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Abstract—Even though the present form of IPv6 has been 

existing since 1998, the adoption of the new protocol has been 
very slow until recently. To help the adoption of the IPv6 
protocol, several transition technologies were introduced. The 
6to4 protocol is one of them, and it can be used when an IPv6 
enabled host resides in an IPv4 only environment and needs to 
communicate with other hosts in such circumstances or with 
native IPv6 hosts. Five open source 6to4 relay implementations 
were investigated: Debian Linux – sit, Debian Linux – v4tunnel, 
OpenWrt – sit, FreeBSD – stf, NetBSD – stf. The measurement 
method is fully described including our measurement scripts and 
the results of the measurements are disclosed in detail. The 
measurements have shown that there are major differences 
between the different types of implementations.  
 

Index Terms—6to4 relay, IPv6 transition, network 
communication, performance evaluation, stability analysis 
 

I. INTRODUCTION 
OR more than two decades it is a known fact, that the size 
of the IPv4 address space is insufficient [1-2]. The lack of 

the IP addresses withholds the spread of the Internet and 
causes social and economic damage. 

To prevent the IP address exhaustion, a new version of the 
Internet Protocol, IPv6 has been developed. IPv6 was 
standardized in 1998 and published in RFC 2460 [3], but it has 
not been widespread adopted. According to the statistics, less 
than 8% of the total amount of the traffic reached the Google 
servers used IPv6 protocol in December 10, 2015 [4]. Several 
tools and solutions have been developed to slow down the 
process of the address exhaustion. The Dynamic IPv4 
allocation [5], the Classless Inter-Domain Routing (CIDR) [6], 
the Network Address Translation (NAT) [7], the Carrier-grade 
NAT (also called NAT444) [8], different type of proxies or 
Application Level Gateways (ALG), new policies of the IPv4 
address transfers [9] successfully delayed the problems 
generated by the IP address exhaustion, but all of them 
generated other problems [5]. 

Three of the five Regional Internet Registries (RIR) already 
run out of their IPv4 address spaces [10]. The five RIRs have 
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only 5.2 /8 ranges in total, whereas the IANA does not have 
more address space to assign to the five RIRs since 3 February 
2011 [11]. The RIRs work according to strict policies and for 
a service provider, it is a harder task than ever to get IPv4 
address spaces. The speed up of the transition to the new 
protocol is inevitable. Several IPv6 transition techniques have 
been developed, which can help the process in different phases 
of the adoption of the new protocol on the Internet. 

There are different situations to solve during the 
coexistence of the two versions of the IP protocol in the 
different phases of the transition process: 

In theory, the best solution is the Dual Stack (DS) transition 
method [12], but with the requirements that the two 
communicating hosts and the network between them have to 
support a common version of the IP protocol, and because of 
the IPv4 exhaustion, there is not enough IPv4 address to use 
this solution. The communicating hosts need both version of 
the IP addresses and it is almost impossible to provide enough 
public IPv4 addresses for the clients. Thus, even though it 
could have been the best solution, now it is too late for using 
DS as an IPv6 transition method. 

In a situation where an IPv6 only client computer needs to 
communicate with an IPv4 only server, the DNS64 [13] and 
NAT64 [14] combination is a good solution. The performance, 
the stability and the application compatibility of some open 
source implementations of DNS64/NAT64 are examined and 
proved in [15-17]. 

If two IPv6 enabled hosts need to communicate with each 
other over an IPv4 network, they can use different tunneling 
methods. The 6in4 (also called manual tunnel) [18] with 
tunnel brokers [19-20], 6rd [21], Teredo [22] ISATAP [23] 
and 6to4 [24] have different requirements, benefits and 
drawbacks. 

The above list is not exhaustive and a good survey of the 
different transition techniques can be found in [25]. 

In this paper, we deal with the 6to4 IPv6 transition solution. 
The remainder of this paper is organized as follows: first, 
some properties of the 6to4 transition technique are 
introduced, second, a short survey of the results of the most 
current publications is given, third, the selected 6to4 relay 
implementations are introduced, fourth, our test environment 
is described, fifth, the performance measurement method of 
the different implementations is detailed, sixth, the results are 
presented and discussed, seventh, the comparison of our 
results is presented, finally, our conclusions are given. 
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be found in [39]. The two papers give a good overview about 
the progress of the transition process. 

There are several publications about comparison of different 
tunneling based transition methods.  

In [40] the performance of both the ISATAP and the 6to4 
tunneling solution is compared on a Windows XP and 
Windows Server 2003 based test-bed network. The authors 
used UDP streaming and ICMP to measure and compare the 
throughput, the End to End Delay (E2ED), the jitter and the 
Round Trip Time (RTT) performance characteristics. The 
final conclusion found the ISATAP protocol significantly 
more efficient. 

Sans and Gamess carried out a performance comparison of 
the native IPv6 protocol and the following tunneling methods: 
ISATAP, 6to4, 6rd and Teredo on a test network was built on 
Linux computers and different numbers of Cisco routers [41]. 
The authors tested the throughput and the RTT with UDP and 
TCP protocol both on Ethernet and fast Ethernet network. 
They concluded, the best choice is native IPv6 but if native 
IPv6 cannot be used, ISATAP, 6to4, and 6rd are good 
possibilities. Selecting one tunneling technology over the 
other depends on many factors. Teredo was presented as the 
less good solution, whereas, Teredo is the only choice when 
the hosts to be connected are using private IPv4 addresses and 
are helped by a NAT server to reach the Internet. 

