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Abstract — A quantum receiver capable of approaching the
fundamental quantum limit on bit error probability is described
and evaluated. Conventional optical and abstract quantum
mechanical descriptions are provided and the underlying
principles derived in both domains, thus providing a bridge to
optimum quantum measurements in terms of well-understood
optical communications concepts. Receiver performance is
evaluated for the case of binary phase-shift keyed modulation,
and it is shown that significant gains can be achieved over near-
optimum receivers reported previously in the literature. This new
receiver concept can be implemented using practical
measurements amenable to high data-rate operation, hence it may
enable future deep-space optical communications with
performance approaching the greatest possible fidelity allowed by
the laws of quantum mechanics,

Index Terms — Quantum detection, coherent-state
signals, Helstrom bound. '

binary

I. INTRODUCTION

Deep-space optical communication is a key component of
thc NASA roadmap, with the goal of returning greater

data-volumes from Mars and other solar-system
cncounters in future missions. Conventional optical receivers
currently under consideration for deep-space communications
cmploy photon-counting or coherent detection to potentially
extract useful information even from a single photon, on the
average. However, quantum mechanics promiscs greater gains,
but fails to specify how these theoretical gains can be achieved
in practice. When pure states are used to communicate
information, such as those obtained from pulsed or phase-
modulated lasers, the minimum achicvable error probability
subject to the laws of quantum mechanics has been determined
by C. Helstrom [1], and hence referred to as the “Helstrom
bound”. So far, only a few schemes have been devised that are
capable of achicving the Helstrom bound for a genceral class of
binary signals, including: the Dolinar receiver [1] and the
Sasaki-Hirota receiver [2]. The Dolinar receiver was the first
structured approach that achieved the Helstrom bound using
physically realizable measurements together with real-time
optical feedback, however practical implementation at high
data-rates was found to be challenging due to the requirement
for precise local laser intensity control [3, 4]. A different
approach was proposed by Sasaki and Hirota [2], which does
not employ optical feedback but achieves the Helstrom bound
via unitary transformations and photon counting. However, a
practical implementation of the Sasaki-Hirota receiver requires
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multiphoton nonlinear optical processing, which also leads to
complex receiver structures. The receiver structure proposed
here overcomes these practical impediments by approaching
the Helstrom bound using well-known practical measurements
that enable high-speed implementation, while attaining
significantly ~ better performance than photon-counting,
coherent deteclion or even near-oplimum quantum receivers
such as the “Kennedy receiver” which is exponentially
optimum and implementable at high data-rates [1, 3, 4].

II. QUANTUM DESCRIPTION OF COMMUNICATIONS SIGNALS
At any instant of time, the state of a quantum system is
completely specified by a state vector | y7) in a Hilbert space
over the field of complex numbers. The state veetor, or "ket"
|w), can be thought of as a column vector of infinite
dimensions. An equivalent "row vector" representation of the
state veclor is denoted by (i | in Dirac notation.
If [w,) and |y, ) are states of a quantum system, then so is
|W>:31|U11>+32|Wz>
numbers. The row-vector

representation is (y |=a, ( w, |+ a, (w,|. The "overlap"

their linear combination where

a anda, are complex
between two states |w) and | @) is the complex number
{w| @) orits complex conjugate {@ |y ). If the overlap is
zero, the states are orthogonal. The state is normalized if
{wly)=1. Thus, for orthonormal states (tym | Wn) = 5»:1:*

where & = is the Kroenecker delta. Il |y, ) and |w,) are

orthonormal and | ) is normalized, then their overlap is

(Wl |W>=<W|Wl>*=al (])
(W2|V/)=<W|Wz>*=3z

2

where | &, |2 +| a, |2:1, and we interpret | &, |2 and | a, |” as

the probabilities that the system is found to be in states
|w,) and |y, ), respectively. Generalization to superposition

of an arbitrary number of states yields

lwy=Ya,lw,) @
> la,I’=1 (3)

with the interpretation that | a, |* is the probability that the
system is found to be in state [y ) .

