INFOCOMMUNICATIONS JOURNAL

Performance Evaluation of Open-source Software for
Traffic Traces Manipulation and Analysis

Performance evaluation of open-source software for
traffic traces manipulation and analysis

German Retamosa and Javier Aracil

Abstract—The paper presents a performance evaluation of
commonly-used open-source software for manipulation and off-
line analysis of traffic traces. In traffic analysis, there is a trade-
off between either implementing ad-hoc, low-level software that
is optimized for performance or using off-the-shelf open-source
software written in high-level languages such as Python. Clearly,
the former approach has a penalty in development time. While
using high-level languages is easier in terms of development, the
size of traffic traces is increasing and so is the processing time.
We conclude that the use of high-level languages provides similar
processing times in comparison with the low-level languages
counterpart, provided that a pre-filtering of the traffic can be
performed (by means of tcpdump).

Index Terms—Traffic analysis, Performance Analysis and De-
sign Aids, Python.

[. INTRODUCTION

OWADAYS, network infrastructures represent a signifi-

cant share of the budget in large companies or institu-
tions, thus requiring an accurate capacity planning. Further-
more, the quality of service provided by the network has to
be carefully monitored, because an increasing part of customer
relationship is carried out through the network. Finally, there
are many possible security threads, that can eventually lead to
service outages, with severe impact in the organization.

Traffic analysis comes as a fundamental tool for capacity
planning, quality of service assessment and reinforcement of
security. By traffic analysis we understand the in-depth study
of network traffic to extract conclusions about network and
application behavior. To this end, we distinguish the following
three phases in traffic analysis.

First, there is the traffic capture, which consists of passive
traffic sniffing by means of a tap or SPAN port into a traffic
probe. Such probe is normally equipped either by specialized
hardware for traffic capturing or by commodity hardware.
Recently, the use of commodity hardware for traffic sniffing
at 10 Gbps has attracted considerable attention, because of the
reduced cost and good performance. Actually, the authors in
[1] report 10 Gbps packet capturing capability with commodity
hardware and no packet loss at minimum packet size. Note
that the number of packets per second in the monitored link
matter, because the DMA interrupts from the network interface

Manuscript submitted August 31, revised September 20, 2012. This work
was supported by the IEEE.

G. Retamosa is with Naudit High Performance Computing and Networking,
Faraday, 7, 28049 Madrid SPAIN (phone: +(34) 91 116 99 40; email:
german.retamosa@naudit.es).

J. Aracil is with Universidad Autonoma de Madrid, Francisco Tomas
y Valiente, 11, 28049 Madrid SPAIN (phone: +(34) 497 22 72; email:
javier.aracil@uam.es).

SEPTEMBER 2012 « VOLUME |V * NUMBER 3

card happen at packet batches. Thus, for the same rate in bits
per second, the larger the packet size the smaller the DMA
interrupt rate.

Second, there is a preprocessing phase which is a “thinning”
of the traffic for storage and subsequent analysis. As the net-
work bandwidth increases to 10 Gbps and beyond it becomes
impractical to store raw traffic traces. As an alternative, either
the packet payload may be chopped to, say, 100 bytes or the
packets may converted into flows. The latter is straightforward
and it has reduced impact on traffic analysis because the
application layer control information (for example the URL)
usually appears in the first 100 bytes of the packet. The
former requires more computing power in real time because
packets are grouped into flows (same source and destination
IP address, port and protocol) by means of a hash table in real
time. Then, the flow record is dumped to permanent storage.
Such flow record contains basic flow data such as flow size,
duration, etc, and it may also contain the first bytes of the flow
payload in order to drill down in the traffic content. Note that
flows can be unidirectional (UDP) or bidirectional (TCP) and
the sorting of packets at high speed into flows poses a major
performance bottleneck.

