
Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2016 • VOLUME VIII • NUMBER 2 1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Even though the present form of IPv6 has been

existing since 1998, the adoption of the new protocol has been
very slow until recently. To help the adoption of the IPv6
protocol, several transition technologies were introduced. The
6to4 protocol is one of them, and it can be used when an IPv6
enabled host resides in an IPv4 only environment and needs to
communicate with other hosts in such circumstances or with
native IPv6 hosts. Five open source 6to4 relay implementations
were investigated: Debian Linux – sit, Debian Linux – v4tunnel,
OpenWrt – sit, FreeBSD – stf, NetBSD – stf. The measurement
method is fully described including our measurement scripts and
the results of the measurements are disclosed in detail. The
measurements have shown that there are major differences
between the different types of implementations.

Index Terms—6to4 relay, IPv6 transition, network
communication, performance evaluation, stability analysis

I. INTRODUCTION
OR more than two decades it is a known fact, that the size
of the IPv4 address space is insufficient [1-2]. The lack of

the IP addresses withholds the spread of the Internet and
causes social and economic damage.

To prevent the IP address exhaustion, a new version of the
Internet Protocol, IPv6 has been developed. IPv6 was
standardized in 1998 and published in RFC 2460 [3], but it has
not been widespread adopted. According to the statistics, less
than 8% of the total amount of the traffic reached the Google
servers used IPv6 protocol in December 10, 2015 [4]. Several
tools and solutions have been developed to slow down the
process of the address exhaustion. The Dynamic IPv4
allocation [5], the Classless Inter-Domain Routing (CIDR) [6],
the Network Address Translation (NAT) [7], the Carrier-grade
NAT (also called NAT444) [8], different type of proxies or
Application Level Gateways (ALG), new policies of the IPv4
address transfers [9] successfully delayed the problems
generated by the IP address exhaustion, but all of them
generated other problems [5].

Three of the five Regional Internet Registries (RIR) already
run out of their IPv4 address spaces [10]. The five RIRs have

Manuscript received December 21, 2015, revised May 18, 2016.
S. Répás is with the Széchenyi István University, Győr, 9026 Hungary

(phone: 36-30-459-9292; e-mail: repas.sandor@sze.hu).
V. Horváth was with the Széchenyi István University, Győr, 9026 Hungary

(e-mail: vhorvath@biztributor.hu).
G. Lencse is with the Széchenyi István University, Győr, 9026 Hungary

(E-mail: lencse@sze.hu).

only 5.2 /8 ranges in total, whereas the IANA does not have
more address space to assign to the five RIRs since 3 February
2011 [11]. The RIRs work according to strict policies and for
a service provider, it is a harder task than ever to get IPv4
address spaces. The speed up of the transition to the new
protocol is inevitable. Several IPv6 transition techniques have
been developed, which can help the process in different phases
of the adoption of the new protocol on the Internet.

There are different situations to solve during the
coexistence of the two versions of the IP protocol in the
different phases of the transition process:

In theory, the best solution is the Dual Stack (DS) transition
method [12], but with the requirements that the two
communicating hosts and the network between them have to
support a common version of the IP protocol, and because of
the IPv4 exhaustion, there is not enough IPv4 address to use
this solution. The communicating hosts need both version of
the IP addresses and it is almost impossible to provide enough
public IPv4 addresses for the clients. Thus, even though it
could have been the best solution, now it is too late for using
DS as an IPv6 transition method.

In a situation where an IPv6 only client computer needs to
communicate with an IPv4 only server, the DNS64 [13] and
NAT64 [14] combination is a good solution. The performance,
the stability and the application compatibility of some open
source implementations of DNS64/NAT64 are examined and
proved in [15-17].

If two IPv6 enabled hosts need to communicate with each
other over an IPv4 network, they can use different tunneling
methods. The 6in4 (also called manual tunnel) [18] with
tunnel brokers [19-20], 6rd [21], Teredo [22] ISATAP [23]
and 6to4 [24] have different requirements, benefits and
drawbacks.

The above list is not exhaustive and a good survey of the
different transition techniques can be found in [25].

In this paper, we deal with the 6to4 IPv6 transition solution.
The remainder of this paper is organized as follows: first,
some properties of the 6to4 transition technique are
introduced, second, a short survey of the results of the most
current publications is given, third, the selected 6to4 relay
implementations are introduced, fourth, our test environment
is described, fifth, the performance measurement method of
the different implementations is detailed, sixth, the results are
presented and discussed, seventh, the comparison of our
results is presented, finally, our conclusions are given.

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

Sándor Répás, Member, IEEE, Viktor Horváth, and Gábor Lencse, Member, IEEE

F

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Even though the present form of IPv6 has been

existing since 1998, the adoption of the new protocol has been
very slow until recently. To help the adoption of the IPv6
protocol, several transition technologies were introduced. The
6to4 protocol is one of them, and it can be used when an IPv6
enabled host resides in an IPv4 only environment and needs to
communicate with other hosts in such circumstances or with
native IPv6 hosts. Five open source 6to4 relay implementations
were investigated: Debian Linux – sit, Debian Linux – v4tunnel,
OpenWrt – sit, FreeBSD – stf, NetBSD – stf. The measurement
method is fully described including our measurement scripts and
the results of the measurements are disclosed in detail. The
measurements have shown that there are major differences
between the different types of implementations.

Index Terms—6to4 relay, IPv6 transition, network
communication, performance evaluation, stability analysis

I. INTRODUCTION
OR more than two decades it is a known fact, that the size
of the IPv4 address space is insufficient [1-2]. The lack of

the IP addresses withholds the spread of the Internet and
causes social and economic damage.

To prevent the IP address exhaustion, a new version of the
Internet Protocol, IPv6 has been developed. IPv6 was
standardized in 1998 and published in RFC 2460 [3], but it has
not been widespread adopted. According to the statistics, less
than 8% of the total amount of the traffic reached the Google
servers used IPv6 protocol in December 10, 2015 [4]. Several
tools and solutions have been developed to slow down the
process of the address exhaustion. The Dynamic IPv4
allocation [5], the Classless Inter-Domain Routing (CIDR) [6],
the Network Address Translation (NAT) [7], the Carrier-grade
NAT (also called NAT444) [8], different type of proxies or
Application Level Gateways (ALG), new policies of the IPv4
address transfers [9] successfully delayed the problems
generated by the IP address exhaustion, but all of them
generated other problems [5].

Three of the five Regional Internet Registries (RIR) already
run out of their IPv4 address spaces [10]. The five RIRs have

Manuscript received December 21, 2015, revised May 18, 2016.
S. Répás is with the Széchenyi István University, Győr, 9026 Hungary

(phone: 36-30-459-9292; e-mail: repas.sandor@sze.hu).
V. Horváth was with the Széchenyi István University, Győr, 9026 Hungary

(e-mail: vhorvath@biztributor.hu).
G. Lencse is with the Széchenyi István University, Győr, 9026 Hungary

(E-mail: lencse@sze.hu).

only 5.2 /8 ranges in total, whereas the IANA does not have
more address space to assign to the five RIRs since 3 February
2011 [11]. The RIRs work according to strict policies and for
a service provider, it is a harder task than ever to get IPv4
address spaces. The speed up of the transition to the new
protocol is inevitable. Several IPv6 transition techniques have
been developed, which can help the process in different phases
of the adoption of the new protocol on the Internet.

There are different situations to solve during the
coexistence of the two versions of the IP protocol in the
different phases of the transition process:

In theory, the best solution is the Dual Stack (DS) transition
method [12], but with the requirements that the two
communicating hosts and the network between them have to
support a common version of the IP protocol, and because of
the IPv4 exhaustion, there is not enough IPv4 address to use
this solution. The communicating hosts need both version of
the IP addresses and it is almost impossible to provide enough
public IPv4 addresses for the clients. Thus, even though it
could have been the best solution, now it is too late for using
DS as an IPv6 transition method.

In a situation where an IPv6 only client computer needs to
communicate with an IPv4 only server, the DNS64 [13] and
NAT64 [14] combination is a good solution. The performance,
the stability and the application compatibility of some open
source implementations of DNS64/NAT64 are examined and
proved in [15-17].

If two IPv6 enabled hosts need to communicate with each
other over an IPv4 network, they can use different tunneling
methods. The 6in4 (also called manual tunnel) [18] with
tunnel brokers [19-20], 6rd [21], Teredo [22] ISATAP [23]
and 6to4 [24] have different requirements, benefits and
drawbacks.

The above list is not exhaustive and a good survey of the
different transition techniques can be found in [25].

In this paper, we deal with the 6to4 IPv6 transition solution.
The remainder of this paper is organized as follows: first,
some properties of the 6to4 transition technique are
introduced, second, a short survey of the results of the most
current publications is given, third, the selected 6to4 relay
implementations are introduced, fourth, our test environment
is described, fifth, the performance measurement method of
the different implementations is detailed, sixth, the results are
presented and discussed, seventh, the comparison of our
results is presented, finally, our conclusions are given.

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

Sándor Répás, Member, IEEE, Viktor Horváth, and Gábor Lencse, Member, IEEE

F

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Even though the present form of IPv6 has been

existing since 1998, the adoption of the new protocol has been
very slow until recently. To help the adoption of the IPv6
protocol, several transition technologies were introduced. The
6to4 protocol is one of them, and it can be used when an IPv6
enabled host resides in an IPv4 only environment and needs to
communicate with other hosts in such circumstances or with
native IPv6 hosts. Five open source 6to4 relay implementations
were investigated: Debian Linux – sit, Debian Linux – v4tunnel,
OpenWrt – sit, FreeBSD – stf, NetBSD – stf. The measurement
method is fully described including our measurement scripts and
the results of the measurements are disclosed in detail. The
measurements have shown that there are major differences
between the different types of implementations.

Index Terms—6to4 relay, IPv6 transition, network
communication, performance evaluation, stability analysis

I. INTRODUCTION
OR more than two decades it is a known fact, that the size
of the IPv4 address space is insufficient [1-2]. The lack of

the IP addresses withholds the spread of the Internet and
causes social and economic damage.

To prevent the IP address exhaustion, a new version of the
Internet Protocol, IPv6 has been developed. IPv6 was
standardized in 1998 and published in RFC 2460 [3], but it has
not been widespread adopted. According to the statistics, less
than 8% of the total amount of the traffic reached the Google
servers used IPv6 protocol in December 10, 2015 [4]. Several
tools and solutions have been developed to slow down the
process of the address exhaustion. The Dynamic IPv4
allocation [5], the Classless Inter-Domain Routing (CIDR) [6],
the Network Address Translation (NAT) [7], the Carrier-grade
NAT (also called NAT444) [8], different type of proxies or
Application Level Gateways (ALG), new policies of the IPv4
address transfers [9] successfully delayed the problems
generated by the IP address exhaustion, but all of them
generated other problems [5].

Three of the five Regional Internet Registries (RIR) already
run out of their IPv4 address spaces [10]. The five RIRs have

Manuscript received December 21, 2015, revised May 18, 2016.
S. Répás is with the Széchenyi István University, Győr, 9026 Hungary

(phone: 36-30-459-9292; e-mail: repas.sandor@sze.hu).
V. Horváth was with the Széchenyi István University, Győr, 9026 Hungary

(e-mail: vhorvath@biztributor.hu).
G. Lencse is with the Széchenyi István University, Győr, 9026 Hungary

(E-mail: lencse@sze.hu).

only 5.2 /8 ranges in total, whereas the IANA does not have
more address space to assign to the five RIRs since 3 February
2011 [11]. The RIRs work according to strict policies and for
a service provider, it is a harder task than ever to get IPv4
address spaces. The speed up of the transition to the new
protocol is inevitable. Several IPv6 transition techniques have
been developed, which can help the process in different phases
of the adoption of the new protocol on the Internet.

There are different situations to solve during the
coexistence of the two versions of the IP protocol in the
different phases of the transition process:

In theory, the best solution is the Dual Stack (DS) transition
method [12], but with the requirements that the two
communicating hosts and the network between them have to
support a common version of the IP protocol, and because of
the IPv4 exhaustion, there is not enough IPv4 address to use
this solution. The communicating hosts need both version of
the IP addresses and it is almost impossible to provide enough
public IPv4 addresses for the clients. Thus, even though it
could have been the best solution, now it is too late for using
DS as an IPv6 transition method.

In a situation where an IPv6 only client computer needs to
communicate with an IPv4 only server, the DNS64 [13] and
NAT64 [14] combination is a good solution. The performance,
the stability and the application compatibility of some open
source implementations of DNS64/NAT64 are examined and
proved in [15-17].

If two IPv6 enabled hosts need to communicate with each
other over an IPv4 network, they can use different tunneling
methods. The 6in4 (also called manual tunnel) [18] with
tunnel brokers [19-20], 6rd [21], Teredo [22] ISATAP [23]
and 6to4 [24] have different requirements, benefits and
drawbacks.

The above list is not exhaustive and a good survey of the
different transition techniques can be found in [25].

In this paper, we deal with the 6to4 IPv6 transition solution.
The remainder of this paper is organized as follows: first,
some properties of the 6to4 transition technique are
introduced, second, a short survey of the results of the most
current publications is given, third, the selected 6to4 relay
implementations are introduced, fourth, our test environment
is described, fifth, the performance measurement method of
the different implementations is detailed, sixth, the results are
presented and discussed, seventh, the comparison of our
results is presented, finally, our conclusions are given.

