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Abstract—In this paper, a novel Matching Optimization Algo-
rithm (MOA-algorithm) based on underdetermined blind source
separation is proposed for non-orthogonal frequency hopping
signal (that is, inner products are not always equal to zero
in the same time-frequency point). Compared to traditional
methods, the separation method is formulated as matching
optimization. In our method, we accomplish the underdetermined
blind source separation by computing the Short Time Fourier
Transform (STFT) of each observation to get the signal time-
frequency distribution, then we formulate the separation problem
as matching optimization. In matching optimization, a new cost
function is designed to improve the complete separation, and
we make negative gradient direction as the steepest descent
direction, to verify the proposed method on several simulations.
The experimental results demonstrate the effectiveness of the
proposed method.

Index Terms—Blind Source Separation, Frequency hopping
signal, Time-Frequency Distribution, Cost Function, Pearsons
correlation coefficient.
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I. INTRODUCTION

Blind source separation (BSS) is a major research area
in signal processing and machine learning, and is used in
many fields, such as image recognition, speech enhancement,
biomedical signal processing, wireless communications etc.
[1][2][3]. BSS aims to extract individual components from
their mixture samples where there is very limited, or no,
prior information on mixture samples or the mixing process.
Recently, many BSS methods are based on Independent Com-
ponent Analysis with the assumption that the sources are
independent signals. Some other methods based on Wigner-
Ville Distribution (WVD) are proposed, but there is a con-
tradiction between time-frequency concentration and cross-
term interference in these methods [4]. At present, most
traditional BSS methods assume that the source signals are
statistically independent or the mixed matrix is full column
rank. However, in many situations, this hypothesis is not valid.
Consequently, recovering the source signals by multiplying the
mixed matrix’s pseudo inverse cannot be used. In practical
terms, the overdetermined mixture assumption is not always
satisfied, thus it is necessary to solve the problem of underde-
termined blind source separation (UBSS). Compared with the
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classical BSS approaches, the method in this article requires
less constraints on the source signals, such as stationarity and
independence. So it is more suitable to separate non-stationary
sources, such as Frequency-Hopping (FH) signal.

Frequency-Hopping (FH) signal has been widely used in
military field and modern communication systems due to its
high security and good anti-jamming ability [5]. To meet the
need of Counter-reconnaissance, FH signal blind source sep-
aration research has been a focus. Recently, some researchers
discuss orthogonal FH signals underdetermined blind source
separation method based on sparsity [6][7], however, non-
orthogonal Frequency Hopping Signal Underdetermined Blind
Source Separation is a challenge. In this article, we propose
a non-orthogonal underdetermined blind source separation
method based on convex optimization methods, that is, MOA-
algorithm. The problem is described as follows: (a) By com-
puting the Short Time Fourier Transform (STFT) of each
observation, we can get the signal’ time-frequency distribution.
(b) We construct the cost function according to the sample data
in time-frequency domain. (c) We find the optimal solution of
the cost function by using the steepest descent method.

The rest of this paper is organized as follows. In Section II,
we introduce the preparatory work of this article, In Section
III, we introduce the blind source signal separation algorithm,
that is, MOA-algorithm. In Section IV, we introduce and
discuss the experimental results. Finally, the conclusion is
drawn in Section V.

II. PREPARATORY WORK

In this section, we introduce the related preparatory work
of MOA-algorithm.

A. BSS Model

BSS aims at separating a set of N unknown sources from a
set of M observations. Usually, the observations are obtained
from M sensors, each sensor receives a mixture from those
sources, the framework of BSS model is as below:

The principle of BSS is shown in Fig.1. The matrix S(t) =
[s1(t), s2(t), · · ·, sN (t)] is composed of N unknown sources,
and the matrix Y (t) = [y1(t), y2(t), ···, yM (t)]T represents M
observations. Considering linear instantaneous mixtures model
only, each observation is described as below [8]:

yj(t) =
N∑
i=1

aijsj(t) + ni(t), j = 1, 2, · · ·,M (1)
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Fig. 1. Framework of BSS Model

here, aij is the (i, j)th element of the mixed matrix, ni(t)
is the ith component of the noise. Equation (2) can also be
written in matrix form,

Y (t) = AS(t) +N(t) (2)

According to the relationships among the numbers of original
signal (M ) and the numbers of receiving antenna(N ), blind
source signals can be classified into overdetermined blind
separation (M < N ), determined blind separation (M = N )
and underdetermined blind separation (M > N ).