Third, there is the processing of the network traffic. While
part of the processing can be performed on-line (flow records),
specially for alarm reporting, there is a large off-line analysis
on the traffic trace. Such off-line analysis of the traffic trace
normally involves the in-depth dissection of network protocols
and applications in order to assess possible performance
bottlenecks. Actually, this falls within the Application aware
network performance monitoring (AA-NPM) area, which has
been recently identified by Gartner as one of the top strategic
areas in information technologies [17].

This paper provides a performance evaluation of commonly-
used open-source software for the off-line manipulation of
data traffic. Such performance evaluation is interesting for
researchers and practitioners in the field because it provides
an assessment of development cost versus flexibility and
execution time of high-level languages such as Python [2].
Thanks to these kind of scripting languages, code prototyping
for traffic analysis is a simple task. However, this comes at
the expense of a larger execution time, which may deem the
traffic analysis programs useless for high-speed environments.
As an alternative, ad-hoc traffic analysis programs can be used
that make optimized use of the memory and CPU, possibly
performing parallelization among the CPU cores. However,
this comes at the expense of a higher development cost. This
tradeoff is investigated in the paper, which reviews the most
popular DPKT [4], Pcapy [6], Impacket [6] approaches for
early-prototyping of traffic analysis programs.




INFOCOMMUNICATIONS JOURNAL

Performance Evaluation of Open-source Software for
Traffic Traces Manipulation and Analysis

SOURCE

=

BORRE

~ \\Q?m.

VLAN X

TARGET

E|

Traffic duplication with SPAN port over VLAN Architecture

INTRANET
.

|
PORT2
oo ]

Fig. 1.

Section II provides an overview of the off-line traffic
analysis process, namely what are the common steps for large
traffic trace handling and processing. Section III is devoted to
protocol dissectors and, finally, section IV presents a use case,
followed by conclusions about the assessment work carried
out.

II. SOFTWARE FOR TRAFFIC TRACES MANIPULATION

Offline traffic analysis involves the following consecutive
steps:

1 Merging: This is the procedure to merge several short
traces into a larger one. In most cases, the traffic sniffers
produce relatively small traces (1 GB worth of traffic
with approximately 2,4 millions of packets), which have
to be merged in order not to miss flows that have the
starting part in one file and the ending part in another
subsequent file.

2 Traffic deduplication: The figure 1 shows an span port on
a switch or router VLAN. As it turns out, packets come
out of the SPAN twice because the same packet inbound
to the VLAN is transmitted eventually outbound of the
VLAN. Consequently, there is a packet copy. However,
chances are that the packet is not a complete duplicate
but the same packet with TTL field decremented by one.
This is case when there is an intermediate router in the
VLAN under analysis and the packet goes in and out of
such intermediate router.

3 Flow analysis: Once the traffic trace has been totally
deduplicated the traffic flows have to be identified at
different levels: MAC address, IP address, unidirectional
flows and bidirectional flows. Normally, UDP flows are
unidirection and TCP flows are bidirectional. For both,
a flow record is formed that includes statistics such
as origin and destination port, number of SYNs being
interchanged, TCP segments with the RST flag, etc.

4 Protocol dissection: For the most common services, ap-
plication performance monitoring is usually performed,
such as for instance in HTTP or LDAP services. The
procedure involves the extraction of the most common
control fields of the protocol, per packet. Then, packets
are paired (for instance GET and reply to GET in HTTP)
and further statistical treatment is performed, which
results in calculation of the service response time, for
example (from GET to response to GET).

CORPORATE
ROUTER

INTRANCT

MERGECAP

HETWORK.
PRODE

Fig. 2. Mergecap Architecture

In what follows we describe and evaluate the software for
merging, deduplication and flow analysis.

A. Merging

Merging is the first procedure that all networking software
for traffic traces manipulation has to deal with. As we see in 2,
traffic merging applications are a very important part in traffic
monitoring because they provide a single unified traffic trace
to protocol dissectors, from the many different files that are
provided by the sniffer.

Traffic sniffers usually dump traffic into small files, say 1
GB worth of traffic with approximately 2,4 millions of packets.
That way, the sniffer is continuously dumping traffic from
memory to files, instead of keeping the whole traffic capture
in memory and dumping it to file afterwards. Note that the
latter would be impractical for large traffic capture periods.