Shah and Parvez performed simulations about the 
performance of native IPv6, dual stack, 6in4 and 6to4 [42]. 
The authors used OPNET Modeler (now Riverbed Modeler 
[43]) to investigate the TCP delay, throughput and response 

time of the different methods. Naturally, the native IPv6 
produced the best results, whereas the second one was the 
6to4. 

There is a good comparison of the performance of the 
Windows Server 2008 and 2012 6to4 and 6in4 tunnels in [44]. 
The authors used UDP and TCP and three games to compare 
the throughput, the jitter and the delay of the two tunneling 
methods, but they did not collect data about the resource usage 
on the computers. 

The comparison of the TCP and UDP throughput, RTT, and 
tunneling overhead with native IPv4, native IPv6 and 6to4 
tunneling can be found in [45]. The authors concluded that the 
6to4 tunneling mechanism is a suitable method in the early 
part of the transition period. 

The characteristics of the tunneled IPv6 traffic on the border 
of the Czech national research and education network 
(CESNET) were investigated in [46], whereas the traffic of the 
FUNET operated public 6to4 relay was analyzed in [47]. 

Narayan and Tauch investigated the 6to4 and configured 
tunnel performance characteristics on two different Linux and 
Windows operating system [44-46] in a test network. 

The performance characteristics of Linux sit, FreeBSD stf, 
and NetBSD stf based 6to4 relay implementations were 
investigated in [37]. 

The performance of and stability of Debian Linux sit, 
OpenWRT sit and FreeBSD stf were analyzed in our 
conference paper [51], which is now extended by Debian 
Linux v4tunnel and NetBSD stf. 
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II. THE 6TO4 TRANSITION TECHNIQUE 
The 6to4 transition technique uses automatic tunnels, 

encapsulates the IPv6 packets into IPv4 packets (using 
protocol number 41, as the configured IPv6 over IPv4 tunnel 
[26]) [24]. The main advantage of the automatic tunneling is 
the unnecessity of the manual configuration of the endpoint 
address of the tunnel. Automatic IPv6-over-IPv4 tunneling 
determines the IPv4 tunnel endpoint address from the IPv4 
address embedded in the destination address of the IPv6 
packet being tunneled. 6to4 protocol uses the reserved 
2002::/16 6to4 prefix to determine if a 6to4 tunnel creation is 
necessary [27]. A 6to4 address is an IPv6 address constructed 
using a 6to4 prefix. The first 16 bits of the 6to4 address 
contain the 2002 hexadecimal value, whereas the next 32 bits 
contain the IPv4 address of the 6to4 tunnel endpoint. The next 
16 bits can be used to create subnets, and the final 64 bits of 
the 6to4 address contain the interface ID. 

A 6to4 router is an IPv6 router supporting a 6to4 pseudo-
interface. It is normally the border router between an IPv6 site 
and a wide-area IPv4 network, whereas the 6to4 pseudo-
interface is the point of the encapsulation of IPv6 packets in 
IPv4 packets (with other words: the tunnel end-point) [24]. If a 
6to4 host has to communicate with a non 6to4 host (for 
example: native IPv6, Teredo) it needs to use a 6to4 relay 
router. 

Several operating systems can work as a 6to4 router or 6to4 
relay router, but for the correct operation, the 6to4 routers and 
relay routers need public IPv4 addresses. 

A 6to4 relay router can be private or public. Public 6to4 
relays use the 192.88.99.1 anycast address [28] from the 
192.88.99.0/24 6to4 Relay anycast address range [29]. An 
estimation of the 6to4 relay routers published in 2006 [30]. 
According to the publication, 8 autonomous systems (AS-es) 
advertised the 192.88.99.0/24, whereas 6 AS-es advertised the 
2002::/16 networks. At the end of the year 2014 these values 
were 14 and 11, according to the RIPEstat database [31]. 

It is a good practice, if an Internet Service Provider (ISP) 
provides a 6to4 relay for its customers in addition to other 
transition solutions. In this case the relay does not have to be 
public, and it can use the well-known anycast address, or a 
network specific address. 

Though some security weaknesses are known of the 6to4 
transition technique [32], its advantage is that it helps the 
implementation of the IPv6 protocol without the cooperation 
of the ISP. This is the reason why we insist that 6to4 is still 
indispensable in several countries including Hungary. 
Although 6rd [33] eliminated some of the weaknesses of 6to4, 
the price of the improvements was that 6rd can only be 
implemented by the ISPs, and it cannot be used without the 
cooperation of the ISP of the user at all. We note that the 
second author of the RFC defining 6rd [33] recommended to 
move 6to4 to historic status in 2011 [34] and his efforts were 
only partially successful after several years because not 6to4 
itself, but only the anycast prefix for 6to4 relay routers was 
deprecated in 2015 [35]. Whereas this seems to be a good 
decision considering the rapid deployment of IPv6 in certain 
countries (e.g. USA, China), we contend that it was done way 

too early considering the slow deployment of IPv6 in some 
other countries including Hungary, too. Despite the depletion 
of the public IPv4 address pool, the most ISPs in Hungary are 
rather reluctant to step forward towards IPv6. (What is even 
worse, it became a common practice that ISPs take away the 
public IPv4 address from their customers, and give private 
ones instead. The average user is OK with using CGN, and 
those who do not like it, will get back a public IPv4 address.) 
Thus an average countryside home user (one residing not in 
Budapest) is not able to get IPv6 Internet access. How can this 
user get access to the IPv6 Internet? We see the following 
possibilities: 

 Use an explicit tunnel with a tunnel broker, 
however it requires registration and configuration. 

