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Abstract—We consider the issue of modeling huge, random
network topologies that are too large to capture in full de-
tails. Such enormous, hard-to-describe network topologies are
becoming ubiquitous in numerous settings. The Internet and
its logical overlay networks, such as the World Wide Web, as
well as online social networks, are well known examples. At the
same time, extensive and rapidly growing wireless ad hoc and
sensor networks also lead to hard topology modeling questions. In
the current paper we primarily focus on large, random wireless
networks. We provide a common generalization of various models
that covers a number of known models as special cases. We also
demonstrate that such a higher level abstraction, despite its very
general nature, can still be meaningfully analyzed, and offers
quite useful and unique help in solving certain hard networking
problems.

I. INTRODUCTION

Many of the communication networks that we use today, or
expect to use in the future, have enormous size. This applies
not only to the physical networks, including the Internet as
well as emerging ubiquitous wireless networks and large scale
sensor networks, but also, or even more, to logical overlay
networks, such as the World Wide Web. For example, the
number of web pages, according already to a 2006 article [31],
was as high as 53.7 billion, already at the time of writing
that study. Out of the 53.7 billion, 34.7 billion web pages
were indexed by Google. Since then, these numbers grew even
further. Beyond the sheer size, the usage of these networks is
also expected to be extremely heterogeneous, encompassing a
huge number of different applications, traffic patterns, diverse
requirements and areas, including business, science, learning,
entertainment, social networking and a great many more. At
the same time, their physical basis is also heterogeneous,
including wired, wireless, optical subnetworks. All this is
expected to eventually merge into a ubiquitous, global socio-
technical infrastructure.

To understand and reason about huge socio-technical net-
works, including methods for designing/optimizing them, the
traditional network analysis and modeling approaches are
generally insufficient, due to their limited scalability. Simu-
lation is usually feasible only up to a rather limited network
size. Conventional analysis methods, such as teletraffic theory,
queuing network modeling etc., also face an uphill battle,
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quickly losing ground in huge networks. At the same time,
modeling and analysis is still indispensable, since one may
not be able to experiment with the different variants of a new
solution via large scale practical deployment, as it can have a
prohibitive cost.

This situation, in which one deals with networks of prac-
tically infinite size, has naturally led to the emergence of
novel analysis and modeling approaches. They can generally
be characterized by having a more abstract, “bird’s eye” view
of the network and often relying on asymptotic analysis on the
mathematical side. The special advantage of the asymptotic
analysis is that it converts the growing size from a foe to
a friend: the larger, the better, from the asymptotic point of
view. While it is clear that such methods cannot help much in
Iocal technical tasks, such as configuring a specific router, they
have their important place in the higher layers of the network
modeling hierarchy. In the next section we briefly survey how
this approach emerged.

II. HISTORY

The first major wave of work in the considered direction
was the experimental statistical analysis of the Web graph,
in which the nodes are web pages and the edges are the hy-
perlinks. Several research groups in the late 90s independently
observed that the node degrees in this graph are distributed
according to a power law (Kumar et al. [36], Barabdsi and
Albert [5], [6], Broder et al.[12]). Similar phenomena were
observed by Faloutsos et al. [19] in the physical Internet
topology. All this was in sharp contrast with traditional ran-
dom graph models that have independent edges, and exhibit
(asymptotically) Poisson node degree distributions. The latter
models are known as Erdds-Rényi random graphs.

To describe the observed network structure, Barabasi and
Albert [5] coined the term “scale-free network”, based on
the observation that in a power law distribution the rescaling
of the considered quantity preserves the same power law,
changing it only with a constant factor. This quickly became
very popular, and triggered the statistical analysis of “scale-
freeness” of network topologies not only in (physical or
logical) communication networks, but also in networks that
arise in biology, genetics, epidemiology, linguistics, electric
power distribution, social sciences and in many other areas;
see, e.g., the books [10], [11], [13], [14], [42], and hundreds
of further references therein.
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In retrospect, one may say that “scale-free networks™ gen-
erated somewhat more hype than substance. It was rightfully
pointed out, e.g., by Li et al. [40] and Alderson et al. [4] that
the power law degree distribution alone can easily fall short
from adequately modeling the Internet topology, if no other
domain specific knowledge is applied.

A parallel major wave of research was to create genera-
tive models. In contrast to experimental statistical analysis,
generative models aim at explaining the observed network
structures, and provide algorithmic approaches to generate
them, also offering the opportunity for in-depth mathematical
analysis. The first such model that became well known was the
Preferential Attachment model of Barabasi and Albert [5]. This
model generates a graph such that new nodes are more likely
to get connected to those that already have a higher degree.
Although the authors did not provide a rigorous analysis, only
an approximate reasoning, based on the mean-field approach
of physics, the model certainly had intuitive appeal (“the rich
get richer” principle). This model had an explanatory power
and generated scale-free graphs, so it triggered many follow-
up investigations. The first truly rigorous formulation and deep
analysis of a preferential attachment model, called Linearized
Chord Diagram (LCD) model, was provided by Bollobas at
al. [9].