In this section we analyze the architecture of merging
applications. More specifically, we consider the strengths
and drawbacks of the commonly used mergecap [11], which
combines multiple saved capture files into a single PCAP
output.

One of most important problems in merging applications,
and specially in applications like mergecap [11], is the possible
misordering of the packet timestamps. Actually, the packet
sequence may be re-ordered when several traffic traces are
merged together. Figure 3 left shows a time series of bytes
per time interval with this common misordered timestamping
problem in the merged traffic trace. As shown, there are
noticeable temporal jumps. However, the right graph does not
contain this kind of errors.

To cope with this issue it is very important to comply with
the following guidelines.

1 Before calling mergecap, sort chronologically the PCAP
input files in order to append them in chronological order
and to reduce the computational load of mergecap [11],
which employs quadratic algorithms to sort input files.

2 Do not use the exclusive append option, i.e. the -a option
in mergecap, because it disables sorting algorithms in
the application.

3 Sort the merged data by timestamp before processing it
with traffic dissectors. Our extensive mergecap experi-
mentation shows that this final step is necessary, even
though the application has already sorted the packets in
the merged file.

After the merging has been performed, traffic deduplication
follows.

SEPTEMBER 2012 ¢ VOLUME |V * NUMBER 3




INFOCOMMUNICATIONS JOURNAL

Global Throughtput (Bits per Second)

Giobal Throughtput (bps)

0900 09:30 10:00 10:30 1100 1:30 12:00 12:30 1300
Time (in Secands)

Fig. 3. Comparison of time series (unsorted left, sorted right)

Fig. 4. Custom Duplicate Removal Architecture

B. Deduplication

Typically, packet duplicates appear when sniffing traffic
directly from a VLAN with input and output ports. They can
also be due to routing errors. Depending on the architecture,
and depending on its elements, duplicates may appear at any
TCP/IP stack level.

Using a SPAN port is a very common procedure to capture
traffic. The SPAN port is a special port which is configured
in the router and provides a copy of the traffic, packet by
packet, of either another port or a complete VLAN. For the
latter, note that a packet that enters the VLAN from one port
will normally leave the VLAN by another different port. Since
both ports are part of the monitored VLAN it turns out that
the same packet is copied twice to the SPAN.

As a result, we get a duplicate that has to be removed from
the traffic trace. Other duplicates may arise when a packet is
routed out of a port being monitored, then it goes through
another router and then it is injected back into the same port.
However, in that case the TTL field is decremented by one.
Broadly speaking, we have the following types of duplicates:

1 Duplicates with the same payload but with a slight
difference in the header, i.e. sequence number, TTL
value and IP/Ethernet values.

2 Duplicates with the same payload and header structure.

First, duplicates with the same payload but with some
differences in header fields are mainly due to routing issues
or active equipment (firewalls) that duplicate traffic. For this
kind of duplicates, the only way to remove them is with a
custom application, whose architecture can be shown in figure
4, which evaluates whether the packet payload and IP and
TCP/UDP relevant fields (address, port, etc) are indeed the
same.

SEPTEMBER 2012 « VOLUME |V * NUMBER 3

Performance Evaluation of Open-source Software for
Traffic Traces Manipulation and Analysis

Global Throughtput (Bits per Second)
Tas0? T T T

Glotal Throughtput (bes)

ol o . o ® L
03:00 09:30 10:00 1030 11:00 1130 1200 1230 13:00
Time (in Seconds)

Mergocap

Pertormance Time (in Secands)

1 10 100
Numbser of Merged PCAP Files (1 Gbyte per file)

Fig. 5. Mergecap Performance

Second, Editcap [13] is a popular application to remove
duplicates with the same payload and header. It is part of the
Wireshark [14] framework.

C. Performance evaluation of merging and deduplication

In this section we evaluate the performance of the merging
and deduplication procedures.

1) Merging: On the one hand, figure 5 shows the time it
takes to merge several 1 Gbyte size files. The X-axis shows
the number of files to be merged.

