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Abstract- Nowadays, in the wireless networks the number of users 
and the transferred packet switched data speed are increasing 
dramatically. Due to the demands and the market competition the 
services are becoming more and more complex. 

The efficient network dimensioning and configuration highly 
depends on the underlying mathematical model of user 
distribution and expected data transfer level. In this paper we 
propose a Markov Movement-Model Creator Framework 
(MMCF) for setting up a model based on the network parameters 
and requirements with optimal number of states.  

Firstly we describe a method that  yields an abstract model of the 
mobile network and the node, and we introduce a simple 
classifying method that defines the necessary parameters of the 
exact Markov movement model. The mathematical solutions for 
determining these parameters are also presented in the paper. 
Finally we analyze the accuracy, complexity and usability of the 
proposed MMCF and an analytical comparison is made with 
other mobility models, the comparison is proved by simulations. 
The movement model created with the framework helps the 
network operators in setting up an effective authorization, fraud 
detection system or solving self-configuration issues.  

Index Terms-Movement model; Framework; Markov; Accuracy; 
Complexity; User movements; 

I. INTRODUCTION 
The number of users and the amount of transferred data is 

increasing dynamically and substantially in the mobile 
networks. There are also more and more new technologies, 
standards (for example HSXPA-High Speed Packet Data, LTE-
Long Term Evolution [1]), and future solutions [2][11] to 
support efficient mobility. Hence the network providers and 
operators face more and more complex management systems 
and operation tasks. Wireless multimedia and other services 
have many requirements and the resources in the network are 
often expensive and limited. Nowadays the operation tasks 
have some critical parts, i.e. guaranteeing the security of user-
related information and data, providing QoS (Quality of 
Service), location management and maintaining the service 
levels in the network.1 

In recent years people increasingly rely on wireless devices 
in their daily life for very sensitive tasks such as shopping and 
bank transactions. Although many authentication protocols are 
used in wireless, mobile networks, it is still a challenging task  
to design a fully secure mobile environment because of the 
open radio transmission environment and the vulnerability of 
mobile devices. Anomaly-based detection as part of the 
detection-based techniques creates normal profiles of system 
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states or user behaviours, stores and periodically compares 
them with the current activities. If significant deviation is 
detected, the network system raises an alarm. A user profile is 
very difficult to build up, but it could largely increase the 
security of a wireless system [4][5]. Movement mobility 
models and location prediction take significant parts in creating 
user profiles as well.  

The previously mentioned fast evolution of network 
applications and services require skilled individuals to install, 
configure and maintain these systems. Other possibility is to 
introduce mechanisms and procedures, which enable a system 
to reconfigure, heal or install itself [6]. These systems shall be 
capable of modifying their own behaviour and adapting 
environmental changes based on performance measures. A well 
developed movement mobility model can be used as a proper 
trigger to rebuild a cell boundary in 4G LTE (Long Term 
Evolution) network, recognize radio interface problem of 
mobile access points [1]. 

Different areas have been introduced above, where mobility 
models should be used, but the scope of this research area is far 
more wider nowadays. The discussion of individual or group 
mobility modelling have been addressed in many papers in the 
literature [5][7][8][9][10][12][23]. Beside other approaches a 
few propositions are using Markov model as a sophisticated 
mathematical solution [8][9][10][13] 

As highlighted above an efficient mobility movement 
model is necessary for network providers nowadays. In this 
paper our aim is to give general design guidelines to create 
Markov movement mobility models with optimal number of 
states and proper accuracy according to the network and user 
movement parameters. 

The structure of the paper is the following. In Section II we 
give a brief on the mobility models. The model for the network 
and the mobile node with its mobility parameters are 
introduced in Section III.  This is followed with the definitions 
of classifying system for Markov movement models. In Section 
V the Markov Movement model Creator Frameworks is 
introduced and analysed, while Markov model examples are 
derived in Section VI. Finally simulation and numerical results 
are given in Section VII. 

II. RELATED WORK 
Different mobility models have been proposed in the 

literature to cope with user mobility in different wireless and 
mobile networks (e.g. cellular networks, ad hoc networks etc.). 
In this section we give a short overview of mobility models.  

In the traditional Random Walk Mobility Model the node 
moves from its current location to a new contiguous location 
by randomly choosing a direction and a speed. The Random 
Walk Model defines user movement from one position to the 
next with randomly selected speed and direction. Many 
derivatives of the Random Walk mobility model have been 



 

 

developed including one, two, three - and d-dimensional walks 
[20].  

A flexible mobility framework for hybrid motion patterns is 
the Mobility Vector model [7]. A mobility vector expresses the 
mobility of a node as the sum of two sub-vectors: the Base 
Vector (BV)  ,v vB bx by


and the Deviation Vector (DV) 

 ,v vV vx vy


. The BV defines the major direction and velocity 
of the node while the DV stores the mobility deviation from the 
base vector. The mobility vector M


 is expressed as 

M B V 


 where   is an acceleration factor.  
The location history of a mobile user is exploited in High-

Order Markov Model that is described in [5][8]. The model 
focuses on the identification of a group of especially harmful 
internal attackers.  The order-o Markov predictor assumes that 
the location can be predicted from the current context, which is 
the sequence of the previous o most recent characters in the 
location history. 

