tion [11].
Step 0:
Select a starting point Ky € IC.
Q(](}C[)) + 1 and Q(](]Cn) — U.V’Cn S ’C, }Cn 7& }C[).
m « 0 and K, + K. Go to Step 1.
Step 1:
Generate a uniform random variable 7, such that for all
Kn € IC, Ky # Ky T + K,y with probability -—. Go
to citep 2.
Step 2:
Generate an observation K,, of
if 7, > 0 then
K:m+1 £ ,j:m.
else
IC,—R+1 < }Cm,.
end if Go to Step 3.
Step 3:
m—m+1, Qun(Kn) — Qm-1(Kn)+1and @, (K
Qm—1(Ky) for all K, # K.
if Q. (Kim) > Q@ (K, 1) then
K Koy
else
Ky — K1
end if Go to Step 1.

Z!C'rn —+Tm .

n) —

It is shown in [11] that the algorithm converges almost
surely to a minimizer, i.e. a member of £, after sufficiently
large number of iterations, if the following conditions hold:

Condition 1. For each K;,K; € K and | € N, there

exists a random variable Zl(miﬁ‘)c" ) such that the limit
limy e P{Zi('c"_”c"') > 0} exists for all K;,K; € K and
forall Ki e LK; & LK, # K, Ky, and | € N,
lim P{z" 7% 5 0} > lim P{Z™7) s 01, 5)
=00 l—o0
Jim P{Z ) > 0} > tim P{z5 %) s 01, (6)
— 00 — 00
lim P{z&7) <o) > lim Pz <on ()
»00

Condition 2. {l,,,} is a sequence of positive integers such that
Ly — 00 as m — 0.
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Condition 3. The Markov matrix P defined in the following
equations is irreducible.

P(Ki, Kj) = i limy e {275 5 0}
V’C@,]Cj € ]CaK:i # K:jz
. K=K,
P(Ki Ki) = 741 Loyerey ey imisoe PLZ T
vK; € K.

<0}

IV. LOCAL VIEW PARAMETER ESTIMATION
A. The Estimation Process

We apply Algorithm 1 to estimate the parameters of f;(1).
We discretize the model parameters &, ¢ and p within the
reasonable intervals, and define the state K, as the set of
model parameters:

K:'n. 2 (En-, U‘rnpn) .

Since the value of these model parameters give, together with
Pcca, the estimated average observable idle period length, we
do not include pcca directly in the algorithm state space, but
determine it through Moment Evaluation (ME), considering
the sample mean of the measured observable idle period
lengths, pt, and the rest of the parameters, i.e.

'P(;HK + (1—p)o + LY(JN;rﬁUN

1€
aon+03
u_i_ UN2 ON

Pceca —

We would like to determine the optimal state, X* € IC, that
is the optimal model parameter set K* = (£*,0%,p*), that
minimizes the Mean Square Error (MSE) between the Laplace
transform of the idle distribution, f7(s), and the LT given by
the system state, f}f(s; K.), over § = {s1,82,...585}, the
finite discrete subset of the s-domain, that is,

Z(fr 5k)

k=0

(& o, p) = arg{r’l}(i:_n - fi( (sk:Kn))*. (8)

As f}“ (s) is not known, it needs to be evaluated through the
idle period samples obtained by channel sensing.

To ensure fast parameter estimation, we propose to run the
estimation process, that is, Algorithm 1 parallel to the channel
sensing. That is, in each iteration step, m, n,, new idle period
samples are integrated in the empirical LT. The total number
of samples integrated up to iteration m is Ny, = 317 -
We define the empirical LT, f7 (s1Nm), of the observable
idle time distribution directly from a set of N,,, measured idle
period samples, (t1,...,tx,,) as

fr. (83 N

Z ool )
=1

Comparing the general expression in (2) and the Mean
Square Error minimization problem in (8) we have:

S
1
X, = MSEY = = 3" [fio(sw: N) = 7 (543 )] VKo,
k=0

(10)
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where MSE&M denotes the MSE calculated with the N
samples, and, consequently,

c(n) = E | § Yiool(fi.(s: N) = f7(5:K0))%| = a
S * ¥
= 5 2o Bl(f1(si N) = f7(s:K0))?).
Accordingly, for Algorithm 1 we select [, = N, and
define:
zM M) & X —Xie, = MSE{™ -MSE{™, VK, K; € K.
(12)

That is, the observation of variable AK K , generated at step

m in our algorithm, is the difference between the mean square
errors evaluated at states K;, KC; and over Ny, total idle period
samples. The process moves to the new state K, if the MSE
is decreased this way.

B. On the Convergence of the Estimation Process

To prove that the proposed parameter estimation algorithm
solves the optimization problem in (8), we proceed as follows.
The proof that Condition 2 holds is trivial; since {l,,,} defines
the number of samples that are integrated in the empirical LT
calculation until step m, it is a sequence of integers that tends
to oo as m — oco. With Lemma 1 we prove that f7 (s; V)
is an unbiased estimator of f7(s), and converges to f7(s)
as N — oco. Based on Lemma 1, we prove with Corollary
1 that the minimization of ¢(n) solves the original problem
in (8). Lemma 2 proves that the particular selection of the
random variable Z,' 7" VK, K; € K satisfies Condition
1. Lemma 3 shows that in our problem Algorithm 1 converges
to the optimal state, bypassing the requirement for Condition
3 to hold.

Lemma 1. The empirical Laplace Transform as a function of
N iid samples {t1,...,tN} can be approximated as

Zc

and is an unbiased estimator of f*(s), converging to f*(s) as
N — oc.

fIt‘SN

Proof: We, first, generate the empirical distribution func-
tion, F,(¢; V) based on the NV collected time period samples,
T = {t1 g anay tN},

#samples in T' < t
N

It is known that F,.(#; N) converges almost surely to the actual
CDFE, F(t), as N — oo, based on the strong law of large
numbers. In addition, F,.(#; N) is an unbiased estimator of
F(t), ie. E[F.(t;N)] = F(t). F.(t;) — F.(tj—1) is, then,
an unbiased estimator for P{t € ({;_1,4)} = F(4) —
F(t;—1), 1 = 1,2,...,N. We define the empirical density
function, f.(f; N) being non-zero only on the set T, as
follows:

N
Je(t; N) = [Fu(t; N
=1

F.(t;N) =

N 8(t — ),

Fo(ty—1;

14

where 4(t) is the Dirac function and by convention t; =
0, F.(ty) = 0. Clearly,

lim F,(t;; N)

N-—roo,t)—t—1—dty

= Fe(ti—1; N) = f(t)dt

and so
By oo Sy [Fultiy N) — Fu(ty 1 N)8(t — 1) =
= [, F(t)d(t — t1)dty = f(2),

consequently f.(¢; N) converges to the actual pdf. The empir-
ical Laplace Transform is defined as

fr(sN) 2 ] Fo(t: N)e—tdt,

Since F, (f,g) — F.(t;—1) = 1/N, the above becomes
fe(ssN) = J3° Zi L Ot —t)estdt =

Zi 1w Jo 8t —ti)e*tdt = NZE et

The convergence of f*(s; V) is ensured due to the conver-
gence of f.(t; V). Finally,

,7Sf_1] —

Blfz (s V)] = 3 - Ble
=1

so f*(s; N) is an unbiased estimator of the LT transform. B

Ele "= f*(s), (13)

Corollary 1. The minimization of c¢(n) in (11) solves the
original problem in (8).