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

Sándor Répás, Member, IEEE, Viktor Horváth, and Gábor Lencse, Member, IEEE

F

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Even though the present form of IPv6 has been

existing since 1998, the adoption of the new protocol has been
very slow until recently. To help the adoption of the IPv6
protocol, several transition technologies were introduced. The
6to4 protocol is one of them, and it can be used when an IPv6
enabled host resides in an IPv4 only environment and needs to
communicate with other hosts in such circumstances or with
native IPv6 hosts. Five open source 6to4 relay implementations
were investigated: Debian Linux – sit, Debian Linux – v4tunnel,
OpenWrt – sit, FreeBSD – stf, NetBSD – stf. The measurement
method is fully described including our measurement scripts and
the results of the measurements are disclosed in detail. The
measurements have shown that there are major differences
between the different types of implementations.

Index Terms—6to4 relay, IPv6 transition, network
communication, performance evaluation, stability analysis

I. INTRODUCTION
OR more than two decades it is a known fact, that the size
of the IPv4 address space is insufficient [1-2]. The lack of

the IP addresses withholds the spread of the Internet and
causes social and economic damage.

To prevent the IP address exhaustion, a new version of the
Internet Protocol, IPv6 has been developed. IPv6 was
standardized in 1998 and published in RFC 2460 [3], but it has
not been widespread adopted. According to the statistics, less
than 8% of the total amount of the traffic reached the Google
servers used IPv6 protocol in December 10, 2015 [4]. Several
tools and solutions have been developed to slow down the
process of the address exhaustion. The Dynamic IPv4
allocation [5], the Classless Inter-Domain Routing (CIDR) [6],
the Network Address Translation (NAT) [7], the Carrier-grade
NAT (also called NAT444) [8], different type of proxies or
Application Level Gateways (ALG), new policies of the IPv4
address transfers [9] successfully delayed the problems
generated by the IP address exhaustion, but all of them
generated other problems [5].

Three of the five Regional Internet Registries (RIR) already
run out of their IPv4 address spaces [10]. The five RIRs have

Manuscript received December 21, 2015, revised May 18, 2016.
S. Répás is with the Széchenyi István University, Győr, 9026 Hungary

(phone: 36-30-459-9292; e-mail: repas.sandor@sze.hu).
V. Horváth was with the Széchenyi István University, Győr, 9026 Hungary

(e-mail: vhorvath@biztributor.hu).
G. Lencse is with the Széchenyi István University, Győr, 9026 Hungary

(E-mail: lencse@sze.hu).

only 5.2 /8 ranges in total, whereas the IANA does not have
more address space to assign to the five RIRs since 3 February
2011 [11]. The RIRs work according to strict policies and for
a service provider, it is a harder task than ever to get IPv4
address spaces. The speed up of the transition to the new
protocol is inevitable. Several IPv6 transition techniques have
been developed, which can help the process in different phases
of the adoption of the new protocol on the Internet.

There are different situations to solve during the
coexistence of the two versions of the IP protocol in the
different phases of the transition process:

In theory, the best solution is the Dual Stack (DS) transition
method [12], but with the requirements that the two
communicating hosts and the network between them have to
support a common version of the IP protocol, and because of
the IPv4 exhaustion, there is not enough IPv4 address to use
this solution. The communicating hosts need both version of
the IP addresses and it is almost impossible to provide enough
public IPv4 addresses for the clients. Thus, even though it
could have been the best solution, now it is too late for using
DS as an IPv6 transition method.

In a situation where an IPv6 only client computer needs to
communicate with an IPv4 only server, the DNS64 [13] and
NAT64 [14] combination is a good solution. The performance,
the stability and the application compatibility of some open
source implementations of DNS64/NAT64 are examined and
proved in [15-17].

If two IPv6 enabled hosts need to communicate with each
other over an IPv4 network, they can use different tunneling
methods. The 6in4 (also called manual tunnel) [18] with
tunnel brokers [19-20], 6rd [21], Teredo [22] ISATAP [23]
and 6to4 [24] have different requirements, benefits and
drawbacks.

The above list is not exhaustive and a good survey of the
different transition techniques can be found in [25].

In this paper, we deal with the 6to4 IPv6 transition solution.
The remainder of this paper is organized as follows: first,
some properties of the 6to4 transition technique are
introduced, second, a short survey of the results of the most
current publications is given, third, the selected 6to4 relay
implementations are introduced, fourth, our test environment
is described, fifth, the performance measurement method of
the different implementations is detailed, sixth, the results are
presented and discussed, seventh, the comparison of our
results is presented, finally, our conclusions are given.

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

Sándor Répás, Member, IEEE, Viktor Horváth, and Gábor Lencse, Member, IEEE

F

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Even though the present form of IPv6 has been

existing since 1998, the adoption of the new protocol has been
very slow until recently. To help the adoption of the IPv6
protocol, several transition technologies were introduced. The
6to4 protocol is one of them, and it can be used when an IPv6
enabled host resides in an IPv4 only environment and needs to
communicate with other hosts in such circumstances or with
native IPv6 hosts. Five open source 6to4 relay implementations
were investigated: Debian Linux – sit, Debian Linux – v4tunnel,
OpenWrt – sit, FreeBSD – stf, NetBSD – stf. The measurement
method is fully described including our measurement scripts and
the results of the measurements are disclosed in detail. The
measurements have shown that there are major differences
between the different types of implementations.

Index Terms—6to4 relay, IPv6 transition, network
communication, performance evaluation, stability analysis

I. INTRODUCTION
OR more than two decades it is a known fact, that the size
of the IPv4 address space is insufficient [1-2]. The lack of

the IP addresses withholds the spread of the Internet and
causes social and economic damage.

To prevent the IP address exhaustion, a new version of the
Internet Protocol, IPv6 has been developed. IPv6 was
standardized in 1998 and published in RFC 2460 [3], but it has
not been widespread adopted. According to the statistics, less
than 8% of the total amount of the traffic reached the Google
servers used IPv6 protocol in December 10, 2015 [4]. Several
tools and solutions have been developed to slow down the
process of the address exhaustion. The Dynamic IPv4
allocation [5], the Classless Inter-Domain Routing (CIDR) [6],
the Network Address Translation (NAT) [7], the Carrier-grade
NAT (also called NAT444) [8], different type of proxies or
Application Level Gateways (ALG), new policies of the IPv4
address transfers [9] successfully delayed the problems
generated by the IP address exhaustion, but all of them
generated other problems [5].

Three of the five Regional Internet Registries (RIR) already
run out of their IPv4 address spaces [10]. The five RIRs have

Manuscript received December 21, 2015, revised May 18, 2016.
S. Répás is with the Széchenyi István University, Győr, 9026 Hungary

(phone: 36-30-459-9292; e-mail: repas.sandor@sze.hu).
V. Horváth was with the Széchenyi István University, Győr, 9026 Hungary

(e-mail: vhorvath@biztributor.hu).
G. Lencse is with the Széchenyi István University, Győr, 9026 Hungary

(E-mail: lencse@sze.hu).

only 5.2 /8 ranges in total, whereas the IANA does not have
more address space to assign to the five RIRs since 3 February
2011 [11]. The RIRs work according to strict policies and for
a service provider, it is a harder task than ever to get IPv4
address spaces. The speed up of the transition to the new
protocol is inevitable. Several IPv6 transition techniques have
been developed, which can help the process in different phases
of the adoption of the new protocol on the Internet.

There are different situations to solve during the
coexistence of the two versions of the IP protocol in the
different phases of the transition process:

In theory, the best solution is the Dual Stack (DS) transition
method [12], but with the requirements that the two
communicating hosts and the network between them have to
support a common version of the IP protocol, and because of
the IPv4 exhaustion, there is not enough IPv4 address to use
this solution. The communicating hosts need both version of
the IP addresses and it is almost impossible to provide enough
public IPv4 addresses for the clients. Thus, even though it
could have been the best solution, now it is too late for using
DS as an IPv6 transition method.

In a situation where an IPv6 only client computer needs to
communicate with an IPv4 only server, the DNS64 [13] and
NAT64 [14] combination is a good solution. The performance,
the stability and the application compatibility of some open
source implementations of DNS64/NAT64 are examined and
proved in [15-17].

If two IPv6 enabled hosts need to communicate with each
other over an IPv4 network, they can use different tunneling
methods. The 6in4 (also called manual tunnel) [18] with
tunnel brokers [19-20], 6rd [21], Teredo [22] ISATAP [23]
and 6to4 [24] have different requirements, benefits and
drawbacks.

The above list is not exhaustive and a good survey of the
different transition techniques can be found in [25].

In this paper, we deal with the 6to4 IPv6 transition solution.
The remainder of this paper is organized as follows: first,
some properties of the 6to4 transition technique are
introduced, second, a short survey of the results of the most
current publications is given, third, the selected 6to4 relay
implementations are introduced, fourth, our test environment
is described, fifth, the performance measurement method of
the different implementations is detailed, sixth, the results are
presented and discussed, seventh, the comparison of our
results is presented, finally, our conclusions are given.

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

Sándor Répás, Member, IEEE, Viktor Horváth, and Gábor Lencse, Member, IEEE

F

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

JUNE 2016 • VOLUME VIII • NUMBER 22

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

be found in [39]. The two papers give a good overview about
the progress of the transition process.

There are several publications about comparison of different
tunneling based transition methods.

In [40] the performance of both the ISATAP and the 6to4
tunneling solution is compared on a Windows XP and
Windows Server 2003 based test-bed network. The authors
used UDP streaming and ICMP to measure and compare the
throughput, the End to End Delay (E2ED), the jitter and the
Round Trip Time (RTT) performance characteristics. The
final conclusion found the ISATAP protocol significantly
more efficient.

Sans and Gamess carried out a performance comparison of
the native IPv6 protocol and the following tunneling methods:
ISATAP, 6to4, 6rd and Teredo on a test network was built on
Linux computers and different numbers of Cisco routers [41].
The authors tested the throughput and the RTT with UDP and
TCP protocol both on Ethernet and fast Ethernet network.
They concluded, the best choice is native IPv6 but if native
IPv6 cannot be used, ISATAP, 6to4, and 6rd are good
possibilities. Selecting one tunneling technology over the
other depends on many factors. Teredo was presented as the
less good solution, whereas, Teredo is the only choice when
the hosts to be connected are using private IPv4 addresses and
are helped by a NAT server to reach the Internet.

Shah and Parvez performed simulations about the
performance of native IPv6, dual stack, 6in4 and 6to4 [42].
The authors used OPNET Modeler (now Riverbed Modeler
[43]) to investigate the TCP delay, throughput and response

time of the different methods. Naturally, the native IPv6
produced the best results, whereas the second one was the
6to4.

There is a good comparison of the performance of the
Windows Server 2008 and 2012 6to4 and 6in4 tunnels in [44].
The authors used UDP and TCP and three games to compare
the throughput, the jitter and the delay of the two tunneling
methods, but they did not collect data about the resource usage
on the computers.

The comparison of the TCP and UDP throughput, RTT, and
tunneling overhead with native IPv4, native IPv6 and 6to4
tunneling can be found in [45]. The authors concluded that the
6to4 tunneling mechanism is a suitable method in the early
part of the transition period.

The characteristics of the tunneled IPv6 traffic on the border
of the Czech national research and education network
(CESNET) were investigated in [46], whereas the traffic of the
FUNET operated public 6to4 relay was analyzed in [47].

Narayan and Tauch investigated the 6to4 and configured
tunnel performance characteristics on two different Linux and
Windows operating system [44-46] in a test network.

The performance characteristics of Linux sit, FreeBSD stf,
and NetBSD stf based 6to4 relay implementations were
investigated in [37].

The performance of and stability of Debian Linux sit,
OpenWRT sit and FreeBSD stf were analyzed in our
conference paper [51], which is now extended by Debian
Linux v4tunnel and NetBSD stf.

D-Link DGS-1100-24

3com Baseline 2948-SFP
Plus 3CBLSG48

Dell Precision 490

10 x Dell Precision 490

debianhost1

6to4 clients

IPv6
responder

IPv4: 193.225.151.66/28

IPv4: 193.225.151.65/28

IPv4: 193.225.151.75/28

6to4: 2002:c1e1:9741::1/64

6to4: 2002:c1e1:9742::1/64 6to4: 2002:c1e1:974b::1/64

Native IPv6:
babe:b00b::2/64

Pentium
III

6to4 relay
router

IPv4: 193.225.151.78/28
6to4: 2002:c1e1:974e::1/64
Native IPv6: babe:b00b::1/64

Fig. 1. Topology of the test network.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

II. THE 6TO4 TRANSITION TECHNIQUE
The 6to4 transition technique uses automatic tunnels,

encapsulates the IPv6 packets into IPv4 packets (using
protocol number 41, as the configured IPv6 over IPv4 tunnel
[26]) [24]. The main advantage of the automatic tunneling is
the unnecessity of the manual configuration of the endpoint
address of the tunnel. Automatic IPv6-over-IPv4 tunneling
determines the IPv4 tunnel endpoint address from the IPv4
address embedded in the destination address of the IPv6
packet being tunneled. 6to4 protocol uses the reserved
2002::/16 6to4 prefix to determine if a 6to4 tunnel creation is
necessary [27]. A 6to4 address is an IPv6 address constructed
using a 6to4 prefix. The first 16 bits of the 6to4 address
contain the 2002 hexadecimal value, whereas the next 32 bits
contain the IPv4 address of the 6to4 tunnel endpoint. The next
16 bits can be used to create subnets, and the final 64 bits of
the 6to4 address contain the interface ID.

A 6to4 router is an IPv6 router supporting a 6to4 pseudo-
interface. It is normally the border router between an IPv6 site
and a wide-area IPv4 network, whereas the 6to4 pseudo-
interface is the point of the encapsulation of IPv6 packets in
IPv4 packets (with other words: the tunnel end-point) [24]. If a
6to4 host has to communicate with a non 6to4 host (for
example: native IPv6, Teredo) it needs to use a 6to4 relay
router.

