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Abstract—In the last decade huge amount of research work
has been put to realize indoor visual localization with personal
smartphones. Considering the available sensors and their capabil-
ities monocular odometry may provide a solution, even regarding
strict requirements of augmented reality applications. This paper
is aimed to give an overview on the state of the art results
regarding monocular visual indoor localization. For this purpose
it presents the necessary basics of computer vision and reviews
the most promising solutions for different topics.

Index Terms—Computer vision, Visual Monocular Odometry,
SLAM, Survey

I. INTRODUCTION

Due to the increasing capabilities and penetration, more
and more applications are available on smart-phones to ease
our everyday life. In the last decade huge research work has
been put on indoor location-based applications, among these
the augmented reality based applications demand the highest
requirements, mostly expressed in real-time capability and
accuracy. Based on the sensors available in recent smartphones
and their computational and storage capabilities, a real-time
implementation of monocular visual relative pose estimation
seems to be the key to achieve the overall goal.

Besides, this topic presents a great research interest, and
high effort has been put on providing scalable and accurate
solutions to satisfy the real-time requirements. Traditionally,
the problem of visual pose estimation is discussed as the Struc-
ture from Motion (SFM) [1] [2] problem, where the main goal
was the off-line reconstruction of a 3D structure from pictures
taken from different viewpoints. During the reconstruction
process the viewpoints of the camera are also calculated,
but the problem formulation does not focus on the relative
pose estimation of sequential images. Moreover the family of
SLAM (Simultaneous Localization and Mapping) algorithms
focuses on the environment modeling (map building) and the
relative camera pose estimation simultaneously [3]. To over-
come the real time and accuracy requirements these solutions
induced the PTAM (Parallel Tracking and Mapping) [4]. In
the meantime, the problem has been also targeted by another
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application field, the odometry. The original requirement of
the monocular Visual Odometry (VO) [5] [6] was to accurately
determine the relative pose of a rover.

In this paper authors are engaged to give a theoretical
overview of the monocular odometry problem and its solu-
tions. Also, some of the implementations are emphasized that
seem to able to cope with the strict requirements even in
mobile environments.

During the discussion the authors focus on the capabilities
of the recent smartphones. Common smartphones are equipped
with a thin-lens perspective camera, that can be modeled with
an ideal pin-hole model [7], and they are also equipped with
IMU (Inertial Measurement Unit) integrating gyroscope and
accelerometer, while having reasonable capacity for storage
and processing. Regarding the motion of the device the fol-
lowing discussion considers 6dof (degree-of-freedom).

II. THEORETICAL BACKGROUND

Monocular visual odometry tries to determine the pose and
location of a device mainly using visual perception aided by
a couple of auxiliary sensors (e.g. gyroscope or acceleration
sensor). The common implementation of visual perception is
a monocular camera which provides continuous stream of
frames at a variable or uniform time instants.

A. Projection model

The camera has a couple of internal parameters which are
typically fixed and known a priori (e.g. by calibration). The
most important characteristic of the camera is the projection
model which projects three dimensional world points onto the
image:

u = π(pC) (1)

where pC =
[
xC , yC , zC

]
is a three dimensional world point in

the reference frame of the camera, u =
[
x, y

]
is the projected

point and π(·) is the projection model. It is essential to mention
that in case of monocular systems the π(·) projection model
is invertible only when the depth du of the model point is
known:

pC = π−1(u, du) (2)

We can see that monocular systems have the huge drawback
of loosing the depth information while recording frames.

In practice the projection model is considered to be linear
in homogeneous space, i.e. it can be represented by a matrix
product (commonly referred to as the pinhole camera model).
Let XC =

[
X,Y, Z, 1

]T
be the homogeneous coordinates of a

three dimensional point in the reference frame of the camera.
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only three point pairs as the smallest subset of points pairs
[17]. The P3P solution has the advantage of using only three
points in a RANSAC (Random Sample Consensus) framework
to eliminate outlier point pairs thereby decreasing the required
number of iterations.

2) Random Sample Consensus: Since feature matching is
prone to result false matches a method is required to overcome
this issue. It is common in image processing to use the minimal
sample set to recover the parameters of a model and classify
samples as inliers and outliers. The most noted algorithm is
RANSAC which is widely used in the literature [18].

3) Relative pose estimation: The basic terms in relative
pose estimation are the fundamental matrix and the essential
matrix, both can be computed from projection pairs. The
fundamental matrix is a 3×3 matrix (F) satisfying x′TFx = 0,
where projections (x and x′) are of the same world point
in two different images. The essential matrix (E) uses the
normalized image coordinates so it can be computed from the
intrinsic camera matrix (K) and the fundamental matrix as
E = K′TFK. The essential matrix is applicable to recover the
pose of the cameras by decomposition [7]. A lot of methods
are known to determine the relative pose of the cameras: the
8 point algorithm [19], the 7 point algorithm [7], 6 point
algorithm [20] and 5 point algorithms [21] [22]. It is essential
to mark that these algorithms differ in handling degenerate
configurations (i.e. coplanar objects or cylinder containing the
projection centers) and are unable to recover the scale of the
set-up.

4) Bundle adjustment: The fundamental algorithms like the
relative and absolute pose estimation and triangulation find the
right solution only in case of noiseless measurements other-
wise they minimize the algebraic error which has no physical
meaning. It can be proven that the maximum likelihood (ML)
solution of these problems is the minimization of reprojection
error. If we have N cameras and M points in space, then we
can assign a θn(Kn, Tn, πn) projection model to each camera
which contains the projection (πn), distortions (Kn) and rigid
body transformation (Tn) of the camera (i.e. intrinsic and
extrinsic behavior). For a pm point in space the projection
for the camera n yields to um,n = θn(pm). If the pixel
measurements are un,m then the optimization of reprojection
error equals the expression

argmin
θn,pm

∑
n,m

|un,m − θn(pm)|2 (8)

meaning minimization of the euclidean-distance between the
measurements and the reprojected points.

As it is obvious from Eq. 8 that the reprojection error
is not linear we need an iterative Newton-like solution to
solve the minimization problem. The process of solving Eq. 8
with Levenberg-Marquardt iteration is specially called bundle
adjustment [23]. Bundle adjustment is widely used in SLAM,
SfM and odometry problems to refine a coarse solution or
optimize the map and camera poses calculated before.

It is worth to mention that the special form of the projection
equation yields to a sparse matrix which can be utilized to
speed up the bundle adjustment and relax the memory and

processing requirements. This method is called sparse bundle
adjustment [24] [7].

B. Implementations

All of the solutions and implementations use the algorithms
mentioned above but combine them in quite different ways.

1) PTAM: SLAM methods has the controversial problem of
running at real-time speed while building an accurate map by a
slow non-linear optimization process (i.e. bundle adjustment).
Parallel tracking and mapping (PTAM) solves this problem by
running two threads: one for the real-time tracking and one for
the map building [4]. PTAM was designed to work in small-
scale, e.g. to provide desk-scale augmented reality. PTAM has
several extensions implemented, like new initializer based on
homography or a relocaliser [25].

PTAM detects FAST features on a scale pyramid to provide
scale invariance and uses these feature points to recover the
geometry. The PTAM applies the 5-point algorithm to recover
the initial camera relative pose (i.e. the fundamental matrix)
and to construct the initial map. Hence, the process of PTAM
odometry can be briefly described as follows:

• Tracking runs on its own thread and starts by detecting
FAST features. A motion model is used to estimate the
camera a-priori pose followed by projecting map points
onto the image to detect feature matches and finally
camera pose is refined from all the matches.

• The mapping thread selects keyframes at regular inter-
vals based on a couple of conditions, then the thread
triangulates new points and registers new projections. To
refine the map, PTAM applies local and global bundle
adjustments periodically.

The PTAM solution is capable to track the camera pose
accurately and real-time thanks to the decoupled tracking
and mapping processes, but its performance is limited by the
number of landmarks registered in the map. This way PTAM
is suitable only for small workspaces. One of the drawbacks
of PTAM is the simple initialization process of the 5-point
algorithm which is sensitive to planar degeneracy. It is worth to
mention, that PTAM does not employ any methods to recover
the accumulated odometry error (i.e. loop closing).

2) ORB-SLAM: ORB-SLAM realizes a rather complex
visual odometry solution, however, it is based basically on
feature detection and point geometry [26]. As its name sug-
gests it uses ORB features to gather image information and
provides odometry and 3d reconstruction simultaneously. Be-
sides, ORB-SLAM provides re-localization and loop closing
capabilities in order to make the process more accurate.

ORB-SLAM works pretty much like PTAM by running
three threads parallel to provide real-time odometry. The
tracking thread is responsible for real-time motion estimation
by detecting ORB features and camera pose recovery. The
local mapping thread calculates the 3d reconstruction of the
map in the background for every keyframe chosen by the
tracking thread. The loop closing thread is watching for map
points to reoccur using bag of words model, and when it
founds one, the loop closing corrects the loop by similarity
transformation (see Fig. 1).
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In this case the projection model can be expressed with a K
intrinsic camera matrix:

x = K(f)
[
I3×3|03×1

]
XC =

[
f 0 0
0 f 0
0 0 1

][
1 0 0 0
0 1 0 0
0 0 1 0

]
XC

(3)

where f is the focal length of the camera and x =[
λx, λy, λ

]T
are the homogeneous coordinates of the two

dimensional projection. It is easy to see that the projection
model is not invertible.

To represent the camera movement in the world frame
we assign a Tk rigid-body transformation to each frame Ik
at k time instants which contains the orientation (Rk) and
the location (Ck) of the camera. The transformation can be
expressed as a 4× 4 matrix as

Tk =

[
Rk Ck

0 1

]
(4)

A fixed world point X =
[
X,Y, Z, 1

]
can be projected at

the k-th image frame as

xk = K(f)
[
I|0

]
T−1

k X =

= K(f)
[
R−1

k | −R−1
k Ck

]
X =

= K(f)Pe
kX

(5)

where Pe
k is commonly called as the extrinsic matrix describ-

ing the world-to-camera transformation. Eq 5 is the most basic
and substantial constraint in the monocular visual odometry
systems.

The goal of the monocular visual odometry algorithms is to
determine the Pe

k extrinsic camera matrices or the Tk rigid-
body transformation of the cameras mainly based on (but not
exclusively) the visual information encoded in frames.