In the classical model of optical communications,
information can be incorporated in a laser beam by modulating
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the amplitude, phase or polarization of the optical field. In the
quantum model, information can be similarly incorporated into
coherent states represented by the ket | ¢ ) and described in
greal detail in [6]. Coherent slates can be expressed as a
superposition of orthonormal number states | 1) as

| n) €))

ay=e " 3

@ o (r ‘)
Coherent states are not orthogonal, as can be seen by
considering the overlap of two arbitrary coherent states,
|y and | f). Orthogonality requires that their overlap
vanish, however for distinct coherent states the squared
magnitude of their overlap is

2
m

(| BN grlef A2 (n|m)
sz f (5)
(1147 )1 zz(“ _e e pP

by virtue of the orthogonalily of the number states | n).
Equation (5) demonstrates that there is always some overlap
between coherent states, regardless of how great the average
photon count in each state may be [6, 7].

In the state-space interpretation of photon counting
developed in [7], two signal states define a plane in Hilbert
space. Application of the photon counting projcction operators
to the signal states generate "measurement states” | 1| that span
the two-dimensional subspace defined by the signal states,
designated as | g, w; ) in Fig. 1. The squared magnitude

of the projection ol each signal stale onto ils associated
measurement state is the probability that the signal state will
be detected correctly. With this approach, the measurcment
statc for the null hypothesis H, .| w,), is taken to be the
ground state, corresponding to onc of the two binary signals
shown in Fig. la.

Photon Counting Detection Quantum Optimum Detection

) Detection Operators Hlwo "
I, =10>(0/ ¥
I1, =1-11, /TW >
| VJ @ /8
- =1 _
19 I;m =10) @ ¢=:x/2-0)
) | w, )

Fig. 1. Measurement state interpretation of binary coherent state detection: a)
photon counting; b) optimum guanium measurement achieving the Helstrom
bound.

The measurement state for the alternate hypothesis /.,
| w) . does not in general align with any of the number states,
but rather it is a supcrposition of number states except for the
ground state, with coefficients determined by the signal state
[,y A detailed description of this formulation is provided in

[7]. The error probability is minimized and the Helstrom
bound achieved when the iwo orthonormal measurement stales
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are rotated symumetrically within the signal subspace, as shown
in Fig. 1b. The resulting limit on the error probability has been
derived in [7] by evalualing the signal-state projections onto
each measurement state, and shown to be exactly equal the
Helstrom bound:

HE) = +l-\1=4pp | AT ©)

The measurement-state approach therefore provides a
geometrical  interpretation of the optimum quantum
measurement, which allows us to relate the abstract quantum
optimum mcasurcment to classical measurements that can be
carried out in the laboratory.

III. NEAR-OPTIMUM DETECTION OF BPSK SIGNALS

Binary phase-shift keying (BPSK) modulation is particularly
well suited to illustrating the key concepts in classical, near-
optimum and optimum quantum detection strategics, as well as
establishing a correspondence between classical and quantum
receiver performance. An example of BPSK signaling is
shown in Fig. 2: during each J-second symbol interval, the
amplitude of the electric field is taken to be F if the binary
data is “17”, corresponding to hypothesis [f, and -F if the
binary data is “0”, corresponding to H, . The signal amplitude
therefore toggles between + E in response to the data, but
remains constant during cach T-sccond symbol-interval.
Assume that H, and H, occur with a priori probabilities
Py P, respectively, where p, + p, =1. The average photon-
count  within
K, =ETHal.

quantum representation of the binary signals is | —g) when |

each received symbol interval s
while the actual photon-count is k. The

is true, and | &z) when the alternate hypothesis, 1, occurs.

Received signal amplitude BPSK Signaling
~

E

H, | kK|

|ljU'-Ir". |
T i, |2? 3T 47 5T 61'| LT

-E ) :
K, = P*Tal

Fig. 2. Classical representation ol binary phase-shili keyed (BPSK) dala-
stream.

For equal a priori probabilities, p, = p,, the error probability
for coherent detection of BPSK signals is given by the well-
known expression P(E) = L[1—erf(,/2K, )], where “erf " is

the error function defined s or(5) = ZE_]'IZJ{BXP(—IE)O“ .
o

The Kennedy receiver

The displacement operator  [Xy) shifts any coherent state
| )to a new coherent state | +y), D(y)|a)=a+y). A
near-optimum detection strategy for binary signals has been
devised by R. §. Kennedy in 1974 [1]. The key idea of the
Kennedy receiver is to apply the displacement operator )

to the coherent states |-ea),|a) before photon-counting
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detection, yielding D(a)|—a)=0) and Da)|a) = 2a) lor
the two hypotheses, hence converting the phasc-modulated
BPSK signals in the classical representation to on-off-keyed
signals, but with twice the amplitude and thus four times the
pulse energy, since | 2¢ |'=4K, .