 Use 6to4, which is a kind of automatic tunnel and 
is supported by several operating systems and 
SOHO routers and thus the user can access IPv6 
only sites without any effort. 

 Use Teredo as last resort. (But it is intended to be 
used as a last resort only.) 

We agree that 6to4 is not a good solution, but as there is no 
real replacement, we consider it is still to be kept as working 
in those areas where the IPv6 deployment is still in its infancy 
and there is no other way for the clients to reach IPv6 internet 
without tunnel registration and explicit configuration. 
Therefore the performance analysis of 6to4 relays is still 
interesting for those network administrators who are willing to 
help these clients. We note that dimensioning a 6to4 relay is 
not an easy task because it is hard to predict where the return 
traffic will cross the border of the IPv6 Internet and IPv4 
Internet. This is why it is crucial to have information about the 
performance and stability of different free software 6to4 relay 
implementations. 

We also admit that many users of 6to4 may experience 
operational problems. Section 3 of RFC 6343 [36] mentions 
measurements reporting high TCP connection failure rate. 
There are 9 possible reasons were identified. We mention only 
two of them: e.g. firewalls may filter out protocol number 41, 
or some ISP may advertise 192.88.99.0/24 but not forward 
6to4 traffic for “alien” networks, etc. Section 4 provides 
appropriate guidelines for vendors, network operators, and 
ISPs to eliminate the particular issues. Thus 6to4 may be used 
if all parties take enough care. Unfortunately, the communica-
tion of two computers may fail due to the malpractice of a 
third party because of asymmetric routing. 

More details of the operation of the 6to4 technique can be 
found in the publication [37], and in the related RFCs ([24], 
[29] and [32]). 

III. A SHORT SURVEY OF CURRENT RESEARCH RESULTS 
There are a lot of publications about IPv6 and several of 

them related to the transition to the IPv6 protocol. 
There is a very good survey about the state of IPv6 adoption 

with measurement methods in [38]. The authors of the article 
used excellent methods for the survey, but the data in it is a 
little outdated today. A newer, and also very good survey can 
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be found in [39]. The two papers give a good overview about 
the progress of the transition process. 

There are several publications about comparison of different 
tunneling based transition methods.  

In [40] the performance of both the ISATAP and the 6to4 
tunneling solution is compared on a Windows XP and 
Windows Server 2003 based test-bed network. The authors 
used UDP streaming and ICMP to measure and compare the 
throughput, the End to End Delay (E2ED), the jitter and the 
Round Trip Time (RTT) performance characteristics. The 
final conclusion found the ISATAP protocol significantly 
more efficient. 

Sans and Gamess carried out a performance comparison of 
the native IPv6 protocol and the following tunneling methods: 
ISATAP, 6to4, 6rd and Teredo on a test network was built on 
Linux computers and different numbers of Cisco routers [41]. 
The authors tested the throughput and the RTT with UDP and 
TCP protocol both on Ethernet and fast Ethernet network. 
They concluded, the best choice is native IPv6 but if native 
IPv6 cannot be used, ISATAP, 6to4, and 6rd are good 
possibilities. Selecting one tunneling technology over the 
other depends on many factors. Teredo was presented as the 
less good solution, whereas, Teredo is the only choice when 
the hosts to be connected are using private IPv4 addresses and 
are helped by a NAT server to reach the Internet. 

Shah and Parvez performed simulations about the 
performance of native IPv6, dual stack, 6in4 and 6to4 [42]. 
The authors used OPNET Modeler (now Riverbed Modeler 
[43]) to investigate the TCP delay, throughput and response 

time of the different methods. Naturally, the native IPv6 
produced the best results, whereas the second one was the 
6to4. 

There is a good comparison of the performance of the 
Windows Server 2008 and 2012 6to4 and 6in4 tunnels in [44]. 
The authors used UDP and TCP and three games to compare 
the throughput, the jitter and the delay of the two tunneling 
methods, but they did not collect data about the resource usage 
on the computers. 

The comparison of the TCP and UDP throughput, RTT, and 
tunneling overhead with native IPv4, native IPv6 and 6to4 
tunneling can be found in [45]. The authors concluded that the 
6to4 tunneling mechanism is a suitable method in the early 
part of the transition period. 

The characteristics of the tunneled IPv6 traffic on the border 
of the Czech national research and education network 
(CESNET) were investigated in [46], whereas the traffic of the 
FUNET operated public 6to4 relay was analyzed in [47]. 

Narayan and Tauch investigated the 6to4 and configured 
tunnel performance characteristics on two different Linux and 
Windows operating system [44-46] in a test network. 

The performance characteristics of Linux sit, FreeBSD stf, 
and NetBSD stf based 6to4 relay implementations were 
investigated in [37]. 