F. Lassabe et al. [9] present a mobility model adapted to the 
logging of mobile positioning or to the tracking of mobiles. 
This model is based on the All-Kth Markov Model. They 
present two predictive models from the AKMM: the K-to-1 
past Model and its improvement, the K-to-1 past* Model. The 
model defines a Markov state-space constructed of the possible 
user trajectories. Each state describes a trajectory section of 1 
to K previous locations. The model predicts future locations 
based on the possibilities of each transition between states. A 
threshold value is used to select a group of locations which are 
likely to be visited in the next step, so a handoff procedure can 
be prepared for each one.  

Shiang-Chun Liou et al present a mobility model with two-
tier cell structure in [14]. The user trajectory is defined based 
on the logical function of velocity, direction, acceleration and 
position. This logical function is converted to a model that uses 
three preceding geographical locations to estimate the fourth 
parameter. The location prediction with this estimation enables 
the network operator to make preparations for a future handoff 
in the group of cells that are likely to be crossed. Two-tier cell 
structure is used to decrease the waste of bandwidth due to 
reserved resources of a future handoff. The two tiers can be 
described in a mobile cell as a function of distance from the 
base station (first tier). While the mobile node is close to the 
base station, it is unlikely that even with a sudden trajectory 
modification the mobile node steps into another cell. On the 
other hand, if the mobile node is more close to the cell 
boundary (second tier), the possibility of a handoff is 
increasing.  

A ring-based mobility prediction and resource reservation 
algorithm is proposed in [10]. A cell cluster is divided into 
three cell groups, where the first group is equivalent to the 
central cell of the cluster, the second and third groups consist 
of the cells that are located in the first and second cell ring 
around the central cell, respectively. The pre-handoff resource 
reservation is derived from the possibilities of the event that the 
mobile node steps from the central cell into a cell of the second 
or third cell-group. This approach can be considered as the 
generalization of the two-tier cell structure described in [14] to 
an inter-cell level. 

W. Ma et al propose a user mobility pattern (UMP) based 
model (Mobility Pattern-Based Scheme – MPBS) in [16]. The 
MPBS is a general method to follow users in the network 

without expensive paging operations if the user meets some 
requirements. The model defines a personal mobility pattern 
list which consists of a sequence of register areas (RA, i.e. 
mobile cells), and a time-sequence of the trajectory on the RA 
sequence. The time-sequence is built up by the timestamps of 
handoffs between RAs, and the dwell times for each RA. Based 
on the time- and RA-sequence, an exact timeline can be 
defined which is followed by the user. The operator does not 
need to page the user in different RAs because the timeline 
shows which RA is the user located in at the actual timestamp. 
Naturally, the ideal user who always follows the timeline does 
not exist, but the time-sequence and RA-sequence provide 
information even if the actual timeline differs from the pre-
recorded one. A categorization is presented with four 
categories where the first category is the ideal user with a 
timeline-compatible trajectory. The second category involves 
users who are following the RA-sequence but with time delays 
or hurries, that is the network operator can find the user in the 
remaining RA set after the last paging or location update. Users 
who are located in the appropriate RA set, but are not 
following the sequence are in the third category. The fourth 
category is for the users who are located out of their UMPs, 
that is their actual trajectories are not close the pre-recorded 
ones.  

III. MODELLING THE NETWORK 
In this section we collect the most significant properties and 

parameters of the mobile network that can describe an abstract 
network model.  
A. Basic notations and descriptions 

We define the basic notations that we use is the article. The 
basic model will resemble to the abstract one in our previous 
work [16][17]. 

- The specific network with all its parameters is denoted 
with N. 

- The Mobile Nodes (MN, alias mobiles, moving entities, 
users) are the mobile equipments that want to 
communicate with other mobile nodes or fixed partners 
and move between the radio access points. The number 
of users (number of MNs) in the model is denoted by 
nu. 

- There are Mobility Access Points (MAP, alias cells), 
these are the only entities that are capable of 
communicating with the mobile nodes via radio 
interface. All mobility access points have their own 
geographical areas. While the MN moves in an area, it 
is always connected to the owner of the area. The 
number of mobility access points in the model is 
denoted by nm. 

- The user can connect to MAPs with handovers from 
the neighbouring MAPs, each user is connected to only 
one MAP at a time. The neighbour MAPs could use 
even different access technologies than the current 
MAP and they could be located in the very same 
geographical place as well, the model does not require 
single access technology in the whole network. The 
number of neighbour MAPs of MAPi is denoted by ni

nm. 

- There are other network elements which provide the 
communication in the core network behind the MAPs. 
We denote these as Network Elements (NE).  



 

 

- Network trace is an abstraction of the network 
operation log, it contains 4-tuples of a timestamp, user 
ID, MAP ID and network event. A trace entry could 
mean for example that the selected user connected with 
handover to the MAP at the given timestamp. The 
network trace contains all information of the mobility 
of the users in the network. 

B. Deriving parameters of a given network 
A way to describe a network is to observe the network trace. 

We introduce a method to process the network traces to 
calculate typical parameters of the mobility. The trace entry 
describes the events in a cellular network. An event might be a 
state change of the given user (e.g. mobile node is in idle status, 
voice call or data transfer is set up, cell boundary crossing). 
The logical location of the event is determined by the MAP ID 
where the user is located at the timestamp of the event. (Table 
1). The events are recorded in the network management 
system’s logs, thus the information can be extracted from the 
management system of cellular mobile networks.  

TABLE 1. AN EXAMPLE OF WIRELESS NETWORK MANAGEMENT SYSTEM’S LOG 

Timestamp User ID MAP id State or Event 
...    

