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Global and local coverage maximization in
multi-camera networks by stochastic optimization

Krishna Reddy Konda and Nicola Conci

Abstract—In this paper we present a camera positioning and
reconfiguration algorithm for complex indoor environments. The
algorithm initially optimizes the global coverage of the selected
environment in order to maximize the visibility on the entire
area. Reconfiguration of the devices is then performed after the
camera installation, in order locally optimize coverage according
to the application requirements.

Both initial coverage optimization and reconfiguration are
achieved using Particle Swarm Optimization (PSO). The pro-
posed solution has been validated in different setups, also
taking into account occlusions and blocking introduced by the
presence of obstacles. The achieved results confirm the viability
of the approach in both positioning and reconfiguration, also in
presence of considerably complex environmental geometries.

I. INTRODUCTION

The reduction in price of video sensors and the ever in-
creasing need for security are significantly contributing to the
diffusion of video surveillance systems. The large availability
of different types of cameras and lenses let the user customize
the sensing infrastructure to achieve the desired area coverage
not only by choosing the number of sensors to be deployed,
but also selecting their features in terms of field-of-view,
resolution, frame rate, indoor/outdoor or night/day operating
modes. The large availability of different types of devices and
the corresponding number of parameters that can be tweaked
provide on the one hand a higher degree of flexibility, but at the
same time complicate the setup procedures of the acquisition
system, often resulting in a suboptimal configuration that could
lead to a reduced efficiency of the entire sensing infrastructure
[1].

The availability of automatic planners to choose the optimal
positioning of the sensors would be of great help for the
security personnel, by improving the quality of coverage,
minimizing the number of sensors and the black spots, and
including in the optimization model also the presence of
obstacles, areas subject to privacy constraints, and other per-
sonalization factors.

This kind of instruments would be in fact particularly
suitable to plan the deployment of fixed installations (build-
ings, offices, public spaces), but also in need of temporary
deployments (e.g., sports events, fairs, exhibitions) where a
fast and efficient planning would be highly desirable.

More in general, the goal of a camera planner is to guarantee
the maximum coverage of the observed space, minimizing
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occlusions, and obtaining the best possible visibility of the
areas of major interest.

The problem of coverage maximization can be easily de-
scribed through the so-called art gallery problem (AGP),
where the minimum number of guards is to be determined
for a given area [2]. A variant of the AGP is known as the
Watchmen Tour Problem (WTP), where guards are allowed to
move inside the polygon [3]. The objective is to determine
the optimal number of guards and their route to guarantee
the detection of an intruder. However, both AGP and WTP
related algorithms are unsuitable for most real-world camera
placement applications. Consequently, more sophisticated al-
gorithms have to be adopted to take into account the most
important parameters related to the surrounding environment,
which include constraints on observability [4], but also camera
and illumination parameters. A short overview on the most
relevant literature is reported hereafter.

Earlier solutions belong to the so-called Generate and
Test approaches, in which all the constraints and models
are incorporated into a simulation model. The HEAVEN
system [5] is one of the earliest tools using such approach.
HEAVEN uses a spherical representation to model the sensor
configuration. A geodesic dome is created around the object,
tessellating the sphere with an icosahedron that is further
subdivided in a hierarchical fashion by recursively splitting
each triangular face into four new faces. A similar system
called ICE (Illumination Control Expert) [6], includes also the
planning of illumination sources.

Synthesis approaches model the constraints as analytic func-
tions, and formulating the problem in terms of satisfaction
of constraints. Each requirement generates a geometric con-
straint, which is satisfied in the 3D domain of admissible
locations. The admissible domains obtained are then inter-
sected to each other in order to determine locations that satisfy
all constraints simultaneously. An early work in this area is
proposed by Cowan and Kovesi [7], in which camera locations
are generated also with respect to illumination planning. In [8]
the authors propose a camera placement algorithm based on a
binary optimization technique and using polygonal spaces pre-
sented as occupancy grids. In [9] camera views are optimized
so as to provide the highest resolution of objects and motions
in the scene. The optimal view is defined by the application
scenario (e.g., motion recognition, visual metrology).