Several operating systems can work as a 6to4 router or 6to4
relay router, but for the correct operation, the 6to4 routers and
relay routers need public IPv4 addresses.

A 6to4 relay router can be private or public. Public 6to4
relays use the 192.88.99.1 anycast address [28] from the
192.88.99.0/24 6to4 Relay anycast address range [29]. An
estimation of the 6to4 relay routers published in 2006 [30].
According to the publication, 8 autonomous systems (AS-es)
advertised the 192.88.99.0/24, whereas 6 AS-es advertised the
2002::/16 networks. At the end of the year 2014 these values
were 14 and 11, according to the RIPEstat database [31].

It is a good practice, if an Internet Service Provider (ISP)
provides a 6to4 relay for its customers in addition to other
transition solutions. In this case the relay does not have to be
public, and it can use the well-known anycast address, or a
network specific address.

Though some security weaknesses are known of the 6to4
transition technique [32], its advantage is that it helps the
implementation of the IPv6 protocol without the cooperation
of the ISP. This is the reason why we insist that 6to4 is still
indispensable in several countries including Hungary.
Although 6rd [33] eliminated some of the weaknesses of 6to4,
the price of the improvements was that 6rd can only be
implemented by the ISPs, and it cannot be used without the
cooperation of the ISP of the user at all. We note that the
second author of the RFC defining 6rd [33] recommended to
move 6to4 to historic status in 2011 [34] and his efforts were
only partially successful after several years because not 6to4
itself, but only the anycast prefix for 6to4 relay routers was
deprecated in 2015 [35]. Whereas this seems to be a good
decision considering the rapid deployment of IPv6 in certain
countries (e.g. USA, China), we contend that it was done way

too early considering the slow deployment of IPv6 in some
other countries including Hungary, too. Despite the depletion
of the public IPv4 address pool, the most ISPs in Hungary are
rather reluctant to step forward towards IPv6. (What is even
worse, it became a common practice that ISPs take away the
public IPv4 address from their customers, and give private
ones instead. The average user is OK with using CGN, and
those who do not like it, will get back a public IPv4 address.)
Thus an average countryside home user (one residing not in
Budapest) is not able to get IPv6 Internet access. How can this
user get access to the IPv6 Internet? We see the following
possibilities:

 Use an explicit tunnel with a tunnel broker,
however it requires registration and configuration.

 Use 6to4, which is a kind of automatic tunnel and
is supported by several operating systems and
SOHO routers and thus the user can access IPv6
only sites without any effort.

 Use Teredo as last resort. (But it is intended to be
used as a last resort only.)

We agree that 6to4 is not a good solution, but as there is no
real replacement, we consider it is still to be kept as working
in those areas where the IPv6 deployment is still in its infancy
and there is no other way for the clients to reach IPv6 internet
without tunnel registration and explicit configuration.
Therefore the performance analysis of 6to4 relays is still
interesting for those network administrators who are willing to
help these clients. We note that dimensioning a 6to4 relay is
not an easy task because it is hard to predict where the return
traffic will cross the border of the IPv6 Internet and IPv4
Internet. This is why it is crucial to have information about the
performance and stability of different free software 6to4 relay
implementations.

We also admit that many users of 6to4 may experience
operational problems. Section 3 of RFC 6343 [36] mentions
measurements reporting high TCP connection failure rate.
There are 9 possible reasons were identified. We mention only
two of them: e.g. firewalls may filter out protocol number 41,
or some ISP may advertise 192.88.99.0/24 but not forward
6to4 traffic for “alien” networks, etc. Section 4 provides
appropriate guidelines for vendors, network operators, and
ISPs to eliminate the particular issues. Thus 6to4 may be used
if all parties take enough care. Unfortunately, the communica-
tion of two computers may fail due to the malpractice of a
third party because of asymmetric routing.

More details of the operation of the 6to4 technique can be
found in the publication [37], and in the related RFCs ([24],
[29] and [32]).

III. A SHORT SURVEY OF CURRENT RESEARCH RESULTS
There are a lot of publications about IPv6 and several of

them related to the transition to the IPv6 protocol.
There is a very good survey about the state of IPv6 adoption

with measurement methods in [38]. The authors of the article
used excellent methods for the survey, but the data in it is a
little outdated today. A newer, and also very good survey can

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

be found in [39]. The two papers give a good overview about
the progress of the transition process.

There are several publications about comparison of different
tunneling based transition methods.

In [40] the performance of both the ISATAP and the 6to4
tunneling solution is compared on a Windows XP and
Windows Server 2003 based test-bed network. The authors
used UDP streaming and ICMP to measure and compare the
throughput, the End to End Delay (E2ED), the jitter and the
Round Trip Time (RTT) performance characteristics. The
final conclusion found the ISATAP protocol significantly
more efficient.

Sans and Gamess carried out a performance comparison of
the native IPv6 protocol and the following tunneling methods:
ISATAP, 6to4, 6rd and Teredo on a test network was built on
Linux computers and different numbers of Cisco routers [41].
The authors tested the throughput and the RTT with UDP and
TCP protocol both on Ethernet and fast Ethernet network.
They concluded, the best choice is native IPv6 but if native
IPv6 cannot be used, ISATAP, 6to4, and 6rd are good
possibilities. Selecting one tunneling technology over the
other depends on many factors. Teredo was presented as the
less good solution, whereas, Teredo is the only choice when
the hosts to be connected are using private IPv4 addresses and
are helped by a NAT server to reach the Internet.

Shah and Parvez performed simulations about the
performance of native IPv6, dual stack, 6in4 and 6to4 [42].
The authors used OPNET Modeler (now Riverbed Modeler
[43]) to investigate the TCP delay, throughput and response

time of the different methods. Naturally, the native IPv6
produced the best results, whereas the second one was the
6to4.

There is a good comparison of the performance of the
Windows Server 2008 and 2012 6to4 and 6in4 tunnels in [44].
The authors used UDP and TCP and three games to compare
the throughput, the jitter and the delay of the two tunneling
methods, but they did not collect data about the resource usage
on the computers.

The comparison of the TCP and UDP throughput, RTT, and
tunneling overhead with native IPv4, native IPv6 and 6to4
tunneling can be found in [45]. The authors concluded that the
6to4 tunneling mechanism is a suitable method in the early
part of the transition period.

The characteristics of the tunneled IPv6 traffic on the border
of the Czech national research and education network
(CESNET) were investigated in [46], whereas the traffic of the
FUNET operated public 6to4 relay was analyzed in [47].

Narayan and Tauch investigated the 6to4 and configured
tunnel performance characteristics on two different Linux and
Windows operating system [44-46] in a test network.

The performance characteristics of Linux sit, FreeBSD stf,
and NetBSD stf based 6to4 relay implementations were
investigated in [37].

The performance of and stability of Debian Linux sit,
OpenWRT sit and FreeBSD stf were analyzed in our
conference paper [51], which is now extended by Debian
Linux v4tunnel and NetBSD stf.

D-Link DGS-1100-24

3com Baseline 2948-SFP
Plus 3CBLSG48

Dell Precision 490

10 x Dell Precision 490

debianhost1

6to4 clients

IPv6
responder

IPv4: 193.225.151.66/28

IPv4: 193.225.151.65/28

IPv4: 193.225.151.75/28

6to4: 2002:c1e1:9741::1/64

6to4: 2002:c1e1:9742::1/64 6to4: 2002:c1e1:974b::1/64

Native IPv6:
babe:b00b::2/64

Pentium
III

6to4 relay
router

IPv4: 193.225.151.78/28
6to4: 2002:c1e1:974e::1/64
Native IPv6: babe:b00b::1/64

Fig. 1. Topology of the test network.

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2016 • VOLUME VIII • NUMBER 2 3

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

be found in [39]. The two papers give a good overview about
the progress of the transition process.

There are several publications about comparison of different
tunneling based transition methods.

In [40] the performance of both the ISATAP and the 6to4
tunneling solution is compared on a Windows XP and
Windows Server 2003 based test-bed network. The authors
used UDP streaming and ICMP to measure and compare the
throughput, the End to End Delay (E2ED), the jitter and the
Round Trip Time (RTT) performance characteristics. The
final conclusion found the ISATAP protocol significantly
more efficient.

Sans and Gamess carried out a performance comparison of
the native IPv6 protocol and the following tunneling methods:
ISATAP, 6to4, 6rd and Teredo on a test network was built on
Linux computers and different numbers of Cisco routers [41].
The authors tested the throughput and the RTT with UDP and
TCP protocol both on Ethernet and fast Ethernet network.
They concluded, the best choice is native IPv6 but if native
IPv6 cannot be used, ISATAP, 6to4, and 6rd are good
possibilities. Selecting one tunneling technology over the
other depends on many factors. Teredo was presented as the
less good solution, whereas, Teredo is the only choice when
the hosts to be connected are using private IPv4 addresses and
are helped by a NAT server to reach the Internet.

Shah and Parvez performed simulations about the
performance of native IPv6, dual stack, 6in4 and 6to4 [42].
The authors used OPNET Modeler (now Riverbed Modeler
[43]) to investigate the TCP delay, throughput and response

time of the different methods. Naturally, the native IPv6
produced the best results, whereas the second one was the
6to4.

There is a good comparison of the performance of the
Windows Server 2008 and 2012 6to4 and 6in4 tunnels in [44].
The authors used UDP and TCP and three games to compare
the throughput, the jitter and the delay of the two tunneling
methods, but they did not collect data about the resource usage
on the computers.

The comparison of the TCP and UDP throughput, RTT, and
tunneling overhead with native IPv4, native IPv6 and 6to4
tunneling can be found in [45]. The authors concluded that the
6to4 tunneling mechanism is a suitable method in the early
part of the transition period.

The characteristics of the tunneled IPv6 traffic on the border
of the Czech national research and education network
(CESNET) were investigated in [46], whereas the traffic of the
FUNET operated public 6to4 relay was analyzed in [47].

Narayan and Tauch investigated the 6to4 and configured
tunnel performance characteristics on two different Linux and
Windows operating system [44-46] in a test network.

The performance characteristics of Linux sit, FreeBSD stf,
and NetBSD stf based 6to4 relay implementations were
investigated in [37].

The performance of and stability of Debian Linux sit,
OpenWRT sit and FreeBSD stf were analyzed in our
conference paper [51], which is now extended by Debian
Linux v4tunnel and NetBSD stf.

D-Link DGS-1100-24

3com Baseline 2948-SFP
Plus 3CBLSG48

Dell Precision 490

10 x Dell Precision 490

debianhost1

6to4 clients

IPv6
responder

IPv4: 193.225.151.66/28

IPv4: 193.225.151.65/28

IPv4: 193.225.151.75/28

6to4: 2002:c1e1:9741::1/64

6to4: 2002:c1e1:9742::1/64 6to4: 2002:c1e1:974b::1/64

Native IPv6:
babe:b00b::2/64

Pentium
III

6to4 relay
router

IPv4: 193.225.151.78/28
6to4: 2002:c1e1:974e::1/64
Native IPv6: babe:b00b::1/64

Fig. 1. Topology of the test network. Fig. 1. Topology of the test network.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

be found in [39]. The two papers give a good overview about
the progress of the transition process.

There are several publications about comparison of different
tunneling based transition methods.

In [40] the performance of both the ISATAP and the 6to4
tunneling solution is compared on a Windows XP and
Windows Server 2003 based test-bed network. The authors
used UDP streaming and ICMP to measure and compare the
throughput, the End to End Delay (E2ED), the jitter and the
Round Trip Time (RTT) performance characteristics. The
final conclusion found the ISATAP protocol significantly
more efficient.

Sans and Gamess carried out a performance comparison of
the native IPv6 protocol and the following tunneling methods:
ISATAP, 6to4, 6rd and Teredo on a test network was built on
Linux computers and different numbers of Cisco routers [41].
The authors tested the throughput and the RTT with UDP and
TCP protocol both on Ethernet and fast Ethernet network.
They concluded, the best choice is native IPv6 but if native
IPv6 cannot be used, ISATAP, 6to4, and 6rd are good
possibilities. Selecting one tunneling technology over the
other depends on many factors. Teredo was presented as the
less good solution, whereas, Teredo is the only choice when
the hosts to be connected are using private IPv4 addresses and
are helped by a NAT server to reach the Internet.

Shah and Parvez performed simulations about the
performance of native IPv6, dual stack, 6in4 and 6to4 [42].
The authors used OPNET Modeler (now Riverbed Modeler
[43]) to investigate the TCP delay, throughput and response

time of the different methods. Naturally, the native IPv6
produced the best results, whereas the second one was the
6to4.

There is a good comparison of the performance of the
Windows Server 2008 and 2012 6to4 and 6in4 tunnels in [44].
The authors used UDP and TCP and three games to compare
the throughput, the jitter and the delay of the two tunneling
methods, but they did not collect data about the resource usage
on the computers.

The comparison of the TCP and UDP throughput, RTT, and
tunneling overhead with native IPv4, native IPv6 and 6to4
tunneling can be found in [45]. The authors concluded that the
6to4 tunneling mechanism is a suitable method in the early
part of the transition period.

The characteristics of the tunneled IPv6 traffic on the border
of the Czech national research and education network
(CESNET) were investigated in [46], whereas the traffic of the
FUNET operated public 6to4 relay was analyzed in [47].

Narayan and Tauch investigated the 6to4 and configured
tunnel performance characteristics on two different Linux and
Windows operating system [44-46] in a test network.

The performance characteristics of Linux sit, FreeBSD stf,
and NetBSD stf based 6to4 relay implementations were
investigated in [37].

The performance of and stability of Debian Linux sit,
OpenWRT sit and FreeBSD stf were analyzed in our
conference paper [51], which is now extended by Debian
Linux v4tunnel and NetBSD stf.