09:21:43:12 41 4951 Idle 
09:21:43:12 41 4957 Idle 
09:21:43:12 41 4957 Voice call 
09:21:43:12 19 5341 Data Call/Traffic class2 
09:21:43:12 84 7120 Idle 
09:21:43:12 19 5348 Data Call/Traffic class2 
09:21:43:12 19 5348 Idle 

...    
 

The aim is to derive the parameters of the user mobility, 
therefore we should pick the relevant entries from the network 
trace. In our work we focused on location changes of users, 
handovers, and initializing or receiving calls. These events are 
observed during a time interval that is considered to be the 
reference interval for deriving model parameters.  

We assumed that the user distribution in the network is 
given at the first moment of the reference interval. We created 
a discrete sample series where samples are taken at Δt time 
intervals, that is a location state is assigned to every users per 
Δt time. Δt is defined system-wide as the minimum of the time 
intervals elapsed between two events registered to the same 
user. That is the sample frequency is set to the “fastest” user in 
the network. This ensures that every user event and all state 
reports are processed. With this sampling a MAP ID and a state 
can be determined to every user in every timeslot. The 
sampling results a nu x nT sized P matrix, where nT denotes the 
number of timeslots, and nu the number of users in the model. 
P matrix stores the MAP IDs and state of each user in each 
timeslot.  

The relative frequency of any state can be determined based 
on P matrix, for instance the relative frequency of receiving 
voice call in a MAP, or even the handover rate between two 
different MAPs. We defined the S set, which contains all 
possible states and events appearing in the logs. The important 
ones are the following: 

 -receiving voice call 
 -receiving data call 
 -initialling voice call 
 -initialling data call 

 -fall back into idle status 
 
Depending on the detail of the logs and on the requirements 

more or different states, events could be investigated as well. 
For example if more data traffic classes are determined based 
on the logs, then they could also be differentiated. But for us 
the above mentioned states are sufficient in the model. 

To determine the relative frequencies of states in a MAP, 
the state must occur frequently enough, otherwise it is 
neglected. Let us define the nu x nm Cs=[cs

i,j] matrix, where cs
i,j, 

Ss , is the occurrence of s state with user i, in MAP j from 
the P matrix.  The average occurrence of s state in the network 
is: 

mu
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The parameter cs can be used as a main requirement in 
order to create a valid model based on the network description. 
So the network must be monitored for sufficient time before we 
create a model from it.  

Parameter εc denotes the minimal occurrence of a state for 
acceptance, if the occurrence is smaller than εc, the rate will be 
0. Based on this the relative frequency matrix of a state can be 
determined as the following: 
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In fact ds
i,j is the probability of getting into the state s 

happens to user i in MAP j. 

We determine the rate of receiving a call with μ. It can be 
determined for every MN in every MAP from the Dμ=[μi,j], but 
the average value is also calculable in similar manner described 
above: 

mu

i j
ji

nn 


 

,
   (3) 

Let us have the corresponding network graph given with its 
weighted adjacency matrix: A.  

Let us assume that the aggregated behaviour of the Mobile 
Nodes can be modelled with a finite state continuous Markov 
chain (the handover or call arrival rate is a Poisson process 
with various intensity parameters as in many works, e.g. [18]). 
The chain is given by a rate matrix BQ = [bij]. In this matrix, all 
the possible MAP-s are listed so the matrix will be a nm x nm 
matrix where each element bij denotes how frequent the 
movement of the mobile is from MAPi → MAPj . If an MA is 
not a MAP then there are 0 values in its row and column (i.e. 
we treat it the same way that the MN cannot or never attaches 
to it). From the rate matrix the transition matrix BΠ can be 
determined easily. We assume that the matrix BΠ, without the 
non-MAP nodes, is practically irreducible and aperiodic that 
implies that the chain is stable and there exists a stationary 
distribution. This will be denoted by a density vector b. Other 
B matrices can be determined for a single user, user group or 
all the users as well and they can be assigned to a state in the 
network also. According these assumptions, for example Bi,s

Π is 
the transition probability matrix of user i, when it is in state s. 
Another network describing parameter, which is useful during 



 

 

the modeling, is the number of visited MAPs by the user or 
users. That is calculated as follows: 

)1(1  Bsignnvm  (4) 

A general network describing parameter, the weighted 
average of visited MAPs is: 

u
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 


)1(
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The other parameter is the average number of neighbouring 
MAs that can be accessed via a wire from a given node: wnm. It 
should be also weighted with the probability density of the MN. 

a
nm n

Bsignbw 1))(( 
   (6) 

When talking about an existing network, the parameters 
described in this section can be calculated easily, producing the 
base of the model.    

 

IV. CLASSIFYING MARKOV MOVEMENT MODELS  
In this section, a simple classification of motion models is 

presented. The aim is to compare different models easily and to 
analyse them in different network environments. The purpose 
is to determine the attributes of the individual models, the level, 
the depth and the resolution and hence the models can be rated 
in a general marking system. 

We used a discrete-time, finite-state and infinite-state 
Markov-chain to model the mobile movement. 

The classification system handles simple, general Markov-
chain based mobility models, in that a user or users can be 
located in different Markov states. MAP or group of MAPs (or 
merged MAPs based on a special relationship) is mapped to a 
state or more states of the Markov-chain model. Let us define 
X(t) as a random variable, which  represents the movement 
state of a mobile terminal during timeslot t. The transition 
probabilities of the Markov model can be determined from the 
describing parameters of the network. Let us assume that the 
Markov chain is always irreducible and aperiodic, so the 
stationary user distribution is determinable.  