Since then, numerous static and evolving graph models of
networks have been proposed and analyzed, both experimen-
tally and with serious mathematical rigor, primarily focusing
on asymptotic properties. A few examples are: the ACL model
of Aiello, Chung and Lu [2]; the copying model of Kleinberg
et al. [33]; the growth-deletion model of Chung and Lu
[15]; the self-similar Kronecker-graph model of Leskovec et
al.[37]; the compressible Web model of Chierichetti et al. [16];
the forest fire model of Leskovec, Kleinberg and Faloutsos
[38]; the geometric preferential attachment model of Flaxman,
Frieze and Vera [26]; the spatial preferential attachment model
of Aiello et al. [1]; the random perturbation model of Flaxman
[25]; as well as a large number of other models and variants,
with a lot of intellectual power in their analysis.

About the same time when the above outlined investiga-
tions began, another independent wave of asymptotic network
modeling was initiated by Gupta and Kumar [29]. This direc-
tion focused on analyzing the scalability of large wireless
networks, primarily ad hoc and sensor networks, from the
viewpoint of fundamental limits for transport capacity and
related properties. This line of research also attracted much at-
tention. Interestingly, and unfortunately, most of the results are
negative. Specifically, they show under various conditions, that
the achievable per node throughput tends to 0 with growing
network size. Even maintaining global network connectivity
is impossible under rather general conditions, if we want
to apply nodes with finite processing capacity, see Faragd
[21]. Nevertheless, there are also notable exceptions, utilizing
various effects, such as mobility (Grossglauser and Tse [28]),
restricted traffic pattern (Li et al. [39]), using infrastructure
(Liu, Liu and Towsley [41]), or relaxing the condition of full
connectivity (Dousse, Franceschetti and Thiran [18], Farago
[24]), to mention only a few examples. Therefore, the issue of

wireless network scalability is still under further research.

The graph models that are used in the wireless network
investigations are very different from the Internet and Web
models. The random graphs in wireless network analysis are
based on geometric considerations, and termed geometric
random graphs. They also have a rich set of analytical results,
see, e.g., the books of Franceschetti and Meester [27], and
Penrose [44]. In a sense, geometric random graphs are between
the classical Erdos-Rényi model and those graph models that
are used to describe the Internet and Web topologies. Specifi-
cally, geometric random graphs have (asymptotically) Poisson
node degree distributions, just like the Erdds-Rényi random
graphs. That is, geometric random graphs (modeling wireless
network topologies) do not exhibit scale-free behavior. On the
other hand, their edges are not independent, just like in the
Internet/Web models, so they have many properties that are
distinctively different from the Erdds-Rényi random graphs.

The current situation. As briefly reviewed above, there
exists a vast and rather diverse body of various graph based
network models that are mostly analyzed from the viewpoint
of asymptotic properties. Note that beyond the theoretical
advances they also have emerging practical applications, such
as Internet topology generators, search engine optimization,
protocol design and optimization in wireless networks etc.

The current situation on the model development and analysis
side (which is our primary interest) can be characterized with
the following:

o The diversity of models also led to the diversity of
analysis methods. With minimal exaggeration one can say
that a new analysis method has to be invented almost each
time when a new model is proposed. There is a sense of
missing unification and a lack of general methods that
apply to large families of different models.

« The analysis is often very hard and typically cannot rely
on the well developed methods of classical random graph
theory, as pointed out by leading experts in the theory of
random graphs (Bollobas and Riordan [8]).

« Despite the existence of emerging applications, there is
still a large gap between analysis results of descriptive na-
ture and methodology/algorithms that provide meaningful
help in network design problems.

« Validation of models is a problem. As pointed out by
A.D. Flaxman [25]: “Unfortunately, it is much easier to
propose a generative model than to refute one.”

ITT. THE CASE OF LARGE, MULTI-HOP WIRELESS
NETWORKS

Wireless networks of large size, random topology and no
supporting infrastructure, such as ad hoc and sensor networks,
are expected to play an important role in the future. The ran-
dom network topology of these systems is frequently described
by various random graph models, most often by some variant
of geometric random graphs. First we review some of the
typical classes of graphs that are used in this context.
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A. Some Frequently Used Graph Classes for Wireless Network
Topology Modeling

An important class is the Unit Disk Graph (UDG) [17]
model of the network topology. A UDG is a graph that is
defined by the (planar) geometry of node positions. It is
assumed that each node has the same transmission radius r,
and two nodes are connected by a link if and only if they are
within distance r (which is often normalized to » = 1, hence
the name). In other words, the radio range of each node is
just a circular disk. As a critical difference from the physical
model, in a UDG it does not matter where the rest of the nodes
are located and how much interference they generate.

A clear advantage of UDGs is that a number of important
algorithmic problems that are NP-complete for general graphs
become solvable in polynomial time for this special class [45],
thus allowing much more efficient protocols.