Expert Systems address instead the high-level aspects of
the problem, informing, for instance, about whether front
or back illumination is more appropriate for the particular
object and the corresponding features to be observed. An
expert system is primarily used as an advising tool. A good
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example is the system LIGHTING ADVISOR [10], which
provides advice regarding the best lighting configurations in
given circumstances.

Among the most recent proposals in camera positioning
and reconfiguration algorithms, the work by Mittal and Davis
[11] presents a probabilistic framework for object visibility
in a multi-sensor environment. Piciarelli et al. [12] address
the problem of camera networks reconfiguration, by adjusting
pan, tilt, and zoom. They use the Expectation Maximization
algorithm, in order to maximize the coverage of salient por-
tions of the observed scene, where the saliency is identified
by motion activity maps. In [13], the authors propose a frame-
work for target coverage based on the spatial decomposition
of the network and optimizing the solution for individual
partitions. Erdem and Sclaroff [14] maximize the visibility
in multi-camera networks based on radial sweep. In [15]
event based network re-configuration of cameras is presented,
even though positioning and reconfiguration is foreseen for
moving cameras, which is not in line with generic surveillance
scenarios, where the absolute position of cameras is generally
fixed. Similarly, a reconfiguration algorithm for continuous
tracking is proposed in [16]. However, the camera model
used in the paper may result too simplistic since it does not
consider various camera parameters that might vary based on
reconfiguration. Dieber et al. [17] propose an algorithm, which
self optimizes the positioning of mobile aerial cameras based
on a simple camera model, which assumes fixed coverage for
all the cameras. In this paper we propose an automatic camera
positioning tool, which aims at addressing both the global and
the local coverage issues, where by local we define critical
areas in the area like doors, windows, objects of interest.
The work stems from an early solution to the optimization
problem, presented in [18]. The main novel aspects of this
work consists of two main items. The first one is given by the
concept of quality of view for the camera model, by defining
the optimal region in the image plane for the observation
of specific objects and targets. Secondly, we also address
the issue of sensors reconfiguration after initial positioning,
achieved by adjusting the camera parameters on the basis of
the requirements imposed by the events occurring in the scene.

II. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimizer (PSO), developed by Kennedy
and Eberhart [19], is a robust stochastic search technique
based on the movement and intelligence of swarms. It has
demonstrated to be effective in solving complex non-linear
multidimensional discontinuous problems in a variety of fields
[20]. Unlike other multiple-agent optimization procedures such
as Genetic Algorithms (GA) [21], PSO is based on the
cooperation among the agents rather than their competition.
Three main advantages of the PSO over the GA can be iden-
tified. In the first place, PSO requires a reduced algorithmic
complexity, since it considers only one simple operator that is
the particles velocity updating, while the GA uses three genetic
operators and the best configuration among several options of
implementation needs to be chosen. Then, PSO parameters are
easier to calibrate and to manipulate than the GA ones, whose

optimal values must be evaluated among various operators.
Finally, PSO has a major ability to prevent the stagnation of
the optimization process than GA, thanks to a more significant
level of control of its parameters [22][23].

During PSO optimization procedure, the particles of the
swarm iteratively change their positions in the solution space,
searching for the best location. The solution space is defined
by selecting the parameters to be optimized and assigning
them the corresponding range of variation. Consequently, each
parameter models a particular dimension of the solution space,
and each location in the solution space corresponds to a
particular trial solution. The goodness of the trial solutions
is evaluated by means of a suitable fitness function, which
provides the link between the optimization algorithm and the
physical world.

A short pseudocode of the PSO algorithm is shown here-
after, and the corresponding equations to compute and update
the velocity of the particles are shown in (1) and (2), respec-
tively. In the algorithm, at every iteration i, F (j) represent
the current fitness value for particle j, pBest is the minimum
fitness value obtained so far for particle j, and gBest is the
overall global best among all the particles.

input: Number of Particles
input: Number of Iterations
InitializeParticles;
for i← 1 to Number of Iterations do

for j ← 1 to Number of Particles do
F(j) = Fitness(j);
if F (j) <pBest(j) then

pBest(j) ← F(j);
end

end
gBest = min(pBest(j));
for j ← 1 to Number of Particles do

CalculateVelocity(j);
UpdateVelocity(j);

end
end

Algorithm 1: Pseudocode of the PSO.

v(j) = v(j) + c1 ∗ rand() ∗ (pBest(j)− F (j)+
c2 ∗ rand() ∗ (gBest− F (j))

(1)

F (j) = F (j) + v(j) (2)

In (1) c1 and c2 are configuration parameters defined in
literature, and rand() is a random number defined in [0, 1].