The performance of and stability of Debian Linux sit, 
OpenWRT sit and FreeBSD stf were analyzed in our 
conference paper [51], which is now extended by Debian 
Linux v4tunnel and NetBSD stf. 
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tunneling solution is compared on a Windows XP and 
Windows Server 2003 based test-bed network. The authors 
used UDP streaming and ICMP to measure and compare the 
throughput, the End to End Delay (E2ED), the jitter and the 
Round Trip Time (RTT) performance characteristics. The 
final conclusion found the ISATAP protocol significantly 
more efficient. 

Sans and Gamess carried out a performance comparison of 
the native IPv6 protocol and the following tunneling methods: 
ISATAP, 6to4, 6rd and Teredo on a test network was built on 
Linux computers and different numbers of Cisco routers [41]. 
The authors tested the throughput and the RTT with UDP and 
TCP protocol both on Ethernet and fast Ethernet network. 
They concluded, the best choice is native IPv6 but if native 
IPv6 cannot be used, ISATAP, 6to4, and 6rd are good 
possibilities. Selecting one tunneling technology over the 
other depends on many factors. Teredo was presented as the 
less good solution, whereas, Teredo is the only choice when 
the hosts to be connected are using private IPv4 addresses and 
are helped by a NAT server to reach the Internet. 

Shah and Parvez performed simulations about the 
performance of native IPv6, dual stack, 6in4 and 6to4 [42]. 
The authors used OPNET Modeler (now Riverbed Modeler 
[43]) to investigate the TCP delay, throughput and response 

time of the different methods. Naturally, the native IPv6 
produced the best results, whereas the second one was the 
6to4. 

There is a good comparison of the performance of the 
Windows Server 2008 and 2012 6to4 and 6in4 tunnels in [44]. 
The authors used UDP and TCP and three games to compare 
the throughput, the jitter and the delay of the two tunneling 
methods, but they did not collect data about the resource usage 
on the computers. 

The comparison of the TCP and UDP throughput, RTT, and 
tunneling overhead with native IPv4, native IPv6 and 6to4 
tunneling can be found in [45]. The authors concluded that the 
6to4 tunneling mechanism is a suitable method in the early 
part of the transition period. 

The characteristics of the tunneled IPv6 traffic on the border 
of the Czech national research and education network 
(CESNET) were investigated in [46], whereas the traffic of the 
FUNET operated public 6to4 relay was analyzed in [47]. 

Narayan and Tauch investigated the 6to4 and configured 
tunnel performance characteristics on two different Linux and 
Windows operating system [44-46] in a test network. 

The performance characteristics of Linux sit, FreeBSD stf, 
and NetBSD stf based 6to4 relay implementations were 
investigated in [37]. 

The performance of and stability of Debian Linux sit, 
OpenWRT sit and FreeBSD stf were analyzed in our 
conference paper [51], which is now extended by Debian 
Linux v4tunnel and NetBSD stf. 
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used UDP streaming and ICMP to measure and compare the 
throughput, the End to End Delay (E2ED), the jitter and the 
Round Trip Time (RTT) performance characteristics. The 
final conclusion found the ISATAP protocol significantly 
more efficient. 

Sans and Gamess carried out a performance comparison of 
the native IPv6 protocol and the following tunneling methods: 
ISATAP, 6to4, 6rd and Teredo on a test network was built on 
Linux computers and different numbers of Cisco routers [41]. 
The authors tested the throughput and the RTT with UDP and 
TCP protocol both on Ethernet and fast Ethernet network. 
They concluded, the best choice is native IPv6 but if native 
IPv6 cannot be used, ISATAP, 6to4, and 6rd are good 
possibilities. Selecting one tunneling technology over the 
other depends on many factors. Teredo was presented as the 
less good solution, whereas, Teredo is the only choice when 
the hosts to be connected are using private IPv4 addresses and 
are helped by a NAT server to reach the Internet. 

Shah and Parvez performed simulations about the 
performance of native IPv6, dual stack, 6in4 and 6to4 [42]. 
The authors used OPNET Modeler (now Riverbed Modeler 
[43]) to investigate the TCP delay, throughput and response 

time of the different methods. Naturally, the native IPv6 
produced the best results, whereas the second one was the 
6to4. 

There is a good comparison of the performance of the 
Windows Server 2008 and 2012 6to4 and 6in4 tunnels in [44]. 
The authors used UDP and TCP and three games to compare 
the throughput, the jitter and the delay of the two tunneling 
methods, but they did not collect data about the resource usage 
on the computers. 

The comparison of the TCP and UDP throughput, RTT, and 
tunneling overhead with native IPv4, native IPv6 and 6to4 
tunneling can be found in [45]. The authors concluded that the 
6to4 tunneling mechanism is a suitable method in the early 
part of the transition period. 

The characteristics of the tunneled IPv6 traffic on the border 
of the Czech national research and education network 
(CESNET) were investigated in [46], whereas the traffic of the 
FUNET operated public 6to4 relay was analyzed in [47]. 

Narayan and Tauch investigated the 6to4 and configured 
tunnel performance characteristics on two different Linux and 
Windows operating system [44-46] in a test network. 

The performance characteristics of Linux sit, FreeBSD stf, 
and NetBSD stf based 6to4 relay implementations were 
investigated in [37]. 