B. Frequency-Hop Signal Model

The FH signal is a kind of non-stationary signals whose
carrier frequency changes along with time, it can be expressed
as [5]:

f(t) =
√
2S

∑
k

rectTH
(t− kTH − αTH)

· ej2πfk(t−kTH−αTH)+jθ + n(t), 0 < t ≤ L

(3)

here, L is the length of the sample data, rectTH
is the

rectangular window whose width equals to TH , TH is the hop
duration, fk is the carrier frequency of the kth hop, αTH is
hop timing, θ is the phase of the Fh signal, n(t) is additive
noise, S is the power of the signal.
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Fig. 2. Frequency Hopping Signal Time-Frequency Image

Fig.2 describes the time-frequency distribution of a FH
signal. we can see there are five hops in this sample. The
length of the whole hops is one hop duration. We can see that
all hops of the FH signal are actually finite sine waveforms
without any overlap in time domain with each other. Each
of the finite sine waveforms is uniquely decided by the three

followed parameters, Tk denotes the location of kth hop in
time domain, fk denotes the location of kth hop in frequency
domain, TH denotes the length in time domain.

The problem in this paper focuses on how to separate the
initial Non-orthogonal Frequency Hopping Signal without any
more prior knowledge.

III. MOA-ALGORITHM

A. Problem Formulation
The mixed signals are certain to collide in the time-

frequency domain when the mixed signals are non-orthogonal,
as is shown in Fig.3. We can judge whether signals collide
according to the number of signals in frequency domain [9].
The signals do not collide if the signal number is equal
to the number of source signals in frequency domain. The
signals collide if the signal number is less than the number of
source signals in frequency domain. We can separate the mixed
signals with Density Component Analysis Method when the
source signals do not collide [10], which will be concisely
introduced in the following part 3.2, and the separated signal
will be signal vector space Y1. The mixed collided source sig-
nals will be the mixed signal vector space Y2. We can separate
them with Matching Optimization Algorithm (MOA).
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Fig. 3. Non-orthogonal Frequency Hopping Signal Time-Frequency Image

B. Density Component Analysis Method
In this section, we introduce the Density Component Anal-

ysis Method concisely, and the detailed research is another
research.
(1) Construct Cost Function Pair (ρi, δi)
According to the time-frequency domain sampling points i,

we compute two quantities: its local density ρi and its distance
δi from points of higher density. Both quantities depend only
on the distances dij between sampling data points, which are
assumed to satisfy the triangular inequality. The local density
ρi of data point i is defined as:

ρi =
∑
j

χ(dij − dc) (4)
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in above equation, if x < 0 then χ(x) = 0 otherwise χ(x) = 1,
dc is a cutoff distance. Basically, ρi is the number of sampling
points, the distance of sampling points to sampling point i is
smaller than dc. The algorithm is sensitive only to the relative
magnitude of ρi in different points, that is to say, for large
data sets, the results of the analysis are robust with respect to
the choice of dc.
δi is measured by computing the minimum distance between

the sampling point i and any other sampling point with higher
density:

δi = minj:ρj>ρi(dij) (5)
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Fig. 4. Decision Coordinate System. Sampling Data Points are Ranked in
Order of Decreasing Density

(2) Construct Decision Coordinate System
This observation, which is the core of the algorithm, is

illustrated by the simple example in Fig.4. Fig.4 shows 23
points embedded in a two-dimensional space [25]. Based on

Fig. 5. Decision Coordinate System. Sampling Data Points are Ranked in
Order of Decreasing Density

the distribution of the sampling points in a two-dimensional

space above, decision coordinate system can be found in Fig.5,
which shows the plot of δi as a function of ρi for each
sampling point. It is seen that although the data number 2
and 22 are very near, they are not the cluster center due to the
small value of δ. Meanwhile, we can see from Fig.5 that data
2 and 22 belong to different centers, i.e., 5 and 19 respectively.
Hence, only the data with both large values of δ and ρ will
be treated as cluster center, such as data number 5 and 19 in
Fig.5. Note that the points 14, 15, and 23 have a relatively
high δ and a low ρ. These points are isolated data and can be
considered as clusters with single point, which is also named
outliers.