Two main types of these Markov mobility models are 
distinguished, the User-Centralized and the Access Point 
Centralized model. The latter one is further separated into two 
subtypes. Figure 1 depicts this main classification. 

 
Fig. 1 The general classifying of the Markov mobility models 

In the next subsection these groups of models are explained. 

 

A. User-centralized Markov models (UCM) 
A user or a group of users from the network is selected for 

observation in user-centralized Markov models. The users’ 
movement behaviour is modelled with a Markov model. Only 
the MAPs which are visited by the selected user(s) are taken 
into account, other MAPs and other users do not affect the 
structure of the movement model. 

 
Fig. 2  The creation of user-centralized models  

Figure 2 shows how to represent a user centralized model. 
The chosen user in the example visits only the MAPs between 
ID 1 and ID 5. Each MAP is mapped into one standalone 
Markov state. This is a very simple model, where the stationary 
distribution of the Markov chain is equal to density vector b as 
the stationary distribution of BΠ transition matrix.  

This usage of this model is reasonable, if the behaviour of 
the user is to be investigated, or a user profile is needed for 
example for fraud detection. 

 Most of the Markov mobility models in the literature 
belong to this class, for example [5], [9]. 

B. Access Point Centralized Markov models (ACM) 
The access point-centralized Markov models can be used 

when the user distribution in a selected MAP or group of 
MAPs must be determined. Instead of modelling the behaviour 
of an individual user, a MAP and its environment is to be 
observed. In these cases a MAP or more MAPs and their 
defined neighbours are selected according to a requirement. 
The users who stepped into the area of the observed MAPs are 
investigated and their distribution is used to build a model for 
prediction. 

Two guidelines exist:  

 -In the structured model, for a predefined reason 
certain MAPs are grouped  together, this creating a regular 
structure in the model.  

 -a MAP or MAPs are simply mapped into a state of 
Markov model. This method is called unstructured model.  

Details and examples are presented in the next sub-sections. 

Structured Markov Models (ACSM)  
In the structured Markov model groups of MAPs are defined. 

The grouping can be derived from user behaviour, 
geographical specialty or even from network requirements. 
Figure 3 shows examples for structured solutions, the Ring 
Model (RM) [10] and the M3 model [13]. 

In the RM (Figure 3.b) the ring consists of cells surrounding 
a central cell. The concept is to simplify the calculations, if we 



 

 

are interested only in the number of users arriving to a given 
ring, or leaving a given ring during a time period. Internal 
movements are disregarded [10]. 

The M3 model handles users in four different Markov states, 
the right-area, left-area, stay and outside state. More details 
about the M3 model are given in Section VI.A [13]. 

 
Fig. 3.a The representation of access point-centralized/structured models, M3 

model [13]  

 
Fig. 3.b The representation of access point-centralized/structured models, Ring 

model [10]  

Let us introduce the theoretical error ET, which is the sum 
of error percentages per MAP in prediction. In detail during the 
prediction, if we want to determine the number of users in the 
MAPs of the group (for example the right-area state in M3, or 
the first ring in RM), then the predicted number of the users for 
the group is distributed uniformly between the MAPs in the 
group. Obviously this step brings a theoretical error (ET) into 
the prediction process. For example in the left area state of the 
M3 model there are MAP1, MAP2 handled together as a group. 
We know that in the left area state 100 users move.  For lack of 
further information 50-50 users are predicted in MAP1, MAP2. 
Actually there is 25 users in MAP1 and 75 in MAP2. In this 
case the ET is 50% in MAP1, MAP2 as well.  

Unstructured Markov Models (ACSM)  
If we try to predict the user’s distribution in a city having 

irregular, dense road system, or in a big park where people are 
able to move around then, the handover intensities could differ 
thus the calculations above could produce errors. From this 
point of view the best way is if we represent all of neighbour 
MAPs as a separated Markov state, so this results the 
Unstructured Markov Model. The results from determined 
stationary distribution are easy to map back, into the MAPs. 

 
Fig. 4 Access point-centralized/Unstructured/M7 model [13]  

Figure 4 depicts the methodology of unstructured model 
representation. The Markov chain in Figure 4 is similar to M3 
model. In this M7 model all of neighbour MAPs are mapped 
into Markov-chain states. The M7 and generalized Mn model 
described later, in 'Markov model examples' section. 
C. Attributes  

The example models introduced above are the simplest 
ones in their class. In this section we determine attributes to the 
classifying system which describe important parameters of the 
Markov models. Supported by these attributes, more complex, 
more sophisticated models could be classified or constructed 
for solving more difficult problems. 

The examples mentioned in the introduction of this section 
used present only one attribute at a time to keep the simplicity 
and distinctness. Of course the attributes could be used together 
in any number and combination. 

Level of the model  
As mentioned in Section III.B, BΠ could be determined 

from the P matrix for every state as well. There are two main 
reasons to handle the states differently: 

 -the users behave differently in certain states, 

 -the users in distinct states must be modelled in a 
different way (for example different CAC is used for the users 
in voice call, than the users downloading data from the 
internet). 

In these cases the BΠ must be calculated for different states. 
This diversity in the model is represented by 'levels' or 
'dimension' (Figure 5). The transition rates between the levels 
show the intensity state changes in the current MAPs. This 
model is similar to the one described in [19]. 