D-Link DGS-1100-24

3com Baseline 2948-SFP
Plus 3CBLSG48

Dell Precision 490

10 x Dell Precision 490

debianhost1

6to4 clients

IPv6
responder

IPv4: 193.225.151.66/28

IPv4: 193.225.151.65/28

IPv4: 193.225.151.75/28

6to4: 2002:c1e1:9741::1/64

6to4: 2002:c1e1:9742::1/64 6to4: 2002:c1e1:974b::1/64

Native IPv6:
babe:b00b::2/64

Pentium
III

6to4 relay
router

IPv4: 193.225.151.78/28
6to4: 2002:c1e1:974e::1/64
Native IPv6: babe:b00b::1/64

Fig. 1. Topology of the test network.

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

JUNE 2016 • VOLUME VIII • NUMBER 24

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

IV. TESTED IMPLEMENTATIONS
The following widely used open source [52] (also called

free software [53]) operating systems and their 6to4
implementations were chosen for the tests: Debian Linux sit
and v4tunnel [54], OpenBSD gif interface [55], FreeBSD stf
interface [56], NetBSD stf interface [57], OpenWRT 6to4 plus
kmod-sit packages [58]. The open source software can be
freely used by anyone, and their licenses allow the
performance benchmarks. These two arguments were the most
important ones in our selection of the implementations for
testing.

The following software versions were used:
 Debian 7.1.0_x86 – sit
 Debian 7.1.0_x86 – v4tunnel
 OpenWRT (Attitude Adjustment) 12.09_x86 – sit
 FreeBSD 9.1_x86 – stf
 NetBSD 6.1.2_x86 – stf

It was found during the preliminary tests that the OpenBSD
system does not support the 6to4 transition mechanism.

V. TEST ENVIRONMENT

A. Topology of the network
An isolated test network was built for the performance and

the stability measurements. The topology of the network can
be seen in Fig. 1. Due to the isolation, any IPv4 and IPv6
addresses could be used on the network. The computer on the
top of the figure played the role of the “internet” and
responded all of the queries, and the queries were generated by
the 10 client computers which can be seen on the bottom of
the figure. These computers played the role of the large
number of the clients. The clients sent their queries by 6to4
through the 6to4 relay router to the “internet” computer. These
queries were generated different levels of load on the 6to4
relay computer during the measurement process. The load was
tuned by the number of the active clients. The laptop and the
connecting switch on the right side of the figure were used to
control the experiments.

B. Hardware configurations
1000Base-TX connections were used on all of the network

segments.
A specially low performance computer was built for the

6to4 relay computer so that the client computers could
produce high enough load for overloading it. The main goal of
the measurements was the comparison of the different
implementations and not any hardware related investigation.

The configuration of the 6to4 relay computer was:
 Intel D815EE2U motherboard
 800MHz Intel Pentium III (Coppermine) processor
 128MB, 100MHz SDRAM
 Two TP-LINK TG-3269 REV 3.0 Gigabit PCI

Ethernet NICs
All of the ten clients and the responder computer were Dell

Precision 490 workstations with same configuration:
 DELL 0GU083 motherboard with Intel 5000X

chip-set

 Two Intel Xeon 5140 2.33GHz dual core
processors (in the responder: Intel Xeon 5160
3GHz)

 4x1GB 533MHz DDR2 SDRAM (accessed quad
channel)

 Broadcom NetXtreme BCM5752 Gigabit Ethernet
controller (PCI Express)

C. Software configurations
Debian Linux 6.0.7 with 2.6.32-5-amd64 kernel and

OpenBSD 5.3 64 bit version were installed on the clients, and
the responder, respectively.

On the responder, NAT66 was used to simulate server
computers with different IPv6 addresses. The following
commands were used in the /etc/pf.conf file on the responder:

set timeout interval 2
set limit states 400000
pass in on bge0 inet6 from any to \
 2001:738:2c01:8000::/64 rdr-to babe:b00b::2
All of the client computers used sit or stf interfaces with the

following setting in the /etc/network/interfaces file:
auto sit0
iface sit0 inet6 static
address 2002:c1e1:9742::1- …974b::1
netmask 64

gateway ::193.225.151.78

VI. MEASUREMENT METHOD
The load was generated by ping6 commands with the

following Bash shell script:
#!/bin/bash
i=`cat /etc/hostname | grep -o '[0-9]'`
for b in {0..255}
do
 rm -rf $b
 mkdir $b
 for c in {0..252..4}
 do
 ping6 2001:738:2c01:8000::193.$i.$b.$c \

-c8 -i0 >> $b/6to4-193-$i-$b-$c &
 ping6 2001:738:2c01:8000::193.$i.$b.$c \

-c8 -i0 >> $b/6to4-193-$i-$b-$c &
 ping6 2001:738:2c01:8000::193.$i.$b.$((c+1)) \

-c8 -i0 >> $b/6to4-193-$i-$b-$((c+1)) &
ping6 2001:738:2c01:8000::193.$i.$b.$((c+1)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+1)) &

 ping6 2001:738:2c01:8000::193.$i.$b.$((c+2)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+2)) &

 ping6 2001:738:2c01:8000::193.$i.$b.$((c+2)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+2)) &

 ping6 2001:738:2c01:8000::193.$i.$b.$((c+3)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+3)) &

 ping6 2001:738:2c01:8000::193.$i.$b.$((c+3)) \
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+3))

 done
done
During the preliminary measurements, the script was tuned

to generate about 100% load on the CPU of the 6to4 relay
computer with 10 clients.

The variable i contains the serial number of the actual
client. The script contains two nested for cycles. The outer
cycle with variable b from 0 to 255 runs 256 times, while the
inner cycle with variable c from 0 to 252 (with stepping

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

interval 4) runs 64 times. The core of the script contains 4
pairs of concurrent ping6 commands. Each pair of them send
out 8 ICMPv6 echo requests with almost zero interval, in
parallel, whereas the first 7 of them are started asynchronously
with the & parameter. The last ping6 command at the end of
the cycle is started normally thus the cycle waits for the
execution of it. In a measurement, one client sends out
256*64*8*8= 1048576 ICMP echo requests in total to
256*64*4= 65536 different IP addresses.
In the series of measurements, the number of the clients was
increased from one to ten. On the 6to4 relay computer, the
vmstat command was used to log the CPU and memory
consumption. For proper operation of the vmstat, -10 nice
value was used.
We note that having no timeout specified, the ping command
waited two RTTs and then it considered the missing replies as
lost. As the RTTs were small, our packet loss rate can be
considered as an upper bound of rate of the ultimately lost
packets.

VII. MEASUREMENT RESULTS
The results are presented in similar tables for all the tested

6to4 implementations. A detailed explanation is given for the
first table only – the others are to be interpreted in the same
way.

A. Debian 7.1.0_x86 – sit
The results have been listed in Table I. The first row shows

the number of clients that executed the test script at the same
time. The potential load on the 6to4 relay was proportional
with the number of the clients, but the actual number of the
packets was less than that, because the measurement script
does not start a new iteration until the 8th ping6 command is
finished. The second row contains the packet loss ratio. Rows
3, 4 and 5 show the average, the standard deviation and the
maximum value of the response time, respectively. The
average and the standard deviation of the CPU utilization of
the 6to4 relay computer are shown in the Rows 6 and 7. Row

8 contains the memory consumption of the 6to4 process on the
relay computer. (This parameter can be measured with high
uncertainty, because its value is very low and other processes
than the 6to4 relay implementation may also influence the size
of the used memory of the computer.) The last row shows the
number of forwarded packets per seconds.

The graphical representation of the forwarded packets per
second and the CPU utilization are shown in Fig. 2.

Evaluation of the results:
Despite the fact that packet loss occurred in all cases, the

proportion of it was always very low and it increased with
more clients. (The maximum value of it was 0.061% with ten
clients, which means about 6 packets from 10.000 packets
were lost.)

The average, the standard deviation and the maximum value
of the response times were increasing with higher load on the
6to4 relay computer, but the average value did not exceed 1.63
milliseconds with ten clients.

The CPU utilization were increasing continuously, but not
linearly.

The deviation of the CPU utilization were higher with 4, 5,
6 and 7 clients than with other number of clients, which

TABLE I
DEBIAN LINUX – SIT 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10
Packet loss (%) 0.002 0.006 0.008 0.013 0.020 0.035 0.035 0.037 0.048 0.061

Response time
(ms)

Average 0.287 0.353 0.445 0.566 0.710 0.868 1.043 1.209 1.411 1.626
Std. dev. 0.174 0.248 0.353 0.423 0.509 0.588 0.685 0.722 0.832 0.864

Maximum 27.900 28.400 28.500 28.900 29.400 30.700 31.100 34.100 32.800 39.600
CPU Utilization

(%)
Average 1.756 4.821 12.933 31.243 52.964 69.049 81.319 88.941 93.206 96.132
Std. dev. 1.944 2.811 5.619 12.215 16.379 16.493 12.690 9.817 5.289 7.388

Memory consumption (kB) 10.855 10.418 10.363 10.594 10.824 10.996 10.855 10.994 10.828 11.137
Traffic volume (packets/sec) 18051 33953 46856 56534 62853 66947 69663 72304 73129 73050

TABLE II
DEBIAN LINUX – V4TUNNEL 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10
Packet loss (%) 0.003 0.006 0.008 0.011 0.018 0.033 0.036 0.039 0.047 0.060

Response time
(ms)

Average 0.287 0.351 0.444 0.579 0.709 0.865 1.007 1.198 1.389 1.632
Std. dev. 0.174 0.251 0.334 0.428 0.508 0.588 0.690 0.776 0.842 0.887

Maximum 27.800 27.700 28.700 29.920 24.000 30.100 31.300 35.100 33.900 32.800
CPU Utilization

(%)
Average 1.915 4.886 14.202 30.927 51.121 69.555 80.392 89.042 93.441 96.444
Std. dev. 1.727 3.037 6.871 12.412 16.664 14.790 13.807 10.084 7.934 5.461

Memory consumption (kB) 10.664 10.559 10.910 10.555 10.855 10.728 10.730 10.602 11.102 11.438
Traffic volume (packets/sec) 18083 34062 47079 55828 62788 67181 71315 72759 74025 72792

Fig. 2. Linux sit forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)
No. of

forwarded
packets/sec

No. of clients

Linux - sit performance

No. of forwarded packets/sec CPU util. (%)

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2016 • VOLUME VIII • NUMBER 2 5

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

interval 4) runs 64 times. The core of the script contains 4
pairs of concurrent ping6 commands. Each pair of them send
out 8 ICMPv6 echo requests with almost zero interval, in
parallel, whereas the first 7 of them are started asynchronously
with the & parameter. The last ping6 command at the end of
the cycle is started normally thus the cycle waits for the
execution of it. In a measurement, one client sends out
256*64*8*8= 1048576 ICMP echo requests in total to
256*64*4= 65536 different IP addresses.
In the series of measurements, the number of the clients was
increased from one to ten. On the 6to4 relay computer, the
vmstat command was used to log the CPU and memory
consumption. For proper operation of the vmstat, -10 nice
value was used.
We note that having no timeout specified, the ping command
waited two RTTs and then it considered the missing replies as
lost. As the RTTs were small, our packet loss rate can be
considered as an upper bound of rate of the ultimately lost
packets.

VII. MEASUREMENT RESULTS
The results are presented in similar tables for all the tested

6to4 implementations. A detailed explanation is given for the
first table only – the others are to be interpreted in the same
way.

A. Debian 7.1.0_x86 – sit
The results have been listed in Table I. The first row shows

the number of clients that executed the test script at the same
time. The potential load on the 6to4 relay was proportional
with the number of the clients, but the actual number of the
packets was less than that, because the measurement script
does not start a new iteration until the 8th ping6 command is
finished. The second row contains the packet loss ratio. Rows
3, 4 and 5 show the average, the standard deviation and the
maximum value of the response time, respectively. The
average and the standard deviation of the CPU utilization of
the 6to4 relay computer are shown in the Rows 6 and 7. Row

8 contains the memory consumption of the 6to4 process on the
relay computer. (This parameter can be measured with high
uncertainty, because its value is very low and other processes
than the 6to4 relay implementation may also influence the size
of the used memory of the computer.) The last row shows the
number of forwarded packets per seconds.

The graphical representation of the forwarded packets per
second and the CPU utilization are shown in Fig. 2.

Evaluation of the results:
Despite the fact that packet loss occurred in all cases, the

proportion of it was always very low and it increased with
more clients. (The maximum value of it was 0.061% with ten
clients, which means about 6 packets from 10.000 packets
were lost.)

The average, the standard deviation and the maximum value
of the response times were increasing with higher load on the
6to4 relay computer, but the average value did not exceed 1.63
milliseconds with ten clients.

The CPU utilization were increasing continuously, but not
linearly.