The displaced states are detected using photon counting,
yielding an average error probability P(E)=1e K. as shown
below, corresponding to on-off-keyed signals with average
pulse energy 4K . In terms of classical implementation, a
constant phasc-locked local laser ficld with amplitude E
matched to the received field is first added to the signal using a
beam-splitter, followed by conventional photon counting
detection. The negative BPSK symbols with amplitude -E
(corresponding to the null hypothesis F,) are therefore
converted to zero, whereas the positive symbols with
amplitude £ are converted to 2F, as shown in Fig. 3. The
detection  strategy for the Kennedy recciver is: declare

"H"if k>0, "H"if k=0.

IFE

k4K,

%=M=é‘

T 27 r 47 5T 6T 7

=

Fig. 3. BPSK signals converted to on-off keyed signals via the Kennedy
detection strategy.

The relevant conditional probabilities are given by

e e s | BRI
HE)=1-HC)

The conditional probabilities of correct detection become

P(C|H))=1; P(C| H))=1-cxp(-4K,) which musl be averaged

over the a priories to obtain the average probability of correct

detection: P(C)= p,AC| Hy))+ pAC| H)). With equal a

priori probabilities the probability of correct detection is

AO) = (140 -exp(-4K,)]) =1 —texp(-4K, ). The average
A=R

error probability is related to the probability of correct
detection as PA(£)=1-P(C), hence the average error

probability of the Kennedy receiver is () = 4 exp(—4K,)-
T

Approaching the Helstrom bound via signal-state rotation

It is noteworthy that with the Kennedy receiver the
cancelled signal always results in correct detection, since no
photons can occur when there is no signal pulse. In addition,
doubling the signal amplitude for the alternate hypothesis
increases the signal energy by a factor of four, greatly reducing
the probability of a zero photon-count when a pulse is present:
these are the primary the reasons why the Kennedy receiver
achieves near-optimum  performance. However, photon-
counting detection implies that one ol the measurement states
should be aligned with the ground state, and as we have seen,
this is not the condition under which optimum performance is

achieved. The state-space representation ol optimum detection
described in [7] and illustrated in Fig. 1b shows that the
measurement states must be symmetrically arranged with the
signal states for optimum detection, not asymmetrically as with
photon-counting detection. It is therefore natural to ask under
what conditions optimum detection could be approached by
starting with photon-counting detection, and rotating  the
signal-states into a more symmetrical configuration with
respect to the measurement states.

An approximate state-space representation of photon
counting for small signal energies is shown in Fig. 4a, where
the measurement states are approximated by the number states
|0)and |1), so that | w,) =| 0yand | w)=[1). With photon-
counting detection, the signal stale representing H, is aligned
with the measurement-state, resulting in |y )= w,) = 0),
whereas the alternate state |y, ) is rotated in the (| 0),| 1)) plane
by an angle @ related to the overlap of the signal-states as
with
the angle between the signal states is #=22.6

6 =cos '(|[{w, |w,) ) = cos (e ): for example,
la|=02
degrecs.

Photon Counting Detection

[ Wy =1}

Detection Operators

Displaced Photon Counting Detection
[wi) =1 11, = o/
I, = |"1 W1

1, =/0><0f'r
DAYy ) =+ 2a)
O, =00 |,y =) 2a) ,"U “
/r_,af-""' _ _/_./-g."’_ DB =18)
Sl Wy =10} T --mTT

w,) =1 0)
Fig. 4. Small signal encrgy representation of photon counting and displaced
photon counting.

[ wy ) =0}

Recall from Fig, 1b that the measurement states should be
placed symmetrically around the signal states in the signal
subspace, the oplimum rotation angle is gp=1(z/2—0): for
our example, the optimum rotation angle between the signal
state |iy,)and its associated measurement state | w;) should
be @=33.7degrees, the same as between |y) and | w;) . From
the overlap relation for coherent states, an angle of 33.7
degrees corresponds to an overlap of
c0s(33.7)=0.832 = ¢ yielding a displacement magnitude
of | f]=0.61. This rotation can be accomplished by applying
the displacement operator 71X 4) to the signal slates as
indicated in Fig. 4b, where | #1=0.61 and arg(f) = arg(«) .
After  displacement, the  probability of finding
IXB)|w,)projected onto the next higher dimensional state
|2}, corresponding to a tilt in the signal subspace from the
two-dimensional (| 0),|1)) subspace into the three-dimensional
(10,]1),] 2)) subspace,
pk=2=2 |1 AI e /2=0.04. This is small
enough to justify the two-dimensional measurement-state
model, however  this  probability  increases to

