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Abstract— This paper presents applications of the trope of the 

locked and sealed piggy-bank into which the secret can be easily 
inserted but from which it cannot be withdrawn without opening 
the box.  We present a basic two-pass cryptographic scheme that 
can serve as template for a variety of implementations. Together 
with the sealed piggy-bank is sent a coded letter that lists and 
certifies the contents of the box.  We  show  how  this  idea  can  
help  increase  the  security  of  cryptographic protocols for 
classical  systems as well as those based on “single-state” systems. 
More specifically, we propose the use of a hashing digest (instead 
of the coded letter) to detect loss of key bits to the eavesdropper 
and use in communication systems where error correction is an 
important issue. 
 

Index Terms— Cryptography, network security, multiparty 
communication, piggyback protocol 
 

I. INTRODUCTION 
HE idea of locking a secret in a box and letting it be 
carried to the destination by an unreliable courier (Figure 

1) (where it is unlocked by the recipient who has the key to 
unlock the box) is at the basis of most cryptographic protocols. 
This scheme assumes that the key has somehow been 
transported to the recipient in advance of the communication. 
The lock of the box is protected by placing a seal across it that 
ensures that it is not tampered with by the courier. 
 In the case of the use of this scheme in data communication, 
the key may be transmitted over a side channel. If the rate at 
which the key is transmitted over the side channel equals the 
data rate, then this constitutes the unbreakable one-time pad 
[1],[2]. 
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         Figure 1. Sending a secret in a locked box 
                      (unlocking needs key K) 
 

Another idea is that of the three-stage protocol (Figure 2) 
which can be used when the recipient does not possess a copy 
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of the key. This requires that both parties use locks and it is 
assumed that the locks are protected by tamper-proof seals of 
the two parties. In this protocol Alice puts the secret in a 
locked box which is transported to Bob who puts his own lock 
on the box and sends it back to Alice who unlocks  her  lock  
and  resends  the  box  to  Bob  who  then  unlocks  his  lock.  
This protocol ensures that both Alice and Bob can check that 
their locks have not been tampered with. Amongst other 
applications, this idea is at the basis of the three- stage 
quantum cryptography protocol [3]. 

 
      

 

 
 

Figure 2. Sending secret in locked box using separate locks by 
Alice (Ka) and Bob (Kb); locked box shown as   

 
Although the locked box is the most popular foundational 

unit of traditional secure systems, it is not the only one. 
Another basic unit, with lesser popularity in formal 
arrangements but equally great popularity in informal systems, 
is that of the piggy-bank (Figure 3) in which coins or money 
can be easily inserted but not withdrawn without access to the 
key with which it has been locked. 

 
Jehoiada the priest took a chest, and bored a hole in the lid 
of it, and set it beside the altar, on the right side as one 
cometh into the house of the LORD: and the priests that 
kept the door put therein all the money that was brought 
into the house of the LORD. -- 2 Kings 12.9 
 
We propose that use of such a locked box with a receptacle 

for insertion of money (or secrets) can be the model for 
cryptographic systems. Although used for collecting money at 
a public location, the box was sometimes moved to another 
location for counting the money and bills. In our case, instead 
of the use of a lock, we will use the cryptographic primitives of 
exponentiation modulo a prime or a composite number or 
other mathematical one-way functions. This will be explained 
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by the development of protocols which in essence implement 
the piggy bank idea. 

 
 
 

                             
            (a)                                      (b) 
 
Figure 3. (a) A piggy bank; (b) A temple money box.  

II. THE PIGGY BANK TROPE 
Bob sends an empty locked piggy bank to Alice. When she 

receives it, Alice deposits the secret (money, bills, and jewels) 
into the box together with the decryption key of a coded letter. 
In addition, she prepares a letter to be sent separately. The 
piggy bank and the letter are sent back to Bob. 

The letter is required to authenticate the contents of the 
locked piggy bank box. It cannot be in plaintext because the 
content list itself is a secret. The letter is needed to establish 
the identity of the person who has sent the secret (that is Alice) 
and this may carry an additional secret. 