Proof: We have:

1 2

3 Th0 {(f (sr:N) — [(sk;iCn)) } =
(f}f;(sk;N))? B Qf}fﬂ(sk;N)f}f(sk;]Cn)} +

+ f’f(sk;"cn))z =

2
(Fufssm)’ | =21 600 510+
+ *(‘;k: Kn))

For N — oo it holds from Lemma 1 that Var [f}‘c(sk; N)] =
2 2

0, and consequently, F7 [( f}‘e(sk;N)) ] =F [f;e(.sk;N)] ,

so ¢(n) converges to %Zf,u(ff(sk) = f1(sk:K0))% [

Let us now prove, that Condition 1 is satisfied.
)’CJ:)

. El
Lemma 2. Let us select a random variable Z,( as

follows:
ZtUC i—K ;)

= MSE{™) — MSE{™

The variable Z}fi_’nj) satisfies Condition 1.

Proof: We start with showing that (5) is satisfied. Let
Kie L, K; ¢ L, so that

S 5
> o) fiowik 12 (F7 (s)— £ (505 C5))?

S
k
(14)

CDI'—‘
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We show, first, by direct computation that the mean of becomes, thus, symmetric around its mean value. Con-
Z(K"_"{j), defined in (12) is negative. sequently, lim;, oo W(’f‘_}x') is symmetric around its

E| Z(’C —m])] mean, and so does lim; . Zt“C = k) . Since, additionally,
" - B[ 205759 < 0, it follows that
= E[MSE" — MSE,™ |=
= BI§ o Uielows ) = S (s15K)° - PRz <0 > Pz S0 an)
2

-3 Ek o (Fre(skilm) — 1 (s3G5 2)) ] From the last equation, along with P{Z(K’_”() < 0} =
= $E[X 50 fe(skilm) = f1(s1:K0)* = P{z %) % 0}, follows Eq. (5).

—(ff.(sk3bm) — fr(sk; IC.))Q] We proceed with showing that (6) is satisfied. For that, we
_ 1 E[Z @FF (315 1m) — [ (505 K0) = [ (503 K,)) - need to show, first that the variance of Z,‘f’“_'&j) is finite. By

k=0 A7 e T LA e direct computation we obtain:
(f7 (515 K5) — f1 (503 Ki))] (Knorkey)
n—Kj
= LS (i (ks Ky) — i ox: K2)- Var [ 2|
B [9 Je(sw3tm) = J7 sk Ki) = f7 (515 K5)] = Var [MSE%’[) - MSEfé’")}
(13 1 Bla kY. o ’
=5 (2} ? (J;f @.;, . f)“ <b;,( i) N = Var[§ 355 (f1e(skibm) — S (58 Kn))®
s s Sk;
1 ZSI (; ( )1 fk( ))1 k(f ( ) l-*( ]C ))‘2 _(ffc(é’\,, ) fI(bkiK: ))2]
- 5 L Sk )— Sn; i — Sk)—. Sk 4
ag AT varly 5 (2w ) — £ (s5Ka) = £ (s15K5))-
< 0. (f](sk: ) fI(S-‘w ))]
We now show that lim,,, ;o Zz(f'_”cj) is symmetric around  We neglect the deterministic term in Zt(f"%!c"’-), resulting in
its mean. We write: the expression
(KimKj) _

Var [ £ 3380 2f (ki ) (F7 (515 K5) = £7 (1 Ko)) |

= % Zf:o (f7e(skilm) — ff(Sk,;/C?;))Q -

LS (st bn) = £ (52:K))? = Var [ 125 g iy €4 (7 (513 Kg) — J k3 Ko
S e v “K ¥,

2
= A Ff (ki) — i (sx:K) — i (515 K))) - = (&) var [Siz o]

S(f (ks Kg) = fi (k3 Ki)) h (16). For th disteib N
1S e .o . where ¢/ is given as in or the time distribution that we
= = 2 — l

5 12"“ J Jicse3tm) (7 (33 K5) = i (3 K2)) consider in [10], Var[t;] is finite, as a result Var[e~***] is finite.