The performance of and stability of Debian Linux sit, 
OpenWRT sit and FreeBSD stf were analyzed in our 
conference paper [51], which is now extended by Debian 
Linux v4tunnel and NetBSD stf. 
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IV. TESTED IMPLEMENTATIONS 
The following widely used open source [52] (also called 

free software [53]) operating systems and their 6to4 
implementations were chosen for the tests: Debian Linux sit 
and v4tunnel [54], OpenBSD gif interface [55], FreeBSD stf 
interface [56], NetBSD stf interface [57], OpenWRT 6to4 plus 
kmod-sit packages [58]. The open source software can be 
freely used by anyone, and their licenses allow the 
performance benchmarks. These two arguments were the most 
important ones in our selection of the implementations for 
testing. 

The following software versions were used: 
 Debian 7.1.0_x86 – sit 
 Debian 7.1.0_x86 – v4tunnel 
 OpenWRT (Attitude Adjustment) 12.09_x86 – sit 
 FreeBSD 9.1_x86 – stf 
 NetBSD 6.1.2_x86 – stf 

It was found during the preliminary tests that the OpenBSD 
system does not support the 6to4 transition mechanism. 

V. TEST ENVIRONMENT 

A. Topology of the network 
An isolated test network was built for the performance and 

the stability measurements. The topology of the network can 
be seen in Fig. 1. Due to the isolation, any IPv4 and IPv6 
addresses could be used on the network. The computer on the 
top of the figure played the role of the “internet” and 
responded all of the queries, and the queries were generated by 
the 10 client computers which can be seen on the bottom of 
the figure. These computers played the role of the large 
number of the clients. The clients sent their queries by 6to4 
through the 6to4 relay router to the “internet” computer. These 
queries were generated different levels of load on the 6to4 
relay computer during the measurement process. The load was 
tuned by the number of the active clients. The laptop and the 
connecting switch on the right side of the figure were used to 
control the experiments. 

B. Hardware configurations 
1000Base-TX connections were used on all of the network 

segments. 
A specially low performance computer was built for the 

6to4 relay computer so that the client computers could 
produce high enough load for overloading it. The main goal of 
the measurements was the comparison of the different 
implementations and not any hardware related investigation. 

The configuration of the 6to4 relay computer was: 
 Intel D815EE2U motherboard 
 800MHz Intel Pentium III (Coppermine) processor 
 128MB, 100MHz SDRAM 
 Two TP-LINK TG-3269 REV 3.0 Gigabit PCI 

Ethernet NICs 
All of the ten clients and the responder computer were Dell 

Precision 490 workstations with same configuration: 
 DELL 0GU083 motherboard with Intel 5000X 

chip-set 

 Two Intel Xeon 5140 2.33GHz dual core 
processors (in the responder: Intel Xeon 5160 
3GHz) 

 4x1GB 533MHz DDR2 SDRAM (accessed quad 
channel) 

 Broadcom NetXtreme BCM5752 Gigabit Ethernet 
controller (PCI Express) 

C. Software configurations 
Debian Linux 6.0.7 with 2.6.32-5-amd64 kernel and 

OpenBSD 5.3 64 bit version were installed on the clients, and 
the responder, respectively. 

On the responder, NAT66 was used to simulate server 
computers with different IPv6 addresses. The following 
commands were used in the /etc/pf.conf file on the responder: 

set timeout interval 2 
set limit states 400000 
pass in on bge0 inet6 from any to \ 
    2001:738:2c01:8000::/64 rdr-to babe:b00b::2 
All of the client computers used sit or stf interfaces with the 

following setting in the /etc/network/interfaces file: 
auto sit0 
iface sit0 inet6 static 
address 2002:c1e1:9742::1- …974b::1 
netmask 64 

gateway ::193.225.151.78 

VI. MEASUREMENT METHOD 
The load was generated by ping6 commands with the 

following Bash shell script: 
#!/bin/bash 
i=`cat /etc/hostname | grep -o '[0-9]'` 
for b in {0..255} 
do 
  rm -rf $b 
  mkdir $b 
  for c in {0..252..4} 
  do 
    ping6 2001:738:2c01:8000::193.$i.$b.$c \ 

-c8 -i0 >> $b/6to4-193-$i-$b-$c & 
    ping6 2001:738:2c01:8000::193.$i.$b.$c \ 

-c8 -i0 >> $b/6to4-193-$i-$b-$c & 
    ping6 2001:738:2c01:8000::193.$i.$b.$((c+1)) \ 

-c8 -i0 >> $b/6to4-193-$i-$b-$((c+1)) & 
ping6 2001:738:2c01:8000::193.$i.$b.$((c+1)) \ 
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+1)) & 

    ping6 2001:738:2c01:8000::193.$i.$b.$((c+2)) \ 
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+2)) & 

    ping6 2001:738:2c01:8000::193.$i.$b.$((c+2)) \ 
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+2)) & 

    ping6 2001:738:2c01:8000::193.$i.$b.$((c+3)) \ 
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+3)) & 

    ping6 2001:738:2c01:8000::193.$i.$b.$((c+3)) \ 
-c8 -i0 >> $b/6to4-193-$i-$b-$((c+3)) 

  done 
done 
During the preliminary measurements, the script was tuned 

to generate about 100% load on the CPU of the 6to4 relay 
computer with 10 clients. 