B. Projection distortion

An accurate algorithm must take into consideration that the
projection model of the classical pinhole camera is only an
approximation. Real cameras always have some non-linear
distortion which is basically modelled as radial distortion,
however, other distortion models also exist (i.e. tangential
distortion) [8]. Radial distortion depends on the radial distance
from the radial distortion center (typically the principal point)
and it is represented as an arbitrary function:

x̂ = xc + L(r)(x− xc) ŷ = yc + L(r)(y − yc) (6)

where r2 = (x − xc)
2 + (y − yc)

2 is the radial distance and
xc, yc are the radial centers (commonly considered as zero).
In practice, L(r) is represented as a Taylor-series

L(r) = 1 + κ1r + κ2r
2 + κ3r

3 + · · · (7)

where κi are the radial distortion coefficients. In practice only
the lower coefficients (κ1, κ2, κ3) are used.

C. Visual information retrieval

Visual odometry solutions are based on visual information
encoded in the sequence of image frames. We can distinguish
two widespread methods: intensity based direct methods and
feature based methods.

1) Direct methods: In general, direct methods uses the
Ik(u) intensity map of the image, which represents the bright-
ness of the image pixel coordinate or – rarely – the RGB
vector. The intensity map can be either quantized (i.e. pixel
accuracy) or continuous (i.e. subpixel accuracy), however, the
latter requires some kind of filtering or interpolating algorithm,
that in some cases can cause information loss.

2) Feature detection: Feature based methods are working
on point projections using feature detection and feature ex-
traction algorithms that are able to detect and match the
same points on different images without preliminary geo-
metric knowledge. This way, visual odometry solutions are
simplified to use only projections of real 3D landmarks.
The efficiency of these algorithms can be measured by their
invariance and speed. Invariance means that the detector can
detect features which can be successfully matched even if the
feature is rotated, scaled or suffered other transformations (e.g.
affine transformation). There are a couple of such algorithms
overviewed in [9], from that the most widely used are the
Harris detector [10], the Scale-invariant feature transform
(SIFT) which is based on Laplacian of Gaussian filters [11],
the Maximally Stable Extremal Regions (MSER) [12], the
Features from Accelerated Segment Test (FAST), Oriented
FAST and Rotated BRIEF (ORB) [13]. Considering the overall
requirements SIFT is the most promising, however due to
its high complexity strict constraints restrict its application in
mobile environments.

III. FEATURE BASED SOLUTIONS

Feature based solutions have the attribute to detect features
on the frames first then match them to the previous frame
resulting in projection tracks over a couple of sequential
frames. These tracks can then be used to compute the geometry
of the scene and to recover the camera translations and
orientations. This method utilizes only point geometry models
and correspondences, this way the well established framework
of multiple view geometry can be applied [7].

A. Theory

The most important term here is the pose estimation which
is the process of estimating the extrinsic (and sometimes the
intrinsic) matrix from point correspondences. Depending on
the point pairs we distinguish between two types of pose
estimation: in case of 3D-2D point pairs (i.e. the world points
and their projections) it is called absolute pose estimation and
in case of 2D-2D point pairs (i.e. the projection pairs on two
images) we call it relative pose estimation.

1) PnP problem: The absolute pose estimation problem is
generally called Perspective-n-Point (PnP) problem which has
a couple of methods presented. The classical method for n >
6 point pairs is the DLT (Direct Linear Transform) method
but it is known to be unstable and requires the camera to be
calibrated [14]. For 5 or 4 points the [15] uses a polynomial
technique which allows it to work well even in case of coplanar
points. The EPnP solution is accurate for an arbitrary n ≥ 4
point pairs and can handle planar and non-planar cases [16].
The P3P solution yields to finite number of solutions using
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only three point pairs as the smallest subset of points pairs
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points in a RANSAC (Random Sample Consensus) framework
to eliminate outlier point pairs thereby decreasing the required
number of iterations.

2) Random Sample Consensus: Since feature matching is
prone to result false matches a method is required to overcome
this issue. It is common in image processing to use the minimal
sample set to recover the parameters of a model and classify
samples as inliers and outliers. The most noted algorithm is
RANSAC which is widely used in the literature [18].

3) Relative pose estimation: The basic terms in relative
pose estimation are the fundamental matrix and the essential
matrix, both can be computed from projection pairs. The
fundamental matrix is a 3×3 matrix (F) satisfying x′TFx = 0,
where projections (x and x′) are of the same world point
in two different images. The essential matrix (E) uses the
normalized image coordinates so it can be computed from the
intrinsic camera matrix (K) and the fundamental matrix as
E = K′TFK. The essential matrix is applicable to recover the
pose of the cameras by decomposition [7]. A lot of methods
are known to determine the relative pose of the cameras: the
8 point algorithm [19], the 7 point algorithm [7], 6 point
algorithm [20] and 5 point algorithms [21] [22]. It is essential
to mark that these algorithms differ in handling degenerate
configurations (i.e. coplanar objects or cylinder containing the
projection centers) and are unable to recover the scale of the
set-up.

4) Bundle adjustment: The fundamental algorithms like the
relative and absolute pose estimation and triangulation find the
right solution only in case of noiseless measurements other-
wise they minimize the algebraic error which has no physical
meaning. It can be proven that the maximum likelihood (ML)
solution of these problems is the minimization of reprojection
error. If we have N cameras and M points in space, then we
can assign a θn(Kn, Tn, πn) projection model to each camera
which contains the projection (πn), distortions (Kn) and rigid
body transformation (Tn) of the camera (i.e. intrinsic and
extrinsic behavior). For a pm point in space the projection
for the camera n yields to um,n = θn(pm). If the pixel
measurements are un,m then the optimization of reprojection
error equals the expression

argmin
θn,pm

∑
n,m

|un,m − θn(pm)|2 (8)

meaning minimization of the euclidean-distance between the
measurements and the reprojected points.

As it is obvious from Eq. 8 that the reprojection error
is not linear we need an iterative Newton-like solution to
solve the minimization problem. The process of solving Eq. 8
with Levenberg-Marquardt iteration is specially called bundle
adjustment [23]. Bundle adjustment is widely used in SLAM,
SfM and odometry problems to refine a coarse solution or
optimize the map and camera poses calculated before.

It is worth to mention that the special form of the projection
equation yields to a sparse matrix which can be utilized to
speed up the bundle adjustment and relax the memory and

processing requirements. This method is called sparse bundle
adjustment [24] [7].
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All of the solutions and implementations use the algorithms
mentioned above but combine them in quite different ways.

1) PTAM: SLAM methods has the controversial problem of
running at real-time speed while building an accurate map by a
slow non-linear optimization process (i.e. bundle adjustment).
Parallel tracking and mapping (PTAM) solves this problem by
running two threads: one for the real-time tracking and one for
the map building [4]. PTAM was designed to work in small-
scale, e.g. to provide desk-scale augmented reality. PTAM has
several extensions implemented, like new initializer based on
homography or a relocaliser [25].

PTAM detects FAST features on a scale pyramid to provide
scale invariance and uses these feature points to recover the
geometry. The PTAM applies the 5-point algorithm to recover
the initial camera relative pose (i.e. the fundamental matrix)
and to construct the initial map. Hence, the process of PTAM
odometry can be briefly described as follows:

• Tracking runs on its own thread and starts by detecting
FAST features. A motion model is used to estimate the
camera a-priori pose followed by projecting map points
onto the image to detect feature matches and finally
camera pose is refined from all the matches.

• The mapping thread selects keyframes at regular inter-
vals based on a couple of conditions, then the thread
triangulates new points and registers new projections. To
refine the map, PTAM applies local and global bundle
adjustments periodically.

The PTAM solution is capable to track the camera pose
accurately and real-time thanks to the decoupled tracking
and mapping processes, but its performance is limited by the
number of landmarks registered in the map. This way PTAM
is suitable only for small workspaces. One of the drawbacks
of PTAM is the simple initialization process of the 5-point
algorithm which is sensitive to planar degeneracy. It is worth to
mention, that PTAM does not employ any methods to recover
the accumulated odometry error (i.e. loop closing).

2) ORB-SLAM: ORB-SLAM realizes a rather complex
visual odometry solution, however, it is based basically on
feature detection and point geometry [26]. As its name sug-
gests it uses ORB features to gather image information and
provides odometry and 3d reconstruction simultaneously. Be-
sides, ORB-SLAM provides re-localization and loop closing
capabilities in order to make the process more accurate.

ORB-SLAM works pretty much like PTAM by running
three threads parallel to provide real-time odometry. The
tracking thread is responsible for real-time motion estimation
by detecting ORB features and camera pose recovery. The
local mapping thread calculates the 3d reconstruction of the
map in the background for every keyframe chosen by the
tracking thread. The loop closing thread is watching for map
points to reoccur using bag of words model, and when it
founds one, the loop closing corrects the loop by similarity
transformation (see Fig. 1).
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In this case the projection model can be expressed with a K
intrinsic camera matrix:

x = K(f)
[
I3×3|03×1

]
XC =

[
f 0 0
0 f 0
0 0 1

][
1 0 0 0
0 1 0 0
0 0 1 0

]
XC

(3)

where f is the focal length of the camera and x =[
λx, λy, λ

]T
are the homogeneous coordinates of the two

dimensional projection. It is easy to see that the projection
model is not invertible.

To represent the camera movement in the world frame
we assign a Tk rigid-body transformation to each frame Ik
at k time instants which contains the orientation (Rk) and
the location (Ck) of the camera. The transformation can be
expressed as a 4× 4 matrix as

Tk =

[
Rk Ck

0 1

]
(4)

A fixed world point X =
[
X,Y, Z, 1

]
can be projected at

the k-th image frame as

xk = K(f)
[
I|0

]
T−1

k X =

= K(f)
[
R−1

k | −R−1
k Ck

]
X =

= K(f)Pe
kX

(5)

where Pe
k is commonly called as the extrinsic matrix describ-

ing the world-to-camera transformation. Eq 5 is the most basic
and substantial constraint in the monocular visual odometry
systems.

The goal of the monocular visual odometry algorithms is to
determine the Pe

k extrinsic camera matrices or the Tk rigid-
body transformation of the cameras mainly based on (but not
exclusively) the visual information encoded in frames.

B. Projection distortion

An accurate algorithm must take into consideration that the
projection model of the classical pinhole camera is only an
approximation. Real cameras always have some non-linear
distortion which is basically modelled as radial distortion,
however, other distortion models also exist (i.e. tangential
distortion) [8]. Radial distortion depends on the radial distance
from the radial distortion center (typically the principal point)
and it is represented as an arbitrary function:

x̂ = xc + L(r)(x− xc) ŷ = yc + L(r)(y − yc) (6)

where r2 = (x − xc)
2 + (y − yc)

2 is the radial distance and
xc, yc are the radial centers (commonly considered as zero).
In practice, L(r) is represented as a Taylor-series

L(r) = 1 + κ1r + κ2r
2 + κ3r

3 + · · · (7)

where κi are the radial distortion coefficients. In practice only
the lower coefficients (κ1, κ2, κ3) are used.