The deviation of the CPU utilization were higher with 4, 5,
6 and 7 clients than with other number of clients, which

TABLE I
DEBIAN LINUX – SIT 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10
Packet loss (%) 0.002 0.006 0.008 0.013 0.020 0.035 0.035 0.037 0.048 0.061

Response time
(ms)

Average 0.287 0.353 0.445 0.566 0.710 0.868 1.043 1.209 1.411 1.626
Std. dev. 0.174 0.248 0.353 0.423 0.509 0.588 0.685 0.722 0.832 0.864

Maximum 27.900 28.400 28.500 28.900 29.400 30.700 31.100 34.100 32.800 39.600
CPU Utilization

(%)
Average 1.756 4.821 12.933 31.243 52.964 69.049 81.319 88.941 93.206 96.132
Std. dev. 1.944 2.811 5.619 12.215 16.379 16.493 12.690 9.817 5.289 7.388

Memory consumption (kB) 10.855 10.418 10.363 10.594 10.824 10.996 10.855 10.994 10.828 11.137
Traffic volume (packets/sec) 18051 33953 46856 56534 62853 66947 69663 72304 73129 73050

TABLE II
DEBIAN LINUX – V4TUNNEL 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10
Packet loss (%) 0.003 0.006 0.008 0.011 0.018 0.033 0.036 0.039 0.047 0.060

Response time
(ms)

Average 0.287 0.351 0.444 0.579 0.709 0.865 1.007 1.198 1.389 1.632
Std. dev. 0.174 0.251 0.334 0.428 0.508 0.588 0.690 0.776 0.842 0.887

Maximum 27.800 27.700 28.700 29.920 24.000 30.100 31.300 35.100 33.900 32.800
CPU Utilization

(%)
Average 1.915 4.886 14.202 30.927 51.121 69.555 80.392 89.042 93.441 96.444
Std. dev. 1.727 3.037 6.871 12.412 16.664 14.790 13.807 10.084 7.934 5.461

Memory consumption (kB) 10.664 10.559 10.910 10.555 10.855 10.728 10.730 10.602 11.102 11.438
Traffic volume (packets/sec) 18083 34062 47079 55828 62788 67181 71315 72759 74025 72792

Fig. 2. Linux sit forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)
No. of

forwarded
packets/sec

No. of clients

Linux - sit performance

No. of forwarded packets/sec CPU util. (%)

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

JUNE 2016 • VOLUME VIII • NUMBER 26

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

indicates some fluctuation in the utilization.
The memory consumption was almost constant and very

low, and the maximum value of it was 11.14kB with ten
clients.
The traffic volume increased until the system reached its limit
with 9 clients. With 10 clients, the number of transferred
packets were slightly decreased from 73129 to 73050.

B. Debian 7.1.0_x86 – v4tunnel
The results have been listed in Table II, whereas the

graphical representation of the forwarded packets per second
and the CPU utilization are shown in Fig. 3.

Evaluation of the results:
The packet loss ratio was always very low and it strictly

increased with the number of clients.
The average and the standard deviation value of the

response times were increasing with higher load on the 6to4
relay computer, and the average value reached its maximum
value with ten clients (1.632 ms).

The CPU utilization were increasing continuously, but not
linearly.

The standard deviation of the CPU utilization were higher
with 4, 5, 6 and 7 clients than with other number of clients,
which indicates some fluctuation in the utilization.

The memory consumption was almost constant and very
low, and the maximum value of it was 11.44kB with ten
clients.

The traffic volume increased until the system reached its
limit with 9 clients. With 10 clients, the number of transferred
packets were decreased from 74025 to 72792.

C. OpenWRT (Attitude Adjustment) 12.09_x86 – sit
The results have been listed in Table III., whereas the

graphical representation of the forwarded packets per second
and the CPU utilization are shown in Fig. 4.

Evaluation of the results:
The packet loss ratio was always very low and it strictly

increased with the number of clients. The maximum value of it

was 0.089% with ten clients.
The average and the standard deviation value of the

response times were increasing with higher load on the 6to4
relay computer, but the average value did not exceed 2.16
milliseconds with ten clients.

The CPU utilization with two clients was 4.5 times greater

TABLE III
OPENWRT (ATTITUDE ADJUSTMENT) 12.09_X86 – SIT 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10
Packet loss (%) 0.004 0.006 0.007 0.013 0.018 0.026 0.036 0.064 0.079 0.089

Response time
(ms)

Average 0.314 0.402 0.568 0.733 0.909 1.118 1.358 1.616 1.873 2.160
Std. dev. 0.161 0.239 0.330 0.420 0.508 0.583 0.652 0.705 0.773 0.829

Maximum 25.000 25.300 25.500 25.500 26.500 27.100 27.000 27.100 27.300 28.100
CPU Utilization

(%)
Average 10.067 45.015 70.713 87.188 94.979 97.540 98.467 98.916 99.066 99.288
Std. dev. 3.188 5.593 5.828 9.376 7.954 7.462 4.991 4.567 4.824 4.410

Memory consumption (kB) 10.316 10.414 10.359 10.727 10.469 10.324 10.746 10.492 10.066 10.469
Traffic volume (packets/sec) 17595 32488 41906 49270 54196 56920 58272 58928 59332 58763

TABLE IV
FREEBSD 9.1_X86 – STF 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10
Packet loss (%) 0.013 0.008 0.010 0.012 0.013 0.015 0.017 0.018 0.019 0.019

Response time
(ms)

Average 0.315 0.456 0.681 0.941 1.268 1.637 2.011 2.385 2.740 3.126
Std. dev. 0.111 0.171 0.314 0.404 0.450 0.457 0.463 0.466 0.480 0.490

Maximum 22.200 9.220 12.800 15.400 17.600 18.100 18.800 18.500 19.600 19.400
CPU Utilization

(%)
Average 51.525 77.110 88.994 96.380 98.482 99.435 99.395 99.371 99.462 99.859
Std. dev. 6.899 5.140 6.465 7.398 7.593 3.447 5.336 6.445 5.971 0.475

Memory consumption (kB) 0.008 0.012 0.012 0.273 0.395 0.398 0.445 0.406 0.500 0.492
Traffic volume (packets/sec) 17594 30656 37613 41982 43681 43892 43875 43819 43970 43737

Fig. 3. Linux v4tunnel forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)
No. of

forwarded
packets/sec

No. of clients

Linux - v4tunnel performance

No. of forwarded packets/sec CPU util. (%)

Fig. 4. OpenWrt sit forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)
No. of

forwarded
packets/sec

No. of clients

OpenWrt - sit performance

No. of forwarded packets/sec CPU util. (%)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

than the value with one client. Then the slope was reduced,
until the CPU approached its maximum capacity with 6
clients.

The standard deviation of the CPU utilization were under
10% in each case, which indicates consistent utilization of the
CPU.

The memory consumption was almost constant and very
low.

The traffic volume increased until the system reached its
limit with 9 clients. With 10 clients, the number of transferred
packets were decreased by 0.97% from 59332 to 58763.

D. FreeBSD 9.1_x86 – stf
The results have been listed in Table IV., whereas the

graphical representation of the forwarded packets per seconds
and the CPU utilization are shown in Fig. 5.

Evaluation of the results:
The packet loss ratio was always very low and starting from

two clients it increased with the number of clients, whereas the
value of it was the same with one and five clients. The
maximum value of it was 0.019% with ten clients.

The average and the standard deviation value of the
response times were increasing with higher load on the 6to4
relay computer, but the average value did not exceed 3.13
milliseconds with ten clients. The maximum value of the
response times showed some fluctuation

One client could generate 51.53% load on the CPU. The
CPU utilization was increasing continuously, but not linearly,
until the CPU reached its almost maximum capacity (99.44%)
with 6 clients.

The standard deviation of the CPU utilization was under
10% in each case, whereas it was very small (0.46%) with ten
clients. This phenomenon indicates consistent utilization of
the CPU.

The memory consumption was extremely low and it was
growing almost continuously.

The traffic volume increased until the system reached its
limit with 6 clients. From this point the throughput of the
system started very slightly fluctuating. The maximum value
of the number of transferred packets per second was 43970
with 9 clients.

The relay did not show significant decrease in its
throughput even in serious overload situations thus it complied
with the graceful degradation principles [59].

E. NetBSD 6.1.2_x86 – stf
The results have been listed in Table V., whereas the

graphical representation of the forwarded packets per seconds

and the CPU utilization are shown in Fig. 6.
Evaluation of the results:
The proportion of the packet loss ratio strictly increased

until 5 clients, where it started to decrease monotonically. This
phenomenon is strange, but the packet loss ratio was always
very low.

The average, the standard deviation and the maximum value
of the response times were increasing with some fluctuation,
but the average value did not exceed 2.52 milliseconds with
ten clients.

One client could generate 38.96% load on the CPU. The
CPU utilization was increasing continuously, but only by
smaller and smaller value.

The standard deviation of the CPU utilization was under
10% in each case, which indicates consistent utilization of the
CPU.

TABLE V
NETBSD 6.1.2_X86 – STF 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10
Packet loss (%) 0.011 0.016 0.028 0.047 0.056 0.051 0.044 0.038 0.031 0.031

Response time
(ms)

Average 0.301 0.418 0.603 0.823 1.061 1.326 1.620 1.908 2.210 2.519
Std. dev. 0.186 0.236 0.319 0.403 0.499 0.571 0.631 0.681 0.707 0.712

Maximum 5.760 11.500 13.600 16.900 18.900 21.400 21.100 21.700 22.200 24.300
CPU Utilization

(%)
Average 38.957 65.382 80.290 89.055 94.130 96.671 98.259 98.435 99.020 99.306
Std. dev. 4.519 6.229 9.771 3.769 5.878 6.664 3.759 5.751 6.243 4.642

Memory consumption (kB) 0.016 0.027 0.055 0.148 0.191 0.203 0.695 0.336 0.480 0.180
Traffic volume (packets/sec) 17797 31937 40639 45745 48913 50686 51345 51750 52062 52202

Fig. 5. FreeBSD stf forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)

No. of
forwarded

packets/sec

No. of clients

FreeBSD - stf performance

No. of forwarded packets/sec CPU util. (%)

Fig. 6. NetBSD stf forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)
No. of

forwarded
packets/sec

No. of clients

NetBSD - stf performance

No. of forwarded packets/sec CPU util. (%)

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2016 • VOLUME VIII • NUMBER 2 7

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

than the value with one client. Then the slope was reduced,
until the CPU approached its maximum capacity with 6
clients.

The standard deviation of the CPU utilization were under
10% in each case, which indicates consistent utilization of the
CPU.

The memory consumption was almost constant and very
low.

The traffic volume increased until the system reached its
limit with 9 clients. With 10 clients, the number of transferred
packets were decreased by 0.97% from 59332 to 58763.

D. FreeBSD 9.1_x86 – stf
The results have been listed in Table IV., whereas the

graphical representation of the forwarded packets per seconds
and the CPU utilization are shown in Fig. 5.

Evaluation of the results:
The packet loss ratio was always very low and starting from

two clients it increased with the number of clients, whereas the
value of it was the same with one and five clients. The
maximum value of it was 0.019% with ten clients.

The average and the standard deviation value of the
response times were increasing with higher load on the 6to4
relay computer, but the average value did not exceed 3.13
milliseconds with ten clients. The maximum value of the
response times showed some fluctuation

One client could generate 51.53% load on the CPU. The
CPU utilization was increasing continuously, but not linearly,
until the CPU reached its almost maximum capacity (99.44%)
with 6 clients.

The standard deviation of the CPU utilization was under
10% in each case, whereas it was very small (0.46%) with ten
clients. This phenomenon indicates consistent utilization of
the CPU.

The memory consumption was extremely low and it was
growing almost continuously.

The traffic volume increased until the system reached its
limit with 6 clients. From this point the throughput of the
system started very slightly fluctuating. The maximum value
of the number of transferred packets per second was 43970
with 9 clients.

The relay did not show significant decrease in its
throughput even in serious overload situations thus it complied
with the graceful degradation principles [59].

E. NetBSD 6.1.2_x86 – stf
The results have been listed in Table V., whereas the

graphical representation of the forwarded packets per seconds

and the CPU utilization are shown in Fig. 6.
Evaluation of the results:
The proportion of the packet loss ratio strictly increased

until 5 clients, where it started to decrease monotonically. This
phenomenon is strange, but the packet loss ratio was always
very low.

The average, the standard deviation and the maximum value
of the response times were increasing with some fluctuation,
but the average value did not exceed 2.52 milliseconds with
ten clients.

One client could generate 38.96% load on the CPU. The
CPU utilization was increasing continuously, but only by
smaller and smaller value.

The standard deviation of the CPU utilization was under
10% in each case, which indicates consistent utilization of the
CPU.

TABLE V
NETBSD 6.1.2_X86 – STF 6TO4 RELAY PERFORMANCE RESULTS

Number of clients 1 2 3 4 5 6 7 8 9 10
Packet loss (%) 0.011 0.016 0.028 0.047 0.056 0.051 0.044 0.038 0.031 0.031

Response time
(ms)

Average 0.301 0.418 0.603 0.823 1.061 1.326 1.620 1.908 2.210 2.519
Std. dev. 0.186 0.236 0.319 0.403 0.499 0.571 0.631 0.681 0.707 0.712

Maximum 5.760 11.500 13.600 16.900 18.900 21.400 21.100 21.700 22.200 24.300
CPU Utilization

(%)
Average 38.957 65.382 80.290 89.055 94.130 96.671 98.259 98.435 99.020 99.306
Std. dev. 4.519 6.229 9.771 3.769 5.878 6.664 3.759 5.751 6.243 4.642

Memory consumption (kB) 0.016 0.027 0.055 0.148 0.191 0.203 0.695 0.336 0.480 0.180
Traffic volume (packets/sec) 17797 31937 40639 45745 48913 50686 51345 51750 52062 52202

Fig. 5. FreeBSD stf forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)

No. of
forwarded

packets/sec

No. of clients

FreeBSD - stf performance

No. of forwarded packets/sec CPU util. (%)

Fig. 6. NetBSD stf forwarded packets and CPU utilization.

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

CPU util. (%)
No. of

forwarded
packets/sec

No. of clients

NetBSD - stf performance

No. of forwarded packets/sec CPU util. (%)

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

JUNE 2016 • VOLUME VIII • NUMBER 28

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

The memory consumption was extremely low and it was
growing with some fluctuation.
The traffic volume strictly increased.