Unfortunately, the UDG model is quite simplistic, it is
rather far from accurately reflecting the actual radio network
topology. A refinement is the Quasi-Unit Disk Graph (Q-
UDG) model [34], in which a shrink factor p is added, with
0 < p < 1, for describing the radio range of a node by two
concentric circular disks, the outer one with radius r, and
the inner one shrunk by the factor p, yielding radius pr. If
two nodes are at most pr distance apart, then they are always
connected by a link. If they are more than r apart, then they
are never connected. Finally, if the distance is between pr
and r, then the link may or may not exist. Geometrically this
means that the radio range of a node can have arbitrary shape,
but moderated by the requirement that it should be between
a circumscribed circle of radius 7 and an inscribed circle of
radius pr.

A nice feature of Q-UDGs is that, while providing a
more general network topology model, they still preserve the
algorithmic advantages of UDGs, at the price of an additional
1/p? factor in complexity [34]. Thus, if the shrink factor p is
a not too small constant, then most of the UDG advantages
carry over, with only a constant factor penalty in complexity.

Another natural issue is that different nodes may transmit
with different power, or have different spectrum-dependent
attenuation of the transmission signal [3]. This leads to the
concept of Disk Graph (DG), which differs from the UDG in
that each node ¢ has its own, possibly different, transmission
radius 7;, and two nodes are connected by an undirected link
if they are mutually in each other’s range. DGs are somewhat
less friendly from the algorithmic point of view than UDGs
and Q-UDGs, but still better than general graphs and still
allow efficient solutions or approximations for a number of
algorithmic problems, as we investigated in [46].

Similarly to the generalization that leads to the Q-UDG
concept, one can also introduce Quasi-Disk Graphs (Q-DG),
by adding a shrink factor p that allows to refine the radio range
description as for Q-UDG.

All the above graph models can naturally be extended
to higher dimensions, replacing the disks by balls in the
appropriate space.
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A common nontrivial generalization of all these graphs,
the Bounded Independence Graph (BIG) model is also worth
mentioning [45]. (It is also referred to as Bounded Growth
Graph [35].) This class is defined by the requirement that
the maximum number of independent nodes' within the k-
hop neighborhood Aj(v) of any node v is bounded by a
polynomial of k. Although this definition is based purely
on the graph structure and does not have a direct geometric
meaning, it can still be related to geometry through the concept
of doubling metric spaces [45]. These are metric spaces in
which any ball of radius r can be covered by a finite number
of balls of radius r/2. This property does not hold for all
metric spaces, although it holds for Euclidean spaces of any
finite dimension. It can be shown that if a geometric graph is
defined in a doubling metric space, in analogy with UDG or
DG, then it is always a Bounded Independence Graph [45]. A
nice feature of this class is that a number of hard algorithmic
problems become efficiently solvable in it [35].

So far we have described these classes deterministically,
ignoring randomness. Of course, from each graph class one
can generate random members, according to various probabil-
ity distributions. These are usually defined indirectly, through
some generating mechanism. For example, if we pick the node
positions uniformly at random in a planar domain, e.g., a
square, and then construct a UDG over these nodes, then we
get a Random Unit Disk Graph.

All these graph classes are related to some kind of geometric
insight. It is not surprising, since geometry and distance play
a key role in forming the radio network topology. On the other
hand, radio propagation (with possible obstacles and other
irregularities) can induce much more complicated distances
that may not satisfy the mathematical distance axioms, pri-
marily the triangle inequality. Nevertheless, even in this more
complicated situation, it is still possible to meaningfully ana-
lyze geometric-like graphs and prove nontrivial results about
important properties, such as connectivity, as we are going
to see in connection with our Abstract Geometric Random
Graphs.

B. The Issue of Connectivity

Because of the random network topology, it is not at all
guaranteed that any two nodes can send messages to each
other, as the random graph that represents the network topol-
ogy may not be connected. To guarantee that all nodes can
reach each other, a minimum requirement is that the network
topology (which is usually represented by an undirected graph)
is connected. Since connectivity is a particularly important
property, we select it as the focus of our discussion.

Unfortunately, the connectivity requirement is not as inno-
cent as it may look, due to random node positions and limited
wireless transmission ranges. It turns out (see, e.g., Gupta
and Kumar [29], [30]) that in typical cases, such as placing

' A set of nodes in a graph is called independent if there is no edge between
any two of them.

2Radio propagation properties may lead to a “radio-distance” that is quite
different from Euclidean.
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the nodes in a planar disk independently and uniformly at
random, the price of connectivity is very high: the transmission
range needs to be set such that it asymptotically results in an
infinitely growing number of neighbors.

This phenomenon is a serious threat to scalability in these
networks. After all, one cannot expect that a small wireless
node with limited power and modest capabilities can serve an
unbounded number of neighbors.

One might hope at this point that for different modeling
assumptions the situation may perhaps improve. For example,
one may try different deployment domains, different probabil-
ity distributions, different distance metrics, etc. Unfortunately,
however, it has been proven in a very general model that
none of these can relieve the scalability bottleneck, see Farago
[23]. It appears that unbounded node degrees are unavoidable
whenever full connectivity is required in the limit in a random,
geometrically induced topology. This is, of course, bad news
for hoping a scalable implementation.

It is therefore of keen importance whether better scalability
can be achieved if we are willing to give up full connectivity
and substitute it with the milder requirement of partial con-
nectivity. This means, as a price for keeping the node degrees
bounded, we accept that only most, but not all, nodes are in a
connected component. The motivation is that in many potential
applications, such as a network of randomly placed sensors, it
is acceptable to have only a majority (say, 99%) of nodes in a
connected component and the rest are possibly disconnected.