can be evaluated as
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[¢2] B+2a)|'=0.183 for D(B)|y,y. which is significantly
greater than zero and hence cannot be ignored. Similarly, the

probability of finding Xf)|y,) projected onto any of the

‘2>1|3>7'“
probability that it is not projected onto the states
|

[0or |I): pk=2)=1- Z| (k| B)|* - These probabilitics
(=()

higher-dimensional states is equal to the

are shown in Fig. 5 as a function of | 2| , from 0 to 1.
2
IS 0.35
Z
@
£ 03- B
=
@
An:u 0.25
= Projection onto all
o higher third dimensions
g 0.2 1
w plh=2) =13 |(k| By [
‘E k=
s 015
Rl
&
2 o1 . .
o "
g g “ Projection onto
% 0.05 third dimension
s plk=2)=[2| B[
g ol e
0 01 02 03 04 05 06 07 08 09 1

|51

Fig. 5. Probability of finding a displaced ground state projected onto higher
number state dimensions.

With the help of Fig. 5. we can argue that as long as the
total displacement of the *“pulse” state is less than
approximately 0.2-0.3 in amplitude, the two-dimensional
model should be accurate. For larger displacements, the
projection onto third and higher dimensions starts to become
significant, effectively tilting the signal subspace out of the
(]03,|1y) subspace, hence the photon-
counting interpretation is no longer accurate with larger
displacements. This argument helps to explain  why
displacement  followed by photon-counting detection
approaches the optimum quantum measurement for small
signal energies, but fails to reach it completely. However, the
small-cnergy model still provides theoretical insights into the
manner in which displacement followed by photon-counting
detection approximates the Helstrom bound for small signal
energies, and suggests approaches that may result in better
receiver performance when small signal energies are involved.

two-dimensional

The Optimized Kennedy Receiver

A displacement-optimized version of the Kennedy recceiver,
where the displacement does not cancel the null hypothesis
cxactly, but at the same time provides significant additional
energy to the alternate, has been reported in [10], termed the
“optimized  displacement recciver”. Here we provide an
alternate derivation and interpretation of this idea. Since the
displacement operator can be implemented with a strong local
laser and a classical beamsplitter [9], the above discussion
suggests that the performance of the Kennedy receiver could
be improved in the small signal energy regime by first adding a
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phasc-locked coherent ficld to the BPSK signals, detecting via
photon-counting, then applying the optimum threshold defined
in equation (7), which is valid for all displacements. The
classical signal model for BPSK signals after displacement is
shown in Fig. 6, where FE,, takes the place of the coherent

stalc amplitude f.

ael _ 1,
lm, ol
KK H,

P

A

T r r 47 5T 6l T

Fig. 6. Classical model of displaced BPSK signals, for the optimized
Kennedy receiver.

The optimum value of the displacement for photon-counting
detection can be derived by noting that for the small-energy
region the value of the optimum threshold is always between 0
and 1. The goal of the optimization is to determine that value
of A that maximizes the average probability of correct
detection given B, P(C) = mgx P(C|p)- or cquivalently

minimizes the average probability of error. With no loss in
generality, assume that the signal amplitudes o, f# arc real,
and write
hypotheses
P(C| H,, B) = expl~(B-)*], P(C| H,, ) = 1-exp|~(f+a)’|-

Differentiating the conditional probability of correct detection,
AC| By = pAC| Hy.p)+ pAC| H,, B). with respect to j3
and solving the resulting transcendental equations numerically,
the optimum displacement is that value of =" that satisfies

the conditional probabilitics under the two
H, and H,, given the displacement g, as

the following transcendental equation as described in [10]:
p(B—-a) p(f+a)=exp(-4ap)- This result is in contrast to
the Kennedy receiver, where the signal fields are either
cancelled completely or re-enforced by applying a
displacement exactly equal to one ol the signal amplitudes.