 
Fig. 5 Attributes in Markov mobility model classifying: Example for meaning 

of ‘level’ 



 

 

The number of levels in the model is determined with nL. A 
level is denoted with L, the levels in the model are marked with 
L vector, where ],...,[ 1 LnLLL  . A specific L is based on its Bs

Π 
matrix. 

Resolution of the model  
There is a possibility to merge adjacent MAPs together, if 

those MAPs are not needed to be handled separately. If 
outgoing predictions of users in two adjacent MAPs match 
within a certain limit, the two adjacent MAPs could be merged 
together and handled henceforward as a new major MAP. By 
this the complexity of the model can be decreased. Figure 6 
shows an example, in which the 6 neighbour MAPs of an 
access point-centralized, unstructured model, are merged into 3 
new major MAPs. 

 
Fig. 6 Attributes in Markov mobility model classifying: Example for meaning 

of ‘resolution’ 

‘Grouping’ explained in Section IV.B.1 (structured models) 
is not equal to ‘merging’ mentioned here. As the result of 
‘merging’ new, major MAPs are created instead of the initial 
ones.  A ‘grouping’ organizes the MAPs into a structure.  

Every level could have its own resolution. The resolution is 
denoted with R, },...,{ 1 MnGGR   where G is a set of merged 
MAPs, and nM the number of new MAPs after merging. The R 
is described with a general rate, nm:nM. The vector 

],...,[ 1 LnRRR    contains the resolution rules to every level. 

Memory of the model  
The application of the recent user locations has a crucial  

importance in a variable, directional user motion. Neglecting 
the preceding transition series of a user in the MAP results that 
the estimation could work with a theoretical error (ET, like in 
M3 and RM model) [13].  

It is very important that the usage of this type of ‘memory’ 
does not violate the Markovian property, the memorylessness 
is still true for the Markov model created by the MMCF. 

 We present a simple example which shows the effect 
of depth or memory in the model in our previous work [13]. If 
we consider the two roads shown is Figure 7.b, the accuracy of 
the transition probability estimations is higher when the model 
knows where the users come from than an estimation which 
cannot distinguish the users on the two roads (Figure 7.a.). 

 
Fig. 7 User prediction methods 

 a. model without using memory, unknown where is the users come from 
b. model with memory, the previous steps of the users taken in account 

The results show that our proposition of using memory in a 
mobility model significantly increases the accuracy of the 
model in cases when the ID distribution in an arbitrary cell has 
high variance, or has periodicity without stationary distribution. 

Therefore, an o-depth could be determined for our Markov 
models similar like in [5]. In our model, sequence of MAP IDs 
can be assigned to every MAP not to a user; ID1, ID2, . . ., 
IDi, . . . , where IDi denotes the identity of the MAP visited by 
the mobile before it stepped into the current MAP. The last 
element of the sequence is always the current MAP. The future 
locations of the mobile in most of the cases are correlated with 
its movement history. The probability that the user moves to a 
particular MAP depends on the location of the current cell and 
a list of cells recently visited. If only the current cell is taken 
into account, like in previous examples, the depth is 1. 

For every MAP different depth could be assigned, which 
determines the length of the recently visited MAP ID list 
before the current MAP. Since a MAP could be reached on 
different paths by the users, therefore a more specific MAP ID 
list could belong to a MAP, and for this reason more Markov 
state assigned to a MAP, see Figure 9. 

 
Fig. 9 Example for meaning 'memory', 2nd model [9] 

Thus ],...,[ 1 mnooO   matrix denotes the depth of the model 
for a level, where oi is the applied sequence length of previous 
visited MAPs to MAPi. Generally the nm x nL O matrix 
( ],...,[ 1 LnOOO  ) belongs to a Markov model.  

The weighted average depth for a model is the following: 
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Complexity 
The complexity of the model could be denoted by the 

number of states. Following the determining of attributes the 
number of states is: 





Ll

w
vnm

l
M

l
m

l
states

O
l

wnnn /  (8) 

D. Performance analysis 
In this section we present a simple performance analysis 

between the Markov models introduced in the previous 
sections. The models are examined in different network 
environments. In every scenario the analysis is performed on a 
cluster of 7 hexagonal radio cells (Figure 10). In our 
interpretation the performance of the mentioned Markov 
models depends on the theoretical error (ET) and the number of 
states (nstates), in this case a special theoretical cost 
CMM=f(nstates,ET). The lower this cost is, the better the 
performance. The computational capacity increases, hence the 
steady state probabilities determination of Markov models with 
more states are less difficult. But the theoretical error in 
prediction is more important. For these reasons we calculate 
the theoretical cost this way: 

2)1(log TstatesMM EnC    (9) 
where nstates is the number of states and ET is the theoretical 

error. In previous sections, in case of RM, M3 and o-th models 
the ET was introduced, which is the sum of error percentages 
per MAP in prediction. 

The following models were examined in the performance 
analysis: 

-RM: The model introduced in Section IV.B.1 (Figure 3.b) 
with the difference that only one ring is around the central 
MAP, so only states S, R1, and O exist. The predicted number 
of the users in R1 state is distributed uniformly between the 
MAP1-MAP6. 

-M3: Also introduced in Section IV.B.1 (Figure 3.a.). 
MAP2, MAP3 and MAP7 belong to the left-area state (L). The 
right-area state (R) includes MAP4, MAP5, and MAP6.  

-M7: The model presented in Section IV.B.2 (Figure 4). 
-2nd: The extension of model M7, the memory is increased 

to 2. It is similar to 2nd model in Figure 9.  
-3D: This is a two-level model resulted by duplicating the 

Markov chains of the M7 model. The first level represents the 
users who establish data connections, while the second level 
represents the mobile users initiating and receiving voice calls.   

