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Abstract— The new focus of wireless communication is moving
from voice to multimedia services. There is a growing interest in
providing and improving radio coverage for mobile phones, short
range radios and WLANs inside buildings. The need of such
coverage appears mainly in office buildings, shopping malls, train
stations where the subscriber density is very high. The cost of
cellular systems and also the one of indoor wireless systems
depend highly on the number of hase stations required to achieve
the desired coverage for a given level of field strength. There are
already numerous optimization methods published which can be
applied to the optimal design of such indoor networks |7.8,9,
10,11]. The fitness function of the optimization problem has nu-
merous local optimum and therefore gradient based methods can
not be applied. The recently published methods use any heuristic
technique for finding the optimal Access Point (AP) positions.
Common drawbacks of the methods are the slow convergence in a
complex environment like the indoor one.

The complexity of the selection procedure of a classical genetic
algorithm is O(NlogN) where N is the size of the population. The
Quantum Genetic Algorithm (QGA) exploits the power of quan-
tum computation in order to speed up genetic procedures. While
the quantum and classical genetic algorithms use the same num-
ber of generations, the QGA outperforms the classical one in
identifying the high-fitness subpopulation at each generation. In
QGA the classical fitness evaluation and selection procedures are
replaced by a single quantum procedure.

The article introduces the Quantum inspired Genetic Algo-
rithm (QGA) for indoor access point position optimization to
maximal coverage and compares with the Classical Genetic Algo-
rithm (CGA).

Index Terms— optimization, radio network, indoor radiowave
propagation

I. INTRODUCTION
HE new focus of wireless communication is shifting from
voice to multimedia services. User requirements are mov-
ing [rom underlying technology (o the simply need reliable and
cost effective communication systems that can support any-
time, anywhere, any device. While a significant amount of
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traffic will migrate from mobile to fixed networks, a much
greater amount of traffic will migrate from fixed to mobile
networks. In many countrics mobile operators arc offering
mobile broadband services at prices and speeds comparable to
fixed broadband. Though there are often data caps on mobile
broadband services that are lower than those of fixed broad-
band, some consumers arc opting to forgo their fixed lines in
[avor of mobile. [3] There is a growing interest in providing
and improving radio coverage for mobile phones, short range
radios and WLANSs inside buildings. The need of such cover-
age appcears mainly in office buildings, shopping malls, train
stations where the subscriber density is very high. The cost ol
cellular systems and also the one of indoor wireless systems
depend highly on the number of base stations required to
achieve the desired coverage for a given level of field strength.
[12]

The design objectives can list in the priority order as RF
performance, cost, specific customer requests, ease of installa-
tion and casc of maintenance. The first two of them are close
related to the optimization procedure introduced and can take
into account at the design phase of the radio network. There
are already numerous optimization methods published which
can be applicd to the optimal design of such indoor networks
[7.8,9,11,15].

The recently published methods use any heuristic technique
for finding the optimal Access Point (AP) or Remote Unit
(RU) positions. Common drawback of the methods are the
slow convergence in a complex environment like the indoor
one because all of the methods are using the global search
space i.e. the places for AP-s are searched globally.

This article presents approaches in optimizing the indoor
radio coverage using multiple access points [or indoor en-
vironments. First the conventional Classical Genetic Algorithm
(CGA) and Quantum inspired Genetic Algorithm (QGA)
[1.2,16,17] is shortly introduced and applied to determine the
optimal access point positions Lo achieve oplimum coverage.

Finally the importance of applying this optimization process
is certified by evaluating the indoor coverage area for different
AP cardinality.
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II. THE INDOOR PROPAGATION MODEL AND THE
BUILDING DATABASE

In our path loss estimation the Motley-Keenan [6] model
was used to analyze indoor wave propagation. This empirical
type prediction model is based on considering the influence of
walls, ceilings and floors on the propagation through disparate
terms in the expression of the path loss.