Applying the optimum displacement operator [} ") to the
binary  signals results in the displaced
DB ~ay= " ~a) and D(B") ey = " +a),
corresponding energies | 5" — o ['= K, +K,-2|KK,=K_,

and | +aP=K,+K,+2/K,K, =K, -

{

signals
wilh

It is easily shown

that with displaced received ficlds and photon-counting
detection the optimum threshold 77 is given by

_ log.(p/ p)+4lall B (7
log(|f+al /| f~al)

The optimum decision strategy calls  for  declaring
H, if k=n, and H, if k<n. Note that non-zero counts are
now possible even under /4, due to the optimal displacement,

unlike with the Kennedy receiver which displaced the signals
sub-optimally by completely cancelling one of them. The
relevant probabilities under the two hypotheses are given by
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H,: pk<n)=) K exp(-K_)/K
k-0

n
plk<n)=> K exp(-K_,)/ K
H,: =0 )
pk=n)=1=Y K exp(-K_,)/ k!

k=0

For any signal energy, with optimal displacement the
conditional probabilities of correct detection become
PC|H,)= p(k<n| K, )):-‘ PCIH)=1-p(k<7| Ktn)-*
which must be averaged over the a priori probabilities to
obtain the average probability of correct detection, finally
yielding the average error probability as A(E)=1-P(C). Due
to the optimization of the displacement, these calculations are
somewhat more involved than for the Kennedy receiver, as the
following example illustrates.

Numerical Example

Consider the case |a|’=02,/ a|=0.447 with p =p =1.
Solving the transcendental equation for g, we find the
optimum displacement magnitude | 2 |=0.757 yielding the
The
conditional detection probability for the null hypothesis
becomes AC| Hy)= plk<n| K_)=exp(-K_,)=0.933,
whereas for the alternate hypothesis we obtain the following:
ACIH)=1-p(k<expr| K ) =1-exp(-K ) =0.765.
The average probability of correct detection follows directly as
PCy= p,AC|H)+ pAC| H)=13(0.933+0.765) = 0.849,
yielding P(E)=1- P(C)=0.151. This result is shown in Fig. 7
as the single point labeled “Numerical example” on the
“Optimized Kennedy receiver” performance curve, which was
computed numerically over the range of values 0 </ a|*<0.8 .

optimum threshold 7 =0.86 from equation (7).

Note that the optimized Kennedy receiver described in [10]
outperforms both the Kennedy and coherent receivers for all
signal energies, including small signal energies where coherent
detection actually approaches the Helstrom bound. However, it
does not maintain this improvement over the Kennedy receiver
for large symbol energies, but rather begins to approach the
performance of the Kennedy receiver as the signal energy
increases.

The above derivation suggests that by applying the optimum
displacement to the BPSK signals prior to photon-counting
detection, lower error probabilities will be obtained than
possible with the Kennedy receiver, for any signal energy. The
measurement-state derivation above also suggests that for the
case of small signal energies, the Helstrom bound may be
better approached by the optimized Kennedy receiver, since
the displacement of the signal states is in the direction of the
optimum measurement, where measurement states are placed
symmetrically around the signal states in the (] 0),| 1)) plane.

As a heuristic check, we note that as the signal energy
approaches zero the optimum displacement approaches
|8 '=0.5, or | f|=0.707 which now projects significantly
onto higher number-state dimensions (as can be seen in Fig. 5,

where the probability of projecting onto a higher dimension is
seen to be 0.09). Hence the measurement-states no longer
reside entirely in the (|0),|1)) plane, and the photon counting

interpretation for displaced signal states is not strictly valid.
Nevertheless, displaced photon counting still approximates
the optimum quantum measurement in this region, which
explains why error probabilities close to the Helstrom bound
can be achieved with the application of optimized
displacement and photon-counting detection in this region.

10"
.~ Kennedy receiver
s 107" / . . .. Classical coherent -
= ) detection
= . Numerical Example /‘ .
[ e ’
0
g - .
Optimized Kennedy receiver
Helstrom bound
10 ~* J
0 0.l 0.2 0.3 n4 0.5 0.6 0.7 08

Average number of signal photons, K =|a I?

Fig. 7. Error probability performance of coherent, conventional Kennedy, and
optimized Kennedy receivers.