 
We investigated special network environments (scenarios) 

to highlight the advantages and disadvantages of each model. 
The different network scenarios are shown in Figure 10. These 
are the following cases: 

 - Scenario a.: 'A park, uniform user distribution' 
 - Scenario b.: 'Simple road'  
 - Scenario c.: 'Highway to city' 
 - Scenario d.: 'Directional motion' 
 - Scenario e.: 'Differentiated users' 

 
Fig. 10 The network scenarios for performance analysis 

 

TABLE 2. THE RESULT OF PERFORMANCE ANALYSIS 

CMM  a. b. c. d. e. 

RM 
(nstates=3) 

0,47 2,55 1,52 2,55 2,55 

M3 
(nstates=4) 

0,6 3,2 0,6 3,2 3,2 

M7 
(nstates=8) 

0,9 0,9 0,9 3,6 3,6 

2nd  
(nstates=49) 

1,69 1,69 1,69 1,69 6,76 

3D 
(nstates=16) 

1,2 1,2 1,2 4,8 1,2 

 
Table 2 shows the result of the analysis. CMM was 

calculated in every scenarios for every model. The highlighted 
values are the best, the boldfaced the worst results for the 
current scenario.  

Scenario a. represents a simple park, where the 
distribution of the users is uniform so thus the ET is 0 in each 
model. In this case the best performance belongs to RM, 
because it has the minimum number of states. 
 In scenario b. a road crosses the examined area. The 
users are distributed uniformly on the road. In the left state of 
the M3 model, the predicted distribution of the users in 33,3% 
in each MAP group (MAP7, MAP 2, MAP 3), while all of them 
stay in M7. Therefore the model has 133,3% theoretical error. 
The theoretical error of the RM model can be determined the 
same way. M7, 2nd and 3D make no error. The optimal choice 
is M7 in this situation.  
 The scenario c. presents a morning, rush-hour traffic 
situation towards the city. On the road the users are distributed 
uniformly. The road to the city located fully in the left-area 
state of the M3, and the road from the city is in the right-area 
state. Because these states are handled separately there is no 
theoretical error. However the RM based prediction distribute 
the users uniformly between the 6 neighbor MAPs. 
 Scenario d. is very similar to the example presented in 
Section IV.B.3.3. The users from MAP2 move to MAP4 via 
MAP1. The other path is MAP7-MAP1-MAP5. 50% of users 
step out from MAP1 to MAP2, the other 50% to MAP5. In the 
measured time-slot all of the users are in MAP1, on the road 
below, so the next step is MAP5. Because only the 2nd model 



 

 

takes into account the previous step, all other model have the 
theoretical error.  
  Scenario e. is a special case. The mobile users in the 
office generate data traffic, in the park there are rather voice 
calls. At current t timeslot in MAP1 the park is empty, users 
moves only in the building. In this case 3D model makes no 
error as opposed to other models.  
 One can see that each model performs best in specific 
situations, accordingly it is important to choose the proper 
model in every network scenario. 

V. MARKOV MOVEMENT-MODEL CREATOR FRAMEWORK - 
MMCF 

In the previous section we showed that every model works 
well in a given network environment. Therefore the optimal 
model has to be chosen, or constructed for a specific network 
environment. 

If every MAP is handled separately and all previous steps, 
user groups are taken into account then the modelling Markov 
chain will contain a high number of states. Therefore a minimal 
error rate should be allowed and the appropriate Markov 
motion model with the minimal number of states should be 
found. 

In this section we give guidelines to construct Markov 
movement mobility model for a network, and we present the 
determination of the classification system attributes. 

We proposed a general Markov Movement model Creator 
System (MMCS). For every N<A,D,B> network, where A is the 
adjacent matrix of the network, D is the occurrence matrix and 
BΠ is the handover matrix and for ɛ error vector, an optimal 
number of states M<L,R,O> Markov model can be determined, 
where L is the level-, R is the resolution-,  and O is the depth of 
the model. 

A. Error vector 
The error vector is an input for the MMCF. The elements of 

the vector are as follows: 
- εds the limit of mean difference between the transition 

matrixes for different user  states. 
- εrd the acceptable error rate of outgoing prediction 

probability, when MAPs are merging together. 
- εop the limit of the difference of the outgoing probabilities 

of the sequences from current MAP. 
- εuv the limit of fluctuation of the number of users arriving 

from a certain sequence directions is investigated . 
More details about the error rates are presented in V.C, V.D 

and V.E Sections. 
B. Main type of the model 

The proper main type of the model is determined by the 
goals and requirements, not by mathematical computation. 
Beside the mentioned examples there are some guidelines for 
selecting the best model type according terms and conditions: 

- User- Centralized 
 - Modelling from user point of view  
 - User profile creation 
 - Fraud detection 
- Access Point-Centralized 
 - Modelling from cell point of view  
 - CAC in a MAP 
 - Movement modelling of a geographical area 

C. Determining the level 
A new level should be applied in the model, if the mean 

difference between transition matrices for different user states 
is greater than a predefined limit. Of course if there is a 
requirement to use levels, then it must applied independently 
from the calculation.  

Let us define εds as the limit of the mean difference between 
the BΠ and transition matrix for different s user states (Bs

Π). 
The average weighted deviation can be calculated by the 
following form: 

2
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n
BBabsbw   Ss  (10) 

If ws
ds > εds is true for a state s, then a new level must be 

introduced into the model for state s. This inequality must be 
analysed for all Ss . 