The overall path loss according to this model can be written
as
L=Lp+1L, (N

where L, is the free space path loss and L, is an additional
loss expressed as

I J
Ly=Le+ Y il + D kgl y )
i=l =1

where L. is an empirical constant term, k,; is the number of
penctrated 7 type walls, & is the number of penctrated floors
and ceilings ol type j, 1 is the number of wall types and J is the
number of floor and ceiling types.

For the analyzed receiver position, the numbers k,; and k;
have to be determined through the number of floors and walls
along the path between the transmitter and the receiver an-
tennas. In the original paper [6] only one type of walls and
floors were considered, in order for the model to be more
precise a classification of the walls and floors is important. A
concrcte wall for example could present very varying pe-
netration losses depending on whether it has or not metallic
reinforcement.

It is also important to state that the loss expressed in (2) is
not a physical onc, but rather model cocfficients, that were
optimized from measurement data. Constant L, is the result of
the linear regression algorithm applied on measured wall and
floor losses. This constant is a good indicator of the loss,
because it includes other cffects also, for example the cffect of
furniture.

For the considered office type building, the values for the
regression parameters have been found. (Table I)

The Motley-Keenan model regression parameters have been
determined using Ray Launching (RL) deterministic radio
wave propagation model. These calculations were made for the
office-type building floor of the Department of Broadband
Infocommunication and Electromagnetic Theory at Budapest
University of Technology and Economics (Figure 1-2.). The
frequency was chosen to 2450 MIIz with a A2 transmitter
dipole antenna mounted on the 2m height ceiling at the center
of the floor.

The receiver antenna has been applied to evaluate the signal
strength at (80x5)x(22x5)=44000 diffcrent locations in the
plane of the receiver. At each location the received signal
strength was obtained by RL method using ray emission in a
resolution of 10. A ray is followed until a number of 8
reflections arc reached and the reeciver resolution in pixels has
an area ol 0.2*0.2 m2. The receiver plane was chosen at the
height of 1.2 m.
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TABLE
THE REGRESSION PARAMETERS
Nr. of . Regression
Wall type Layers Layer widths Parameter [dB]

Brick | Brick — 6 cm 4.0
Brick | Brick — 10 cm 5.58
Brick 1 Brick — 12 cm 6.69
Brick+ 3 Brick — 6 cm 11.8
Concrete Concrete — 20 cm

Brick — 6 cm
Brick+ 3 Brick 10 ¢cm 14.8
Concrete Concrete — 12 cm

Brick — 10 em
Brick+ 3 Brick — 6 ¢cm 93
Conerete Concrete 10 em

Brick — 6 cm
Brick 1 Brick — 15 cm 8.47
Concrete Concrete — 13 cm 6.36
Concerete 3 Concrete — 15 em 12.47

Air 2em

Concrete — 15 cm
Glass 3 Glass —3 mm 0

Air— 10 cm

Glass 3 mm
Plasterboard 1 Plasterboard — 5 cm 4.5
Wood 1 Wood 6cm 0.92
Wood | Wood - 10 em 0.17

The wall construction is shown on Fig. 1 made of primarily
brick and concrete with concrete ceiling and floor, the doors
arc made of wood. The cocfficients of the model have been
optimized on the data gathered by the RL simulation session
described above.

Fig. l.a. Floor view of V2 building at BME

AN

Fig. 1.b. Polygon data base of V2 building at BME
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Fig. 2. The building database

The geometrical description of the indoor scenario is based
on the concept that the walls has to be partitioned to sur-
rounding closed polygons and every such polygons are cha-
racterized by its electric material parameters.

The data base for the ray tracing method in our applications
can not contain cut-out surfaces dircetly, such as windows,
doors. Therefore the cut-out surface description is based on
surface partitioning of the geometry.

[, OPTIMIZATION METHODS

There are already numerous optimization methods published
which can be applied to the optimal design of such radio in-
door networks [7,8,9,11,15]. The recently published methods
use any heuristic technique for finding the optimal AP posi-
tions.