C. Visual information retrieval

Visual odometry solutions are based on visual information
encoded in the sequence of image frames. We can distinguish
two widespread methods: intensity based direct methods and
feature based methods.

1) Direct methods: In general, direct methods uses the
Ik(u) intensity map of the image, which represents the bright-
ness of the image pixel coordinate or – rarely – the RGB
vector. The intensity map can be either quantized (i.e. pixel
accuracy) or continuous (i.e. subpixel accuracy), however, the
latter requires some kind of filtering or interpolating algorithm,
that in some cases can cause information loss.

2) Feature detection: Feature based methods are working
on point projections using feature detection and feature ex-
traction algorithms that are able to detect and match the
same points on different images without preliminary geo-
metric knowledge. This way, visual odometry solutions are
simplified to use only projections of real 3D landmarks.
The efficiency of these algorithms can be measured by their
invariance and speed. Invariance means that the detector can
detect features which can be successfully matched even if the
feature is rotated, scaled or suffered other transformations (e.g.
affine transformation). There are a couple of such algorithms
overviewed in [9], from that the most widely used are the
Harris detector [10], the Scale-invariant feature transform
(SIFT) which is based on Laplacian of Gaussian filters [11],
the Maximally Stable Extremal Regions (MSER) [12], the
Features from Accelerated Segment Test (FAST), Oriented
FAST and Rotated BRIEF (ORB) [13]. Considering the overall
requirements SIFT is the most promising, however due to
its high complexity strict constraints restrict its application in
mobile environments.

III. FEATURE BASED SOLUTIONS

Feature based solutions have the attribute to detect features
on the frames first then match them to the previous frame
resulting in projection tracks over a couple of sequential
frames. These tracks can then be used to compute the geometry
of the scene and to recover the camera translations and
orientations. This method utilizes only point geometry models
and correspondences, this way the well established framework
of multiple view geometry can be applied [7].

A. Theory

The most important term here is the pose estimation which
is the process of estimating the extrinsic (and sometimes the
intrinsic) matrix from point correspondences. Depending on
the point pairs we distinguish between two types of pose
estimation: in case of 3D-2D point pairs (i.e. the world points
and their projections) it is called absolute pose estimation and
in case of 2D-2D point pairs (i.e. the projection pairs on two
images) we call it relative pose estimation.

1) PnP problem: The absolute pose estimation problem is
generally called Perspective-n-Point (PnP) problem which has
a couple of methods presented. The classical method for n >
6 point pairs is the DLT (Direct Linear Transform) method
but it is known to be unstable and requires the camera to be
calibrated [14]. For 5 or 4 points the [15] uses a polynomial
technique which allows it to work well even in case of coplanar
points. The EPnP solution is accurate for an arbitrary n ≥ 4
point pairs and can handle planar and non-planar cases [16].
The P3P solution yields to finite number of solutions using
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which depends on ξ and assuming independent pixel noise, the
maximum likelihood (ML) solution is a classical minimization
problem:

ξML = argmin
ξ

∫

Ω

r2(ξ,u) du (13)

The problem is obviously non-linear so the common solu-
tion is to run iterative minimization algorithms like Newton-
Gauss method over a discretized image. To speed up the
integration process, the integration can be run over a couple
of selected patches instead of every pixels in the images.

B. DTAM

Dense Tracking and Mapping (DTAM) uses the photo-
consistency theory in a special way to provide dense maps and
real-time visual odometry [29]. The main idea behind dense
mapping is to sum the photometric error along a ray from the
camera center and find the d distance which minimize the sum
thus finding the depth parameter for that pixel. The summing
is made along a couple of short baseline frames m ∈ I(r) for
a r reference frame:

Cr(u, d) =
1

|I(r)|
∑

m∈I(r)

‖rr(Im,u, d)‖1 (14)

where ‖ · ‖1 is the L1 norm and the photometric error is

rr(Im,u, d) = Im(τ(d,ui))− Ir(ui) (15)

Note that the only change in the equation is the parameter d.
DTAM showed that minimizing the cost yields to a correct
estimation of pixel depth which can be used to build dense
maps.

The tracking part of the DTAM solution provides 6dof
estimation and basically happens the same way as shown in
Eq. 13 with a couple of extensions to provide robust tracking
with occlusion detection.

The DTAM is robust and accurate visual odometry solution
with excellent mapping capabilities. It is not only capable of
handling occlusions but can track the movements even in case
of total lost in focus and keep on tracking even for fast and
random movements. The only drawback of the solution is that
real-time performance requires huge computing capacity and
massive GPU utilization.

C. LSD-SLAM

Large-Scale Direct Monocular SLAM (LSD-SLAM) uses
direct methods combined with a probabilistic approach to
track camera movements and build dense maps real-time [30].
The LSD-SLAM has a scale-aware image alignment algorithm
which directly estimates the similarity transformation between
two keyframes to provide scale consistent maps and odometry.

The main process of the LSD-SLAM is as follows: at every
new frame it tries to estimate the movement relative to the
current keyframe then it decides whether the actual keyframe
should be replaced by the new frame. In case of replacement it
initializes a new depth map otherwise it propagates the depth
map of the current keyframe. At every keyframe replacement

LSD-SLAM runs a map optimization which is essential to
create accurate dense maps.

LSD-SLAM uses image patches to recover pose around
pixels with large intensity gradients. The tracking process is
composed of two steps: estimation of rigid body transforma-
tion and depth map propagation. The former one is a weighted
optimization of the variance-normalized photometric error

Ep(ξj) =
∑

p∈ωDi

∥∥∥∥∥
r2p(u, ξj)

σ2
rp(u,ξj)

∥∥∥∥∥
δ

(16)

for an existing keyframe and the new frame Ij . In the cost
function rp(·) is the photometric error, σrp is the variance
of the photometric error and ‖ · ‖δ expresses the Huber-
norm. Apart from normalization by variance this is a classical
photometric error based odometry solution as in Eq. 13.

The biggest difference to other direct solutions is that the
depth information for a keyframe is calculated in a probabilis-
tic way, i.e. it is refined as new frames received. An inverse
depth map and a depth map variance map is assigned to every
keyframe selected by the LSD-SLAM process. The depth map
is initialized with the depth map of the previous keyframe or
with a random depth map if no keyframe exists. For each new
frame the depth map is propagated as in [31], namely if the
inverse depth for a pixel was d0 then for the new frame it is
approximated as

d1 = (d−1
0 − tz)

−1

σ2
d1

=

(
d1
d0

)4

σ2
d0

+ σ2
p

(17)

where σp is the prediction uncertainty and tz is the camera
translation along the optical axis.

LSD-SLAM also contains solution for the problem of scale-
drift over long trajectories, which is the major source of error
in the family of SLAM solutions. LSD-SLAM thus aligns
two differently scaled keyframes by incorporating the depth
residual into the error function shown above. This method
penalizes deviations in inverse depth between keyframes and
helps to estimate the scaled transformation between them.

D. SVO

The Fast Semi-Direct Monocular Odometry (SVO) is a
great example of a hybrid solution for visual odometry using
direct and feature based algorithms as well [32]. The SVO
combines the probabilistic approach of depth map with the
computationally attractive feature based concept as the name
suggests providing real-time odometry and sparse mapping.

The basic process of SVO is tracking and mapping on
parallel threads, i.e. calculating the movement trajectory at
each frame real-time and select keyframes which can be used
for mapping on the mapping thread. As the mapping thread
uses features, bundle adjustment can be used to minimize
reprojection error and construct accurate maps.

The tracking thread projects the 3D points of the map onto
the new frame and uses the vicinity of the projected points in
the image to estimate the motion relative the previous frame by
photometric error optimization. The pose is refined by aligning
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Fig. 1. The architecture of ORB-SLAM 2 system. ORB SLAM 2 runs on three
threads parallel to each other. The Tracking thread does the real-time pose
estimation, the Local Mapping thread creates new map points and optimize
the local map and the Loop Closing thread tries to find loops in the odometry
and fixes it.

ORB-SLAM applies ORB feature detection as it provides
rotation and scale invariance and it is fast enough to maintain
real-time performance while it is suitable for both large-scale
(i.e. distant frames) and small-scale (i.e. subsequent frames)
matching. The great innovation in ORB SLAM is that it uses
ORB for every part of the process: tracking, mapping and
loop closing are executed on ORB features. The ORB-SLAM
system provides visual odometry as follows:

1) The ORB-SLAM starts with an automatic initialization
method to retrieve the initial pose and map by extracting
the ORB features, matching them and computing corre-
sponding fundamental matrix and homography (i.e. the
two dimensional projective transformation) in the same
time. It computes a score to both the homography and
the fundamental matrix as:

SM =
∑
i

(
ρM

(
d2cr(x

i
c, xi

r,M)
)
+ ρM (d2rc

(
xi
c, xi

r,M)
))

ρM (d2) =

{
Γ− d2 if d2 < TM

0 if d2 ≥ TM

(9)
where M is the model (H for homography and F for
fundamental matrix), d2cr and d2rc are the symmetric
transfer errors, TM is the outlier rejection threshold
based on the χ2 test at 95% (TH = 5.99, TF = 3.84,
assuming a standard deviation of 1 pixel in the measure-
ment error). Γ is a score compensating constant. ORB-
SLAM recover initial pose and map from homography,
if

SH

SH + SF
> 0.45 (10)

otherwise it uses the fundamental matrix. After recov-
ering pose and map it starts a non-linear optimization

(bundle adjustment) to refine the initial model.
2) After map initialization, tracking tries to match ORB

features of the current frame to the ORB features of
the previous frame through a guided search employing a
constant velocity model. The pose is then refined by non-
linear optimization. After pose estimation, ORB-SLAM
tries to reproject the map onto the frame, recovering
more feature matches. The last step is the keyframe
decision which judges that the current frame should be
passed to the local mapping thread. This step utilizes a
couple of complex conditions.

3) Parallel to tracking, every keyframe is processed to
provide a consistent map that is able to refine the
tracking process and provides input to loop closing.
Briefly, local mapping triangulates new point candidates
having passed a restrictive map point culling test and
uses local bundle adjustment to minimize reprojection
error. To maintain compact reconstruction ORB-SLAM
removes redundant keyframes.