The variable i contains the serial number of the actual 
client. The script contains two nested for cycles. The outer 
cycle with variable b from 0 to 255 runs 256 times, while the 
inner cycle with variable c from 0 to 252 (with stepping 
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interval 4) runs 64 times. The core of the script contains 4 
pairs of concurrent ping6 commands. Each pair of them send 
out 8 ICMPv6 echo requests with almost zero interval, in 
parallel, whereas the first 7 of them are started asynchronously 
with the & parameter. The last ping6 command at the end of 
the cycle is started normally thus the cycle waits for the 
execution of it. In a measurement, one client sends out 
256*64*8*8= 1048576 ICMP echo requests in total to 
256*64*4= 65536 different IP addresses. 
In the series of measurements, the number of the clients was 
increased from one to ten. On the 6to4 relay computer, the 
vmstat command was used to log the CPU and memory 
consumption. For proper operation of the vmstat, -10 nice 
value was used. 
We note that having no timeout specified, the ping command 
waited two RTTs and then it considered the missing replies as 
lost. As the RTTs were small, our packet loss rate can be 
considered as an upper bound of rate of the ultimately lost 
packets. 

VII. MEASUREMENT RESULTS 
The results are presented in similar tables for all the tested 

6to4 implementations. A detailed explanation is given for the 
first table only – the others are to be interpreted in the same 
way. 

A. Debian 7.1.0_x86 – sit 
The results have been listed in Table I. The first row shows 

the number of clients that executed the test script at the same 
time. The potential load on the 6to4 relay was proportional 
with the number of the clients, but the actual number of the 
packets was less than that, because the measurement script 
does not start a new iteration until the 8th ping6 command is 
finished. The second row contains the packet loss ratio. Rows 
3, 4 and 5 show the average, the standard deviation and the 
maximum value of the response time, respectively. The 
average and the standard deviation of the CPU utilization of 
the 6to4 relay computer are shown in the Rows 6 and 7. Row 

8 contains the memory consumption of the 6to4 process on the 
relay computer. (This parameter can be measured with high 
uncertainty, because its value is very low and other processes 
than the 6to4 relay implementation may also influence the size 
of the used memory of the computer.) The last row shows the 
number of forwarded packets per seconds.  

The graphical representation of the forwarded packets per 
second and the CPU utilization are shown in Fig. 2. 

Evaluation of the results: 
Despite the fact that packet loss occurred in all cases, the 

proportion of it was always very low and it increased with 
more clients. (The maximum value of it was 0.061% with ten 
clients, which means about 6 packets from 10.000 packets 
were lost.) 

The average, the standard deviation and the maximum value 
of the response times were increasing with higher load on the 
6to4 relay computer, but the average value did not exceed 1.63 
milliseconds with ten clients. 

The CPU utilization were increasing continuously, but not 
linearly. 

The deviation of the CPU utilization were higher with 4, 5, 
6 and 7 clients than with other number of clients, which 

TABLE I 
DEBIAN LINUX – SIT 6TO4 RELAY PERFORMANCE RESULTS 

Number of clients 1 2 3 4 5 6 7 8 9 10 
Packet loss (%) 0.002 0.006 0.008 0.013 0.020 0.035 0.035 0.037 0.048 0.061 

Response time 
(ms) 

Average 0.287 0.353 0.445 0.566 0.710 0.868 1.043 1.209 1.411 1.626 
Std. dev. 0.174 0.248 0.353 0.423 0.509 0.588 0.685 0.722 0.832 0.864 

Maximum 27.900 28.400 28.500 28.900 29.400 30.700 31.100 34.100 32.800 39.600 
CPU Utilization 

(%) 
Average 1.756 4.821 12.933 31.243 52.964 69.049 81.319 88.941 93.206 96.132 
Std. dev. 1.944 2.811 5.619 12.215 16.379 16.493 12.690 9.817 5.289 7.388 

Memory consumption (kB) 10.855 10.418 10.363 10.594 10.824 10.996 10.855 10.994 10.828 11.137 
Traffic volume (packets/sec) 18051 33953 46856 56534 62853 66947 69663 72304 73129 73050 

TABLE II 
DEBIAN LINUX – V4TUNNEL 6TO4 RELAY PERFORMANCE RESULTS 

Number of clients 1 2 3 4 5 6 7 8 9 10 
Packet loss (%) 0.003 0.006 0.008 0.011 0.018 0.033 0.036 0.039 0.047 0.060 

Response time 
(ms) 

Average 0.287 0.351 0.444 0.579 0.709 0.865 1.007 1.198 1.389 1.632 
Std. dev. 0.174 0.251 0.334 0.428 0.508 0.588 0.690 0.776 0.842 0.887 

Maximum 27.800 27.700 28.700 29.920 24.000 30.100 31.300 35.100 33.900 32.800 
CPU Utilization 

(%) 
Average 1.915 4.886 14.202 30.927 51.121 69.555 80.392 89.042 93.441 96.444 
Std. dev. 1.727 3.037 6.871 12.412 16.664 14.790 13.807 10.084 7.934 5.461 

Memory consumption (kB) 10.664 10.559 10.910 10.555 10.855 10.728 10.730 10.602 11.102 11.438 
Traffic volume (packets/sec) 18083 34062 47079 55828 62788 67181 71315 72759 74025 72792 
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interval 4) runs 64 times. The core of the script contains 4 
pairs of concurrent ping6 commands. Each pair of them send 
out 8 ICMPv6 echo requests with almost zero interval, in 
parallel, whereas the first 7 of them are started asynchronously 
with the & parameter. The last ping6 command at the end of 
the cycle is started normally thus the cycle waits for the 
execution of it. In a measurement, one client sends out 
256*64*8*8= 1048576 ICMP echo requests in total to 
256*64*4= 65536 different IP addresses. 
In the series of measurements, the number of the clients was 
increased from one to ten. On the 6to4 relay computer, the 
vmstat command was used to log the CPU and memory 
consumption. For proper operation of the vmstat, -10 nice 
value was used. 
We note that having no timeout specified, the ping command 
waited two RTTs and then it considered the missing replies as 
lost. As the RTTs were small, our packet loss rate can be 
considered as an upper bound of rate of the ultimately lost 
packets. 