In the paper two global optimization methods the Classical
Genetic Algorithm (CGA) and Quantum inspired Genetic
Algorithm (QGA) global search algorithm are used with wave
propagation solver as can be seen in Fig. 3.
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Fig. 3. Diagram of Wave Propagation analyzer and optimizer
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Heuristic search and optimization is an approach for solving
complex and large problems that overcomes many short-
comings of traditional (gradient type) optimization techniques.
Heuristic optimization techniques are general purpose methods
that are very flexible and can be applied to many types of
objective functions and constraints. Another advantage of
heuristic methods is their simplicity because of its gradient-
free nature. Gradient free optimization methods are primarily
based on the objective function values and are suitable for
problems cither with many parameters or with computationally
expensive objective functions.

A. Optimization Method through Classical Genetic

Algorithms (CGA)

Genetic Algorithms are increasingly being applied to comp-
lex problems. Genetic Algorithm optimizers are robust, sto-
chastic search methods modeled on the principles and concepts
of natural sclection. [5,7,10,14] GA arc increasingly being
applied to difficult optimization problems. GA optimizers are
robust, stochastic search methods modeled on the principles
and concepts of natural selection. (Fig. 4.)
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Fig. 4. The flowchart of a simple GA

Il a receiver posilion that is [ully described by N, para-
meters arranged in a vector x={x;| i=1,....Np,} is considered,
then the knowledge of x permits the evaluation of the objective
function f{x), which indicates the worth of a design (the area
coverage percentage). It is assumed that x; take on either real
or discrete values, and that f{x) needs to be maximized.
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The GA does not operale on x butl on a discrete represen-
tation or chromosome p={g;| i=1,...,N} of x, each paramecter x;
being described by a gene g;. Each gene g; in turn consists of a
set of Né y all that arc sclected from a finite alphabet and that

together decode a unique x;.

The GA docs not limit themsclves to the iterative refinement
of a single coded design candidate; instead the classical GA
(CGA) simultaneously acts upon a set of candidates or popu-
lation

p=1{p@fi=1..N,,} 3)
where N, is the population size.

Starting from an initial population 5", the CGA iteratively
constructs populations p*,k =1..N gens With Ny, denoting the
total number of CGA generations. Subsequent generations are
constructed by itcratively acting upon ﬁﬂ with a sct of genctic
operators. The operators that induce the transition p* — 5™

arc guided solely by knowledge of the vector of objective
function values

= {;‘(x(p" (f))]e = 1..Npop} @

and induce changes in the genetic makeup of the population
leading to a p*'! comprising individuals that arc, on average
better adapted to their environment than those in 7* | ie.,
they arc characterized by higher objective function valucs.

This change is ellected by three operators mentioned in the

introduction: selection (S), crossover (C), and mutation ().
The selection operator implements the principle of survival

of the fittest. Acting on p* , S produces a new population
5_‘; :S(,Bk) again of size N, that is, on average, populated
by the better-fit individuals present in p* . Among the many
existing schemes tournament selection has been chosen. The
crossover operator mimics natural procreation. Specifically, C
acts upon the population Efg by mating its members, thereby
creating a new population

o= U {o(st)o(3%) o

i=1

where the chromosome crossover operator C scleets a
random crossover allele an.qs Detween the two chromosomes
to be crossed upon which it acts with probability P,

The mutation operator generates a new population of size by
introducing small random changes into Eé . The action of M
can be represented in operator form as
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P = JQJM[EZU)] ©)

The cost function of the optimization procedure has been
the coverage percentage of the points for which the reecived
power is greater than a given level.

red

_ Number of points (B, < P

(@)

Total number of test points

B. Optimization Method through Quantum inspired Genetic
Algorithm (0GA)

GQA is based on the concepts of qubits and superposition
of states of quantum mechanics.[16,17] The smallest unit of
information stored in a two-state quantum computer is called a
quantum bit or qubit. A qubit may be in the “17 state, in the “0°
state, or in any superposition of the two. The state of a qubit
can be represented as

%) =a]0) + A1) ®)

where « and £ are complex numbers that specify the
probability amplitudes of the corresponding states. |rz|2 and
| [5|2 gives the probability of finding the qubit in logical valuc