=5 Dp—o (FT (565 K5) + 1 (58 K4)) - Consequently, the variance of g,/ is finite as as summation
(7 (s Kj) — fi(sis K3 over non-independent variables indexed by sj:
The sec‘ond term is deterministic and, thus, excluded from the gflj(.sk) — %c—s;\»h (i1 K5) — fF (s Kn))
calculations. We concentrate on the first term.
where
(K5 K‘)
th = szle qk lrn) (f_l (gk! ) f.f (qk ’C )) Var qu?ﬂ(sk):l =
(15) I O LT O A N . N 2 Var[e—skti
As shown above the empirical LT is generated as = 57 (7 (515 K5) = f7 (85 Kn))” Varle | <oo,
* oy e Tkl : . g g
fre(skiln) = ==———. We rewrite (15) as . S , ,
" Var[ n:r] = Cov[ sk, g 3,,] < oo,
. 9] = 2 D Cov g (su). 1" (s0)
""m 5,=05,=0
= g Zk 0 2f7e (s b)) (f7 (13 KC5) — f7 (813 KCi)) Since Var[g”] < oo, and the g/ are i.i.d., it is clear that
= A1 Tco L0l 267 (f (51 Ky) — 7 (15 K2)
m li V M =
= £l [ S 26 (7 (o0 ) = (515 K0)]. Jm Ve [Zg ]
Since the variables ¢, are i.i.d. so are the variables Consequently,
S (Kn—K5)
. 2 tr (on . lim_Var [Z{* )] <o, 18

g = 5° SU(fT sk ) = 7 (5w K)) - (16) Lin—+o0 18)

k=0

For i,n € L it, then, holds

As a result, the variable - 37" g approachcs a Gaus-
T =191 ()C =)
sian distribution, due to the Central Limit Theorem, and JT}T,LC P{Z >0} 2 i"lilinm P{Z

(Kn—K;) >0}:0,
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since
Elz{7*) <.
Forn ¢ L
lim P{Z ) 50} =12 lim P{z ) 50},
Ly —r00 lip—r00 (19)
since

B[z )] s 0.

This proves statement (6). Finally, the proof of (7) follows
from the proof of (6) and from

Pz <0y =
= P{MSEz — MSE}z } P{z{"7") > o},
Vi, n e IC.

(20)

Lemma 3. Algorithm I converges almost surely to a minimizer
state.

Proof: Consider, first, the case when Condition 3 holds.
Since Conditions 1,2 hold as well, the requirements for
convergence, according to Theorem 3.1 in [11] are satisfied
and Algorithm 1 leads to mean square error minimization.
Consider, now, the case when Condition 3 does not hold.
Assume K,, ¢ L. If IC;, is transient, then with probability
one the sequence {/C,,,} of visited states will not converge to
K, as m — 0o, Assume now that /C,, is positive recurrent. By
(19) in Lemma 2 we have that lim;,,_, P{Z (Kn—Ko) 0} >
0,vK; € L. Consequently, {K,,} and all states of £ belong to
the same communicating class, denoted by K, as well as all
the other positive recurrent X; ¢ L states. The system is thus
reduced to a set of states K. Clearly, Condition 1 holds for
all states in /C¥, and a result, the requirements for Theorem
3.1 in [11] are fulfilled. [ ]

V. PERFORMANCE EVALUATION

The performance of the discrete stochastic optimization
based parameter estimation depends on the granularity of the
discretization for each dimension of the state space, K, and
on the number an the location of the s-domain points, on
which the empirical and the analytic LTs are compared, for

the MSE calculation. These parameters affect the accuracy of

the parameter estimation, even if the optimal parameter vector
is determined by exhaustive search.