VII. MEASUREMENT RESULTS 
The results are presented in similar tables for all the tested 

6to4 implementations. A detailed explanation is given for the 
first table only – the others are to be interpreted in the same 
way. 

A. Debian 7.1.0_x86 – sit 
The results have been listed in Table I. The first row shows 

the number of clients that executed the test script at the same 
time. The potential load on the 6to4 relay was proportional 
with the number of the clients, but the actual number of the 
packets was less than that, because the measurement script 
does not start a new iteration until the 8th ping6 command is 
finished. The second row contains the packet loss ratio. Rows 
3, 4 and 5 show the average, the standard deviation and the 
maximum value of the response time, respectively. The 
average and the standard deviation of the CPU utilization of 
the 6to4 relay computer are shown in the Rows 6 and 7. Row 

8 contains the memory consumption of the 6to4 process on the 
relay computer. (This parameter can be measured with high 
uncertainty, because its value is very low and other processes 
than the 6to4 relay implementation may also influence the size 
of the used memory of the computer.) The last row shows the 
number of forwarded packets per seconds.  

The graphical representation of the forwarded packets per 
second and the CPU utilization are shown in Fig. 2. 

Evaluation of the results: 
Despite the fact that packet loss occurred in all cases, the 

proportion of it was always very low and it increased with 
more clients. (The maximum value of it was 0.061% with ten 
clients, which means about 6 packets from 10.000 packets 
were lost.) 

The average, the standard deviation and the maximum value 
of the response times were increasing with higher load on the 
6to4 relay computer, but the average value did not exceed 1.63 
milliseconds with ten clients. 

The CPU utilization were increasing continuously, but not 
linearly. 

The deviation of the CPU utilization were higher with 4, 5, 
6 and 7 clients than with other number of clients, which 

TABLE I 
DEBIAN LINUX – SIT 6TO4 RELAY PERFORMANCE RESULTS 

Number of clients 1 2 3 4 5 6 7 8 9 10 
Packet loss (%) 0.002 0.006 0.008 0.013 0.020 0.035 0.035 0.037 0.048 0.061 

Response time 
(ms) 

Average 0.287 0.353 0.445 0.566 0.710 0.868 1.043 1.209 1.411 1.626 
Std. dev. 0.174 0.248 0.353 0.423 0.509 0.588 0.685 0.722 0.832 0.864 

Maximum 27.900 28.400 28.500 28.900 29.400 30.700 31.100 34.100 32.800 39.600 
CPU Utilization 

(%) 
Average 1.756 4.821 12.933 31.243 52.964 69.049 81.319 88.941 93.206 96.132 
Std. dev. 1.944 2.811 5.619 12.215 16.379 16.493 12.690 9.817 5.289 7.388 

Memory consumption (kB) 10.855 10.418 10.363 10.594 10.824 10.996 10.855 10.994 10.828 11.137 
Traffic volume (packets/sec) 18051 33953 46856 56534 62853 66947 69663 72304 73129 73050 

TABLE II 
DEBIAN LINUX – V4TUNNEL 6TO4 RELAY PERFORMANCE RESULTS 

Number of clients 1 2 3 4 5 6 7 8 9 10 
Packet loss (%) 0.003 0.006 0.008 0.011 0.018 0.033 0.036 0.039 0.047 0.060 

Response time 
(ms) 

Average 0.287 0.351 0.444 0.579 0.709 0.865 1.007 1.198 1.389 1.632 
Std. dev. 0.174 0.251 0.334 0.428 0.508 0.588 0.690 0.776 0.842 0.887 

Maximum 27.800 27.700 28.700 29.920 24.000 30.100 31.300 35.100 33.900 32.800 
CPU Utilization 

(%) 
Average 1.915 4.886 14.202 30.927 51.121 69.555 80.392 89.042 93.441 96.444 
Std. dev. 1.727 3.037 6.871 12.412 16.664 14.790 13.807 10.084 7.934 5.461 

Memory consumption (kB) 10.664 10.559 10.910 10.555 10.855 10.728 10.730 10.602 11.102 11.438 
Traffic volume (packets/sec) 18083 34062 47079 55828 62788 67181 71315 72759 74025 72792 
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indicates some fluctuation in the utilization. 
The memory consumption was almost constant and very 

low, and the maximum value of it was 11.14kB with ten 
clients. 
The traffic volume increased until the system reached its limit 
with 9 clients. With 10 clients, the number of transferred 
packets were slightly decreased from 73129 to 73050. 