We review some results on the fundamental limits related
to such partial connectivity, under the most general modeling
assumptions we can set up. Specifically, based on our earlier
work [22], we exhibit the asymptotically optimal trade-off
between the fraction of nodes that can be kept in a connected
component as a function of the bound on the expected node
degrees.

IV. A MOTIVATING EXAMPLE

Let us consider a large sensor network. Due to the limited
processing capabilities of the small sensor nodes, each one
is capable of maintaining connections only to at most three
other nodes in our example. The existence of wireless links
depends on distance, but the actual form of the dependence
is unknown. Moreover, random obstacles to radio waves are
also present, and two nodes can only communicate if no such
obstacle separates them.

The sensor nodes are distributed in space independently,
according to a common, but unknown probability distribution.
The locations of the random obstacles are also independent
of each other and of the node locations, but otherwise the
position, size and shape of each obstacle can have an arbitrary
probability distribution, which is again unknown. We only
assume that the events that links are blocked by an obstacle
can be considered independent.

Without further information about this sensor network, is it
possible to provide a nontrivial lower bound on the number of
sensors that will be necessarily pushed to the “periphery”? By
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periphery we mean those nodes that are not part of the largest
connected component of the network topology.

The traditional approach to answer this question would
be to specify the probability distributions and other parts of
the model (such as how link existence depends on distance,
etc.), and then do (tedious) calculations under the specific
conditions. If, however, anything changes in the conditions,
the results may not carry over. Our general approach will make
it possible to avoid this, and provide a nontrivial bound that
is valid for all practically relevant cases.

V. RANDOM GRAPH MODELS IN THE MOST GENERAL
SETTING

In order to build up our modeling approach, let us first
explain what we mean by random graphs and a random graph
model in the possibly most general sense.

In full generality, by a random graph on a fixed number of
nodes (n) we mean a random variable that takes its values
in the set of all undirected graphs on n nodes. We are
going to denote by G, a random graph on n nodes. At this
point, it is still completely general, possibly generated by any
mechanism, with arbitrary dependencies among its parts, it is
just any graph-valued random variable, taking its values among
undirected graphs on n nodes.

Having introduced general random graphs, a random graph
model is given by a sequence of graph valued random vari-
ables, one for each possible value of n:

M = (G n e N).

Next we introduce some general features that apply to any
random graph model.

A. Degrees and Connectivity

Let GG, be any random graph on n nodes and let us denote
by e(G,) the number of edges in the graph. We characterize
the degrees of (G, by the expected degree of a randomly
chosen vertex, which we call he expected average degree of
G, It is denoted by d(n) and defined by

n
It is based on the fact that the actual average degree in any
graph G on n nodes is 2¢(G)/n. Often the expected degree
of each individual node is also equal to d(n), but in a general
model it may not hold. (Note that even if the expected degree
of each node is equal to the expected average degree, it does
not mean that the actual random degrees are also equal.)

Ideally, we would like a random graph model in which d(n)
remains bounded by a constant and the model is asymptotically
almost surely (a.a.s.) connected, meaning

lim Pr(Gy, is connected) = 1.
n—oo

Note: Whenever we write down a limit, such as the one above,
we also assume that the limit exists.
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Since, as mentioned in Section III-B, asymptotic connectiv-
ity is not possible in most models without unbounded degrees,
therefore, one may hope that if less than full connectivity
is required, then there is a better chance to keep the node
degrees bounded. To this end, let us define a weaker version
of connectivity.

Definition 1: (3-connectivity) For a real number 0 < 3 <
1, a graph G on n nodes is called 3-connected if G contains
a connected component on at least 3n nodes.

When we consider a sequence of graphs with different
values of n, then the parameter 5 may depend on n. When
this is the case, we write (3, -connectivity. Note that even if
(3, — 1, this is still weaker than full connectivity in the limit.
For example, if 3, = 1 — 1/y/n, then we have 3, — 1, but
each graph on n nodes can still have n — 3,n = /n nodes
that are not part of the largest connected component.

VI. ABSTRACT GEOMETRIC RANDOM GRAPH MODELS

Let us now introduce a model class that reflects a typical
feature of geometric random graph models. This feature is
that in geometric random graphs the primary random choice
is picking random nodes from some domain and then the edges
are already determined by some geometric property (typically
some kind of distance) of the random nodes. We elevate this
approach to an abstract level that includes many special cases
of interest. The most general version of our abstract geometric
model is built using the components detailed below.

A. Representing the Nodes: Node Variables

The nodes are represented by an infinite sequence
Xy, Xs,... of random variables, called node variables. They
take their values in an arbitrary (nonempty) set S, which is
called the domain of the model. In most practical cases the
domain is a simple subset of the Euclidean plane or of the 3-
dimensional space. In general, however, S can be any abstract
set from which we can choose random elements®. When we
want to generate a random graph on n nodes, then we use the
first n entries of the sequence, that is, X;,..., X, represent
the nodes in G,,. It is important to note that we do not require
the node variables to be independent.