III. THE PROPOSED APPROACH

In our approach we propose to optimize the coverage using
a global and a local model as an analytic function of the
camera parameters (positional degrees of freedom, pan, tilt
and zoom), where the global component is defined to take
the environment configuration into account, while the local
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component considers the position of objects of interest in the
scene.

Initially, global optimization is achieved finding a suitable
positioning of the sensors in the environment. Once the
position of the cameras have been fixed, in case of need
(e.g., presence of new obstacles, objects, changes in the
environment) reconfiguration is run in order to maximize the
local coverage.

A. Global coverage

In order to model global coverage, we have defined two
different conditions to be met: pixel density and quality of
view.

Pixel density refers to the fact that the information obtained
from an image or a video is dependent on the number of
pixels per surface area of the environment. Pixel density can be
modeled as a function of the field-of-view and the resolution
of the camera. In order to model the pixel density, we propose
to represent the camera as a point source and each pixel of
the CCD as the corresponding ray that emerges from the point
source. Accordingly, far away areas in the environment receive
less rays, corresponding to lower pixel density, whereas areas
closer to the camera will be intersected by a higher number
of rays, thus achieving higher resolution. An example about
the mapping of the grid in the floor plan to the camera CCD
is illustrated in Fig. 1.

Fig. 1. Pixel Mapping. Each area of the floor plan is captured by a number
of pixels that depends on the distance from the camera.

The quality of view of a target refers instead to the relation-
ship between feature detectability of the target and the distance
from the camera. Given a sensor resolution, the recognition of
an object will strongly depend on its distance from the camera:
if it is too distant details will be unintelligible; if it is too
close, the whole object might not be visible entirely due to
the limited field-of-view of the camera. To take into account
this parameter, we start from the pixel density information
defined in the previous paragraph, so as to model the visibility
constraint as a Gaussian distribution that is computed along
the ray emerging from the camera (see Fig. 2. The optimal
distance is located at the center of the Gaussian, and needs to
be specified according to the size and type of the objects to
be monitored (e.g., humans, cars), such that they are clearly
visible in case they enter the field-of-view of the camera.

Fig. 2. Quality of view. The optimal distance for observation depends on
the kind of objects to be monitored in the specific scene.

B. Local Coverage

As far as the local coverage is concerned, each area of inter-
est (doors, windows, statues, paintings, other objects, etc.) is
modeled as a negative exponential function of global coverage
at the local target location, and it is expressed as a function
normalized between zero and one, as shown in (3). As we
can see from the equation the function reaches its maximum
when the object is at the cell which has the maximum global
coverage. Further details about the parametrization of all the
above mentioned elements are provided in next sections.

Tk = 1− exp (−CG) (3)

C. Camera Model

The parameterization of the camera model, as discussed
above, includes both aspects of pixel density, and quality of
view.

All simulations we will present are carried out on the
ground plane, thus discarding the vertical dimension. From
the optimization point of view, the extension to the third
dimension is straightforward. However, it is worth noting that
in most scenarios the height term is less relevant, because it
is common sense to position the cameras either on the ceiling
or on the walls, and at the same height. This limits on the one
hand the accessibility to non authorized users, and on the other
hand it improves the visibility of the area to be monitored.

The quality of view of an object is modeled as a Gaussian
distribution, evaluated along the ray emerging from each pixel
of the camera, as shown in (4):

Q(di) =
1√
2πσ

exp

(
− (di −Dopt)2

2σ2

)
(4)

where di is the distance of the cell hit by the i-th ray, and
Dopt is the optimum distance, at which the objects of interest
has maximum quality of view. In the current scenario Dopt is
chosen as a constant.