Bob opens the box, obtains the secret, and also reads the 
coded letter which has further details of the secrets in it. 

 
 

                                       
 
 
 
 
 

                                
 
 
 
Figure 4. The piggy bank cryptographic trope; the secret  
letter is represented by 
 
The idea of sending two pieces of secret information in 

partitions was used earlier by the author in the different 
context of visual cryptography [4]. In the case where Bob’s 
ability to read the “secret letter” is limited, he will be able to 
obtain only one of the two secrets. 

The piggy bank trope can be implemented in many 
variations by making further assumptions about the system.  
Here we provide a few where standard primitives are 
employed. 
 

Protocol 1 
In this implementation of the piggy bank protocol for data, 
Bob obtains both the secrets K and S.  The protocol consists of 
three steps of Figure 5: 

 
Step 1. Bob starts with a random number R and the piggy 

bank transformation is represented by a one-way 
transformation f(R) = Re  mod n, where n is a composite 
number with factors known only to him; e is the publicly 
known encryption exponent. The number n needed for 
computations is provided by Bob to Alice. 

 Step 2. Bob sends f(R) to Alice who multiplies it with her 
first secret S.   Alice sends S(R)e + K mod n to Bob in one 
communication and f(S) = Se mod n in another 
communication. 

Step 3. Bob uses his secret inverse transformation to first 
recover S and having found it he can recover K. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The piggy bank Protocol 1 for communications 
 
 
EXAMPLE 1. Let n= 51 and the public encrypting exponent 

is e=3 (with the secret decrypting algorithm being 11 since 
3×11 = 1 mod φ(51) ). Bob chooses random R=13 and sends 
133 mod 51 = 4 to Alice. 

Alice’s random secrets are S=5 and K=29. Alice computes 
4×5+29= 49 and sends it and also 53 mod 51 = 23 to Bob. 

Bob uses his secret decryption exponent to recover S: 2311 
mod 51 = 5. Thus 5×4+K =49, from which he recovers K. 
 
Variations on Protocol 1: 
Many variations to Protocol 1 can be devised. These variations 
require correspondingly appropriate actions by Bob. 

1.   Take R=1. This means that Alice sends S+K mod n and 
Se mod n. This variation is a special case of the protocol of 
Figure 5. 

2.   Alice sends ReS mod n and Se mod n to Bob. This is a 
twist on the protocol as described. 

3.   Bob sends R to Alice who, in turn, sends SeR+K mod n 
and Se  mod n to Bob. In this variation, the value of e is 1, 
which requires a slightly different transformation by Alice 

4.   Bob sends R to Alice who, in turn, sends SR+K mod n 
and Ke mod n to Bob. Here also the value of e is 1. 
 

S 

K 

S, K 

S 
K 

    Re mod n 

S(R)e +K mod n 

Se mod n 

R 

K 

S 

Alice 

Bob 

Bob 

Bob 

Bob 

Alice 



Infocommunicatons Journal, volume 6, number x, pp. xx-xx, 2014                               

Protocol 2 
In this implementation Bob obtains only one of the two 
secrets. The two parties also obtain an additional shared 
random number.  The protocol consists of  the following steps: 
 

Step 1. Bob starts with a random number R and the piggy 
bank transformation is represented by a one-way 
transformation f. The transformation could be exponentiation 
of a publicly announced generator g of the elements of the 
multiplicative group modulo p, which is a prime. 

Step 2. Bob sends f(R) to Alice who conjoins it with the 
secret S that she wishes to send to Bob and then performs the 
transformation f. It is assumed that f(S*f(R)) = f(SR), so as to 
ensure that the operations performed by Bob and Alice are 
similar.    Now Alice sends f(S*f(R))+K to Bob which is 
equivalent to f(SR)+K as well as f(S) separately. 

Step 3. Bob performs f(R*f(S)) which is equivalent to f(SR) 
since he knows the value of R. Now he subtracts it from 
f(SR)+K and, thereby, obtains K. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The piggy bank Protocol 2 for communications; 
f(Sf(R))=f(SR) 

 
In a variant of this protocol, Alice sends K×f(Sf(R)) + K 

and f(S) to Bob, although this does not provide any special 
advantage. 