B. Representing the Links: Edge Functions

We denote by Yig-") € {0,1} the indicator of the edge
between nodes X;, X; in the random graph G,,. Since loops
are not allowed, we always assume i # j, without repeating
this condition each time. The (abstract) geometric nature of
the model is expressed by the requirement that the random
variables Yif,,-n) are determined by the nodes X,,..., X, pos-
sibly with additional independent randomization. Specifically,
we assume that there exist functions fi(;), such that

(n) _ p(n)
}/1_1 —'ff,:_j (Xls',X'rbaglj)
3To avoid mathematical complications that would only obscure the main
message, we assume that all considered sets, functions etc. are measurable

with respect to the used probability measures and all considered expected
values exist. This is satisfied in in every practically relevant model.
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where §;; is a random variable that is uniformly distributed
on [0,1] and is independent of all the other defining random
variables of the model (i.e., the node variables and all the
other &, variables). Henceforth the role of §;; is referred to
as independent randomization®. The undirected nature of the
graph is expressed by the requirement Yig”) = Yj(z-"), which
can simply be enforced by computing all values for i < j
only and defining the ¢ > j case by exchanging i and j.

C. Restrictions

Regarding the abstract geometric random graph model in the
presented very general form, it is clear that allowing totally
arbitrary node variables and edge functions offers little hope
for meaningful analysis. Therefore, next we introduce some
restricting conditions. Later we are going to see that one has
to make only surprisingly mild restrictions to meaningfully
analyze the trade-off between node degrees and (3-connectivity.

1) Locality: Up to now we allowed that an edge in G,
can depend on all the nodes, and the dependence expressed
by the fgl) functions can be arbitrary and different for each
edge. To get a little closer to the usual geometric random
graph model, let us introduce the following property, called
Iocality. Informally, it restricts the dependence of an edge to
its endpoints, in a homogeneous way, but still via an arbitrary
function.

Definition 2: (Locality) An abstract geometric random
graph model is called local, if for every n and i,j < n the
existence of an edge between X;, X; depends only on these
nodes. Moreover, the dependence is the same for every i, 7,
possibly with independent randomization. That is, there are
functions f™) such that the edge indicators are expressible as

Yif,-") = f™ (X, X;,&5)
where &;; represents the independent randomization.

2) Name Invariance: Our second condition called name
invariance refers to the joint distribution of nodes. If we allow
totally arbitrary joint distribution, then it offers little chance
for meaningful analysis. On the other hand, restricting our-
selves only to independent, identically distributed (i.i.d.) node
variables would exclude important cases, such as clustering.
Therefore, we introduce a condition that allows more general
than i.i.d. node variables, but still makes meaningful analysis
possible. To introduce it, let us first recall a useful concept
from probability theory, called exchangeability.

Definition 3: (Exchangeable random variables) A se-
quence of random variables is called exchangeable if for any
k > 1, it holds that if we select any k of the random variables,
the joint distribution of the selected random variables depends
only on k, but is independent of which particular k variables
are selected, and in which order.

Note that i.i.d. random variables are always exchangeable,

but the converse generally does not hold, so exchangeable
random variables form a larger family.

“Note that the specified distribution of &;; does not impose a restriction,
. : (n) :
since the functions fz.J are arbitrary.
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Now let us introduce the condition that we use to restrict
the arbitrary dependence of node variables.

Definition 4: (Name invariance) An abstract geometric
random graph model is called name invariant, if its node
variables are exchangeable.

We call it the name invariance of the model because it
means the names (the indices) of the nodes are irrelevant in the
sense that the joint probabilistic behavior of any fixed number
of nodes is invariant to renaming (reindexing) the nodes. In
particular, it also implies that the individual node variables are
identically distributed, but they do not have to be independent.

Name invariance is naturally satisfied with the most fre-
quently used random node choices, such as uniform indepen-
dent random points in a planar domain, or a Poisson point
process in the plane, or in higher dimension. We allow, how-
ever, much more complex node generation (over an arbitrary
set!) since dependencies are not excluded by name invariance.

A simple example for a dependent, yet still name invariant,
node generation process is a “clustered uniform” node genera-
tion. As an example, let S be a sphere in 3-dimensional space,
i.e., the surface of a 3-dimensional ball. Let 2 be the radius
of the ball. Let us first generate a pivot point Y uniformly
at random from S. Then generate the nodes X, X,,...
uniformly at random and independently of each other from
the neighborhood of radius r < R of the random pivot point
Y (on the sphere). It is directly implied by the construction
that exchangeability holds. Moreover, any particular X; will
be uniformly distributed over the entire sphere, since Y is
uniform over the sphere. On the other hand, the X; are far
from independent of each other, since they cluster around Y,
forcing any two of them to be within distance 2r. The setting
can be generalized to applying several pivot points and non-
uniform distributions, creating a more sophisticated clustering.

VII. SPECIFIC CLASSES WITHIN ABSTRACT GEOMETRIC

RANDOM GRAPHS

Before turning to results, let us present some examples to
show the usefulness and comprehensiveness of the generaliza-
tion provided by our abstract geometric random graphs. These
examples illustrate that most practically relevant models for
wireless network topologies fit in the common generalization
that we provided by introducing abstract geometric random
graphs.