In order to determine the areas that are visible in the map,
we have to define a metric of visibility for the quality of view
function. A given cell in a grid is said to be covered if the
total quality of view, as defined by summation of Q(di) of
individual rays that pass through cell, is greater that a certain
threshold. The threshold value has been empirically set to 0.5.
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As far as the reconfiguration is concerned, and considering
that we model the environment as a 2D plane, the camera
parameters we consider for reconfiguration are pan and zoom,
ignoring the tilt component. Pan is defined as the horizontal
orientation of the camera, and zoom is in general expressed as
a combination of two components, namely optical and digital
zoom.

Optical zoom corresponds to imposing a change in the
focal length of the camera. Using optical zoom enables us
to capture a picture from a near view without any change
in image quality. Mapping optical zoom into our model,
basically implies to shift the quality of view function by the
corresponding amount of zoom applied. For instance if the
optical zoom applied is of a factor N the (4) is modified as
in (5).

Q(di) =
1√
2πσ

exp

(
− (di −N ∗Dopt))2

2σ2

)
(5)

Digital zoom allows instead for a closer view on the target
by decreasing the image resolution on the object of interest
and resampling. This operation works reasonably well when
the object is within a limited distance from the camera and
becomes less effective as soon as the object of interest is
moves far away. In this second case, and in order to be
effective, digital zoom is to be used in combination or in
cascade with optical zoom.

In our model we simulate zoom by decreasing the field
of view of the camera, while keeping the number of rays
that correspond to pixels in the camera constant. The rays
intersecting the object of interest will then increase.

D. Algorithm

The proposed algorithm can be described in six steps, as
explained here after.

Step 1 - Determine the solution space. If the task at hand is
initial positioning of cameras, we need to identify the solution
space, consisting on the perimetral and internal walls, and
defined in terms of position and maximum orientation span.
In case the provided map also includes the presence of target
objects of interest, given the number of cameras, the algorithm
will optimize the position of the devices, by either focusing
more on global or local coverage depending on the input
requirements.

Similarly, if the task at hand is reconfiguration, the solution
space consists of all pan and zoom configuration allowed for
the devices, given their initial position.

Step 2 - Compute Global coverage. In order to calculate
the global coverage, the environment map is divided into a
grid of N × N pixels. The granularity of the grid is chosen
depending on the map scale, as well as on the desired accuracy
in positioning. The finer the grid, the more accurate will be
the result, at a cost of a higher computational complexity. For
each camera, the pixel density (i.e., the number of rays passing
through each cell of the grid) is computed. While estimating
the number of rays, obstructions caused by the obstacles are
also taken into account. The higher the number of rays that

cover a grid cell, the higher the pixel density, as calculated in
(6):

C(m,n) =
R∑
i=0

Q(di) (6)

where C(m,n) is the final quality of view metric obtained for
a specific cell, and m and n give the location of the cell in
the map. As can be seen from (6), this metric will weight the
quality of view function measured as in (4) considering the
number of rays that intersect the cell (R). Conversely, we can
say that the number of pixels occupied by a particular cell in
the video frame is directly proportional to the number of rays
that pass through that cell in the grid.

We then label the cell as “visible” only if the quality of view
is higher than a predefined threshold. The global coverage
is estimated as the number of visible cells divided by total
number cells in the grid (7).

CG =
Cellsvisible
Cellstotal

(7)

Step 3 - Include Local coverage. For a given camera position
the local coverage is given by (5). Accordingly, the overall
local coverage is given by (8):

CT =
1

T

T∑
k=0

Tk (8)

where T is the total number of target objects and Tk is the
target coverage given by (3) for the corresponding target.

Step 4 - Fitness Function. We need now to define a suitable
fitness function that will be used by the PSO algorithm as
a target for the optimization procedure. The proposed fitness
function combines both global and local coverage, and each
term can be weighted according to the users’ preferences and
the application requirements (9).

F (CG, CT ) = (1− CG) ∗ w + (1− CT ) ∗ (1− w) (9)

In (9), CG represents the global coverage, and CT models
the local (target) coverage; w is the weight used to balance
the trade-off between global and local coverage, respectively.
We can notice from (9) that, as soon as the global and local
coverage approach 1 (maximum coverage), the fitness function
converges to zero.