VIII. COMPARISON OF THE RESULTS
To facilitate the comparison of the properties of the

different 6to4 relay implementations, we represented the
packet loss ratio, the response time, number of forwarded
packets per second and the average value of the CPU
utilization in graphical form in Figures 7, 8, 9 and 10,
respectively.
It is visible at first sight that the Linux sit and v4tunnel
produced almost the same results in all of the four represented
areas.

All of the tested implementations proved to be reliable and
the packet loss ratios of the different implementations were
always low. The packet loss ratio of the Linux and OpenWrt
implementations increased with the number of clients,
whereas the NetBSD stf produced the highest packet loss with
5 clients. We note that even these low packet loss rates may
cause significant loss of TCP performance. For example
0.08% packet loss may result in about 50% decrease of TCP
performance at 80ms RTT, see the calculations of [60].

All of the implementations proved their stability under
overload situations.

Linux v4 tunnel forwarded the most packets per second, but
the performance of it started to visibly decrease in overload
situation, whereas the Linux sit system only differs slightly.
The OpenWrt sit performance is the next one, and the two
BSD systems are the last competitors in the performance
comparison. FreeBSD stf produced 43970 maximum
throughput, whereas Linux v4tunnel had 74025 maximum
packets per second. This means Linux outperformed the
FreeBSD system by 1.68 times.

All of the implementations use negligibly small amount of
memory, which is usually proportional to the generated load.

With one client, all of the implementations forwarded
similar number of packets, but with significantly different
CPU utilization, which property can explain the high degree of
difference in the performance with more clients. Linux sit 6to4
relay implementation used 1.76% of CPU with one client,
whereas FreeBSD stf used 51.53%, which means about 29
times difference.

IX. CONCLUSION
The 6to4 protocol is a useful transition technique in a

situation, where two IPv6 enabled hosts have to communicate
over an IPv4 only network. All of the tested open source 6to4
relay implementations are reliable solutions in production
networks, but the two Linux based ones showed the best

Fig. 9. Performance of the different 6to4 implementations.

0

20000

40000

60000

80000

1 2 3 4 5 6 7 8 9 10

forwarded
packets/sec

number of clients

Performance

Linux - sit Linux - v4tunnel OpenWrt - sit

FreeBSD - stf NetBSD - stf

Fig. 10. Average CPU utilization of the different 6to4 implementations.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

avg. CPU util.
(%)

number of clients

CPU utilization

Linux - sit Linux - v4tunnel OpenWrt - sit

FreeBSD - stf NetBSD - stf

Fig. 7. Packet loss ratio of the different 6to4 implementations.

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10

packet loss(%)

number of clients

Packet loss ratio

Linux - sit Linux - v4tunnel OpenWrt - sit

FreeBSD - stf NetBSD - stf

Fig. 8. Response time of the different 6to4 implementations.

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10

response time
(ms)

number of clients

Response time

Linux - sit Linux - v4tunnel OpenWrt - sit

FreeBSD - stf NetBSD - stf

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

performance characteristics, whereas the OpenWrt based one
was the second to them. In an environment, where BSD
systems are preferred, the two BSD based implementations are
usable solutions as well.

The authors hope that their work has contributed to the
early adoption of the IPv6 protocol and the published results
and methodology are valuable for both researchers and
network professionals.

REFERENCES
[1] S. Bradner and A. Mankin, “The recommendation for the IP next

generation protocol”, IETF, January 1995. (RFC 1752) Available:
https://tools.ietf.org/html/rfc1752

[2] M. Waiser, “Whatever happened to the Next-Generation Internet?”,
Communications of the ACM, vol. 44, no. 9. pp. 61-69, 2001.

[3] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6)
specification”, IETF, December 1998. (RFC 2460) Available:
https://tools.ietf.org/html/rfc2460

[4] Google, “IPv6 statistics”, Available:
http://www.google.com/ipv6/statistics.html

[5] IEEE-USA, “Next generation internet: IPv4 address exhaustion,
mitigation strategies and implications for the U.S.”, IEEE-USA White
Paper, 2009. Available:
http://www.ieeeusa.org/policy/whitepapers/IEEEUSAWP-IPv62009.pdf

[6] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The
internet address assignment and aggregation plan”, IETF, August 2006.
(RFC 4632) Available: https://tools.ietf.org/html/rfc4632

[7] P. Srisuresh and K. Egevang, “Traditional IP network address translator
(Traditional NAT)”, IETF, January 2001. (RFC 3022) Available:
https://tools.ietf.org/html/rfc3022

[8] S. Jiang, D. Guo, and B. Carpenter, “An incremental carrier-grade NAT
(CGN) for IPv6 transition”, IETF, June 2011. (RFC 6264) Available:
http://tools.ietf.org/html/rfc6264

[9] M. Mueller, “Scarcity in IP addresses: IPv4 address transfer markets and
the regional internet address registries”, Internet Governance Project,
July 2008. Available: http://www.internetgovernance.org/wordpress/wp-
content/uploads/IPAddress_TransferMarkets.pdf

[10] G. Huston, “IPv4 address report”, Available:
http://www.potaroo.net/tools/ipv4/index.html

[11] L. Smith and I. Lipner, “Free pool of IPv4 address space depleted”,
Number Resource Organization, February 2011. Available:
https://www.nro.net/news/ipv4-free-pool-depleted

[12] E. Nordmark and R. Gilligan, “Basic transition mechanisms for IPv6
hosts and routers”, IETF, October 2005. (RFC 4213) Available:
https://tools.ietf.org/html/rfc4213

[13] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147) Available:
https://tools.ietf.org/html/rfc6147

[14] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF, April 2011. ISSN: 2070-1721 (RFC 6146) Available:
https://tools.ietf.org/html/rfc6146

[15] G. Lencse and S. Répás, “Performance analysis and comparison of
different DNS64 implementations for Linux, OpenBSD and FreeBSD”
in Proc. 27th IEEE International Conference on Advanced Information
Networking and Applications (AINA-2013), Barcelona, 2013, pp. 877-
884, doi: 10.1109/AINA.2013.80

[16] G. Lencse and S. Répás, "Performance analysis and comparison of the
TAYGA and of the PF NAT64 implementations" in Proc. 36th
International Conference on Telecommunications and Signal Processing
(TSP-2013), Rome, 2013, pp. 71-76, doi: 10.1109/TSP.2013.6613894

[17] S. Répás, T. Hajas and G. Lencse, “Application compatibility of the
NAT64 IPv6 transition technology” in Proc. 37th International
Conference on Telecommunications and Signal Processing (TSP-2014),
Berlin, 2014, pp. 49-55, DOI: 10.1109/TSP.2015.7296383

[18] A. Conta and S. Deering, “Generic packet tunneling in IPv6
specification”, IETF, December 1998. (RFC 2473) Available:
http://tools.ietf.org/html/rfc2473

[19] SixXS - IPv6 Deployment & Tunnel Broker,
https://www.sixxs.net/main/

[20] Hurricane Electric Free IPv6 Tunnel Broker, https://tunnelbroker.net/
[21] R. Despres, “IPv6 rapid deployment on IPv4 infrastructures (6rd)”,

IETF, January 2010. ISSN: 2070-1721 (RFC 5569) Available:
https://tools.ietf.org/html/rfc5569

[22] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs)”, IETF, February 2006. (RFC 4380)
Available: https://tools.ietf.org/html/rfc4380

[23] F. Templin, T. Gleeson and D. Thaler, “Intra-Site Automatic Tunnel
Addressing Protocol (ISATAP)”, IETF, March 2008. (RFC 5214)
Available: https://tools.ietf.org/html/rfc5214

[24] B. Carpenter and K. Moore, “Connection of IPv6 domains via IPv4
clouds”, IETF, February 2001. (RFC 3056) Available:
https://tools.ietf.org/html/rfc3056

[25] P. Wu, Y. Cui, J. Wu, J. Liu, and C. Metz, “Transition from IPv4 to
IPv6: A state-of-the-art survey”, IEEE Communications Surveys &
Tutorials, vol. 15, no. 3. pp. 1407-1424, 2013, doi:
10.1109/SURV.2012.110112.00200

[26] R. Gilligan and E. Nordmark, “Transition mechanisms for IPv6 hosts
and routers”, IETF, August 2000. (RFC 2893) Available:
https://tools.ietf.org/html/rfc2893

[27] M. Cotton, L. Vegoda, R. Bonica and B. Haberman, “Special-purpose IP
address registries”, IETF, April 2013. ISSN: 2070-1721 (RFC 6890)
Available: https://tools.ietf.org/html/rfc6890

[28] C. Partridge, T. Mendez and W. Milliken, “Host anycasting service”,
IETF, November 1993. (RFC 1546), Available:
https://tools.ietf.org/html/rfc1546

[29] C. Huitema, “An anycast prefix for 6to4 relay routers”, IETF, June
2001. (RFC 3068) Available: https://tools.ietf.org/html/rfc3068

[30] D. Malone, “Counting 6to4 relay routers”, SIGCOMM Computer
Communication Review, vol. 36, no. 1. pp. 79-82, 2006, doi:
10.1145/1111322.1111340

[31] RIPEstat, https://stat.ripe.net
[32] P. Savola and C. Patel, “Security considerations for 6to4”, IETF,

December 2004. (RFC 3964), Available:
https://tools.ietf.org/html/rfc3964

[33] W. Townsley and O. Troan, “IPv6 Rapid Deployment on IPv4
Infrastructures (6rd)”, IETF, August 2010, (RFC 5969), Available:
https://tools.ietf.org/html/rfc5969

[34] O. Troan and G. Van de Velde, “Request to move connection of IPv6
domains via IPv4 clouds (6to4) to historic status”, February, 2011,
(expired internet draft), Available: https://tools.ietf.org/html/draft-troan-
v6ops-6to4-to-historic-00

[35] O. Troan and B. Carpenter, ed, “Deprecating the anycast prefix for 6to4
relay routers”, May 2015, (RFC 7526), Available:
https://tools.ietf.org/html/rfc7526

[36] B. Carpenter, “Advisory Guidelines for 6to4 Deployment”, August
2011, (RFC 6343), Available: https://tools.ietf.org/html/rfc6343

[37] G. Lencse and S. Répás, “Performance analysis and comparison of 6to4
relay implementations”, International Journal of Advanced Computer
Science and Applications, vol. 4, no. 9. pp. 13-21, 2013, doi:
10.14569/IJACSA.2013.040903

[38] M. Nikkhah, R. Guérin, Y. Lee and R. Woundy, “Assessing IPv6
through web access a measurement study and its findings” in Proc.
Seventh Conference on emerging Networking EXperiments and
Technologies (CoNEXT '11), Tokyo, 2011, doi:
10.1145/2079296.2079322

[39] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil and M.
Bailey, “Measuring IPv6 adoption” in Proc. ACM conference on
SIGCOMM (SIGCOMM '14), Chicago, 2014, pp. 87-98. doi:
10.1145/2619239.2626295

[40] M. Aazam, A.M. Syed, S.A.H. Shah, I. Khan and M. Alam, “Evaluation
of 6to4 and ISATAP on a test LAN” in Proc. IEEE Symposium on
Computers & Informatics (ISCSI 2011), Kuala Lumpur, 2011, pp. 46-50.
doi: 10.1109/ISCI.2011.5958881

[41] F. Sans and E. Gamess, “Analytical performance evaluation of native
IPv6 and several tunneling technics using benchmarking tools” in Proc.
XXXIX Latin American Computing Conference (CLEI 2013), Naiguata,
2013, pp. 1-9. doi: 10.1109/CLEI.2013.6670610

[42] J. L. Shah and J. Parvez, “An examination of next generation IP
migration techniques: Constraints and evaluation” in Proc. International
Conference on Control, Instrumentation, Communication and
Computational Technologies (ICCICCT-2014), Kanyakumari District,
2014, pp. 776-781. doi: 10.1109/ICCICCT.2014.6993064

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2016 • VOLUME VIII • NUMBER 2 9

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

performance characteristics, whereas the OpenWrt based one
was the second to them. In an environment, where BSD
systems are preferred, the two BSD based implementations are
usable solutions as well.

The authors hope that their work has contributed to the
early adoption of the IPv6 protocol and the published results
and methodology are valuable for both researchers and
network professionals.

REFERENCES
[1] S. Bradner and A. Mankin, “The recommendation for the IP next

generation protocol”, IETF, January 1995. (RFC 1752) Available:
https://tools.ietf.org/html/rfc1752

[2] M. Waiser, “Whatever happened to the Next-Generation Internet?”,
Communications of the ACM, vol. 44, no. 9. pp. 61-69, 2001.