4) Loop closing happens parallel to tracking and mapping
and uses bag of words representation and co-visibility
information to detect loop candidates [27]. In case of
loop detection it computes the similarity transformation
accumulated while tracking to distributes the error along
the whole path.

ORB-SLAM has been proven to be a robust and accurate
solution even in large-scale areas and can successfully track
ad-hoc movements while providing stable map initialization in
case of a lost track. ORB-SLAM requires at least 20 frames
per second to work well which can hardly be satisfied using
ORB feature detection on embedded devices like smartphones
without exploiting massive GPU calculations.

IV. DIRECT SOLUTIONS

The principle behind direct solutions states that using the
image intensities results in better odometry accuracy because
it exploits all the information embedded in the frames while
feature based solutions discard image information over feature
points. The most important term of direct solutions is the
photo-consistency discussed in the next section.

A. Photo-consistency theory

From a mathematical perspective, photo-consistency means
that given two images I1 and I2, an observed point p by the
two cameras yields to the same brightness in both images [28]:

I1(u) = I2(τ(ξ,u)) (11)

where u is the projection of p, τ(·) is the warping function,
which depends on π(·) (see Eq. 1). The warping function maps
a pixel coordinate from the first image to the second one given
the camera motion ξ. Here, the motion ξ can be represented
in any minimal representation (e.g. twist coordinates). Given
the residual function for any u point in the Ω image domain

r(ξ,u) = I2(τ(ξ,u))− I1(u) (12)
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which depends on ξ and assuming independent pixel noise, the
maximum likelihood (ML) solution is a classical minimization
problem:

ξML = argmin
ξ

∫

Ω

r2(ξ,u) du (13)

The problem is obviously non-linear so the common solu-
tion is to run iterative minimization algorithms like Newton-
Gauss method over a discretized image. To speed up the
integration process, the integration can be run over a couple
of selected patches instead of every pixels in the images.

B. DTAM

Dense Tracking and Mapping (DTAM) uses the photo-
consistency theory in a special way to provide dense maps and
real-time visual odometry [29]. The main idea behind dense
mapping is to sum the photometric error along a ray from the
camera center and find the d distance which minimize the sum
thus finding the depth parameter for that pixel. The summing
is made along a couple of short baseline frames m ∈ I(r) for
a r reference frame:

Cr(u, d) =
1

|I(r)|
∑

m∈I(r)

‖rr(Im,u, d)‖1 (14)

where ‖ · ‖1 is the L1 norm and the photometric error is

rr(Im,u, d) = Im(τ(d,ui))− Ir(ui) (15)

Note that the only change in the equation is the parameter d.
DTAM showed that minimizing the cost yields to a correct
estimation of pixel depth which can be used to build dense
maps.

The tracking part of the DTAM solution provides 6dof
estimation and basically happens the same way as shown in
Eq. 13 with a couple of extensions to provide robust tracking
with occlusion detection.

The DTAM is robust and accurate visual odometry solution
with excellent mapping capabilities. It is not only capable of
handling occlusions but can track the movements even in case
of total lost in focus and keep on tracking even for fast and
random movements. The only drawback of the solution is that
real-time performance requires huge computing capacity and
massive GPU utilization.

C. LSD-SLAM

Large-Scale Direct Monocular SLAM (LSD-SLAM) uses
direct methods combined with a probabilistic approach to
track camera movements and build dense maps real-time [30].
The LSD-SLAM has a scale-aware image alignment algorithm
which directly estimates the similarity transformation between
two keyframes to provide scale consistent maps and odometry.

The main process of the LSD-SLAM is as follows: at every
new frame it tries to estimate the movement relative to the
current keyframe then it decides whether the actual keyframe
should be replaced by the new frame. In case of replacement it
initializes a new depth map otherwise it propagates the depth
map of the current keyframe. At every keyframe replacement

LSD-SLAM runs a map optimization which is essential to
create accurate dense maps.

LSD-SLAM uses image patches to recover pose around
pixels with large intensity gradients. The tracking process is
composed of two steps: estimation of rigid body transforma-
tion and depth map propagation. The former one is a weighted
optimization of the variance-normalized photometric error

Ep(ξj) =
∑

p∈ωDi

∥∥∥∥∥
r2p(u, ξj)

σ2
rp(u,ξj)

∥∥∥∥∥
δ

(16)

for an existing keyframe and the new frame Ij . In the cost
function rp(·) is the photometric error, σrp is the variance
of the photometric error and ‖ · ‖δ expresses the Huber-
norm. Apart from normalization by variance this is a classical
photometric error based odometry solution as in Eq. 13.

The biggest difference to other direct solutions is that the
depth information for a keyframe is calculated in a probabilis-
tic way, i.e. it is refined as new frames received. An inverse
depth map and a depth map variance map is assigned to every
keyframe selected by the LSD-SLAM process. The depth map
is initialized with the depth map of the previous keyframe or
with a random depth map if no keyframe exists. For each new
frame the depth map is propagated as in [31], namely if the
inverse depth for a pixel was d0 then for the new frame it is
approximated as

d1 = (d−1
0 − tz)

−1

σ2
d1

=

(
d1
d0

)4

σ2
d0

+ σ2
p

(17)

where σp is the prediction uncertainty and tz is the camera
translation along the optical axis.

LSD-SLAM also contains solution for the problem of scale-
drift over long trajectories, which is the major source of error
in the family of SLAM solutions. LSD-SLAM thus aligns
two differently scaled keyframes by incorporating the depth
residual into the error function shown above. This method
penalizes deviations in inverse depth between keyframes and
helps to estimate the scaled transformation between them.

D. SVO

The Fast Semi-Direct Monocular Odometry (SVO) is a
great example of a hybrid solution for visual odometry using
direct and feature based algorithms as well [32]. The SVO
combines the probabilistic approach of depth map with the
computationally attractive feature based concept as the name
suggests providing real-time odometry and sparse mapping.

The basic process of SVO is tracking and mapping on
parallel threads, i.e. calculating the movement trajectory at
each frame real-time and select keyframes which can be used
for mapping on the mapping thread. As the mapping thread
uses features, bundle adjustment can be used to minimize
reprojection error and construct accurate maps.

The tracking thread projects the 3D points of the map onto
the new frame and uses the vicinity of the projected points in
the image to estimate the motion relative the previous frame by
photometric error optimization. The pose is refined by aligning
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Fig. 1. The architecture of ORB-SLAM 2 system. ORB SLAM 2 runs on three
threads parallel to each other. The Tracking thread does the real-time pose
estimation, the Local Mapping thread creates new map points and optimize
the local map and the Loop Closing thread tries to find loops in the odometry
and fixes it.

ORB-SLAM applies ORB feature detection as it provides
rotation and scale invariance and it is fast enough to maintain
real-time performance while it is suitable for both large-scale
(i.e. distant frames) and small-scale (i.e. subsequent frames)
matching. The great innovation in ORB SLAM is that it uses
ORB for every part of the process: tracking, mapping and
loop closing are executed on ORB features. The ORB-SLAM
system provides visual odometry as follows:

1) The ORB-SLAM starts with an automatic initialization
method to retrieve the initial pose and map by extracting
the ORB features, matching them and computing corre-
sponding fundamental matrix and homography (i.e. the
two dimensional projective transformation) in the same
time. It computes a score to both the homography and
the fundamental matrix as:

SM =
∑
i

(
ρM

(
d2cr(x

i
c, xi

r,M)
)
+ ρM (d2rc

(
xi
c, xi

r,M)
))

ρM (d2) =

{
Γ− d2 if d2 < TM

0 if d2 ≥ TM

(9)
where M is the model (H for homography and F for
fundamental matrix), d2cr and d2rc are the symmetric
transfer errors, TM is the outlier rejection threshold
based on the χ2 test at 95% (TH = 5.99, TF = 3.84,
assuming a standard deviation of 1 pixel in the measure-
ment error). Γ is a score compensating constant. ORB-
SLAM recover initial pose and map from homography,
if

SH

SH + SF
> 0.45 (10)

otherwise it uses the fundamental matrix. After recov-
ering pose and map it starts a non-linear optimization

(bundle adjustment) to refine the initial model.
2) After map initialization, tracking tries to match ORB

features of the current frame to the ORB features of
the previous frame through a guided search employing a
constant velocity model. The pose is then refined by non-
linear optimization. After pose estimation, ORB-SLAM
tries to reproject the map onto the frame, recovering
more feature matches. The last step is the keyframe
decision which judges that the current frame should be
passed to the local mapping thread. This step utilizes a
couple of complex conditions.

3) Parallel to tracking, every keyframe is processed to
provide a consistent map that is able to refine the
tracking process and provides input to loop closing.
Briefly, local mapping triangulates new point candidates
having passed a restrictive map point culling test and
uses local bundle adjustment to minimize reprojection
error. To maintain compact reconstruction ORB-SLAM
removes redundant keyframes.

4) Loop closing happens parallel to tracking and mapping
and uses bag of words representation and co-visibility
information to detect loop candidates [27]. In case of
loop detection it computes the similarity transformation
accumulated while tracking to distributes the error along
the whole path.

ORB-SLAM has been proven to be a robust and accurate
solution even in large-scale areas and can successfully track
ad-hoc movements while providing stable map initialization in
case of a lost track. ORB-SLAM requires at least 20 frames
per second to work well which can hardly be satisfied using
ORB feature detection on embedded devices like smartphones
without exploiting massive GPU calculations.

IV. DIRECT SOLUTIONS

The principle behind direct solutions states that using the
image intensities results in better odometry accuracy because
it exploits all the information embedded in the frames while
feature based solutions discard image information over feature
points. The most important term of direct solutions is the
photo-consistency discussed in the next section.

A. Photo-consistency theory

From a mathematical perspective, photo-consistency means
that given two images I1 and I2, an observed point p by the
two cameras yields to the same brightness in both images [28]:

I1(u) = I2(τ(ξ,u)) (11)

where u is the projection of p, τ(·) is the warping function,
which depends on π(·) (see Eq. 1). The warping function maps
a pixel coordinate from the first image to the second one given
the camera motion ξ. Here, the motion ξ can be represented
in any minimal representation (e.g. twist coordinates). Given
the residual function for any u point in the Ω image domain

r(ξ,u) = I2(τ(ξ,u))− I1(u) (12)
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The second step conveys the measurement or update, when
based on the state dependent measurements correction is done
on the actual state.