‘0" or ‘1" if the state has been measured. Normalization of the
state to unity guarantces

la|* +| A" =1 (9)

It is possible to use a number of different representations to
encode the solutions onto chromosomes in evolutionary
computation. The classical representations can be broadly
classified as: binary, numeric, and symbolic. GQA uses a novel
representation that is based on the concept of qubits. One qubit
is defined with a pair of complex numbers, (&,5) and for m
qubits as

o

o m | —

(10)
|;[jl ﬂm}
This representation has the advantage that it is able to

represent any superposition of states.
QGA maintains a population of qubit chromosomes,

oy

5

)= {qi,q’z,...,q;f} at the generation /, where n is the size of
population and q;- is a qubit chromosome defined as in (10).
@ a,
By

B

I
oy

s (11)
A {ﬂf
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The observed values of Q(r) states can be generated taking
into account the a; probabilities. One binary representation of
the j-th qubit is xj—, J=12,... .1 and the observation of the

Or) is P(f) =L xb....x, .

The set of qubit chromosomes Q(¢) is updated in each evo-
lution step by applying appropriate quantum gates ((Q-Gates)
G(ﬁ) , which are evaluated taking into account the best fitness

solution and given by the rotational angle selection stralegy
(Table II) [14]. This step makes the qubit chromosomes
converge to the fitter states.

cos(ﬁf) - sin(ﬂf)
G(6)=| . (12)
sm(l‘)i) 003(91-)
TABLET
ROTATIONAL ANGLE SELECTION STRATEGY OF (Q-GATE

xi b fx2fb) Al; a0 a0 om0 (=0
0 0 0 10°x + + +
0 0 1 107 I + +
0o 1 0 0.087 + + +
0 1 | 107 - + + +
1 0 0 0087  + + +
1 0 1 107 I + +
1 L 10°r + + +
| 1 | 10+ + +

The flowchart of the QGA is showed in the following.

Start

1<0
initialize Q1)
gencrate P(z) by obscrving Q(1) statcs

'}

Evaluate and
Store the best solution among Pt)

tett1

generate P(z) by observing Oft-1) states
Evaluate P(t) and

Update Q1) using Q-Gate

Storc the best solution among P(r)

Fig. 5. The flowchart of QGA

Learning the description of the two versions of Genetic
algorithms there arc two significant differences between a
classical and quantum versions or computer and a quantum
computer realization.
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The first is in storing information, classical bits versus quan-
tum g-bits. Each quantum state represents many possible
values of observation therefore the QGA increases the search-
ing spacc.

The second is the quantum mechanical feature known as
entanglement, which allows a measurement on some qubits to
effect the value of other qubits.

The last scction compares the algorithms and shows results
on coverage resulls.

IV. RESULTS

The optimization procedure characterized as searching
space with multiple local optimums and in this first session
short investigation will be shown evaluating objective function
for one access point in indoor environment.

The Fig. 6 shows the objective function which is the co-
vered area percentage for the (X,Y) points as AP, If for
instance the AP position is at (18,11) than the coverage is
more than 30%, but if at (45,19) than the coverage is less than
15%. The Fig. 6 illustrate unambiguously the ‘good’ positions
for access points having best coverages.

Fig. 6. Ohjective function for | AP

The Fig. 6 clearly shows the multiple local maximums ol the
objective function and therefore the motivation to apply
heuristic optimization methods.

The brute force search which would be a possible optimi-
zation search doesn’t give the expected result because of the
huge computational demand. (TABLE I1I)

TABLETI
EXHAUSTIVE (BRUTE FORCE) SEARCH

Number Resolution of Computation Result of
ol AP-s search space time oplimization
1AP Imx lm grid 5.5 min 33.67%

(1738 points) (19:12)
24P Im x Im gnid 159 hours

(estimated)
14P 0.5mx 0.5m grid 22 min 34.57%
(18.5;12.5)

24P 0.5m x 05mgnd 637 hours

(estimated)
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Next the convergence comparison will be introduced for
CGA and QGA for one access point. The testing results of the

algarithms are shown in Fig. 7.
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Fig. 7. Comparison of SGA and QGA (best objective function)

For CGA four set ol parameters were tested (wo multation
and two crossover probability sets are evaluated.