Fartitioned-Interval Detection Strategy

Consider the partitioned signal detection strategy illustrated
in Fig. 8, where the original BPSK symbols have been
converted to on-off signaling via matched displacement, as in
the Kennedy receiver.  Each T-sccond signal interval is now
partitioned into two consecutive disjoint intervals: an initial

mterval of duration ?I scconds, and a sccond interval of

duration T, seconds. The average photon counts in these two
intervals can be denoted as 4K and 4K, respectively, with
corresponding photon counts k, and &, . The first interval is
intended to be short, providing a small-energy (hence nearly
quantum-optimum) “pre-detection” measurement, whereas the
second interval is intended to supply more signal energy to
further lower the error probability to acceptable levels for
communication.

H, 1K =4K, +4K,
2
K| &
jf‘ 1 2
' Wk 4k, n=B=3
.
T 2T 3T a7 ST 6T 7r

Fig. 8. Signal model for the partitioned interval detection strategy.

Based on the observation that for the Kennedy receiver
correct detection occurs whenever the cancelled signal (null
hypothesis) is observed, the strategy is to try to “guess” the
correct hypothesis with a near-quantum-optimum measurement
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in the first interval, and cancel the signal in the second interval
by applying the appropriate displacement whenever a signal is
pre-detected. If no signal is detected in the first interval, then
the receiver continues to count photons in the sccond interval,
without cancellation. This is similar to the approach used by
the Dolinar receiver, which however must respond
instantaneously to each photon-detection event within the
signal interval, whereas here the counting intervals are
determined based on predictable average signal energies
instead of unpredictable photon occurrence times. Since with
equal a priori probabilities roughly hall ol the original signal
intervals contain no signal energy, it follows that any correct
detection in the pre-detection interval will lead to more
cancelled signals being observed in the second interval than in
the original sequence.  The final decision is based on the
presence or absence of photon counts observed in the second
interval, but also takes into account the outcome of the pre-
detection measurement. The resulting two-step detection
strategy can be summarized with the following algorithm:

If &, > 0,add 180" to the local ficld, and continuc counting;
if k, =0, decide" H,"

If k, = 0, continue counting;
If k, =0, continuc counting;

if k, >0, decide" H,"
if k, =0, dccide" H,"

This detection strategy is equivalent to a “modified
sequence” interpretation, where some of the pulses in the
second segment have been cancelled due to correct
identification of the signal in the first segment. Restricting our
allention o the second segment only, we [ind that this new
sequence has more cancelled pulses than the original sequence
where the a priori probabilitics were equal. Therefore, if we
observed only the modified sequence (where some of the
original pulses have now been cancelled duc to correet “pre-
detection” decisions, but no new pulses have been added), then
we would assign a higher probability to the occurrence of nulls
in the second interval. Based on observing the modified
sequence, we would conclude that the a priori probabilities
P, of this new sequence were in fact not equal, but rather

given by the expressions p = p AC| H,)+ pAC| H,) and
p, =1—p, - Representations of the modified sequence are

shown in Fig. 9 a and b, where the intermediate decisions are
shown in a) and the final sequence in b): for example, the
second segment in the [ourth symbol-interval (37 < t<47T)
has been cancelled due to a correct decision in the first
segment of this same interval, because a count k>0 has been
observed in the first interval. The modified sequence therefore
appears to have more null-hypotheses [f; and fewer
alternatives H;.

The decision strategy for the modified sequence shown in
Fig. 9b, in terms of the modified a priori probabilities g > p,

and p’ < p,, can be stated as follows:

If k, >0, declarc H{; 1l k, =0, declarc H,.
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However, now we must keep track of the correct decisions in
the pre-detection segment that lead to pulse-cancellations, in
order to detect the original message.

2120 k=0 &>0 m=p=1 k=0
i H; ky H; I
4K, £=0 k=0 |
AT 2T 37 a7 5T 6T 7
—-A
1 B> p, n<p
2E |
H" H; &, H;, le
4K, |
A, T T 3T a7 T oT T
T_aA

Fig. 9. a) Original and b) modilied sequences, aller a single correct pre-
deteetion measurement.