Step 5 - PSO. PSO is applied to the solution space defined in
Step 1. At each iteration, the particles position and velocity are
updated, until convergence. Convergence is usually achieved
when the fitness function reaches a minimum, or when a
termination criterion is fulfilled (e.g., maximum number of
iterations).

Step 6- Check for changes in the environment In case after
the initial camera deployment, changes in the environmental
conditions occur (thus requiring a reconfiguration of the net-
work) the algorithm can be run again and the optimization will
in this case only focus on the pan and zoom parameters.

E. Fitness function

The fitness function is the most critical element of the
whole algorithm, as it determines the behavior of the particle
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swarm and also the convergence characteristics of the PSO
algorithm. Typically an ideal fitness function should have
following characteristics

• it should get minimized when the intended output is
maximized;

• minimization should be applicable even if only one of
the involved parameters is varied while keeping all other
parameters constant;

• each and every parameter that is involved in the optimiza-
tion process should get due representation in the fitness
function.

In line with the above requirements our fitness function has
been formulated in (9). As can be seen, the fitness function
is the weighted summation of local and global coverage. The
overall algorithm and the computation of the fitness function
is shown by pseudo code in Algorithm 2.

input : Map I divided into N ×M cells of equal
size

input : Camera Resolution
output: Fitness Value

Initialize Camera Positions from PSO;
Initiate number of rays from camera based on video
resolution;

QOV ; % Quality of View of the Cell

QOL ; % Intensity of light perceived by the cell

goodCells = 0 ; % Number of cells with good
coverage
C = 0; % Obtained Coverage for each cell

for i← 1 to N do
for j ← 1 to M do

pixelDensity ←RayIntersect(i, j);
QOV ← QualityOfView(i, j);
QOL ←LightIntensity ; % Constant
C(i, j) = pixelDensity ∗QOV ∗QOL;
if C(i, j) >= Cth then

goodCells ++ ;
end

end
end

Cg ← goodCells
N∗M ; % Compute Global Coverage

k = T ;
while k 6= ∅ do

% Compute Target Coverage
T(k) = Gaussian(D,C (m,n),QOL);
CT = CT + T(k)

T ;
k - - ;

end
% The final output is a combination of Global and

Local coverage with weights wG and wT

F (CG,CT ) ← w ∗ (1− CG) + (1− w) ∗ (1− CT );
Return F (CG, CT );

Algorithm 2: Fitness Calculation

IV. SCENARIOS

Without loss of generality and considering that cameras
are usually positioned at the same height, simulations are
performed in two dimensions, thus discarding the height
coordinate. Moreover, the number of rays corresponding to
the pixels is downsampled by a factor 4, in order to make the
computational complexity tractable. Considering a standard
camera resolution of 640x480 pixels, this implies using 160
rays emitted by each camera, which still represents a fairly
dense sampling of the space. The field-of-view is fixed in
the range between 5 and 90 degrees and optimum distance
for quality of view is fixed at 40 pixels in the map, which
corresponds to about 10 meters in the real environment.

In order to assess the validity of our approach, we tested
the algorithm on three different maps. As far as the simulation
procedure is concerned, we initially determine the cameras
position on the map, assuming that no object is present. This is
equivalent to optimizing only with respect to global coverage.

After the initial setup, ten different objects of interest are
placed in the map. At this point the algorithm is required to re-
align the cameras, keeping the positioning of the sensors fixed.
This implies that in determining the new camera parameters,
only local coverage is considered, thus setting w = 0.

The environment maps used for the testing are shown in the
left column of respective Fig. 4-6. Cameras can be positioned
along internal and perimeter walls of the environment. In the
picture we also show the positioning of the targets that will be
introduced after the initial setup of the camera infrastructure
is found.

V. EXPERIMENTAL RESULTS

As explained in Section IV, we will present the results ob-
tained in the selected scenarios by first illustrating the quality
of the global coverage achieved in the initial positioning, and
then focusing on reconfiguration for local (target) coverage.