The number of levels can be calculated as follows: 
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D. Determining the resolution 
As we explained earlier if outgoing predictions of users in 

more adjacent MAPs match within a certain limit, then the 
MAPs could be merged together to create a new, major MAP. 
With this step the complexity of the model is decreasing.  

We present a simple algorithm to determine the resolution. 
The input parameters of the algorithms are: 

- εrd, the acceptable error rate of outgoing prediction 
probability, when MAPs are merging together, 

- transition matrix, BΠ , as it was defined earlier, 



 

 

 
where SM the set of MAPs in the model,  Sa

adj the set of 
neighbouring MAPs of MAPa , row(A,a) the a-th row of matrix 
A, col(A,a) the a-th column of matrix A. This results in a 
smaller transition matrix, BΠ*, which leads to a simpler model. 

E. Determining the memory 
The future movement of the users is highly influenced by 

the path they have taken in the past to reach the investigated 
point. Leaving this out of consideration would introduce large 
errors into the mobility model. However it is not always useful 
to look back into each direction or to look back in equal depth 
into each direction from every MAP.  

The determination of memory or depth  needs proper 
precaution. The depth exponentially increases the number of 
states in the model. This can be seen in Figure 9, where the 
depth is generally 2, for all MAPs ( ]2,2,2,2[O ). 

The main idea is to analyse each MAP sequence, visited by 
the users and decide its importance for consideration. The 
analysis starts with a sequence of length 2 (length 1 means that 
only the current MAP is observed) and it is increased one by 
one. If a sequence of length i belongs to a MAP that is not 
important, then it will decreased, and i-1 depth will denoted for 
the MAP. The importance of k depth is decided based on the 
following basic criteria: 

- Take the MAP ID sequences for k length, which differ 
in the first MAP ID and belong to a current MAP. The 
difference of the outgoing probabilities of the 
sequences from current MAP must be investigated. Let 
us define εop as a limit for this difference. The 
difference for a MAPi and k-depth is determined the 
following way: 
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where Qik is the set of existing k length sequences from 
MAPi, NBi  is the set of neighbour MAP IDs of MAPi and q 
denotes a sequence from the set. 

The first criterion of importance is: Df[op]i
k>εop. 

- Take the MAP ID sequences for m length, which differ 
in the first MAP ID and belong to a current MAP. The 
fluctuation of the number of users arriving from a 
certain sequence directions is investigated. Let us 
define εuv as a limit for this variance. The variance of 
number of incoming users from a sequence into MAPi: 
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where ni,a
u is the number of users in MAPi arrived from a 

sequence (path), ni
u is the number of users in MAPi. 

This must be examined for all of the incoming sequences: 
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The second criterion of importance is: Df[uv]i
k>εuv. 

This two criteria, Df[op]i
m>εop and Df[uv]i

m>εuv  must be 
applied for all MAP in order to determine O. 

VI. MARKOV MODEL EXAMPLES 
In this section we describe some of the previous introduced, 

classified models.  

A. The M3 model 
In the M3, Markov-chain based model: a user can be 

located in four different states during each time slot, the stay 
state (S), the left-area state (L), the right-area state (R) and 
outside-area (O) (Figure 3.a).  



 

 

The grouping can be derived from the user behaviour. If the 
users in right-hand side cells behave similarly from the current 
cell’s point of view, the neighbouring cells will be merged into 
a common cell group, which represents a state in the Markov 
model (R state). Other grouping methods can be used as well, 
i.e. a standalone cell can constitutes a group also. In this 
example model each of the two groups (R and L) contains three 
cells. The state O represents the outside area, where users can 
come in to the L, and R state from, and where users can go 
from the L, and R state to [13]. 

This model performs well when the user’s distribution in 
the left- or right-area state is uniform.   

The M3 model could be determined as an MMCF model, 
with the following parameters:  

nL=1, O=[1,1,1], R =[1,{2,3,4},{5,6,7}]. 

B. Generalized Mn model 
We have enhanced the access point-centralized Markov 

model, M3 to generalized n+2 state Markov model (Mn).  

If we try to predict the user’s distribution in a city having 
irregular, dense road system, or in a big park where people are 
able to move around then the handover intensities could differ 
thus the M3 model could produce errors. From this point of 
view the best way is if we represent all of the neighbour cells 
as a separated Markov state. 

As we described above, in the unstructured models a MAP 
is simply mapped into a Markov-chain state, so 8 states are 
created, because 7 elements are assumed in a theoretical cluster 
(direction dimension is 6) and another one to the outside world. 
This results the M7 model [13]. 

It is to be taken into account that in the real networks a cell 
does not always have six neighbours depending on the 
coverage. This model has to be generalized for a common case 
when a cell has n neighbour cells. We expanded our previously 
mentioned model to n-neighbour case (Figure 11), when all the 
n neighbours are represented with a Markov state: 

• stationary state (S) 

• neighbour 1...n state (MN1... MNn) 

• outside area state (O) 
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Fig. 11 State diagram and П matrix of n+2-state Markov model (Mn) 

The steady state probabilities (Ps, PN1...PNn, PNO) can be 
calculated. 

Using the result the distribution of the mobile users is 
determinable in the steady state. The predicted number of users 
in the next time slot is given in Eq. 15. 
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Because all of neighbour MAPs is represented as separated 
states, the prediction based Mn model is more accurate than the 
M3 model, or at least as accurate as model M3. 