P (xk,m|z0:k,u0:k,x0) =

P (zk|xk,m)P (xk,m|z0:k−1,u0:k,x0)

P (zk|z0:k−1,u0:k)
(22)

B. The IMU model

In indoor applications practically gyroscope and accelerom-
eter measurements can be used to determine actual relative
pose, and in filter algorithms for filter state propagation. All
these measurements are stressed with local measurement noise,
distortion and biases. The accelerometer measures actual ac-
celeration (am,I ∈ R3) in the IMU orientation frame (I), and
its model can be formulated as follows.

am,I(t) = TaRIG(t)(aG(t)− g) + ab(t) + an(t) (23)

, where aG is the real acceleration in the global orientation
frame, g is the gravity acceleration. RIG represents the
rotational transformation between the IMU frame (I) and
the global frame (G), while Ta shape matrix comprises the
gyroscope axis misalignments and scale errors. The measure-
ment noise an is modelled as a zero mean Gaussian random
variable, an ∼ N (0,Na), and the bias ab changes over the
time and is modelled as a random walk process driven by its
own noise vector awn ∼ N (0,Nwa)

Regarding the gyroscope, it measures rotational velocity
(ωm,I ∈ R3) in the IMU orientation frame, its realistic model
looks like the following:

ωm,I(t) = TgωI(t) +TsaI(t) + ωb(t) + ωn(t) (24)

, where ωI is the real rotational velocity in the IMU orien-
tation frame, Tg is the shape matrix, while TsaI represents
the influence of the acceleration to the the rotational velocity.

In practice, due to their insignificant effects scale and mis-
alignment and acceleration influence is considered idealistic
(Ta = Tg = I,Ts = 0).

C. Extended Kalman Filter (EKF)

The Bayesian technique can be solved by EKF, where the
motion or state transition model (Eq. 19) is formalized by the
following relation.

xk = f(xk−1,uk) +wk (25)

where f function models the vehicle kinematics in function of
the actual state xk−1 and the actual control input uk and wk

is an additive zero mean Gaussian noise with covariance Qk

(wk ∼ N (0,Qk)).
On the other side EKF implements the generic observation

model (Eq. 20) by the following equation.

zk = h(xk,m) + vk (26)

where h function describes the relation between the actual
state xk and the map landmarks m with the projected point of
landmark zk. The vk is again an additive zero mean Gaussian
error of observation with covariance R (vk ∼ N (0,R)).

The system state vector of filter-based visual odometry
solutions can be divided into the part related to the motion
estimation (xIMU ) and the auxiliary section related to the
observation model related to the certain solution (xaux).

x = [xIMU ,xaux] (27)

The related state covariance matrix (Pk) can also be divided
into parts related to the motion model (PIMU ), the observation
model (Paux), and the part describes the relation between
these parameters (PIMU,aux).

Pk =

[
PIMU PIMU,aux

PT
IMU,aux Paux

]
(28)

During the time update the state vector estimate and re-
lated covariance matrix is updated according to the following
equations.

x̂ ← f(x̂,u)

P ← FPFT +Q
(29)

where the F is the Jacobian of f function and evaluated at the
estimate x̂k, thus F = ∂f(x̂,u)

∂x |x̂k
.

Based on the visual observations the correction is formu-
lated in the following equations, that describes the residual,
the Kalman gain, respectively.

r = z− h(x)

K = PHT (HPHT +R)−1
(30)

According to the residual and the Kalman gain the estimated
state and covariance matrix updates are defined as the follow-
ings.

x̂ ← x̂+Kr

P ← (I−KH)P
(31)

Considering the 6dof kinematic properties of the smart-
phone the application requires from the filter state to store
actual orientation, position, velocity and the gyroscope and
accelerometer bias parameters. According to this consideration
the kinematic part of the filter state is defined by the following
vector.

x = [qGI ,pI,G ,vI,G ,ωb,ab]
T (32)

During the state propagation using the gyroscope-
accelerometer measurement pair the nominal values of
kinetic part of the state should follow the kinetic equations
below.

q̇GI =
1

2
qGI ⊗ (ωm − ωb), ṗI,G = vI,G ,

v̇I,G = RGI(am − ab) + g, ω̇b = 0, ȧb = 0
(33)

D. Particle Filter

The bayesian propagation and measurement equations (see
Eq. 22 and Eq. 21) cannot be solved in a closed form for
the SLAM problem. For Gaussian-distribution the solution
can be approximated with various Kalman-filters but the exact
solution for strongly non-linear models can only be found by
numerical integration.
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the frame to the whole map (using Lucas-Kanade algorithm
[33]) then by local bundle adjustment to apply the epipolar
constraints.

The unique solution of the SVO is the fact that no depth map
is computed but for each feature point on a keyframe a depth-
filter is assigned which estimates the feature depth in a prob-
abilistic way. First, the mapping thread decides the new frame
to be a keyframe or not. Feature extraction is executed on new
keyframes and to each feature is assigned a freshly initialized
depth-filter. On interframes (i.e. not keyframes) the depth-
filters for the features are updated until they converge to the
estimated value and the variance is small enough. Converged
depth filter are converted to map points by triangulation.

Thanks to the feature based mapping process SVO has
proven to be faster than other direct solutions however the
result is a sparse map rather then a dense one. The depth filters
are a capable of detecting outlier measurement and the map
is always consistent and correct because triangulation happens
only when the filters converged. As the SVO uses couple of
small patches around features to estimate motion it is capable
of running real-time as well.

V. FILTER-BASED SOLUTIONS

In the real-time applications the relative pose estimation
should be seamless, which can not be guaranteed just by
image processing. To overcome this problem motion models
are introduced to estimate the camera state between pose
estimations. One on the most reliable solution is demonstrated
as the MonoSLAM [34] for smooth camera motion in a desk-
scale local environment.

In indoor application the most reasonable choice for motion
estimation is to combine measurements of IMU, gyroscope and
accelerometer with the measurements from projective camera
images of the environment.

The filter based family of visual odometry algorithms fuses
inertial IMU measurements with visual feature observations. In
these methods, the current IMU poses and positions of visual
landmarks are jointly estimated. These approaches share the
same basic principles with camera-only localization based on
bundle-adjustment. These solutions in the most cases integrate
inertial data from IMU and pose estimations from camera
measurements. These combined techniques are characterized
as loosely coupled and tightly coupled systems. In loosely
coupled systems [35] [36] [37] inertial and camera measure-
ments are processed separately before being fused as a single
relative pose estimate, while tightly coupled systems process
all the information together [38] [39]. However loosely cou-
pled systems limit computational complexity, in the following
we focus on tightly coupled techniques due to its ability to
reach higher consistency between camera poses and map of
landmarks.

A. Theory

The original relative pose estimation problem is hard due
to its nature. The algorithms use a map containing visual
information to localize, while relative pose is necessary to
construct and update the visual map. The problem becomes

xk−1

xk

xk+1 xk+2

mj

mi

uk

uk+1

uk+2

zk−1,j

zk,i
zk+1,i

Fig. 2. The probabilistic SLAM problem. The triangles show the robot poses
while stars represent landmarks. We depicted the true values with solid lines
and the estimated values with dashed lines. The observations always made
between the true location and the true landmark position.

even harder to solve if we consider the noise of the sensor mea-
surements. Various probabilistic methods are used to deal with
the uncertainty introduced by measurement noise, Extended
Kalman Filter (EKF), Particle Filter (PF), which are all based
on Bayesian technique for random value estimation of system
state parameters, including the camera location and orientation
at a discrete time (xk) based on observations (zk = {zik})
from a given location on the environment landmarks, in other
words the map points (m = {m1,m2, ...,mn} = m1:n),
while the camera location is controlled independently of the
uk system state (see Fig. 2). The problem of relative pose
estimation is given then in the probabilistic form as follows.
[3]

P (xk,m|z0:k,u0:k,x0) (18)

The calculation of position probability distribution is done
iteratively starting from P (xk−1,m|z1:k−1,u1:k−1,x0) with
input of the actual control uk and measurement zk using
Bayesian Theorem. The computation from one side requires
the state transition or motion model for the camera that
describes the new state regarding the control input.

P (xk|xk−1,uk) (19)

Secondly the observation model describes the probability of
making and observation zk, when a camera and landmark
locations are known.

P (zk|xk,m) (20)

The iteration is then implemented in a standard two-step recur-
sive process. The first step is the time update that propagates
state in time.

P (xk,m|z0:k−1,u0:k,x0) =

∫
P (xk|xk−1,uk)·

P (xk−1,m|z0:k−1,u0:k−1,x0) dxk−1 (21)
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The second step conveys the measurement or update, when
based on the state dependent measurements correction is done
on the actual state.

P (xk,m|z0:k,u0:k,x0) =

P (zk|xk,m)P (xk,m|z0:k−1,u0:k,x0)

P (zk|z0:k−1,u0:k)
(22)

B. The IMU model

In indoor applications practically gyroscope and accelerom-
eter measurements can be used to determine actual relative
pose, and in filter algorithms for filter state propagation. All
these measurements are stressed with local measurement noise,
distortion and biases. The accelerometer measures actual ac-
celeration (am,I ∈ R3) in the IMU orientation frame (I), and
its model can be formulated as follows.

am,I(t) = TaRIG(t)(aG(t)− g) + ab(t) + an(t) (23)

, where aG is the real acceleration in the global orientation
frame, g is the gravity acceleration. RIG represents the
rotational transformation between the IMU frame (I) and
the global frame (G), while Ta shape matrix comprises the
gyroscope axis misalignments and scale errors. The measure-
ment noise an is modelled as a zero mean Gaussian random
variable, an ∼ N (0,Na), and the bias ab changes over the
time and is modelled as a random walk process driven by its
own noise vector awn ∼ N (0,Nwa)

Regarding the gyroscope, it measures rotational velocity
(ωm,I ∈ R3) in the IMU orientation frame, its realistic model
looks like the following:

ωm,I(t) = TgωI(t) +TsaI(t) + ωb(t) + ωn(t) (24)

, where ωI is the real rotational velocity in the IMU orien-
tation frame, Tg is the shape matrix, while TsaI represents
the influence of the acceleration to the the rotational velocity.

In practice, due to their insignificant effects scale and mis-
alignment and acceleration influence is considered idealistic
(Ta = Tg = I,Ts = 0).