The Mergecap execution time increases exponentially with
the size of the files and the number of traces to be merged.
As it turns out, the packet-reordering process is a potential
performance bottleneck, specially when the number of files
to be merged is very large. In any case, the execution times
are manageable and it is not worthwhile to code ad-hoc
applications with performance optimizations.

2) Deduplication: On the other hand, figures 6 and 7 show
the execution time of an ad-hoc application and editcap. The
X-axis shows the size (in GBytes) of the traffic trace to be
deduplicated.

The execution time for traffic deduplication, using either ad-
hoc applications or editcap, increases exponentially with the
number of duplicates that are present in the original PCAP
traces. Furthermore, both applications have structural differ-
ences because editcap [13] is intended to remove identical
packets and our custom application for duplicate removal
eliminates packets that have the same payload, source and
destination IP address and source and destination TCP/UDP
ports.




INFOCOMMUNICATIONS JOURNAL

Performance Evaluation of Open-source Software for
Traffic Traces Manipulation and Analysis

Custom Remover Perlormance ———

600

Performance Time (in Seconds)

10
Fibe Size (in Goytes)

Fig. 6. Custom duplicate removal performance

Editcap Perlormance

1000 Ii

800

Partormance Time (in Seconds)

1 10 100
Filo Siza (in Gbytes)

Fig. 7. Editcap performance

o Perormance
Ecitcap Performance
100 | Custom Remaver Perlormance

40

Parfarmance Time (in Seconds)

1 2 a 4 5 7 8 B 10

6
File Size (in Gbytes)

Fig. 8. Performance Comparison

Another potential performance bottleneck is the window
size for deduplication, namely the number of packets that
are compared with the deduplication process. This means that
larger window size involves matching a larger batch of packets
in a single pass and thus, impacting in the granularity of
the algorithm and a better performance due to the number
of packet matches to be carried out during the deduplication
phase.

As a conclusion, figure 8 and specially with file sizes of
4, 7, 8 and 10 Gbytes, shows that when the number of
duplicates, either identical packets or with some differences in
header fields, is very high the execution time of deduplicating
PCAP traces is higher than merging them due to the internal
processing of PCAP packets with DPI libraries. In all other
cases, their execution times and performance are close related
between them.

Finally, as we see in figure 8, we conclude that the execution
times of merging PCAP traces with mergecap is lower than

deduplicating them with custom applications or edifcap in all
cases evaluated.

III. SOFTWARE FOR TRAFFIC DISSECTION

Developing a software application for traffic dissection is
one of the most important issues in Application aware network
performance monitoring (AA-NPM) but it is not a simple task.
On the one hand, there is a set of communication protocols
that must be selected according to user needs and studied to
obtain the most important parameters. On the other hand, we
have to take into account the prototyping time, analysis depth
and code maintenance among others, because they are relevant
aspects for the choice of the programming language and also
for the overall performance. In this section, we evaluate some
of the main traffic dissection programming techniques in terms
of performance and timing.

A. Python Libraries

Python is a general-purpose and high-level programming
language whose design philosophy emphasizes features such
as code readability, fast prototyping and simple maintenance
and as a result, It is becoming increasingly popular in recent
times. Furthermore, due to its strong developer community, it
is well supported and there are new versions and patches that
are continuously posted.

In terms of networking and third-party libraries for traffic
dissection, the most important ones are DPKT [4], PCAPY
[6] and SCAPY [9]. Python DPKT [4] is a third-party library
hosted into Google Project Hosting [3], which is maintained
periodically. The following code snippet is a HTTP traffic
dissection software written in Python [2] and DPKT [4] library
and it is divided into three tasks: load libraries, parse PCAP
files and analyze network traffic.

import dpkt

f = open( 'test.pcap')
if f:
pcap = dpkt.pcap.Reader(f)

for ts, buf in pcap:
eth = dpkt.ethernet.Ethernet(buf)

ip = eth.data

tcp = ip.data

if tep.dport == 80 and len(tcp.data) > 0:
http = dpkt.http.Request(tcp.data)
print http.uri

f.close()

Code Snippet 1. Python DPKT sample code

First of all, all Python [2] scripts must define or import
all third-party dependencies (DPKT [4] in this case). Thus,
the Python [2] application can use all methods inherited from
those libraries.