After the cluster centers have been found, each remaining
sampling point is assigned to the same cluster as its nearest
neighbor of higher density.

We can separate the mixed signals with the above Density
Component Analysis Method when the source signals do not
collide, and the separated signal will be signal vector space
Y1. The mixed collided source signals will be the mixed signal
vector space Y2. We can separate the mixed signal vector space
Y2 with MOA-algorithm as follows.

C. Construct Cost Function of MOA-algorithm

According to the separated signal vector space Y1 and
the mixed collision source signals vector space Y2, we can
construct the following cost function.

min
A,E

‖ β −
∑

λixi ‖p + E, subject to xi ∈ X (6)

here, β is the collision vector, and belongs to the Y2. λi is the
weight coefficient of xi.

∑
xi is the random sum of x1, x2,

· · ·, xn, xi ∈ Y1. A = [xi, x(i+1), x(i+2), · · ·, x(i+ k)]. E
is the Mean Squared Error(MSE), here,

E =

√
σ2
1 + σ2

2 + · · ·+ σ2
n

n
, (7)

σ1, σ2, · · ·, σn is the error value.
We find the optimal solution of the cost function by using

the steepest descent method. So, the negative gradient direction
d = − ∇min(·)

‖∇min(·)‖ is the steepest descent direction [11].

IV. PERFORMANCE ANALYSIS OF MOA-ALGORITHM

A. Algorithm Process Analysis

MOA-algorithm aims at reconstructing the mixed matrix
and the source signal according to Y1 , Y2 by solving the
following optimization problem:

min
A,E

‖ β −
∑

λixi ‖p +
√

σ2
1 + σ2

2 + · · ·+ σ2
n

n
,

subject to xi ∈ X

(8)

where the first term penalizes non-sparse solutions, the last
term is a classical data fidelity term. Because Y1 is separated
signal vector space, it is sparse. The sparsity level is measured
by the lp norm of the sources. We generally choose either
p = 1 or p = 2. In [12], [13], how to choose to a particular
lp norm for the sparsity penalty have been discussed in more
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detail. If E is fixed, the l2 norm is particularly appealing since
it makes the estimation of β be a convex optimization problem.
In MOA-algorithm, we will choose p = 2 which has been
shown to provide the best separation results in the following
simulations in part 5. So, the problem in (8) is classically
tackled by using the steepest descent method. So, the negative
gradient direction d = − ∇min(·)

‖∇min(·)‖ is the steepest descent
direction.

According to (8), the mixed matrix A is estimated by
looking for the optimal solution of the following convex
problem:

min
A

‖ β −
∑

λixi ‖p + E, subject to xi ∈ X (9)

The equation (9) can be decomposed into two terms: i) a non-
convex p−norm penalty, and ii) a quadratic and differentiable
data fidelity term E. Let ∀x1, x2 ∈ Y1, | E(x1)−E(x2) |≤
L | x1 − x2 |, the quadratic term E is differentiable and its
gradient satisfied L − Lipschitz conditions. That shows the
problem in (9) can be solved exactly by using the Forward-
Backward splitting algorithm [14]. In [15], this optimization
strategy has been used for solving the steepest descent method,
but it has the strong weakness of dramatically increasing the
computational cost of the algorithm: update A would require
efficient but costly iterative algorithms. Furthermore, each
time the source matrix A is updated in the algorithm MOA
algorithm, it is fully re-estimated. Therefore, it may not be
necessary to update with high precision A at each step of
MOA algorithm.