Based on the comparison in Fig. 7 and other not detailed
evaluations can be stated that for our indoor one access point
coverage oplimization case the QGA outperforms the classical
SGA therefore it worth to investigate and deploy for more
complex optimization cases with multiple access points.

In the last part of the results chapter coverage results are
shown for 3, 4 and 6 access points.

The first scenario is an optimization on AP positions (circles
in Fig. 8) of the half part of the floor. The Fig. 8 shows the
original 4 AP positions which were chosen to best coverage in
laboratories and the corridor coverage was not an aim.
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Y
Area of investigation

Fig. & Ongnal (not optimized) AP positions

The Fig. 9 shows the optimal AP positions using the cost
[unction of (7). The simulated distribution of received power
for the optimized geometry is shown in Fig. 10 with the
measured results.

To make the measurements we have chosen WLAN APs
and the power levels were measured using laptops with ex-
ternal wireless adapter moved on the area of investigation. 90
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sampling points in distances of 1 m were chosen on the level
and the comparison of Fig. 10 shows a good agreement for the
reccived power distribution.

1 il
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1] 10 20 30 40 S0 60 70 80
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Fig. 9. Optimized AP positions
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Lig. 10. Cumulative Density Iunction of received power level (optimized)

The most important change in the distributions of optimized
and not optimized cases is increased number of points with
proper coverage. (TABLE IV.)

TABLE IV
AREA COVERAGL FOR OPTIMIZED AND NOT OPTIMIZED CASE
. Not optimized  Optimmzed
Configuration
Coverage for I,.=-60dBm  40% 75%
(simulation)
Coverage for P >>-60dBm 50% 80%

(measurcment)

The second simulation is on the entire floor level and the
aim of the simulation is to comparce the nceessary number of
APs lor the same area coverage.

The Fig. 11 shows plausible positions of APs and the Fig.
12 the optimized ones.
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The Fig. 14 and TABLE V summarize the importance of
APs position of radio network. With the proper choice of the
placement the optimized 3 AP network configuration results
nearly the same coverage as the configuration 6 AP with APs
installed in plausible positions.

16

y ; ; ; ; : ; :

[ I— -==3AF optimized | o —
—4AP no optim.
07 —4AP _oplimized
06 8

0.1 v :
% 75 70 3 0 5 50 5 -40
Received power [dBm|
Fig. 14. Optimized and not optimized CDF using 3 and 4 APs
TABLLE V
AREA COVERAGE FOR OPTIMIZED AND NOT OPTIMIZED CASE
. AP AAP 6AP
Configuration
Coverage (not optimized) 40% 60% 66%
Coverage (optimized) 65% 75% 87%

These results (TABLE V) illustrate and justify well the
importance ol Access Point installation positions in radio net-
works in order to maximize the wireless coverage. Using the
mentioned optimization procedure the network cost can be
significantly reduced and the optical distribution network also
can be simplilied.

V. CONCLUSION

The optimal Access Point position of radio network is in-
vestigated for indoor environment. The article illustrates the
possibility of optimization of radio network using Genetic
Algorithm and Quantum inspired Genetic Algorithm in order
to determine positions of APs. The QGA as new approach is
introduced to solve the global optimization problem. The
methods are introduced and investigated for 1,2, 3 and 6 AP
cases. The influence of Genetic Algorithm parameters on the
convergence has been tested, the algorithms are compared for
the one AP case and the optimal radio network is investigated.
It has been shown that for finding proper placement the
necessary number of APs can be dramatically reduced and
therefore saving installation cost of WLANS.

The results clearly juslily the advanlage ol the method we
used but further investigations are necessary for convergence
comparison for multiple AP case. Other promising direction is
the extension of the optimization cost function with inter-
ference parameters of the wircless network part and with outer
interference.
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