Once the DPKT [4] module is loaded, the application opens
the offline PCAP file (after the merging) and parses it with
DPKT routines for networking traffic dissection.

SEPTEMBER 2012 ¢ VOLUME |V * NUMBER 3




INFOCOMMUNICATIONS JOURNAL

Performance Evaluation of Open-source Software for
Traffic Traces Manipulation and Analysis

f = open( 'test.pcap')
if f:
pcap = dpkt.pcap.Reader(f)

Code Snippet 2. Python DPKT file reading

Finally, code snippet 3 shows the analysis process for each
flow record. As shown, it is quite simple with this library and
supports a large number of protocols such as LDAP, DNS or
HTTP.

if pkt.haslayer(TCP):
if pkt.getlayer(TCP).dport == 80:
if pkt.haslayer(Raw):
print pkt

for ts, buf in pecap:
eth = dpkt.ethernet.Ethernet (buf)

ip = eth.data
tcp = ip.data

if tcp.dport == 80 and len(tcp.data) > 0:
http = dpkt.http.Request(tcp.data)
print http.uri

Code Snippet 3. Python DPKT file parsing

From the above code examples, it turns out that prototypes
can be coded in a very short time and that maintenance is
good but unfortunately, performance and analysis depth are
the most important drawbacks for this kind of libraries.

The second networking library to assess is Scapy [9], a
powerful interactive packet manipulation program written in
Python in August 2007. As in the previous library, we show a
sample code of a HTTP traffic dissection software written in
Python and Scapy library, which also shows the same three
steps: loading of the libraries, parsing the PCAP files and
analyzing packets.

Code Snippet 6. Python Scapy PCAP filtering

The third library that we assess in this section is the
combination of two, Pcapy [6] and Impacket [6]. Pcapy is
a module extension that interfaces with the libpcap packet
capture library and Impacket is a collection of Python classes
focused on providing access to network packets.

As we see in Code Snippet 7, the mixed solution with Pcapy
and Impacket has a code very similar to that of the DPKT
library with the difference that Peapy has an approach based
into n-ary trees, where each child contains the information of
each TCP/IP stack layer.

from pcapy import open_offline
from impacket.ImpactDecoder import EthDecoder
from impacket.ImpactPacket import IP, TCP, UDP, ICMP

decoder = EthDecoder()

def callback(jdr, data):
packet = decoder.decode(data)
child = packet.child()
if isinstance(child, IP):
child = child.child()
if isinstance(child, TCP):
if child.get_th_dport() == 80
print 'HTTP'

pcap = open_offline( 'test.pcap')
pcap.loop(0, callback)

from scapy.all import =

pkts = rdpcap( 'test.pcap')
for pkt in pkts:
if pkt.haslayer(TCP):
if pkt.getlayer(TCP).dport == 80:
if pkt.haslayer(Raw):
print pkt

Code Snippet 7. Python Pcapy+Impacket sample code

Also, the structure of the code is very similar to DPKT
starting with reading and parsing the PCAP file (code snippet
8)

pcap = open_offline( 'test.pcap')
pcap.loop(0, callback)

Code Snippet 4. Python Scapy sample code

Code snippet 4 shows a source code even shorter than other
alternatives but slightly different. First of all and like the DPKT
sample, third-party dependencies are needed to instantiate the
Scapy methods.

Once the libraries have been loaded, code snippet 5 shows
how Scapy [9], with rdpcap instruction, tries to read, parse
and store in-memory at the same time. We will see later the
multiple problems that this entails.