A. Geometric Random Graphs

All the usual geometric random graph models fit naturally
in our general framework. For example, the base set S can
be chosen as a unit disk or square in the plane or a unit ball
or cube (or any other domain) in higher dimension. Let us
choose i.i.d. points X, Xs,... from S, according to some
probability distribution. Let p(x,y) denote the distance of the
points z,y € S, it can be any distance function. Finally, let
r > 0 be a radius (possibly depending on n). Then the edge
function

. 1 if p(X;, X)) <r
f( )(Xiqus‘sij}_{ 0 if gEX:an; > p 4))

defines a geometric random graph in the usual sense. (The
independent randomization is not used here, so the edge func-
tion does not depend on &;;.) It is clear that this includes all
the usual geometric random graph models, allowing any metric
space as the basis. Moreover, we can also use non-independent
points, such as the “clustered uniform” example in the previous
section, as long as the distribution is exchangeable.

B. Erdés-Rényi Random Graphs

The by now classical random graph model of Erdos and
Rényi (see, e.g., [7], [32]), where each possible edge is in-
cluded independently with some probability p is also included
as a direct special case. We can set S = {1,...,n} and for
Xi,Xj es

iy, x. ¢y L if & <p
f (XHXJ1€23) { 0 lf gij >p
Note that now the edge function depends only on the in-

dependent randomization, so indeed each edge is included
independently with probability p.

C. Geometric But Non-Metric Example: Battery Levels

In the geometric random graph models p satisfies the trian-
gle inequality. This, however, cannot capture all situations that
occur in ad hoc or sensor networks. As an example, assume
the nodes are located in the plane. Let x;, y; be the coordinates
of the i** node. Furthermore, we also characterize a node with
its battery level E; > 0. £ represents the remaining energy,
assuming the node is not fully out of energy. Thus, a node
is represented by a triple X; = (x;,y;, £;). Let d(£;) be
the distance over which a node can communicate, given its
energy level E;. (The function d(£;) can be derived from the
physical characteristics of the node and from radio propagation
conditions.) Now, a possible example of such a “distance”
function is

_ Vi —2)? + (v —y)?
Xa Xs) = T Ta(ED), d(B;)}

If we take » = 1 and use the above p; function in (1), then
it expresses the condition that a link exists if and only if its
end nodes are at most at a distance that can be bridged by the
energy levels of both nodes. Note that the above function p
does not satisfy the triangle inequality, so it does not lead to
a geometric random graph model in the usual sense. On the
other hand, it still fits in our framework, as in (1) we did not
require the triangle inequality to hold for p.

D. Another Non-Metric Example: Link Blocking

We can capture some features of traffic dependent network
characteristics, as well. Let each node i be characterized by a
triple X; = (x4, ¥, Ai ), where z;, y; are planar coordinates and
A; is the traffic demand of the node. Let B;; be the blocking
probability of the link (i,7), given that the link exists. We
may compute B;; as a function of A;, A; from some traffic
model. For example, if we use Erlang’s well known formula,
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assuming a capacity of C units on the link and its load is
taken as the sum of its end nodes’ traffic load A; + A;, then

we obtain
B — (N + )\j)C/C‘!
ij = C g
Y iolXe+ X) 4/l
(Of course, we may use other traffic models, as well, this is
just an example.) Now we can take the “distance™ function

- =gV

and use it in (1) with some radius ». We can observe that
for small blocking probability (B;; < 1) pa(X;, X;) will
be approximately the same as the Euclidean distance On the
other hand, as B;; approaches 1, the factor —5— B tends to
infinity and, therefore, high blocking probability makes the
existence of the link in the model less likely, even if the
physical distance is small. This example also violates the
triangle inequality, so it is not a geometric random graph.

g2 X X5) )2+ (U — u5)?

E. Log-Normal Shadowing

A typical phenomenon in the radio environment is fading.
An example of fading is a relatively slow random fluctuation
in the signal strength, which occurs even if the locations are
fixed. Measurements show that this random variation can be
accurately modeled by a log-normal distribution (see, e.g.,
[43]). Hence the name log-normal shadowing, which is widely
used for this phenomenon. A way to capture it in our model is
this. Let us characterize a node i by a triple X; = (x;, ¥;,7;),
where x;,1; represent a random position in the plane and
each 7; is an infinite sequence of independent, log-normally
distributed random variables:

i)

mi=(n j=ii+1,i+2,..).

The “distance” is defined as

= nba) \/ —~ %y

where a = mm{z,j} and b = max{z,j}. (The reason for we
need an infinite sequence of log-normal random variables is
that this way we can have independent log-normal shadowing
for every link.) This distance can express the fact that from
the radio communication point of view we really perceive
an “effective distance”, which is a log-normally modulated
random variant of the physical distance. Using this p3 in (1)
leads again to a random graph that is not geometric, as p does
not satisfy the distance axioms.

p3(Xi + (3 — y5)?