C. Extended Kalman Filter (EKF)

The Bayesian technique can be solved by EKF, where the
motion or state transition model (Eq. 19) is formalized by the
following relation.

xk = f(xk−1,uk) +wk (25)

where f function models the vehicle kinematics in function of
the actual state xk−1 and the actual control input uk and wk

is an additive zero mean Gaussian noise with covariance Qk

(wk ∼ N (0,Qk)).
On the other side EKF implements the generic observation

model (Eq. 20) by the following equation.

zk = h(xk,m) + vk (26)

where h function describes the relation between the actual
state xk and the map landmarks m with the projected point of
landmark zk. The vk is again an additive zero mean Gaussian
error of observation with covariance R (vk ∼ N (0,R)).

The system state vector of filter-based visual odometry
solutions can be divided into the part related to the motion
estimation (xIMU ) and the auxiliary section related to the
observation model related to the certain solution (xaux).

x = [xIMU ,xaux] (27)

The related state covariance matrix (Pk) can also be divided
into parts related to the motion model (PIMU ), the observation
model (Paux), and the part describes the relation between
these parameters (PIMU,aux).

Pk =

[
PIMU PIMU,aux

PT
IMU,aux Paux

]
(28)

During the time update the state vector estimate and re-
lated covariance matrix is updated according to the following
equations.

x̂ ← f(x̂,u)

P ← FPFT +Q
(29)

where the F is the Jacobian of f function and evaluated at the
estimate x̂k, thus F = ∂f(x̂,u)

∂x |x̂k
.

Based on the visual observations the correction is formu-
lated in the following equations, that describes the residual,
the Kalman gain, respectively.

r = z− h(x)

K = PHT (HPHT +R)−1
(30)

According to the residual and the Kalman gain the estimated
state and covariance matrix updates are defined as the follow-
ings.

x̂ ← x̂+Kr

P ← (I−KH)P
(31)

Considering the 6dof kinematic properties of the smart-
phone the application requires from the filter state to store
actual orientation, position, velocity and the gyroscope and
accelerometer bias parameters. According to this consideration
the kinematic part of the filter state is defined by the following
vector.

x = [qGI ,pI,G ,vI,G ,ωb,ab]
T (32)

During the state propagation using the gyroscope-
accelerometer measurement pair the nominal values of
kinetic part of the state should follow the kinetic equations
below.

q̇GI =
1

2
qGI ⊗ (ωm − ωb), ṗI,G = vI,G ,

v̇I,G = RGI(am − ab) + g, ω̇b = 0, ȧb = 0
(33)

D. Particle Filter

The bayesian propagation and measurement equations (see
Eq. 22 and Eq. 21) cannot be solved in a closed form for
the SLAM problem. For Gaussian-distribution the solution
can be approximated with various Kalman-filters but the exact
solution for strongly non-linear models can only be found by
numerical integration.
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the frame to the whole map (using Lucas-Kanade algorithm
[33]) then by local bundle adjustment to apply the epipolar
constraints.

The unique solution of the SVO is the fact that no depth map
is computed but for each feature point on a keyframe a depth-
filter is assigned which estimates the feature depth in a prob-
abilistic way. First, the mapping thread decides the new frame
to be a keyframe or not. Feature extraction is executed on new
keyframes and to each feature is assigned a freshly initialized
depth-filter. On interframes (i.e. not keyframes) the depth-
filters for the features are updated until they converge to the
estimated value and the variance is small enough. Converged
depth filter are converted to map points by triangulation.

Thanks to the feature based mapping process SVO has
proven to be faster than other direct solutions however the
result is a sparse map rather then a dense one. The depth filters
are a capable of detecting outlier measurement and the map
is always consistent and correct because triangulation happens
only when the filters converged. As the SVO uses couple of
small patches around features to estimate motion it is capable
of running real-time as well.

V. FILTER-BASED SOLUTIONS

In the real-time applications the relative pose estimation
should be seamless, which can not be guaranteed just by
image processing. To overcome this problem motion models
are introduced to estimate the camera state between pose
estimations. One on the most reliable solution is demonstrated
as the MonoSLAM [34] for smooth camera motion in a desk-
scale local environment.

In indoor application the most reasonable choice for motion
estimation is to combine measurements of IMU, gyroscope and
accelerometer with the measurements from projective camera
images of the environment.

The filter based family of visual odometry algorithms fuses
inertial IMU measurements with visual feature observations. In
these methods, the current IMU poses and positions of visual
landmarks are jointly estimated. These approaches share the
same basic principles with camera-only localization based on
bundle-adjustment. These solutions in the most cases integrate
inertial data from IMU and pose estimations from camera
measurements. These combined techniques are characterized
as loosely coupled and tightly coupled systems. In loosely
coupled systems [35] [36] [37] inertial and camera measure-
ments are processed separately before being fused as a single
relative pose estimate, while tightly coupled systems process
all the information together [38] [39]. However loosely cou-
pled systems limit computational complexity, in the following
we focus on tightly coupled techniques due to its ability to
reach higher consistency between camera poses and map of
landmarks.

A. Theory

The original relative pose estimation problem is hard due
to its nature. The algorithms use a map containing visual
information to localize, while relative pose is necessary to
construct and update the visual map. The problem becomes

xk−1

xk

xk+1 xk+2

mj

mi

uk

uk+1

uk+2

zk−1,j

zk,i
zk+1,i

Fig. 2. The probabilistic SLAM problem. The triangles show the robot poses
while stars represent landmarks. We depicted the true values with solid lines
and the estimated values with dashed lines. The observations always made
between the true location and the true landmark position.

even harder to solve if we consider the noise of the sensor mea-
surements. Various probabilistic methods are used to deal with
the uncertainty introduced by measurement noise, Extended
Kalman Filter (EKF), Particle Filter (PF), which are all based
on Bayesian technique for random value estimation of system
state parameters, including the camera location and orientation
at a discrete time (xk) based on observations (zk = {zik})
from a given location on the environment landmarks, in other
words the map points (m = {m1,m2, ...,mn} = m1:n),
while the camera location is controlled independently of the
uk system state (see Fig. 2). The problem of relative pose
estimation is given then in the probabilistic form as follows.
[3]

P (xk,m|z0:k,u0:k,x0) (18)

The calculation of position probability distribution is done
iteratively starting from P (xk−1,m|z1:k−1,u1:k−1,x0) with
input of the actual control uk and measurement zk using
Bayesian Theorem. The computation from one side requires
the state transition or motion model for the camera that
describes the new state regarding the control input.

P (xk|xk−1,uk) (19)

Secondly the observation model describes the probability of
making and observation zk, when a camera and landmark
locations are known.

P (zk|xk,m) (20)

The iteration is then implemented in a standard two-step recur-
sive process. The first step is the time update that propagates
state in time.

P (xk,m|z0:k−1,u0:k,x0) =

∫
P (xk|xk−1,uk)·

P (xk−1,m|z0:k−1,u0:k−1,x0) dxk−1 (21)
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On the other hand the residual can be approximated by
linearising about the estimates of the camera poses and the
feature positions, where Hxi and H

(j)
fj

are the Jacobians of

the measurement z(j)i with respect to the state and the feature
position, respectively. After stacking the residuals for each Nj

measurements of the fj features we get

r(j) � Hxx̃+H
(j)
f p̃fj ,G (44)

Since the actual state estimate x is used for estimation of p̂fj ,G
the error of state x̃ and of feature position p̃fj ,G are correlated.
The solution of this problem is projecting r(j) on the left null-
space of the matrix H

(j)
f . Define A(j) as the unitary matrix

the columns of which form the basis of the left null-space of
Hf , so we get:

r(j)o � A(j)TH(i)
x x̃(j) +A(j)Tn(j) = H(j)

o x̃(j) + n(j)
o (45)

Also by stacking residuals into a single vector from observa-
tions from each fj features, we obtain:

ro = Hxx̃+ no (46)

To reduce the computational complexity during update QR
decomposition is applied on Hx [46]. After determining the
TH upper triangular matrix and its corresponding unitary
matrix whose columns form bases for the rand and null-space
of Hx, Q1, the residual is then reformulated as the following:

rn = QT
1 ro = TH x̃+ nn (47)

Based on the above measures, the residual rn and the mea-
surement Jacobian TH the basic EKF update is used (see Eg.
31).

The correct co-operation between image based relative
observations and inertial measurements requires to exactly
know the transformation between camera and IMU orientation
frames. In most of the solutions this transformation assumed to
be known exactly, while EKF is appropriate also for the esti-
mation of these parameters. The MSCKF 2.0 [46] introduces
these parameters (qIC ,pC,I ) into the state. Besides, global
orientation errors are considered and an improved linearizion
and calculation of Jacobians are provided to improve the
observability and in increase accuracy and stability.

The MSCKF model later is extended with estimation of
rolling shutter camera properties [47] and temporal calibration
[48], while algorithm is provided for on-line self-calibration
[49], as well.

Regarding the computational complexity it is easy to realize
that instead of the EKF-SLAM the complexity basically de-
pends more on the registered camera states than the observed
number of features. However the calculation of TH depends
on the number of features (∼ d) and the columns of the Q1

(r). The other crucial factor is determined by the computation
of covariance matrix update. The cost of the MSCKF update
is then calculated by max{O(r2d),O(m3))}, where m is the
size of the state vector.

One can see that since MSCKF uses sliding window for
camera states, tracked features can be observed only for a
time limited to the window size. To overcome this limitation
the authors designed a hybrid MSCKF-EKF SLAM solution,

where MSCKF is applied only for short, while long features
are inserted into the state vector. [50]

3) FastSLAM: The FastSLAM implements PF method,
however the high dimensional state-space of the SLAM prob-
lem makes it computationally infeasible to apply particle
filters directly on the Bayesian-equations. FastSLAM solves
this problem by applying a factorization to the posterior
distribution as follows [51]:

p(x1:k,m|z0:k,u0:k,x0) = p(x1:k|z0:k,u0:k,x0)·∏
k

p(mk|x1:k, z0:k,u0:k,x0) (48)

The estimation thus can be done in two steps: first we estimate
the posterior of the path trajectories then – based on the
trajectory estimated – we estimate the locations of the K
landmarks independently. The path estimation is done by a
modified particle estimator using Monte Carlo method, while
the estimation of the landmarks is achieved by Kalman-filters.
Because landmarks are conditioned on the path estimation
if M particle is used to estimate the trajectory then KM
two dimensional Kalman-filter is required to estimate the
landmarks.

FastSLAM runs time linear in the number of landmarks,
however, the implementation of FastSLAM uses a tree rep-
resentation of particles to run in O(M logK). This way
the resampling of particles can happen much faster than
implemented naively.