Code Snippet 8.  Python Pcapy PCAP reading

and then filtering and analyzing the network protocol (code
snippet 9):

pkts = rdpcap( 'test.pcap')

decoder = EthDecoder ()

def callback(jdr, data):
packet = decoder.decode(data)
child = packet.child()
if isinstance(child, IP):
child = child.child()
if isinstance(child, TCP):
if child.get_th_dport() == 80
print 'HTTP'

Code Snippet 5. Python Scapy PCAP reading

Finally and as we see in code snippet 6, packets are filtered
to the particular protocol being analysed. The method that
Scapy [9] used to filter packets according to a specific protocol,
like HTTP, is by checking protocol (TCP) and port (80).

SEPTEMBER 2012 « VOLUME |V * NUMBER 3

Code Snippet 9. Python Pcapy PCAP filtering

As we discussed at the beginning of the section, Python
is one of the most promising languages of the moment due
to its easy integration with web interfaces, fast deployment
and prototyping. Furthermore, the growing availability of new




INFOCOMMUNICATIONS JOURNAL

Performance Evaluation of Open-source Software for
Traffic Traces Manipulation and Analysis

DPKT Perfermance

Partormance Tme (in Seconds)

1 . . i 10 . . 100
Filo Size (in Gbytes)

Fig. 9.  Python DPKT Performance

Impacket Performance

Pertormance Time (in Seconds)

1 10 100
File Size (in Gbyles)

Fig. 10. Impacket + Pcapy Performance

third-party libraries such as pylibpcap [7] and pycap [8]
represents a significant advantage, albeit there is very few
documentation.

B. Performance evaluation of Python libraries

Once the most relevant Python libraries for traffic analysis
have been presented in the previous section, we will assess
them in order to analyze their performance and potential
bottlenecks.

This assessment process consisted of measuring the execu-
tion time of a trace containing one-day worth of traffic with
approximately 300 Gbytes (600 million packets) size with
protocols as varied as DNS, HTTP, LDAP, TNS and so on.
Furthermore, the testing architecture is composed with the
following features: Intel Xeon CPU E5645 with 24 cores of
2.40GHz, 28 Terabytes of HDD, 24 GBytes of RAM and 1
interface Gigabit Ethernet.

As we can see in figures 9 and 10, the execution time
increases exponentially with the PCAP file size, represented
on X-axis. Furthermore, both libraries are significantly slower
than the low-level application counterpart and, as we see in
figure 11, their differences are slightly nonexistent.

However, the figure 12 show much worse performance
figures. This is due to the internal logic of the application
that individually evaluates each packet on a larger protocol
list, thus impacting on search times.

As a conclusion, the main drawback of these libraries is
the performance compared to low-level applications written in
C with libpcap [10] packet capture library. Thus, deploying
mixed applications combining Tcpdump [10] and Python (2]
appear as the preferred solution in terms of performance.

OPKT Pertormances =
Impacket Performance

1400 -
1200 £

1000

Performance Tima (in Seconds)

Fila Size (in Gbytes)

Fig. 11. Performance Comparison

Scapy Pedormance ——
55000

45000

40000

Performancs Time (in Seconds}

25000

20000

15000

10000

File Size (in Gbytes)

Fig. 12. Scapy Performance

C. Tepdump

As we have seen in the previous subsection, Python libraries
are a good solution for rapid prototyping of traffic dissectors
and without an advanced networking and programming skills
needed thanks to the abstraction layers that they provide.
However, the assessment procedure carried out over these
libraries shows that the bottleneck is the execution time against
other solutions written in low-level languages like C.

At this point, we propose the best compromise solution
between complexity and execution time is the usage of Tep-
dump [10] in combination with Python. As we will show in
this section, this technique serves to accelerate the Python
performance.

Thanks to the profiling and auto-inspection methods that
some Python packages provides, we have concluded that the
Python application waste a significant amount of time dissect-
ing each packet. Therefore, a compromised solution is to filter
the original trace and to extract the packets subject of analysis
(for instance DNS) and, then, using the Python application.
The filtering procedure is performed with Tepdump as follows

tcpdump —r 'input.pcap' —w 'output.pcap' "port 53"

Code Snippet 10. Tepdump command example

which results in the extraction of the UDP DNS packets
(port 53) from the original trace file input.pcap to the output
file output.pcap. Figure 13 shows a performance comparison
between a ad-hoc Python application and a combined solu-
tion with Tcpdump and Python. Note that the excution time
decreases significantly thanks to the rcpdump pre-filtering.