E Directional Antennas

We can also represent directional antennas in the model.
As a simple example, let Y; be the position of a node in
the Euclidean plane, «; be the angle (with respect to some
fixed coordinate axis) at which its antenna is directed, and
0; be the angular width of the beam (assuming an idealized
directional antenna). Let us represent the node by the variable
X, = (Yi,04,0;). Let S(X,,d) denote the planar angular
sector pointed at X, with its axis of symmetry directed at «
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and of angular width . Further, let ||.|| denote the Euclidean
norm. Then we can introduce the following “distance™:

I|Y; = Y;|| if X; € S(Xj,a;,d;)and
Xj e S(Xiaaiaéi)
foe) otherwise

pa(Xi, X;) =

If we use this function p4(X;, X;) in (1), then we get a
model of a random ad hoc network topology with directional
antennas.

G. Terrain Variations, Obstacles

Another example is to take into account uneven radio prop-
agation characteristics due to terrain variations or propagation
obstacles. For example, let us assume that the nodes operate in
a frequency band in which only line of sight communication
is possible (such as infrared). Then two nodes can only
communicate if there is no obstacle covering them from each
other. This feature can also be built into the model. Let X
be the plane position of a node. Assume there exists a set

= {Ri,Rs,...} of random obstacles in the area. Let
s(X;, X;) be the line segment connecting the points X;, X,
and let L(X;, X;, R) be the “line of sight” function:

1 if S(X{,Xj)ﬂRk =0 (Vk)

L(Xingﬁﬂ) = { oo otherwise

To express that only those nodes can communicate that are in
line of sight of each other, let us introduce the “distance”

ps(Xi, Xj) = || X — X5||L(X;, X5, R).

If this is used in (1), then we get a network topology model
that can deal with radio propagation obstacles.

H. Combinations

The various conditions in the preceding examples can be
combined into more complex models. For example, if we want
that all the conditions expressed by the p;,...,ps functions
are satisfied, then we can use

p(Xi, X;) = max{py (Xi, X;),...,05(Xs, X;)}

in (1).
VIII. THRESHOLD FUNCTION FOR PARTIAL
CONNECTIVITY

We define a concept that will characterize the trade-off
between node degrees and the type of partial connectivity that
we introduced as [F-connectivity in Definition 1. For notational
convenience, the set of nonnegative real numbers, extended
with oo, will be denoted by RF°. Real functions are also
extended to co by f(co) = lim,_.o f(z), whenever the limit
exists (it will always exist in our cases). The value of 3 is
always assumed to be in [0, 1].

Let us first explain the threshold function concept infor-
mally. We define a threshold for [-connectivity, such that
whenever 3 is above the threshold, then it is impossible to
achieve a.a.s. J-connectivity for any model in the considered
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family of random graph models. On the other hand, if [ is
below the threshold, then this is not the case anymore, that
is, there is at least one model in the family that achieves a.a.s
[-connectivity with this 3. Thus, the threshold separates the
cases when a.a.s. 3-connectivity is impossible, from the cases
when it is possible. Since the threshold will depend on the
expected average degree, we call it threshold function.

Now let us present the formal definition. Recall that the
expected average degree in a random graph (,, is defined as
d(n) = 2E(e(G,))/n.

Definition 5: (Threshold for (3-connectivity) Let F be a
family of random graph models. For any model M € F let
G, denote the random graph on n nodes generated by M
and let

Dy = limsupd(n)
n—oo
be the limiting expected average degree. A function f : R§® —
[0,1] is called a 3-connectivity threshold function for F if the
following two conditions are satisfied:

(i) For any model M € F and for every 3 > f(Dum)
lim Pr(Gis 3-connected) < 1

n—oo

holds, where G, is generated by M.
If 3 is below the threshold, then (i) does not hold
anymore, in the following sense. For every € > (
there exists a model My € F and a

B < f(Dam,) — €

(i)

such that

lim Pr(G,is 3-connected) = 1

n—oo
where (3,, is generated from M.

The importance of this concept is the following. If for a
considered class F of random graph models we can find out
what the corresponding [-connectivity threshold function is,
then we can tell precisely what range of expected average
degrees allow a.a.s. G-connectivity for a given 3. Or, con-
versely, if we know the (asymptotic) expected average degree
for a particular model M in the considered class, then we
can decide what level of connectivity can be asymptotically
achieved for this model.

IX. COMPUTING THE THRESHOLD

Now we state the theorem that conveys the surprising
message that for the very general class of abstract geomet-
ric random graph models we can still find the precise [3-
connectivity threshold function, if we assume that the models
satisfy the conditions of locality and name invariance. The
previously presented examples all satisfy these conditions, so
they show that even with these restrictions we can still include
many complex and practically important models. For the proof
of the theorem, see [22].

Theorem 1: (Threshold function for local and name
invariant abstract geometric graphs) Let F be the family

of local and name invariant abstract geometric random graph
models. For any model M € F set
D = limsupd(n).
n—oc

Then the (3-connectivity threshold function for F is
f(DM) =1—e Pm,

X. CONSEQUENCES FOR FULL CONNECTIVITY

It is worth mentioning that the definition of the threshold
function and Theorem 1 directly imply that bounded expected
average degrees in J exclude a.a.s. [(3,-connectivity when
On — 1. As aresult, a.a.s. full connectivity, which corresponds
to 3 = 1, is also excluded. These claims are formally stated
below, the proof is a direct application of Theorem 1.