B. Convergence of MOA-Algorithm

Because the problem in (8) is not convex, convergence
to a critical point can be expected. For a fixed collision
vector β (β belongs to the Y2), minimizing the problem
in (8) can be tackled by Block Coordinate Relaxation [16].
Then, this procedure can make solve sequences of convex
minimization problems take place of a globally non-convex
problem. In [17], convergence of block coordinate relaxation
for the minimization of non-differentiable and non-convex cost
functions have been proved by Tseng. According to [17], the
minimization of function in (8) converges to a critical point
when the parameters λi and xj are fixed .

Firstly, decreasing the thresholds is a strategy to improve the
robustness of the MOA algorithm to spurious local minima. In
the field of optimization, this procedure is reminiscent of the
fixed point continuation technique, which has been proposed
to speed up the minimization of ‖ • ‖p-penalized least-squares
[18]. The convergence of the MOA algorithm would be
guaranteed as long as steps (8) are alternated until convergence
for each value of λi. The thresholds are however updated at
each iteration of the MOA algorithm, which helps speeding
up the algorithm but might prevent it from convergence.

Secondly, weight coefficient λi is updated at each iteration,
but also might prevent the MOA algorithm from convergence.
Lastly, in the spirit of re-weighted l1 techniques, the weight
coefficients are updated based on estimating of xj ∈ Y2 [49
19]. If this strategy is a well motivated heuristic, the conver-
gence of the MOA algorithm is not theoretically grounded.

In numerical experiments, in order to show better perfor-
mance of the proposed algorithm, we measure the convergence
speed with Ect value. The results are shown in Fig.6, the
horizontal axis is iteration number, the vertical axis is Ect

value and Ect is defined as [20]:

Ect =
M∑
i=1

(
M∑
j=1

)
| cij |

maxk | cik | −1
+

M∑
j=1

(

M∑
i=1

)
| cij |

maxk | ckj | −1

(10)
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Fig. 6. Convergence Performance of the MOA algorithm.

From Fig.6, we can see that the algorithm has a good
convergence performance, and it has a satisfied convergence
speed.

C. Choosing the Parameters in MOA-algorithm

The MOA algorithm relys on a re-weighting procedure
that penalizes certain entries of the estimated sources. The
weights are function of the ‖ • ‖p norm of the columns of
A. They somehow measure the activity of each sample across
the sources. Intuitively, choosing a low value for p seems quite
natural since it yields more contrast between sparse and non-
sparse columns of A. This argument would make perfect sense
if the true sources were known. A trade-off has to be made
between the two following options [21]:

i) Large values for p might lead to an under-penalization of
less discriminant entries.

ii) Small values for p provides a larger penalization of non-
sparse entries of A, which is desirable to efficiently separate
s.p.c. sources.

However, at the beginning of the MOA algorithm, one
has only access to imperfect, if not erroneous, estimates of
A. In this case, small values of p might mis-penalize/mis-
favor entries of A which can eventually hamper the separation
process. Alleviating this dilemma is made by starting with
a high value for p-typically and then decreasing it, at each
iteration, towards some final value pf . Several values for pf
have been tested; it turns out that choosing pf = 0.001 leads to
a good trade-off for all the experiments we carried out. Smaller
values for pf did not bring any noticeable improvement [22].
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D. Discussion About the Impact of Noise
In this section, we discuss the impact of the re-weighting

scheme on the performances of the MOA in the noisy
condition. First, in the MOA algorithm, the weights λi are es-
timated from the estimated sources. These sources are obtained
via Step 1 of the MOA algorithm. In the low noise limit, one
interesting feature of the proposed re-weighting scheme is that
it is inversely proportional to the amplitude of the columns of
A. More precisely, this entails that large entries of A which
are shared by several sources are more penalized than small
entries with the same relative distribution across the sources.
Strongly penalizing large and correlated entries is desirable
since they are detrimental to the estimation of the mixed matrix
and the sources [23]. In the noisy setting, the situation turns
out to be rather different since small-amplitude samples are
more likely perturbed by noise than large amplitude entries.
On one hand, the proposed re-weighting procedure might
be disastrous for the separation of the sources whether they
are partially correlated or not. Indeed, since the weights are
inversely proportional to the amplitude of the columns of
the sources, the proposed procedure will tend to favor small
entries which are more affected by the presence of noise.
On the other hand, Step 1 of the MOA algorithm rejects
entries with amplitudes smaller than some prescribed noise-
dependent level. This should lower the impact of noise on the
performances of the MOA algorithm [24].