SEPTEMBER 2012 ¢ VOLUME |V * NUMBER 3




INFOCOMMUNICATIONS JOURNAL

hon Parformance

Tepdump + Python Parformance
1400 Py

1000

Porlormance Time (in Seconds)

File Size (in Goytes)

Fig. 13. Tepdump Performance
The following section shows, by a simple use case, a
practical and consolidated view of the previous assumption.

IV. USE CASE

In this section we show a use case for the DNS protocol.
This protocol, explained with more detail into RFC 1034 [15]
and RFC 1035 [16], is one of the most well-known com-
munication protocol which provides a hierarchical distributed
naming system for computers, services or any other resource
connected to the Internet.

By creating a simple DNS dissector with Python and
Tcpdump, it is possible obtain valuable information such as
for example IP clients and servers with a high number of
connections, IP clients and servers with a high number of
errors or temporal series of response times and identification
of clients and servers.

Before using the dissector, it is necessary to obtain UDP
packets from the original PCAP trace file and filter accord-
ing with the selected protocol, i.e. 53 port for DNS. As
we discussed into the previous section, the usage of tools
like Tepdump aims to improve the performance of Python
dissectors and reduce the workload of Python libraries on the
filtered trace.

Performance Evaluation of Open-source Software for
Traffic Traces Manipulation and Analysis

! " " Adhoc C ONS Dissector
Tepdump pro-fitering Python DNS Dissactor <-<-:2:
Tepdump pie-fitenng G ONS Dissector

Performance Time (in Seconds}

File Size (in Gbytes)

Fig. 14. DNS Traffic Dissector Performance Comparison.

socket

dpkt

sys

numpy as np

import
import
import
import

pcapReader = dpkt.pcap.Reader(open( 'input.pcap'))

pkts_no_ethernet = 0
pkts_IP = 0
pkts_lost = 0

for ts, data in pcapReader:
try:

ether = dpkt.ethernet.Ethernet(data)

if ether.type == dpkt.ethernet.ETH_TYPE_IP:
ip = ether.data

i alwee = 175
udp = ip.data
pkts_IP += 1

if (udp.dport == 53) and ip.off & Ox00FF ==
dns = dpkt.dns.DNS(udp.data)
elif (udp.sport == 53) and ip.off & O0x00FF == 0:
dns = dpkt.dns.DNS(udp.data)
else:
pkts_lost+=I
eligien

pkts_no_ethernet+=I1

except Exception as ex:
continue

tepdump —r original.pcap —w filtered.pcap “port 537

Code Snippet 11.  Tepdump [10] DNS filtering

Secondly, we will use the DPKT library because after
evaluating all Python libraries, DPKT has demonstrated to
be the fastest and most complete library for analyzing PCAP
traces in Python.

As we see in 12, the abstraction layer created by DPKT
library provides a high level abstraction layer to parse PCAP
files with little effort. Furthermore, Python [2] provides a
useful implementation of lists, dictionaries and tuples that help
to reduce the development time significantly.

SEPTEMBER 2012 « VOLUME |V * NUMBER 3

Code Snippet 12.  Tepdump DNS filtering

As conclusion of the use case, figure 14 shows the results
of a performance assessment that compares a traffic dissector
written in C language with libpcap [10] library, tcpdump
pre-filtering with Python DPKT [4] script and tcpdump pre-
filtering with the same ad-hoc C language traffic dissector.

At first glance, we note that for some file sizes the perfor-
mance of tcpdump pre-filtering and Python is worse compared
to the ad-hoc. As it turns out, the performance depends on the
number of DNS packets rather than the file size. Furthermore,
the obtained results are close in most cases. However, in those
cases where the number of DNS packets is too high, namely
with file sizes of 6 and 7 Gbytes, the performance of python
pre-filtered solution is significantly worse than its homologous
in C and even worse than the ad-hoc C dissector.