We can now write the probability of correct detection and
the probability of error for the modified sequence in terms of
the modificd a priori probabilitics, as

H(C)= py(C| Hy)+ piP(C| HY)
== p)P(C| Hy)+ piP(C| Hy)
=P(C|Hy) - pllA(C| Hy) - AC| H)]
®)
HE)=1-PC)=1-AC| H)) + p[A(C| H;) = AC| H})]

Note that A (| H)=1 in general. Recalling that p' represents

the probability of making an error in the first segment, and that
the modified hypotheses H;/=0,1 refer to the second

segment, we can see that the final error probability can always
be improved by reducing p/ it AC| H)>RAC|H) which is
satisficd by the detection processes considered here, namely
the Kennedy and optimized Kennedy receivers in the region of
interest.  Therefore, we can potentially choosc a detection
technique in the first segment that closely approaches the
Helstrom bound for small signal energies, and perhaps a
different detection strategy in the second segment, in order o
achieve the desired error probability for communications
applications. This resull forms the basis of the “partitioned”
approach, which we now examine for several cases of interest.

For the casc of signal canccllation followed by photon-
counting detection, the relevant probabilities for the modified
scquence become
H: plk,=0)=1, H: { plk, =0) =cxp(—4K,)

~ plk, > 0)=1-cxp(—4K,)

which yield the following conditional probabilities of correct
detection: AC| H;)=1 , and for the alternate hypothesis

P(C|H)=1-exp(-4K,). Substituting into cquation (8)
yields A(C) = pj + pj[1 —exp(—4K,)] =1— p{exp(—4K), and
error probability AE)=1- AC)= p/exp(-4K,). Note that
if pl=lexp(—4K,). as would be obtained with photon-

counting detection over the first segment, then the error
probability alier observing the entire symbol interval would
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simply become lexp(—4K), which is exactly the same as for

the Kennedy receiver, hence nothing would be gained.
However, it also suggests that if Pl <texp(4K,) the error
probability of the modified sequence will decrease
correspondingly, resulting in A F)<lexp(-4K)- This
observation provides a means for approaching the Helstrom
bound by employing a better detection strategy in the first
segment than simple field cancellation followed by photon
counting detection, resulting in better overall performance.
With PK(E),R(E)andHK(B) referring to the Kennedy,
coherent and optimized Kennedy receivers respectively, the
best strategy can be inferred from the ratio of the error
probabilities B (E)/ P(F) and P(E)/P,(E) in Fig. 10,
which is interpreted as “gain over the Kennedy receiver”. Note
that in Fig. 10 N refers to the total number of segments used by
the partitioned receiver, as explained subsequently in the
section on the Optimized N-segment receiver.

2.0 : ‘ : : - . .
Helstrom bound
/’ Partitioned receiver
¢ N=2 N=3 N Zt
: T -
2 . = ) .
8 L e =]
@ 15 x.// R = T
=1 W
@ 4
E I.' p———
z ’/ﬂ Optimized Kennedy
] g receiver (N=1)
g Lo E 1
c = A
.5 5.2 Classical coherent
[+"] T
Q@ 59 detection
=
g Detection region
o
0.5

0O 01 02 03 04 05 06 07 08

Average number of signal photons, K. = al’

Fig. 10. Gain of coherent, optimized Kennedy, and partitioned receivers over
the Kennedy receiver.

In Fig. 10, the coherent receiver peaks at K_=0.095 atlaining
a maximum gain of 1.272 over the Kennedy receiver, whercas
the optimized Kennedy receiver peaks al K _=0.165, with a
maximum gain of 1.381, after which both gains decrease: the
gain of the optimized Kennedy receiver approaches 1 at high
signal energies, reverting back to the conventional Kennedy
receiver, whereas the gain of the coherent receiver continues
to decrease towards zero.

Optimized N-segment receiver

The optimized two-segment detection approach described
above can be extended direetly to three or more segments, by
considering the first V-1 segments of an N-segmenl receiver (o
be a “pre-detection” segment whose decision outcome
modifies the a priori probabilities of the original sequence,
thus improving the fidelity of the final decision. For example,
the performance of a three-segment receiver can be evaluated

by starting out as a two-segment receiver, but then partitioning
the smaller pre-detection interval into two segments and
optimizing cach before optimizing the crror probability for the
third segment, further improving receiver performance. This
procedure extends directly to an arbitrary number of segments,
each step yielding an improvement over the previous step, but
also increasing the complexity of the receiver.