In [18 25], the authors demonstrated that the MOA al-
gorithm is robust to additive noise contamination. This is
especially true whenever morphological diversity holds; in
that case the most discriminant sources are the entries of the
sources with the most significant amplitudes. It turns out these
entries are also the least contaminated by additive noise. In the
case of s.p.c. sources, the most discriminant sources are not
necessarily the large-amplitude samples. A first consequence
is that noise will be very likely to have a strong impact on the
quality of the separation.

V. SIMULATION AND BLIND SOURCE SIGNAL
SEPARATION RESULTS

In this section, we present computer simulations, in order to
illustrate the performance of the proposed MOA-algorithm. In
the simulation, the non-orthogonal frequency hopping signal
in time-frequency domain will be separated from the mixed
signals.

Each parameter is defined as follows: fb = 2 ∗ 105Hz
for sample rate, Rb = 103bps for transmission bit rate,
v = 500hop/s for hopping speed, f0 = 2 ∗ 103Hz for
modulation frequency, m = 8 for bit numbers, the original
signal numbers as MK = 3, and the receiving antenna
numbers as RK = 2.

The sent source signal’s Time-Frequency images are shown
in the Fig.7. We aim to separate each object signal from the
received mixed signals.

After Gauss channel transitions, the received mixed sig-
nal Time-Frequency images are shown in Fig.8 (Received
Composite Signal). Here, we consider two channels to fully
simulate the realistic signal transmission, which are shown
from top row to the bottom row in Fig.8, respectively.
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Fig. 7. The sent source signals waveforms. Three sent source signals are
considered.
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Fig. 8. The Received Mixed Signal Waves after Gaussian Channels. Two
Gaussian Channels are considered.

A. The First Comparative Experiment of Effect

By using the proposed MOA-algorithm, the final blind
source separation waveforms are shown in Fig.9, where three
signals are displayed. It is seen that the obtained three object
signals are very similar to the initial object signals in Fig.7.

We compare the signals between Fig.7 and Fig.9 by objec-
tive evaluation and further compare the separation performance
with the classical searching and averaging method in frequency
domain (SAMFD) [26], the Pearsons correlation coefficient
value is used [27]. The results are shown in Fig.10, where
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Fig. 9. Blind Source Separation Waveform Using the Proposed MOA-
algorithm

Pearsons correlation coefficient is defined as:

r =

n∑
i=1

(xi − x̄)(yi − ȳ)

√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

(11)

From Fig.10, we can see that blind sources signals can be
efficiently separated by the MOA-algorithm, and it has a
better performance than the classical SAMFD.
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Fig. 10. Blind Source Separation Result, this article method has a better
performance than classical Searching and Averaging Method

B. The Second Comparative Experiment of Effect

From the above section, we can know the MOA-algorithm
has a satisfying separation effect. In the following section,

we will analyse the separation effect by using the error
performance analysis as another evaluation criterion. In the
error performance analysis, we further compare the separation
performance with the classical Based on the Ratio Matrix
Clustering Algorithm [28], where the PI value is used [29].
The formula is defined as:

PI = E{‖ A ‖ − ‖ Â ‖
‖ A ‖

}, (12)

here A is the mixed matrix, Â is the mixed estimation matrix.
From Fig.11, we can see that blind sources signals can be
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Fig. 11. Blind Source Separation Result, this article method has a better
performance than classical classical Based on the Ratio Matrix Clustering
Algorithm

efficiently separated by the MOA-algorithm, and it has a
better performance than the classical Based on the Ratio
Matrix Clustering Algorithm.

VI. CONCLUSION

In this paper, we propose non-orthogonal frequency hopping
signal underdetermined blind source signal separation. Firstly,
we introduce the relevant knowledge about blind source sep-
aration. Secondly, we design a novel MOA-algorithm to sep-
arate the mixed non-orthogonal FH signals. The experiment
results demonstrate the effectiveness of the proposed method.
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