An implementation of the protocol is given in Figure 6. 
 

EXAMPLE 2. Let f(x)=gx mod p, where p is prime. Let 
p=37, g=2, and R=11. Therefore, Bob sends 211 mod 37 = 13. 

Let Alice’s secrets be S=3 and K=10. Alice generates 133 
mod 37 = 14 and sends 14 + K that equals 24 and also 2S mod 
37= 8. 

Bob computes (2S)11  mod 37 and obtains 14. Subtracting 
this from 24, he obtains the secret K to be equal to 10. 

Alice and Bob also come to share the random number gSR 
mod p that could be used for some other cryptographic 
purpose. 
 

Like protocol 1, protocol 2 can be implemented in other 
variations including one of the secrets is conjoined with the 
other encrypted terms in a multiplicative way (rather than the 
additive way shown here). It may also be generalized. The 

secret letter may be replaced by a hashing digest in certain 
situations (as in the application to quantum cryptography 
described below). 

III. HASHING DIGESTS IN QUANTUM 
CRYPTOGRAPHY 

The piggy bank trope may be applied to quantum 
cryptography [5]-[9] although this cannot be done in quite the 
same way as in the protocols above. Specifically, we can use 
the second “letter” communication from Alice to Bob to send a 
hashing digest of the key to determine if the bits have been 
correctly received. 

Consider the communications [10]-[12] and signal-to-noise 
(SNR) perspectives on cryptography [13] where one must 
remember that quantum information processing suffers from 
unique challenges [14]. The BB84 protocol requires that single 
photons be sent by Alice to Bob [15], but the ability to receive 
single photons means that the SNR ratio for the receiver is 
infinite and the channel is fully protected. With such 
transmission requirements, there may very well be no need to 
use encryption! 

In BB84 we could do away with complicated error 
correction, like “cascade”, to counter the eavesdropper if the 
resources for computing commonly available on the network 
are harnessed to send side information. 

In cascade, the sifted key bits are divided into blocks and 
then both parties announce the parity of each of these blocks 
on a public channel. If Alice’s parity for a block differs from 
Bob’s, it is clear that there are an odd number of errors in that 
block. The search for these errors is done recursively, by 
dividing the block into smaller ones, until only an even number 
is contained in that block. When the blocks have been 
processed, the bits are shuffled and the procedure repeated. 
This is done a number of times, so that the probability that the 
remaining key contains an error is very low. 

Instead of the cascade procedure, a cryptographically strong 
hash digest of the raw key can be sent to Bob to ascertain if the 
eavesdropper has siphoned off any photons or if noise has led 
to any errors. This digest may be sent separately to the 
destination quite like the “coded letter” of Figure 4. If the 
digest generated by Bob doesn’t match the one he has received 
from Alice, he asks for a retransmission of the bits. 

In the use of hashing as a resource, the hash digest may be 
shared amongst the users on a side-channel since it is assumed 
that bandwidth is not limited. The BB84  protocol  assumes  
that  the  data  is  being  transmitted  by  single  objects 
(photons) for if more than one photon is transmitted for each 
bit, the eavesdropper can siphon off the superfluous bit to 
obtain partial information about the key being transmitted. Of 
course, not all quantum cryptography systems use single 
photons as evidenced by the three-stage protocol using random 
rotations [2]. But even here the number of photons in each 
communication must be restricted so that the eavesdropper 
does not have information to determine the polarizations in 
each of the three links. 

It is true that the use of the hashing digest will not prevent 
the eavesdropper from disrupting the communication.  
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IV. CONCLUSION 
This paper has shown how the trope of the piggy bank can 

have cryptographic applications in communications and key-
distribution systems. Using cryptographic primitives such as 
exponentiation modulo a prime or a composite number as one 
way functions, we have provided examples of basic use in 
classical and quantum cryptography. Further variations on the 
protocols provided in this paper may be easily developed. 
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