The main reason for this loss of performance is due to, as we
discussed in III-B, all Python libraries evaluated waste large




INFOCOMMUNICATIONS JOURNAL

Performance Evaluation of Open-source Software for
Traffic Traces Manipulation and Analysis

amounts of time with respect to C applications, to classify
each packet individually within their internal lists of protocols.
Therefore, the number of DNS packets into PCAP traces
will affect the number of packet classifications and search
times within protocol lists and thus, the performance variations
respect to C dissectors.

V. CONCLUSIONS

In conclusion, the usage of third-party libraries written in
Python have some advantages in terms of readability and fast
prototyping time with respect to low-level solutions written in
C and libpcap. However, the main drawback for these solutions
is performance and the best choice are pre-filtered solutions
with Tepdump or similar pre-filtering tools to obtain good
performance results. As a future work, we plan to extend
the assessment procedure to newer libraries and follow the
evolution that the well-established libraries which have been
studied in this paper.

REFERENCES

[1] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a gpu-accelerated
software router. In ACM SIGCOMM, 2010.
[2] Python Website. http://python.org
[3] Google Project Hostings. http://code.google.com
[4] DPKT Website. http://code.google.com/p/dpkt/
[5] PCAPY Website. http://oss.coresecurity.com/projects/pcapy.html
[6] Impacket Website. http://oss.coresecurity.com/projects/impacket.html
[7]1 pylibpcap Website. http://pylibpcap.sourceforge.net/
[8] pycap Website. hitp://pycap.sourceforge.net/
[9] SCAPY Website. http://www.secdev.org/projects/scapy/
[10] Tepdump and libpcap Website. http://www.tcpdump.org
[11] Mergecap Website. http://www.ethereal.com/docs/man-pages/mergecap.
1.html
[12] Ethereal Website. http://www.ethereal.com

[13] Editcap Website. http://www.wireshark.org/docs/man-pages/editcap.
html
[14] Wireshark Website. http://www.wireshark.org

[15] P. Mockapetris. RFC 1034. hutp://www.ietf.org/rfc/rfc1034.txt

[16] P. Mockapetris. RFC 1035. http://www.ietf.org/rfe/rfc1035.txt

[17] J. Kowall, D. Curtis. Vendor Landscape for Application-Aware Network
Performance Monitoring and Network Packet Brokers. http:/fwww.
gartner.com/resld=1987715

Javier Aracil received the M.Sc. and Ph.D. degrees
(Honors) from Technical University of Madrid in
1993 and 1995, both in Telecommunications Engi-
neering. In 1995 he was awarded with a Fulbright
scholarship and was appointed as a Postdoctoral Re-
searcher of the Department of Electrical Engineering
and Computer Sciences, University of California,
Berkeley. In 1998 he was a research scholar at the
Center for Advanced Telecommunications, Systems
and Services of The University of Texas at Dallas.
He has been an associate professor for University of
Cantabria and Public University of Navarra and he is currently a full professor
at Universidad Autnoma de Madrid, Madrid, Spain. His research interest are in
optical networks and performance evaluation of communication networks. He
has authored more than 100 papers in international conferences and journals.

German Retamosa received the M.Sc. from Uni-
versidad Autonoma of Madrid in 2009 in Computer
Science and Telecommunications Engineering. As
a serial entrepreneur, he combined his computing
science and telecommunications studies with R+D
jobs at IBM Global Services, Movistar and as a
cofounder and CEO of his own startup, Tink Se-
curity. He is currently R+D senior developer at
Naudit High Performance Computing and a Ph.D.
student at Universidad Autnoma de Madrid, Madrid,
Spain. His research interest are in high performance
computing systems on communication networks and information security
threads evaluation.

SEPTEMBER 2012 ¢ VOLUME |V * NUMBER 3