Theorem 2: Let 3, — 1 be an arbitrary sequence in [0, 1].
Then for any local and name invariant abstract geometric
random graph model M it holds that if Dy < oo, then
the random graphs generated by M cannot be a.a.s. [3,-
connected.

The interpretation of this result is that (asymptotically) the
requirements of full connectivity and bounded degrees are
incompatible, in the broad class of models we have considered.

At this point one may wonder whether there is any meaning-
ful random graph model at all, in which a.a.s. full connectivity
is possible, yet the node degrees remain bounded. Note that
our results do not exclude this, since they only apply to local
and name invariant abstract geometric random graph models.
Although this class is quite comprehensive, it does not contain
all meaningful models.

A nontrivial example worth mentioning here is the (random)
Euclidean minimum spanning tree (MST). Let us choose n
i.i.d. random points in the d-dimensional unit cube and view
them as vertices of a complete graph, where each edge is
assigned a weight that is equal to the (random) distance
of its endpoints. Let 7, be the MST of this graph. Note
that 7}, is unique with probability 1. It is clear that T}, is
connected, as, by definition, it is a spanning tree. Moreover, the
following nontrivial fact is known: for every fixed dimension
the maximum degree of the Euclidean MST is bounded by
a constant, depending only on the dimension, but not on n
(see, e.g., [47]). Thus, the model M = (T},; n € N) has the
property that it is fully connected, yet its node degrees remain
bounded.

It is clear that the Euclidean MST model is name invariant,
since nothing depends on how the nodes are indexed. Does it
then contradict to our results? No, because it does not satisfy
the requirement of locality. Of course, the usual definition of
the MST is indeed not local. But now our results imply that
the non-locality is unavoidable in this case, as long as we want
to preserve name invariance. In other words, it is impossible
to define the Euclidean MST in a local way, such that, at the
same time, the model is also name invariant.

Note that the fact that the Euclidean MST cannot be
defined locally, with name invariance, is nontrivial. For ex-
ample, one might try to define new node variables that
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contain enough information to decide for any pair whether
an MST edge connects them, without looking at other nodes.
A possibility is to introduce new node variables Y; =
(X, X, X1,...,X;—1), with edges that connect two
such new nodes if their first components are connected by
an MST edge, among the original X; variables. In this way
we can create a locally defined MST model, since one can
decide from Y;,Y; alone, whether X, X; are connected by
an MST edge, as the information about all the original nodes
are available in each of the new node variables. Thus, in the
transformed domain we have a local model. The MST over
the ¥; variables will be isomorphic (with probability 1) to
the MST over the X; node variables, so the new model is
equivalent to the original, yet it is local. Then, however, the
name invariance would be destroyed. Even though each Y;
individually has the same distribution (since it does not matter
in what order the X; are listed), but the joint distribution
of Y7 and Y5 will not be the same as the joint distribution
of Y7 and Y3. The reason is that the first coordinate of
Y1 = (Xy,...,X,,) is the same as the last coordinate of
Yo = (Xs,..., Xy, X1), but such a relationship does not hold
between Y7 and Y; = (X3,..., X, X1, Xo).

Generally, it follows from our results and from the afore-
mentioned properties of the Euclidean MST that no matter
how tricky local definition we invent for this random graph
model, it cannot preserve name invariance. The fact that name
invariance excludes the possibility of a local Euclidean MST
definition appears to be hard to prove without our results.

XI. SOLVING THE MOTIVATING EXAMPLE

In the motivating sensor network example, we observe
that the model is described by a local and name invariant
abstract geometric graph model, no matter what the unknown
probability distributions are. The reason for locality is that
once we choose the positions of two sensors, the probability
that a link exists between them does not depend on the
locations of other sensors. Although it does depend on the
obstacles, but they are independent of the sensor positions,
and block the links independently. Name invariance also holds
in this example, as the sensor positions are i.i.d., which is a
special case of an exchangeable system of random variables.
The node degree bound of 3 yields Dy < 3. By Theorem 1,
the threshold function for [3-connectivity in our case satisfies

F(Dp) =1~ PM £ 1 -2 20,05,

Thus, we can conclude that despite the very vague information
about the system, we are still able to calculate that at least
about 5% of the nodes cannot belong to the largest connected
component.

Thus, our general result was able to easily come to a
conclusion that would otherwise be rather hard to obtain
without having further information.

XII. CONCLUSION

After briefly reviewing a number of models that are used to
capture large network topologies, we focused on analyzing
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a notorious obstacle to wireless network scalability. This
obstacle is the phenomenon that in geometrically generated
random network topologies the requirement of asymptotic
full connectivity results in infinitely growing expected node
degrees. To address the issue, we have set up a general
modeling framework, the abstract geometric random graph
model. This contains many different possible random graph
models as special cases. In this framework we can quantify
the precise trade-off between the expected node degrees and
the fraction of nodes that can belong to the largest connected
component.
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