The FastSLAM can handle huge amounts of landmarks – as
extensive simulation has shown – and is at least as accurate as
EKF-SLAM. However, the biggest problem of FastSLAM is
the inability to forget the past (i.e. the pose and measurement
history) and this way the statistical accuracy is lost [52].

FastSLAM has a more efficient extension called FastSLAM
2.0 which uses another proposal distribution including the
current landmark observations and this way calculating the
importance weights differently [53].

VI. IMPLEMENTATION ASPECTS

It is essential for visual odometry and SLAM algorithms
to run real-time. Recent smartphones are equipped with a
considerable amount of resources, like multiple cores of CPU
and GPU. To face to the real-time requirements by utilizing
parallel resources, some algorithms decouple real-time and
background tasks. The computational burden is still really
high for embedded devices. Fortunately, these algorithms give
way to a lot of parallelization opportunities to speed up
computations.

The feature extraction is also much faster if done parallel,
e.g. SiftGPU reported to extract SIFT features at 27 FPS on a
nVidia 8800GTX card [54]. The widespread OpenCV1 library
has also GPU support for various algorithms using CUDA
and OpenCL. Not only feature detection and extraction but
bundle adjustment can be parallelized to be ca. 30 times faster
than native implementations such as the Multicore Bundle
Adjustment project shows [55].

1OpenCV can be found at http://opencv.org
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Given a g(x) : Rn −→ Rm function, the expectation over
a posterior distribution:

E[g(x)|z1:k] =
∫

g(x)P (x|z1:k) dx (34)

can be approximated by drawing N independent random
samples x(i) form the p(x|z1:k) distribution:

E[g(x)|z1:k] ≈
1

N

N∑
i=1

g(x(i)) (35)

This type of numerical calculation of integrals is called Monte
Carlo method [40]. However, in case of the Bayesian models
it is not possible to draw samples from P (x|z1:k), so we
need to approximate it someway. The solution is to find an
approximate importance distribution Π(x|z1:k) from which it
is easy to draw samples. These kind of techniques are called
importance sampling methods. Particle filter is the method of
using sequential importance resampling algorithm. This forms
the posterior distribution with a couple of w(i)

k weights.

p(xk|z1:k) ≈
N∑
i=1

w
(i)
k δ(xk − x

(i)
k ) (36)

where δ(·) is the Dirac-delta.

E. Solutions

1) EKF-SLAM: In EKF-SLAM algorithms, the filter state
vector contains the current IMU state xIMU and the observed
feature 3D positions (pfi ). Thus the filter state vector is
defined as follows.

xk = [xIMU,k,p
T
f1,k

...pT
fn,k

]T (37)

The 3D features can be parametrized traditionally using
(x, y, z) coordinates, the anchored homogeneous parametriza-
tion [41], and the inverse-depth parametrization [42]. Although
the former one is straightforward, the latter two increases the
consistency and accuracy.

The EKF-SLAM uses the ”standard” propagation method
of states (xk) and covariance matrix (Pk) based on the IMU
inertial measurements as described above, while the update
process is calculated on the actual image features. Assuming
a calibrated perspective camera, the observation of feature i on
the actual image at time step k is expressed by the following
equation describing the actual observation.

zi,k = h(xIMU,k,pfi,k
) =

1

zfi,Ck

[
xfi,Ck

yfi,Ck

]
+ ni,k (38)

where ni,k is the measurement noise, and the pfi,Ck
=

[xfi,Ck
, yfi,Ck

, zfi,Ck
] describes the observed feature position

in the camera orientation frame Ck, and this position is
described by the following equation and the pI,C and RCI
are the fixed position and rotation transformation between the
IMU (I) and the camera (C) frames.

pfi,Ck
= RCIRIkG(pfi,G − pIk,G) + pI,C (39)

Assuming that the actual position of the IMU frame is pIk,G
EKF-SLAM defines a residual as the difference between the

real observation zi,k of the feature i and the projection of the
estimated feature position (p̂fi,Ck

), and linearizes it around the
actual state (x̂IMU,k) as:

ri,k = zi,k − h(x̂IMU,k, p̂fi,Ck
) � Hi,k(x̂k)x̃k + ni,k (40)

The Hi,k(x̂k) is the Jacobian matrix of h with respect to
the actual filter state estimate (x̂k).

When the ri,k and Hi,k are computed the outlier detection
is done using Mahalanobis gating. If the test succeeds, from
the residual and observation Jacobian the Kalman gain and
the innovation are computed according to the basic EKF rules
(see Eqs. 31). For the Mahalanobis gating we compute the
following:

γi = rTi (HiPiH
T
i + σ2I)−1ri (41)

Then it is compared to the threshold given by the 96 percent
of the χ2 distribution.

The observation update step requires that all landmarks and
joint-covariance matrix must be updated every time an image
is registered by the camera. Considering the complexity of
the EKF-SLAM it is straightforward that the computational
complexity is dominated by cubic to the actual number of
the landmarks, thus the complexity is O(n2). In practice the
actual map can consists of thousands of features, thus the EKF-
SLAM becomes computationally intractable for large areas.

To provide first-aid to this problem Sola proposed a method,
when the state and covariance matrices are updated by only
the actual observed features. [43]

2) MSCKF: The fundamental advantage of filter-based al-
gorithms is they account for the correlations that exist between
the pose of the camera and the 3D position of the observed
features. Besides, the main limitation is its high computational
complexity, even when only hundreds of features are consid-
ered during calculations.

The motivation of Multi-State Constraint Filter (MSCKF)
is the introduction of consecutive camera poses into the state
instead of feature positions. This is first done by Nister [44],
however this method does not incorporate inertial measure-
ments. Sliding window-based solutions appear also in other
solutions. [45]

Assuming that N of the camera poses are included in the
EKF state vector at time step k, the MSCK state vector has
the following form.

xk = [ximu,k,q
T
GC1

,pC1,G ...q
T
GCN

,pCN ,G ]
T (42)

Since the time update is common for EKF-based pose esti-
mation, the difference is maintained during the measurement
update step. When new image arrives features are tracked
among the last N camera poses. The update process considers
each single feature fj that has been observed from the set of
Nj camera poses (qT

GCi
,pCi,G).

The estimated feature position p̂fj ,G in the global frame
is triangulated from camera poses using feature observations.
Usually a least-square minimization is used with inverse-depth
parametrization. [42] The residual r(j)j is then defined as the
difference between re-projections of estimated feature p̂fj ,G
and the real feature observations.

r
(j)
i = z

(j)
i − ẑ

(j)
i (43)
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On the other hand the residual can be approximated by
linearising about the estimates of the camera poses and the
feature positions, where Hxi and H

(j)
fj

are the Jacobians of

the measurement z(j)i with respect to the state and the feature
position, respectively. After stacking the residuals for each Nj

measurements of the fj features we get

r(j) � Hxx̃+H
(j)
f p̃fj ,G (44)

Since the actual state estimate x is used for estimation of p̂fj ,G
the error of state x̃ and of feature position p̃fj ,G are correlated.
The solution of this problem is projecting r(j) on the left null-
space of the matrix H

(j)
f . Define A(j) as the unitary matrix

the columns of which form the basis of the left null-space of
Hf , so we get:

r(j)o � A(j)TH(i)
x x̃(j) +A(j)Tn(j) = H(j)

o x̃(j) + n(j)
o (45)

Also by stacking residuals into a single vector from observa-
tions from each fj features, we obtain:

ro = Hxx̃+ no (46)

To reduce the computational complexity during update QR
decomposition is applied on Hx [46]. After determining the
TH upper triangular matrix and its corresponding unitary
matrix whose columns form bases for the rand and null-space
of Hx, Q1, the residual is then reformulated as the following:

rn = QT
1 ro = TH x̃+ nn (47)

Based on the above measures, the residual rn and the mea-
surement Jacobian TH the basic EKF update is used (see Eg.
31).

The correct co-operation between image based relative
observations and inertial measurements requires to exactly
know the transformation between camera and IMU orientation
frames. In most of the solutions this transformation assumed to
be known exactly, while EKF is appropriate also for the esti-
mation of these parameters. The MSCKF 2.0 [46] introduces
these parameters (qIC ,pC,I ) into the state. Besides, global
orientation errors are considered and an improved linearizion
and calculation of Jacobians are provided to improve the
observability and in increase accuracy and stability.

The MSCKF model later is extended with estimation of
rolling shutter camera properties [47] and temporal calibration
[48], while algorithm is provided for on-line self-calibration
[49], as well.

Regarding the computational complexity it is easy to realize
that instead of the EKF-SLAM the complexity basically de-
pends more on the registered camera states than the observed
number of features. However the calculation of TH depends
on the number of features (∼ d) and the columns of the Q1

(r). The other crucial factor is determined by the computation
of covariance matrix update. The cost of the MSCKF update
is then calculated by max{O(r2d),O(m3))}, where m is the
size of the state vector.

One can see that since MSCKF uses sliding window for
camera states, tracked features can be observed only for a
time limited to the window size. To overcome this limitation
the authors designed a hybrid MSCKF-EKF SLAM solution,

where MSCKF is applied only for short, while long features
are inserted into the state vector. [50]

3) FastSLAM: The FastSLAM implements PF method,
however the high dimensional state-space of the SLAM prob-
lem makes it computationally infeasible to apply particle
filters directly on the Bayesian-equations. FastSLAM solves
this problem by applying a factorization to the posterior
distribution as follows [51]:

p(x1:k,m|z0:k,u0:k,x0) = p(x1:k|z0:k,u0:k,x0)·∏
k

p(mk|x1:k, z0:k,u0:k,x0) (48)

The estimation thus can be done in two steps: first we estimate
the posterior of the path trajectories then – based on the
trajectory estimated – we estimate the locations of the K
landmarks independently. The path estimation is done by a
modified particle estimator using Monte Carlo method, while
the estimation of the landmarks is achieved by Kalman-filters.
Because landmarks are conditioned on the path estimation
if M particle is used to estimate the trajectory then KM
two dimensional Kalman-filter is required to estimate the
landmarks.

FastSLAM runs time linear in the number of landmarks,
however, the implementation of FastSLAM uses a tree rep-
resentation of particles to run in O(M logK). This way
the resampling of particles can happen much faster than
implemented naively.

The FastSLAM can handle huge amounts of landmarks – as
extensive simulation has shown – and is at least as accurate as
EKF-SLAM. However, the biggest problem of FastSLAM is
the inability to forget the past (i.e. the pose and measurement
history) and this way the statistical accuracy is lost [52].