[3] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6)
specification”, IETF, December 1998. (RFC 2460) Available:
https://tools.ietf.org/html/rfc2460

[4] Google, “IPv6 statistics”, Available:
http://www.google.com/ipv6/statistics.html

[5] IEEE-USA, “Next generation internet: IPv4 address exhaustion,
mitigation strategies and implications for the U.S.”, IEEE-USA White
Paper, 2009. Available:
http://www.ieeeusa.org/policy/whitepapers/IEEEUSAWP-IPv62009.pdf

[6] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The
internet address assignment and aggregation plan”, IETF, August 2006.
(RFC 4632) Available: https://tools.ietf.org/html/rfc4632

[7] P. Srisuresh and K. Egevang, “Traditional IP network address translator
(Traditional NAT)”, IETF, January 2001. (RFC 3022) Available:
https://tools.ietf.org/html/rfc3022

[8] S. Jiang, D. Guo, and B. Carpenter, “An incremental carrier-grade NAT
(CGN) for IPv6 transition”, IETF, June 2011. (RFC 6264) Available:
http://tools.ietf.org/html/rfc6264

[9] M. Mueller, “Scarcity in IP addresses: IPv4 address transfer markets and
the regional internet address registries”, Internet Governance Project,
July 2008. Available: http://www.internetgovernance.org/wordpress/wp-
content/uploads/IPAddress_TransferMarkets.pdf

[10] G. Huston, “IPv4 address report”, Available:
http://www.potaroo.net/tools/ipv4/index.html

[11] L. Smith and I. Lipner, “Free pool of IPv4 address space depleted”,
Number Resource Organization, February 2011. Available:
https://www.nro.net/news/ipv4-free-pool-depleted

[12] E. Nordmark and R. Gilligan, “Basic transition mechanisms for IPv6
hosts and routers”, IETF, October 2005. (RFC 4213) Available:
https://tools.ietf.org/html/rfc4213

[13] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS
extensions for network address translation from IPv6 clients to IPv4
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147) Available:
https://tools.ietf.org/html/rfc6147

[14] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: network
address and protocol translation from IPv6 clients to IPv4 servers”,
IETF, April 2011. ISSN: 2070-1721 (RFC 6146) Available:
https://tools.ietf.org/html/rfc6146

[15] G. Lencse and S. Répás, “Performance analysis and comparison of
different DNS64 implementations for Linux, OpenBSD and FreeBSD”
in Proc. 27th IEEE International Conference on Advanced Information
Networking and Applications (AINA-2013), Barcelona, 2013, pp. 877-
884, doi: 10.1109/AINA.2013.80

[16] G. Lencse and S. Répás, "Performance analysis and comparison of the
TAYGA and of the PF NAT64 implementations" in Proc. 36th
International Conference on Telecommunications and Signal Processing
(TSP-2013), Rome, 2013, pp. 71-76, doi: 10.1109/TSP.2013.6613894

[17] S. Répás, T. Hajas and G. Lencse, “Application compatibility of the
NAT64 IPv6 transition technology” in Proc. 37th International
Conference on Telecommunications and Signal Processing (TSP-2014),
Berlin, 2014, pp. 49-55, DOI: 10.1109/TSP.2015.7296383

[18] A. Conta and S. Deering, “Generic packet tunneling in IPv6
specification”, IETF, December 1998. (RFC 2473) Available:
http://tools.ietf.org/html/rfc2473

[19] SixXS - IPv6 Deployment & Tunnel Broker,
https://www.sixxs.net/main/

[20] Hurricane Electric Free IPv6 Tunnel Broker, https://tunnelbroker.net/
[21] R. Despres, “IPv6 rapid deployment on IPv4 infrastructures (6rd)”,

IETF, January 2010. ISSN: 2070-1721 (RFC 5569) Available:
https://tools.ietf.org/html/rfc5569

[22] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs)”, IETF, February 2006. (RFC 4380)
Available: https://tools.ietf.org/html/rfc4380

[23] F. Templin, T. Gleeson and D. Thaler, “Intra-Site Automatic Tunnel
Addressing Protocol (ISATAP)”, IETF, March 2008. (RFC 5214)
Available: https://tools.ietf.org/html/rfc5214

[24] B. Carpenter and K. Moore, “Connection of IPv6 domains via IPv4
clouds”, IETF, February 2001. (RFC 3056) Available:
https://tools.ietf.org/html/rfc3056

[25] P. Wu, Y. Cui, J. Wu, J. Liu, and C. Metz, “Transition from IPv4 to
IPv6: A state-of-the-art survey”, IEEE Communications Surveys &
Tutorials, vol. 15, no. 3. pp. 1407-1424, 2013, doi:
10.1109/SURV.2012.110112.00200

[26] R. Gilligan and E. Nordmark, “Transition mechanisms for IPv6 hosts
and routers”, IETF, August 2000. (RFC 2893) Available:
https://tools.ietf.org/html/rfc2893

[27] M. Cotton, L. Vegoda, R. Bonica and B. Haberman, “Special-purpose IP
address registries”, IETF, April 2013. ISSN: 2070-1721 (RFC 6890)
Available: https://tools.ietf.org/html/rfc6890

[28] C. Partridge, T. Mendez and W. Milliken, “Host anycasting service”,
IETF, November 1993. (RFC 1546), Available:
https://tools.ietf.org/html/rfc1546

[29] C. Huitema, “An anycast prefix for 6to4 relay routers”, IETF, June
2001. (RFC 3068) Available: https://tools.ietf.org/html/rfc3068

[30] D. Malone, “Counting 6to4 relay routers”, SIGCOMM Computer
Communication Review, vol. 36, no. 1. pp. 79-82, 2006, doi:
10.1145/1111322.1111340

[31] RIPEstat, https://stat.ripe.net
[32] P. Savola and C. Patel, “Security considerations for 6to4”, IETF,

December 2004. (RFC 3964), Available:
https://tools.ietf.org/html/rfc3964

[33] W. Townsley and O. Troan, “IPv6 Rapid Deployment on IPv4
Infrastructures (6rd)”, IETF, August 2010, (RFC 5969), Available:
https://tools.ietf.org/html/rfc5969

[34] O. Troan and G. Van de Velde, “Request to move connection of IPv6
domains via IPv4 clouds (6to4) to historic status”, February, 2011,
(expired internet draft), Available: https://tools.ietf.org/html/draft-troan-
v6ops-6to4-to-historic-00

[35] O. Troan and B. Carpenter, ed, “Deprecating the anycast prefix for 6to4
relay routers”, May 2015, (RFC 7526), Available:
https://tools.ietf.org/html/rfc7526

[36] B. Carpenter, “Advisory Guidelines for 6to4 Deployment”, August
2011, (RFC 6343), Available: https://tools.ietf.org/html/rfc6343

[37] G. Lencse and S. Répás, “Performance analysis and comparison of 6to4
relay implementations”, International Journal of Advanced Computer
Science and Applications, vol. 4, no. 9. pp. 13-21, 2013, doi:
10.14569/IJACSA.2013.040903

[38] M. Nikkhah, R. Guérin, Y. Lee and R. Woundy, “Assessing IPv6
through web access a measurement study and its findings” in Proc.
Seventh Conference on emerging Networking EXperiments and
Technologies (CoNEXT '11), Tokyo, 2011, doi:
10.1145/2079296.2079322

[39] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil and M.
Bailey, “Measuring IPv6 adoption” in Proc. ACM conference on
SIGCOMM (SIGCOMM '14), Chicago, 2014, pp. 87-98. doi:
10.1145/2619239.2626295

[40] M. Aazam, A.M. Syed, S.A.H. Shah, I. Khan and M. Alam, “Evaluation
of 6to4 and ISATAP on a test LAN” in Proc. IEEE Symposium on
Computers & Informatics (ISCSI 2011), Kuala Lumpur, 2011, pp. 46-50.
doi: 10.1109/ISCI.2011.5958881

[41] F. Sans and E. Gamess, “Analytical performance evaluation of native
IPv6 and several tunneling technics using benchmarking tools” in Proc.
XXXIX Latin American Computing Conference (CLEI 2013), Naiguata,
2013, pp. 1-9. doi: 10.1109/CLEI.2013.6670610

[42] J. L. Shah and J. Parvez, “An examination of next generation IP
migration techniques: Constraints and evaluation” in Proc. International
Conference on Control, Instrumentation, Communication and
Computational Technologies (ICCICCT-2014), Kanyakumari District,
2014, pp. 776-781. doi: 10.1109/ICCICCT.2014.6993064

Stability Analysis and Performance Comparison
of Five 6to4 Relay Implementations

JUNE 2016 • VOLUME VIII • NUMBER 210

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

[43] Riverbed Modeler, http://www.riverbed.com/products/performance-
management-control/network-performance-management/network-
simulation.html

[44] D. Hadiya, R. Save and G. Geetu, “Network performance evaluation of
6to4 and configured tunnel transition mechanisms: An empirical test-bed
analysis” in Proc. 6th International Conference on Emerging Trends in
Engineering and Technology (ICETET-13), Nagpur, 2013, pp. 56-60.
doi: 10.1109/ICETET.2013.14

[45] N. Bahaman, E. Hamid and A.S. Prabuwono, “Network performance
evaluation of 6to4 tunneling” in Proc. 2012 International Conference
on Innovation Management and Technology Research ((ICIMTR),
Malacca, 2012, pp. 263-268. doi: 10.1109/ICIMTR.2012.6236400

[46] M. Elich, P. Velan, T. Jirsik and P. Celeda, “An investigation into teredo
and 6to4 transition mechanisms: Traffic analysis” in Proc. IEEE 38th
Conference on Local Computer Networks Workshops (LCN 2013
Workshops), Sydney, 2013, pp. 1018-1024. doi:
10.1109/LCNW.2013.6758546

[47] S. Pekka,” Observations of IPv6 traffic on a 6to4 relay”, SIGCOMM
Computer Communication Review, vol. 35, no. 1. pp. 23-28, 2005. doi:
10.1145/1052812.1052821

[48] S. Narayan and S. Tauch, “Network performance evaluation of IPv4-v6
configured tunnel and 6to4 transition mechanisms on windows server
operating systems” in Proc. 2010 International Conference on Computer
Design and Applications (ICCDA 2010), Qinhuangdao, 2010, pp. V5-
435-V5-440. doi: 10.1109/ICCDA.2010.5540939

[49] S. Narayan and S. Tauch, “IPv4-v6 configured tunnel and 6to4 transition
mechanisms network performance evaluation on Linux operating
systems” in Proc. 2nd International Conference on Signal Processing
Systems (ICSPS 2010), Dalian, 2010, pp. V2-113-V2-117. doi:
10.1109/ICSPS.2010.5555209

[50] S. Narayan and S. Tauch, “IPv4-v6 transition mechanisms network
performance evaluation on operating systems” in Proc. 3rd IEEE
International Conference on Computer Science and Information
Technology (ICCSIT 2010), Chengdu, 2010, pp. 664-668. doi:
10.1109/ICCSIT.2010.5564141

[51] S. Répás, V. Horváth and G. Lencse, "Stability Analysis and
Performance Comparison of Three 6to4 Relay Implementations" in
Proc. 38th International Conference on Telecommunications and Signal
Processing (TSP 2015), Prague, July 9-11, 2015, pp. 82-87. DOI:
10.1109/TSP.2015.7296228

[52] Open Source Initiative, “The open source definition”,
http://opensource.org/docs/osd

[53] Free Software Fundation, “The free software definition”,
http://www.gnu.org/philosophy/free-sw.en.html

[54] Debian, http://www.debian.org/
[55] OpenBSD, http://www.openbsd.org/
[56] FreeBSD, http://www.freebsd.org/
[57] NetBSD, http://www.netbsd.org/
[58] OpenWrt, https://openwrt.org/
[59] NTIA ITS, “Definition of ‘graceful degradation’ ”, Available:

http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm
[60] Network Throughput Calculator, http://wintelguy.com/wanperf.pl

Sándor Répás received his BA in
business administration and
management from the Corvinus
University of Budapest in 2009 and
MSc in electrical engineering from the
Széchenyi István University, Győr in
2013.

He is a full time PhD student in
information technology at the

Széchenyi István University. The main field of his research is
the IPv6 implementation technologies. His other favorite
topics are computer networking, information security, and
critical information infrastructure protection. He has several
certificates from Cisco, ISACA, Microsoft, MikroTik, Novell,
and other vendors.

Mr. Répás is a student member of the Association for
Computer Machinery (ACM), and member of the Information

Scientific Association for Infocommunications Hungary
(HTE), and the John von Neumann Computer Society.

Viktor Horváth received his BSc in
electrical engineering at Széchenyi
István University in Győr in 2014. He
had been working at the Department of
Telecommunications as a graduate
student during his thesis research. The
area of his research included
performance analysis of IPv6
transition technologies, router boards

and several Linux and BSD operating system. Nowadays he is
mostly interested in computer security field. He is an IT
security engineer at one of the most professional value added
security distributor company in Hungary. Horváth's other
favorite topics are computer networking, wireless networking
and secure mobile device management. He has several vendor
specific certificate from MobileIron, SafeNet, Unitrends,
Opswat and others.

During his work he got familiar with several IT security
vendor and solution. His main responsibilities include
professional enterprise level IT support, IT Infrastructure
Management and administration, trainings, technical
presentations, site surveys and security infrastructure
integration.

He took part in most of the reasonable IT security focused
events in Hungary where he was responsible for the IT
infrastructure behind the "scene". These days he is involved in
several project at multinational companies.

Gábor Lencse received his MSc in
electrical engineering and computer
systems from the Technical
University of Budapest in 1994, and
his PhD in 2001.

He has been working for the
Department of Telecommunications,
Széchenyi István University in Győr
since 1997. Now, he is an Associate
Professor. He teaches Computer
networks and the Linux operating

system. He is responsible for the specialization of the
information and communication technology of the BSc level
electrical engineering education. He is a founding member and
also a core member of the Multidisciplinary Doctoral School
of Engineering Sciences, Széchenyi István University. The
area of his research includes discrete-event simulation
methodology, performance analysis of computer networks and
IPv6 transition technologies. He has been working part time
for the Department of Networked Systems and Services,
Budapest University of Technology and Economics (the
former Technical University of Budapest) since 2005. There
he teaches Computer architectures and Computer networks.

Dr. Lencse is a member of the Institute of Electronics,
Information and Communication Engineers (IEICE).

Sándor Répás received his BA in business
administration and management from the
Corvinus University of Budapest in 2009
and MSc in electrical engineering from the
Széchenyi István University, Győr in 2013.
He is a full time PhD student in information
technology at the Széchenyi István University.
The main field of his research is the IPv6
implementation technologies. His other favorite
topics are computer networking, information
security, and critical information infrastructure
protection. He has several certificates from

Cisco, ISACA, Microsoft, MikroTik, Novell, and other vendors.
Mr. Répás is a student member of the Association for Computer Machinery
(ACM), and member of the Information Scientific Association for
Infocommunications Hungary (HTE), and the John von Neumann Computer
Society.