The gain over the Kennedy receiver for up to four optimized
segments reaches a maximum at slightly higher signal energies
as can be scen in Fig. 10, which flatten out as the number of
segments increase, eflectively maintaining the maximum gain
achieved by the pre-detection measurement over the region of
interest. For three and four segment optimized receivers the
maxima occur at K. =038 and K_=0.62 avecrage signal
photons. The gain curves can be divided roughly into two
regions, a “pre-deteetion” region over which the gains increasc
rapidly, followed by a “detection” region over which the gains
flatten out attempting to maintain maximum gain. The
boundary between these two regions is roughly the initial
small-cnergy region of up to approximately 0.2 signal photons,
as shown in Fig. 10. This interpretation is in line with our
previous conclusion that displacement followed by photon
counting is close to the optimum strategy at small signal
encrgies, hence we can interpret any measurement made within
this region in a segmented receiver approach to be a pre-
detection measurement: the use of multiple segments is merely
a means to obtain better pre-detection performance. It should
be noted that any other pre-detection strategy that improves
upon these initial error probabilities will lead to gains in
overall performance. Therefore, other measurement techniques
that may be developed in the future could also be used to carry
out pre-detection, potentially leading to further improvements
in overall performance.

The error probability performance of optimized two, three
and four scgment reecivers are shown in Fig. 11 along with
that ol the Kennedy receiver, coherent receiver and optimized
Kennedy receiver for comparison. The partitioned receiver
discussed here outperforms the previously known “near-
optimum” approaches such as the Kennedy recciver for all
signal energies, with gains of more than 2 dB over the
Kennedy receiver at AE) = 0.1, in the region of greatest
interest for coded optical communications. This new approach
cffectively partitions the signal interval into two scgments, a
pre-detection segment that employs displaced photon counting
to closely approach the Helstrom bound at small signal
energies, followed by a detection segment that measures the
remaining  signal  cnergy to  achieve the desired
communications performance.

For any number of predetermined segments N, the result of
the first (N-1) decisions is incorporated into the probability of
correct detection p obtained from the [irst (N-1) segments,
which is used as the a priori probability of hypothesis ff; for
the final scgment. This stratcgy can be implemented using a
bank of N lasers and switching between them using offset
clocks operating at the symbol rate, hence it leads to
practically implementable receivers for small values of N, but
it also highlights the reason for suboptimal performance when
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compared to the Dolinar receiver: since photons arrive
randomly within any predetermined decision interval, the
signal energy following a photon detection event in any sub-
interval is effectively wasted with the partitioned-interval
approach, sincc the contradicting decision could actually have
be made as soon as the photon was detected.

]0 0
[ Partitioned receiver performance:
dB from Helstrom bound @ P(£)=0.1
Kennedy receiver N dB

Ny 1 1.12
.‘:L;'. 2 0.78
- 3 0.48
g 4 0.41
[l
s '

10
g Classical coherent
2 . detection
s Optimized Kennedy : . e,
& receiver (N=1)
Partitioned receiver /
N=2
N=3
N=4
B Helstrom bound
10 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Average number of signal photons, K, =|a I

Fig. 11. Error probability performance and comparison of N-scgment
partitioned reccivers.

However, responding instanily 1o each photon-occurrence
requires processing bandwidth far exceeding the signal
bandwidth, and hence leads to problems with implementation
particularly at high data rates. This is one of the fundamental
differences between the two approaches: the Dolinar receiver
requires infinitely large processing bandwidths to recach the
Helstrom bound, along with precisely controlled continuous-
time laser intensitics, whercas the  partitioned-interval
approach switches between a few local lasers with
predetermined intensities at the signaling rate, but cannot
approach thc Helstrom bound arbitrarily closcly for small,
hence practical, values of M.

1V. SUMMARY AND CONCLUSIONS

An optical communications receiver concept capable of
approaching the quantum limit in the region ol interest for
coded optical communications from deep-space, has been
developed and analyzed in this paper. The key idea is to break
up the signal interval into a short “pre-detection” segment
followed by a longer validation segment in such a way as to
optimize overall performance. This two-interval interpretation
was extended to higher complexity N-interval detection by
interpreting the processing in the first AC1 intervals as an
improved pre-detection measurement, viewing the final A"
interval as the validation segment. It is shown that increasing N
leads to improved performance for N= 2, 3, and 4 scgments,
arguably approaching the quantum limit for larger N but only
at the cost of greater processing complexity., Therefore, this
approach is intended primarily for low-complexity applications
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where improved receiver performance is deemed necessary. It
was shown that with four disjoint segments, performance of
the partitioned receiver approaches the Helstrom bound to
within 0.41 dB, or equivalently improves upon the Kennedy
rceeiver by 2 dB, at an crror probability of 0.1 typically
required by modern codes.
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