The inaccuracy of prediction 1t
iN  from MAPj is the 

following: 
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where NK is the number of users in the group (left-area or 
right-area in M3 model) where MAPj belongs. 

This is calculated for all MAP and weighted with the 
number of users in the group: 
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Let us determine the inaccuracy in a different way. The 
difference between the two predictions, M3 and Mn, weighted 
with the real number of users: 

1

1
3

1



 
t
i

Mn
t
iM

t
i

N
NN

 (18) 

Instead of transition probabilities p, q, v the elements of the 
rate matrix BQ = [bij] are used. The Eq. 19 shows the proof, 
which follows the same result as in Eq. 17: 
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To generalize the equation, instead of bj,i the average 

handover rate, λ is used: 
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In the M3 model the neighbouring MAPs are grouped into 
two areas. But it is possible any other grouping as well. For this 
case equation 20 transformed into fully general form: 
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where G is the set of areas, and nG is the number of areas in 

the model. 

VII. SIMULATION RESULTS 
In this section we compare the accuracy of our Markov 

movement models to other models found in the literature. The 
estimation procedure was validated by a simulation 
environment of a cell cluster shown in Figure 12.a. 

 
Fig. 12.a The logical cell-cluster in the simulation environment 

The simulation was written in the open source OMNet++ 
using C++ language. The simulation environment consisted of 
a cluster with 61 named cells and it also included geographical 
data that is interpreted as streets and a park on the cluster area. 
The drift of the movement is heading to the streets from neutral 
areas. 

The simulation used 610 mobile terminals (10 for each cell), 
in the initial state uniformly distributed in the cluster. The 
average motion velocity of the users is parameterized with a 
simple phase-type (PH) cell dwell time simulator (reciprocal of 
exponentially distributed values).  In the simulation time 
mobile terminals   appear and disappear, in order to simulate 
the active and inactive states.  

The simulation consists of two parts. The trace simulation is 
the series of cell-transitions that the mobiles have initiated. It 
produces a time-trace that contains the actual location data for 
each mobile terminal in the network (reference interval). We 
have used this trace simulation as if it was a provider’s real 
network trace.  

The second part is the estimation procedure that uses the 
past and the current reference simulation results to estimate 
future number of users in each cell. The estimation error is 
interpreted as the measure of accuracy of each mobility model 
in this paper.  

The prediction starts 100 timeslots after the reference 
simulation initiation. During the warm-up process the reference 
simulation produces enough sample data for the correct 
estimation, which uses the previous reference results as an 
input to estimate the future user distribution. Each user-
transition in the 100-timeslot reference period is used to derive 
transition probabilities, motion speed and patterns in the 

simulation cell-space. These patterns serve as an input for the 
simulation threads of each mobility model. The models have 
the same input throughout the simulation process so that the 
results are comparable. 

A widely used modified Random Walk estimation, M3 and 
M7 models were used in the simulation as references.  

We used the MMCF parameter calculation algorithms, 
introduced above in Section V for the simulation environment. 
The smaller examined area contains the cells in the bold circle 
(cell 1-7, cell 16-18) in Figure 13. In MMCF generated optimal 
Markov movement model estimation compared to the fix M3, 
M7 models. The input parameters of MMCF for this simulation 
environment are: 

S={handover during voice call}, εc=5, εuv=0.4,  εop=0.2, 

We examined only the handover event, so the D matrix is 
empty and because of the limits of this paper the C and BQ 
matrices are not presented.  Structured, access point centralized 
model with one level was chosen. The result of the algorithms 
is: 

]]1,2,1,1,2,1,1,1,2[[O  - which means for MAPs 1,6,17 the 
depth is 2, for the others it is 1, 

}]18,17,16,7,6},5,4{,3,2,1[{R  - which means that MAP 
4 and 5 is merged together. 

The Markov-chain is (for clear interpretation not all of the 
edges depicted):   

 
Fig. 13 The TAEV values in RW, ExtRW, M3 and M7 models with 

direction=(1,4) 

The following plots (Figure 14.) show the average error of the 
estimations in every t timeslot. Random Walk model 
performed worst, it cannot follow the patterns in user 
fluctuation as it was expected. The M3 and M7 models work 
with significantly lower error rate, but in t=105,t=120 and 
t=135 timeslots the average error rate increased suddenly. This 
is caused by the change of distribution of the directional 
moving users (suddenly increased the number of active mobile 
users), what the simple Markov models cannot follow. The 
MMCF generated Markov approach holds the average error 
rate, it followed the changes in user motion appropriately, and 
it is able to learn the directional motion patterns and the 
fluctuation of user distribution, which proves the strength of 
the Markov Model Creator Framework. 
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Fig. 14 The TAEV values in RW, M3, M7 and optimal MMCF model 

CONCLUSIONS 
In this paper we selected some significant parameters of 

mobility and proposed a method to model the mobile node and 
the network independently of the technology used. We 
proposed a simple classification for Markov mobility models, 
and we have shown examples for the most important types. We 
showed the attributes of a general Markov model, and we 
prepared processes for definition. Obviously these algorithms 
could be further refined. 

By using the MMCF it is not necessary to create a new 
Markov model, only the description of the network, parameters 
and the requirement of the accuracy must be given and a 
Markov movement model is generated with minimal number of 
states. The network operator may use this Markov model to 
make predictions on the future distribution and location of 
users among radio cells. It is able to support self-configuring 
system in 4G mobile networks as well. 
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