Viktor Horváth received his BSc in electrical
engineering at Széchenyi István University
in Győr in 2014. He had been working at
the Department of Telecommunications as a
graduate student during his thesis research.
The area of his research included performance
analysis of IPv6 transition technologies, router
boards and several Linux and BSD operating
system. Nowadays he is mostly interested in
computer security field. He is an IT security
engineer at one of the most professional
value added security distributor company in

Hungary. Horváth’s other favorite topics are computer networking, wireless
networking and secure mobile device management. He has several vendor
specific certificate from MobileIron, SafeNet, Unitrends, Opswat and others.
During his work he got familiar with several IT security vendor and
solution. His main responsibilities include professional enterprise level
IT support, IT Infrastructure Management and administration, trainings,
technical presentations, site surveys and security infrastructure integration.
He took part in most of the reasonable IT security focused events in
Hungary where he was responsible for the IT infrastructure behind the
“scene”. These days he is involved in several project at multinational
companies.

Gábor Lencse received his MSc in electrical
engineering and computer systems from the
Technical University of Budapest in 1994,
and his PhD in 2001.
He has been working for the Department
of Telecommunications, Széchenyi István
University in Győr since 1997. Now, he is
an Associate Professor. He teaches Computer
networks and the Linux operating system. He
is responsible for the specialization of the
information and communication technology
of the BSc level electrical engineering
education. He is a founding member and
also a core member of the Multidisciplinary

Doctoral School of Engineering Sciences, Széchenyi István University.
The area of his research includes discrete-event simulation methodology,
performance analysis of computer networks and IPv6 transition
technologies. He has been working part time for the Department of
Networked Systems and Services, Budapest University of Technology
and Economics (the former Technical University of Budapest) since 2005.
There he teaches Computer architectures and Computer networks.
Dr. Lencse is a member of the Institute of Electronics, Information and
Communication Engineers (IEICE).

1

Supporting LTE Network and Service Management
through Session Data Record Analysis

Dániel Kozma, Gábor Soós, Pál Varga

Abstract—Gathering and processing data for performance and
fault management continues to be a burning issue, from LTE
operations and maintenance point of view. Regarding the Evolved
Packet Core (EPC), this is especially true, since it has newly
defined interfaces, with new protocols - some of them are even
ciphered. Network-wide data capture and analysis for the EPC
requires new processing methods. These would allow operators to
correlate control and user plane information of various interfaces
and protocols. There are many obstacles to overcome here,
including ciphered control messages and global identifiers hidden
by temporary ones. This paper presents a system for S1AP
session data record assembling, it shows what key parameters
are needed to be extracted in order to enable expert analysis.
The deciphering mechanism is especially important here, hence
we discuss how its success affects analysis results. We present Call
Data Record assembling methods for various scenarios - such as
network attachments or tracking area changes. Furthermore, this
paper presents the methods for gathering cross-correlated data on
specific fault management use-cases, especially for unsuccessful
voice calls.

I. INTRODUCTION

W IRELESS data traffic is increasing exponentially
worldwide [1]. Supporting and managing this growth

of traffic on the signaling links poses a great challenge to
the operators. Fault management - especially the detection
and the root cause analysis of failures - has become very
complex, and requires deep telecommunications knowledge.
Magyar Telekom - the Hungarian subsidiary of the Deutsche
Telekom Group - is facing a milestone in its operation, when
introducing voice calls over its 4G network - or in other
terms, the Voice over LTE (VoLTE) [2] service. One of the
key information-exchange points of 4G call establishment is
the S1-MME interface (between eNodeB and MME entities;
see Fig. 1). Various important elements of 4G call procedures
can be observed at this interface - hence its monitoring is
critical from the operator’s point of view. On this interface,
the role of the S1 Application Protocol (S1AP) [3] is essential
when introducing the 4G voice call feature. The monitoring
of this interface is important from the Voice over LTE ser-
vice assurance point of view. Passive monitoring is supposed
to be lossless: when the links are tapped, and the probes
receive data in a non-intrusive manner, they cannot ask for
resending anything. What they missed seeing, they have lost
capturing. Based on the monitoring data, engineers can support

Manuscript received May 25, 2016, revised June 24, 2016.
D. Kozma and G. Soós are with Magyar Telekom Plc. H-1117 Budapest,

Szerémi út 4. e-mail: kozma.daniel@telekom.hu, soos.gabor2@telekom.hu
P. Varga is with Budapest University of Technology and Economics,

Department of Telecommunications and Media Informatics H-1117 Budapest,
Magyar Tudósok körútja 2. e-mail: pvarga@tmit.bme.hu

performance management, network optimization, as well as
failure detection, which is one of the most important tasks
for operations and maintenance. This paper discusses the
requirements and the functions of an S1AP monitoring system,
which is under deployment. Furthermore, the paper presents
some practical use-cases on call tracing with deciphering
issues, as well.

II. MONITORING THE LTE EVOLVED PACKET CORE

Before discussing the monitoring requirements, this section
briefly summarizes the main functions of LTE EPC nodes,
and lists the interfaces among them. Parts of LTE network
monitoring are discussed in the scientific community; however
papers that are sharing actual methodologies and results appear
very rarely. The motivations and fundamental challenges of
LTE monitoring are discussed in [8]. The basics of network
monitoring applied to LTE core system monitoring are sum-
marized in [9]. In [10] the authors describe protocol decoders
for LTE, and raise similar issues that our current paper raises
and solves.There are also descriptions availale for complete
performance management solutions for the backhaul [12] and
for end-to-end services [11] – these use the results of LTE
EPC monitoring systems, for which an example is presented
in the current paper. A CDR synthesis-system for the S1-
MME interface is described in [13] – this system shares the
fundamentals with the SGA system described in the following
sections.

Fig. 1. The architectural elements and interfaces of the LTE EPC

1

Supporting LTE Network and Service Management
through Session Data Record Analysis

Dániel Kozma, Gábor Soós, Pál Varga

Abstract—Gathering and processing data for performance and
fault management continues to be a burning issue, from LTE
operations and maintenance point of view. Regarding the Evolved
Packet Core (EPC), this is especially true, since it has newly
defined interfaces, with new protocols - some of them are even
ciphered. Network-wide data capture and analysis for the EPC
requires new processing methods. These would allow operators to
correlate control and user plane information of various interfaces
and protocols. There are many obstacles to overcome here,
including ciphered control messages and global identifiers hidden
by temporary ones. This paper presents a system for S1AP
session data record assembling, it shows what key parameters
are needed to be extracted in order to enable expert analysis.
The deciphering mechanism is especially important here, hence
we discuss how its success affects analysis results. We present Call
Data Record assembling methods for various scenarios - such as
network attachments or tracking area changes. Furthermore, this
paper presents the methods for gathering cross-correlated data on
specific fault management use-cases, especially for unsuccessful
voice calls.

I. INTRODUCTION

W IRELESS data traffic is increasing exponentially
worldwide [1]. Supporting and managing this growth

of traffic on the signaling links poses a great challenge to
the operators. Fault management - especially the detection
and the root cause analysis of failures - has become very
complex, and requires deep telecommunications knowledge.
Magyar Telekom - the Hungarian subsidiary of the Deutsche
Telekom Group - is facing a milestone in its operation, when
introducing voice calls over its 4G network - or in other
terms, the Voice over LTE (VoLTE) [2] service. One of the
key information-exchange points of 4G call establishment is
the S1-MME interface (between eNodeB and MME entities;
see Fig. 1). Various important elements of 4G call procedures
can be observed at this interface - hence its monitoring is
critical from the operator’s point of view. On this interface,
the role of the S1 Application Protocol (S1AP) [3] is essential
when introducing the 4G voice call feature. The monitoring
of this interface is important from the Voice over LTE ser-
vice assurance point of view. Passive monitoring is supposed
to be lossless: when the links are tapped, and the probes
receive data in a non-intrusive manner, they cannot ask for
resending anything. What they missed seeing, they have lost
capturing. Based on the monitoring data, engineers can support

Manuscript received May 25, 2016, revised June 24, 2016.
D. Kozma and G. Soós are with Magyar Telekom Plc. H-1117 Budapest,

Szerémi út 4. e-mail: kozma.daniel@telekom.hu, soos.gabor2@telekom.hu
P. Varga is with Budapest University of Technology and Economics,

Department of Telecommunications and Media Informatics H-1117 Budapest,
Magyar Tudósok körútja 2. e-mail: pvarga@tmit.bme.hu

performance management, network optimization, as well as
failure detection, which is one of the most important tasks
for operations and maintenance. This paper discusses the
requirements and the functions of an S1AP monitoring system,
which is under deployment. Furthermore, the paper presents
some practical use-cases on call tracing with deciphering
issues, as well.

II. MONITORING THE LTE EVOLVED PACKET CORE

Before discussing the monitoring requirements, this section
briefly summarizes the main functions of LTE EPC nodes,
and lists the interfaces among them. Parts of LTE network
monitoring are discussed in the scientific community; however
papers that are sharing actual methodologies and results appear
very rarely. The motivations and fundamental challenges of
LTE monitoring are discussed in [8]. The basics of network
monitoring applied to LTE core system monitoring are sum-
marized in [9]. In [10] the authors describe protocol decoders
for LTE, and raise similar issues that our current paper raises
and solves.There are also descriptions availale for complete
performance management solutions for the backhaul [12] and
for end-to-end services [11] – these use the results of LTE
EPC monitoring systems, for which an example is presented
in the current paper. A CDR synthesis-system for the S1-
MME interface is described in [13] – this system shares the
fundamentals with the SGA system described in the following
sections.

Fig. 1. The architectural elements and interfaces of the LTE EPC

1

Supporting LTE Network and Service Management
through Session Data Record Analysis

Dániel Kozma, Gábor Soós, Pál Varga

Abstract—Gathering and processing data for performance and
fault management continues to be a burning issue, from LTE
operations and maintenance point of view. Regarding the Evolved
Packet Core (EPC), this is especially true, since it has newly
defined interfaces, with new protocols - some of them are even
ciphered. Network-wide data capture and analysis for the EPC
requires new processing methods. These would allow operators to
correlate control and user plane information of various interfaces
and protocols. There are many obstacles to overcome here,
including ciphered control messages and global identifiers hidden
by temporary ones. This paper presents a system for S1AP
session data record assembling, it shows what key parameters
are needed to be extracted in order to enable expert analysis.
The deciphering mechanism is especially important here, hence
we discuss how its success affects analysis results. We present Call
Data Record assembling methods for various scenarios - such as
network attachments or tracking area changes. Furthermore, this
paper presents the methods for gathering cross-correlated data on
specific fault management use-cases, especially for unsuccessful
voice calls.

I. INTRODUCTION

W IRELESS data traffic is increasing exponentially
worldwide [1]. Supporting and managing this growth

of traffic on the signaling links poses a great challenge to
the operators. Fault management - especially the detection
and the root cause analysis of failures - has become very
complex, and requires deep telecommunications knowledge.
Magyar Telekom - the Hungarian subsidiary of the Deutsche
Telekom Group - is facing a milestone in its operation, when
introducing voice calls over its 4G network - or in other
terms, the Voice over LTE (VoLTE) [2] service. One of the
key information-exchange points of 4G call establishment is
the S1-MME interface (between eNodeB and MME entities;
see Fig. 1). Various important elements of 4G call procedures
can be observed at this interface - hence its monitoring is
critical from the operator’s point of view. On this interface,
the role of the S1 Application Protocol (S1AP) [3] is essential
when introducing the 4G voice call feature. The monitoring
of this interface is important from the Voice over LTE ser-
vice assurance point of view. Passive monitoring is supposed
to be lossless: when the links are tapped, and the probes
receive data in a non-intrusive manner, they cannot ask for
resending anything. What they missed seeing, they have lost
capturing. Based on the monitoring data, engineers can support

Manuscript received May 25, 2016, revised June 24, 2016.
D. Kozma and G. Soós are with Magyar Telekom Plc. H-1117 Budapest,

Szerémi út 4. e-mail: kozma.daniel@telekom.hu, soos.gabor2@telekom.hu
P. Varga is with Budapest University of Technology and Economics,

Department of Telecommunications and Media Informatics H-1117 Budapest,
Magyar Tudósok körútja 2. e-mail: pvarga@tmit.bme.hu

performance management, network optimization, as well as
failure detection, which is one of the most important tasks
for operations and maintenance. This paper discusses the
requirements and the functions of an S1AP monitoring system,
which is under deployment. Furthermore, the paper presents
some practical use-cases on call tracing with deciphering
issues, as well.

II. MONITORING THE LTE EVOLVED PACKET CORE

Before discussing the monitoring requirements, this section
briefly summarizes the main functions of LTE EPC nodes,
and lists the interfaces among them. Parts of LTE network
monitoring are discussed in the scientific community; however
papers that are sharing actual methodologies and results appear
very rarely. The motivations and fundamental challenges of
LTE monitoring are discussed in [8]. The basics of network
monitoring applied to LTE core system monitoring are sum-
marized in [9]. In [10] the authors describe protocol decoders
for LTE, and raise similar issues that our current paper raises
and solves.There are also descriptions availale for complete
performance management solutions for the backhaul [12] and
for end-to-end services [11] – these use the results of LTE
EPC monitoring systems, for which an example is presented
in the current paper. A CDR synthesis-system for the S1-
MME interface is described in [13] – this system shares the
fundamentals with the SGA system described in the following
sections.

Fig. 1. The architectural elements and interfaces of the LTE EPC