FastSLAM has a more efficient extension called FastSLAM
2.0 which uses another proposal distribution including the
current landmark observations and this way calculating the
importance weights differently [53].

VI. IMPLEMENTATION ASPECTS

It is essential for visual odometry and SLAM algorithms
to run real-time. Recent smartphones are equipped with a
considerable amount of resources, like multiple cores of CPU
and GPU. To face to the real-time requirements by utilizing
parallel resources, some algorithms decouple real-time and
background tasks. The computational burden is still really
high for embedded devices. Fortunately, these algorithms give
way to a lot of parallelization opportunities to speed up
computations.

The feature extraction is also much faster if done parallel,
e.g. SiftGPU reported to extract SIFT features at 27 FPS on a
nVidia 8800GTX card [54]. The widespread OpenCV1 library
has also GPU support for various algorithms using CUDA
and OpenCL. Not only feature detection and extraction but
bundle adjustment can be parallelized to be ca. 30 times faster
than native implementations such as the Multicore Bundle
Adjustment project shows [55].

1OpenCV can be found at http://opencv.org
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Given a g(x) : Rn −→ Rm function, the expectation over
a posterior distribution:

E[g(x)|z1:k] =
∫

g(x)P (x|z1:k) dx (34)

can be approximated by drawing N independent random
samples x(i) form the p(x|z1:k) distribution:

E[g(x)|z1:k] ≈
1

N

N∑
i=1

g(x(i)) (35)

This type of numerical calculation of integrals is called Monte
Carlo method [40]. However, in case of the Bayesian models
it is not possible to draw samples from P (x|z1:k), so we
need to approximate it someway. The solution is to find an
approximate importance distribution Π(x|z1:k) from which it
is easy to draw samples. These kind of techniques are called
importance sampling methods. Particle filter is the method of
using sequential importance resampling algorithm. This forms
the posterior distribution with a couple of w(i)

k weights.

p(xk|z1:k) ≈
N∑
i=1

w
(i)
k δ(xk − x

(i)
k ) (36)

where δ(·) is the Dirac-delta.

E. Solutions

1) EKF-SLAM: In EKF-SLAM algorithms, the filter state
vector contains the current IMU state xIMU and the observed
feature 3D positions (pfi ). Thus the filter state vector is
defined as follows.

xk = [xIMU,k,p
T
f1,k

...pT
fn,k

]T (37)

The 3D features can be parametrized traditionally using
(x, y, z) coordinates, the anchored homogeneous parametriza-
tion [41], and the inverse-depth parametrization [42]. Although
the former one is straightforward, the latter two increases the
consistency and accuracy.

The EKF-SLAM uses the ”standard” propagation method
of states (xk) and covariance matrix (Pk) based on the IMU
inertial measurements as described above, while the update
process is calculated on the actual image features. Assuming
a calibrated perspective camera, the observation of feature i on
the actual image at time step k is expressed by the following
equation describing the actual observation.

zi,k = h(xIMU,k,pfi,k
) =

1

zfi,Ck

[
xfi,Ck

yfi,Ck

]
+ ni,k (38)

where ni,k is the measurement noise, and the pfi,Ck
=

[xfi,Ck
, yfi,Ck

, zfi,Ck
] describes the observed feature position

in the camera orientation frame Ck, and this position is
described by the following equation and the pI,C and RCI
are the fixed position and rotation transformation between the
IMU (I) and the camera (C) frames.

pfi,Ck
= RCIRIkG(pfi,G − pIk,G) + pI,C (39)

Assuming that the actual position of the IMU frame is pIk,G
EKF-SLAM defines a residual as the difference between the

real observation zi,k of the feature i and the projection of the
estimated feature position (p̂fi,Ck

), and linearizes it around the
actual state (x̂IMU,k) as:

ri,k = zi,k − h(x̂IMU,k, p̂fi,Ck
) � Hi,k(x̂k)x̃k + ni,k (40)

The Hi,k(x̂k) is the Jacobian matrix of h with respect to
the actual filter state estimate (x̂k).

When the ri,k and Hi,k are computed the outlier detection
is done using Mahalanobis gating. If the test succeeds, from
the residual and observation Jacobian the Kalman gain and
the innovation are computed according to the basic EKF rules
(see Eqs. 31). For the Mahalanobis gating we compute the
following:

γi = rTi (HiPiH
T
i + σ2I)−1ri (41)

Then it is compared to the threshold given by the 96 percent
of the χ2 distribution.

The observation update step requires that all landmarks and
joint-covariance matrix must be updated every time an image
is registered by the camera. Considering the complexity of
the EKF-SLAM it is straightforward that the computational
complexity is dominated by cubic to the actual number of
the landmarks, thus the complexity is O(n2). In practice the
actual map can consists of thousands of features, thus the EKF-
SLAM becomes computationally intractable for large areas.

To provide first-aid to this problem Sola proposed a method,
when the state and covariance matrices are updated by only
the actual observed features. [43]

2) MSCKF: The fundamental advantage of filter-based al-
gorithms is they account for the correlations that exist between
the pose of the camera and the 3D position of the observed
features. Besides, the main limitation is its high computational
complexity, even when only hundreds of features are consid-
ered during calculations.

The motivation of Multi-State Constraint Filter (MSCKF)
is the introduction of consecutive camera poses into the state
instead of feature positions. This is first done by Nister [44],
however this method does not incorporate inertial measure-
ments. Sliding window-based solutions appear also in other
solutions. [45]

Assuming that N of the camera poses are included in the
EKF state vector at time step k, the MSCK state vector has
the following form.

xk = [ximu,k,q
T
GC1

,pC1,G ...q
T
GCN

,pCN ,G ]
T (42)

Since the time update is common for EKF-based pose esti-
mation, the difference is maintained during the measurement
update step. When new image arrives features are tracked
among the last N camera poses. The update process considers
each single feature fj that has been observed from the set of
Nj camera poses (qT

GCi
,pCi,G).

The estimated feature position p̂fj ,G in the global frame
is triangulated from camera poses using feature observations.
Usually a least-square minimization is used with inverse-depth
parametrization. [42] The residual r(j)j is then defined as the
difference between re-projections of estimated feature p̂fj ,G
and the real feature observations.

r
(j)
i = z

(j)
i − ẑ

(j)
i (43)
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VII. EVALUATION

Beside the solutions described in this work, a huge amount
of implementations are available. For the prudent comparison
of the methods, algorithms and real implementations, widely
known datasets are used. These datasets provide huge amount
of video frames of different trajectories with ground truth,
containing mainly grayscale and RGB images but often RGB-
D and laser data is accessible. The most widely used datasets
are the KITTI dataset [56], the RGB-D dataset [57] and New
College Data Set [58], from those the KITTI odometry dataset
consists of 22 stereo sequences (which can also be used as a
monocular data) and a comprehensive evaluation of different
SLAM methods listing accuracy and speed.

Regarding the KITTI dataset a huge list about the perfor-
mance evaluation of available implementations is published at
http://www.cvlibs.net/datasets/kitti/eval odometry.php.

VIII. CONCLUSION

A huge variety of algorithms and solutions are currently
available to tackle the strict requirements of the accurate and
real time visual indoor positioning, that augmented reality-
based applications demand. These algorithms build on the
results of research work on computer vision from the last
decades which went through a significant evolution, from
SfM to the real-time SLAM approaches. However to face the
real-time requirements, filter-based solutions tightly coupling
inertial measurements with visual odometry are emerging.
Through embedding inertial measurements from IMU for
motion estimation to the projective geometry principles, these
approaches are promising for the future implementations,
however they suffer from the long-lasting state parameter
estimations.
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Gergely Hollósi is a researcher at Dept. of Telecom-
munications and Media Informatics (TMIT) of Bu-
dapest University of Technology and Economics
(BME). Gergely received his M.Sc. in the Budapest
University of Technology and Economics (BME)
in 2009. He is actively researching and developing
indoor localization systems based on various tech-
nologies including radio-, IMU- and visual-based
solutions.

Csaba Lukovszki is a researcher at Dept. of
Telecommunications and Media Informatics (TMIT)
of Budapest University of Technology and Eco-
nomics (BME). He has received M.Sc. in electrical
engineering in 1998 and finished Ph.D. course in
2002. He is a lecturer of courses and leader of inno-
vative application-driven research and development
projects in the field of indoor positioning with strong
cooperation with industrial partners. He is the author
of 8 journal papers and 23 conference papers.

István Moldován is a Research Fellow at the Bu-
dapest University of Technology and Economics, at
the Department of Telecommunications and Media
Informatics. In 1996, he received an M.Sc. de-
gree in Automation and Industrial Informatics from
Technical University of Tirgu-Mures, Romania. His
research interests include network management, em-
bedded systems, simulation and performance eval-
uation of computer networks. He is lecturing in
communication networks.
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Sándor Plósz is a researcher at Dept. of Telecom-
munications and Media Informatics (TMIT) of Bu-
dapest University of Technology and Economics
(BME). He received his M.Sc. in Informatics at the
Budapest University of Technology and Economics
(BME) in 2009 and finished the Ph.D. course in
2012. He has been a researcher at the University,
author of several journal of conference papers in the
topics of dependable embedded systems, security of
industrial systems and vision-based localization.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

VII. EVALUATION

Beside the solutions described in this work, a huge amount
of implementations are available. For the prudent comparison
of the methods, algorithms and real implementations, widely
known datasets are used. These datasets provide huge amount
of video frames of different trajectories with ground truth,
containing mainly grayscale and RGB images but often RGB-
D and laser data is accessible. The most widely used datasets
are the KITTI dataset [56], the RGB-D dataset [57] and New
College Data Set [58], from those the KITTI odometry dataset
consists of 22 stereo sequences (which can also be used as a
monocular data) and a comprehensive evaluation of different
SLAM methods listing accuracy and speed.

Regarding the KITTI dataset a huge list about the perfor-
mance evaluation of available implementations is published at
http://www.cvlibs.net/datasets/kitti/eval odometry.php.

VIII. CONCLUSION

A huge variety of algorithms and solutions are currently
available to tackle the strict requirements of the accurate and
real time visual indoor positioning, that augmented reality-
based applications demand. These algorithms build on the
results of research work on computer vision from the last
decades which went through a significant evolution, from
SfM to the real-time SLAM approaches. However to face the
real-time requirements, filter-based solutions tightly coupling
inertial measurements with visual odometry are emerging.
Through embedding inertial measurements from IMU for
motion estimation to the projective geometry principles, these
approaches are promising for the future implementations,
however they suffer from the long-lasting state parameter
estimations.
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