Initially, the environment in which the cameras have to be
deployed, do not include targets. Hence, the goal of initial
placement is global coverage maximization. In order to do so,
we assume that initially cameras are zoomed out (maximum
field of view). At this stage, the aim of the algorithm is to
find the best position to achieve optimum global coverage.
In the maps that will be presented, different colors are used
to illustrate the quality of the coverage in over the entire
map. For global coverage, areas with maximum coverage (i.e.
when C(m,n) is greater than 100) are represented in white,
and areas which fall in the range 10 <= C(m,n) < 100
are represented in green. Blue indicates areas, which satisfy
0.5 <= C(m,n) < 10. Red areas represent zones of the
environment, which are visible to cameras but fall below our
visibility threshold of 0.5, and black areas are not visible to
cameras because they fall out of the field-of-view, or due to
the presence of obstacles.

It is worth mentioning that the coverage will in general
hardly reach 100%, since the coverage function decreases with
the distance of the pixel from the camera position. As an
example, to show the effectiveness of the global coverage
optimization we have applied our algorithm on a simple map,
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(a) (b) (c)

Fig. 3. Global coverage maximization. Sample map (a), optimal coverage (60%), proposed method (52%).

shown in Fig. 3, for which the optimal positioning (about 60%)
is known. Through our simulation and after 50 iterations, we
could achieve 52%, demonstrating that PSO turns out as a
good alternative to deterministic algorithms.

After the initial positioning is completed, targets are ran-
domly distributed over the map. The goal of reconfiguration
is to maximize target coverage; however, in most surveillance
scenarios camera deployment is fixed and does not allow
repositioning after installation, unless PTZ cameras are used.
Hence, according to our model the only reconfigurable param-
eters are pan, and zoom. The algorithm is re-run considering
the absolute position of the cameras fixed, thus optimizing
target coverage. The input maps used for the three test cases
are shown in Fig. 4-6. Initial positioning is performed with
the zoom set to 1x, while pan is a free parameter that can
be adjusted to obtain maximum coverage. As far as the first
map is considered, the coverage level obtained after the initial
placement of cameras is shown in Fig. 4(b). In the figure, the
environment is overlapped for convenience with the output
coverage map obtained from the algorithm. The percentages
of global coverage CG are shown in Table I.

However, we can notice that although the overall coverage
percentage is good, this is not optimized when the targets are
deployed, and reconfiguration is required.

TABLE I
GLOBAL AN LOCAL (TARGET) COVERAGE FOR THE THREE MAPS USED

FOR TESTING.

Map Config. CG Green Blue Red Black CT

1 Initial 0.51 5 1 3 0 0.60
Final 0.50 5 3 1 1 0.87

2 Initial 0.54 2 1 5 1 0.58
Final 0.44 7 1 0 1 0.78

3 Initial 0.51 2 3 3 2 0.54
Final 0.48 7 1 0 2 0.80

As can be seen from the figures in Table I and as depicted in
Fig. 4(c), after reconfiguration, CT has increased quantitatively
and qualitatively. In fact, initially three targets are left out
with average coverage of 0.60, while after reconfiguration the
average coverage has increased to 0.87 by almost 50% with
only 2 targets left out.

In a similar fashion, we have conducted the the initial
positioning and the re-alignment of the cameras also on the
remaining two maps. The obtained maps after initial global
coverage optimization are depicted in Fig. 5(b) and Fig. 6(b),
respectively. Similarly, the final camera setup after recon-
figuration is shown in Fig. 5(c) and Fig. 6(c), respectively.
Similarly to the previous experiment, numerical results are
presented in Table I.

From the experiments it is reasonable to say that the
performance of the algorithm is consistent across different
environments, maintaining in all cases more than 50% im-
provement in the target coverage.

VI. CONCLUSIONS

In this paper we have proposed a tool for automatic po-
sitioning and reconfiguration in multi-camera networks using
the PSO algorithm. The algorithm aims at dealing with both
global and local coverage, that can be set with tunable weights.
The coverage is defined as the fulfillment of different quality
parameters, including pixel density, quality of view, and the
presence of obstacles. The experimental validation carried out
on different environmental setups demonstrate the efficiency
of the algorithm in achieving a good coverage of the observed
space, also in presence of obstacles and targets.
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