In addition, we consider a limited idle period sample size,
and terminate the algorithm when all idle period samples
are integrated. This on one hand minimizes the time spent
for parameter estimation, but on the other hand, does not
ensure that the algorithm finds the optimal parameter vector.
To evaluate the achievable estimation performance, we per-
form parameter estimation with exhaustive search and with
early termination, considering a large set of model compliant
traffic traces. We select 10* (£, o, p, pcca) parameter vectors,
generate a sequence of idle and active periods for each
vector, and run the estimation algorithms. The parameters
are randomized according to Table I, to cover a wide range
of traffic patterns. For the evaluations presented here we fix
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Fig. 3. The accuracy of the LT-based estimation with respect to the number
of iterations, and the granularity of the state space. Exhaustive search results
are shown for comparison.

S =103, 5 € (10°,10°),1 < k < S, and integrate one new
idle period sample in each iteration step.

TABLE I
MODEL PARAMETERS
Parameter Distribution Min Max Mean StdDev
3 Truncated Gaussian 0.1 0.4 0.3095 0.1
o Truncated Gaussian le-4 0.1 0.02 0.2
p Uniform 0.1 1.0
PCCA Uniform 0.1 1.0
ON Uniform 0.0008 0.001
Bon Uniform QON 0.0015
QBK Deterministic 0.0007

As stated in Section IT it is assumed that the f(t) parame-
ters can be estimated correctly and agk is known. We measure
the estimation accuracy by calculating the mean absolute error
(MAE) of the p and pcca and the mean percentage error
(MPE) of the £ and o estimation.

As the number of idle period samples affects the time
needed for continuous sensing and in our case even gives the
number of iterations of the optimization algorithm, it is one
of the main design parameters to be considered. Therefore we
evaluate the parameter estimation performance for 10 and
10* idle period samples and iteration steps. In addition, to
evaluate the effect of the size of the state space of the discrete
optimization we alter the granularity of the discretization of
the state parameters {&;, a;, p; } between 10! and 1075, while
bounding them within the respective intervals given in Table
L.

Figure 3 compares the estimation accuracy of {£, o, p, pcca }
under exhaustive search and with stochastic optimization
with early termination. Considering the number of integrated
samples, we can see that the increased number of samples
improves the estimation accuracy under exhaustive search. At
the same time, an increased state space does not necessarily
lead to better estimation accuracy. The estimation accuracy
may increase with increased state space for a while, in this
interval the minimizer is found, and the increased granularity
means lower MSE. However, as the state space is further
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increased, the minimizer can not anymore be discovered in
the limited number of iterations, and therefore the estimation
accuracy drops. Therefore, the state space size has to be
selected carefully, taking the expected number of samples into
account.

The results show that the performance of the proposed
algorithm is comparable to the one of the exhaustive search.
A number of samples in the range of 10* and parameter
granularity of 1073 — 10~ gives an estimation accuracy that
is sufficient for the cognitive control as it was shown in [9],
while it allows acceptable sensing times, and a state space size
that is implementable on sensor devices with limited memory.

VI. DISCUSSION

In the heterogeneous networking environment of the the
open ISM band the prediction of the availability of the wireless
resources is a key enabler for the design of energy efficient
wireless networks. In this paper we considered the issue of
WLAN and WSN coexistence. In this case WSN transmissions
suffer from WLAN interference, because the WLAN carrier
sensing does not detect the low power, narrow band WSN
transmissions. The sensor network can avoid this interference,
if it can characterize the channel occupancy, and tune its
transmission parameters accordingly.

We described a semi-Markovian model of the WLAN chan-
nel occupancy, as observed by the individual sensor nodes and
proposed a discrete stochastic optimization based algorithm
to estimate the parameters of the idle time distribution in
the Laplace domain. We showed that the proposed solution
can achieve the required estimation accuracy by sequentially
integrating the measured idle period samples and by simul-
taneously searching for the optimal parameter vector. We
can conclude that the required idle time sample size allows
limited sensing times and the parameter granularity can be
low enough for the algorithm to be implemented in resource
limited sensor nodes. Therefore the proposed algorithm can
support the development of cognitive medium access control

and routing in WSNs.
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