B. Debian 7.1.0_x86 – v4tunnel 
The results have been listed in Table II, whereas the 

graphical representation of the forwarded packets per second 
and the CPU utilization are shown in Fig. 3. 

Evaluation of the results: 
The packet loss ratio was always very low and it strictly 

increased with the number of clients. 
The average and the standard deviation value of the 

response times were increasing with higher load on the 6to4 
relay computer, and the average value reached its maximum 
value with ten clients (1.632 ms). 

The CPU utilization were increasing continuously, but not 
linearly. 

The standard deviation of the CPU utilization were higher 
with 4, 5, 6 and 7 clients than with other number of clients, 
which indicates some fluctuation in the utilization. 

The memory consumption was almost constant and very 
low, and the maximum value of it was 11.44kB with ten 
clients. 

The traffic volume increased until the system reached its 
limit with 9 clients. With 10 clients, the number of transferred 
packets were decreased from 74025 to 72792. 

C. OpenWRT (Attitude Adjustment) 12.09_x86 – sit 
The results have been listed in Table III., whereas the 

graphical representation of the forwarded packets per second 
and the CPU utilization are shown in Fig. 4. 

Evaluation of the results: 
The packet loss ratio was always very low and it strictly 

increased with the number of clients. The maximum value of it 

was 0.089% with ten clients. 
The average and the standard deviation value of the 

response times were increasing with higher load on the 6to4 
relay computer, but the average value did not exceed 2.16 
milliseconds with ten clients. 

The CPU utilization with two clients was 4.5 times greater 

TABLE III 
OPENWRT (ATTITUDE ADJUSTMENT) 12.09_X86 – SIT 6TO4 RELAY PERFORMANCE RESULTS 

Number of clients 1 2 3 4 5 6 7 8 9 10 
Packet loss (%) 0.004 0.006 0.007 0.013 0.018 0.026 0.036 0.064 0.079 0.089 

Response time 
(ms) 

Average 0.314 0.402 0.568 0.733 0.909 1.118 1.358 1.616 1.873 2.160 
Std. dev. 0.161 0.239 0.330 0.420 0.508 0.583 0.652 0.705 0.773 0.829 

Maximum 25.000 25.300 25.500 25.500 26.500 27.100 27.000 27.100 27.300 28.100 
CPU Utilization 

(%) 
Average 10.067 45.015 70.713 87.188 94.979 97.540 98.467 98.916 99.066 99.288 
Std. dev. 3.188 5.593 5.828 9.376 7.954 7.462 4.991 4.567 4.824 4.410 

Memory consumption (kB) 10.316 10.414 10.359 10.727 10.469 10.324 10.746 10.492 10.066 10.469 
Traffic volume (packets/sec) 17595 32488 41906 49270 54196 56920 58272 58928 59332 58763 

TABLE IV 
FREEBSD 9.1_X86 – STF 6TO4 RELAY PERFORMANCE RESULTS 

Number of clients 1 2 3 4 5 6 7 8 9 10 
Packet loss (%) 0.013 0.008 0.010 0.012 0.013 0.015 0.017 0.018 0.019 0.019 

Response time 
(ms) 

Average 0.315 0.456 0.681 0.941 1.268 1.637 2.011 2.385 2.740 3.126 
Std. dev. 0.111 0.171 0.314 0.404 0.450 0.457 0.463 0.466 0.480 0.490 

Maximum 22.200 9.220 12.800 15.400 17.600 18.100 18.800 18.500 19.600 19.400 
CPU Utilization 

(%) 
Average 51.525 77.110 88.994 96.380 98.482 99.435 99.395 99.371 99.462 99.859 
Std. dev. 6.899 5.140 6.465 7.398 7.593 3.447 5.336 6.445 5.971 0.475 

Memory consumption (kB) 0.008 0.012 0.012 0.273 0.395 0.398 0.445 0.406 0.500 0.492 
Traffic volume (packets/sec) 17594 30656 37613 41982 43681 43892 43875 43819 43970 43737 

 

 
Fig. 3.  Linux v4tunnel forwarded packets and CPU utilization. 
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Fig. 4.  OpenWrt sit forwarded packets and CPU utilization. 
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than the value with one client. Then the slope was reduced, 
until the CPU approached its maximum capacity with 6 
clients. 

The standard deviation of the CPU utilization were under 
10% in each case, which indicates consistent utilization of the 
CPU. 

The memory consumption was almost constant and very 
low. 

The traffic volume increased until the system reached its 
limit with 9 clients. With 10 clients, the number of transferred 
packets were decreased by 0.97% from 59332 to 58763. 

D. FreeBSD 9.1_x86 – stf 
The results have been listed in Table IV., whereas the 

graphical representation of the forwarded packets per seconds 
and the CPU utilization are shown in Fig. 5. 

Evaluation of the results: 
The packet loss ratio was always very low and starting from 

two clients it increased with the number of clients, whereas the 
value of it was the same with one and five clients. The 
maximum value of it was 0.019% with ten clients. 

The average and the standard deviation value of the 
response times were increasing with higher load on the 6to4 
relay computer, but the average value did not exceed 3.13 
milliseconds with ten clients. The maximum value of the 
response times showed some fluctuation 

One client could generate 51.53% load on the CPU. The 
CPU utilization was increasing continuously, but not linearly, 
until the CPU reached its almost maximum capacity (99.44%) 
with 6 clients. 

The standard deviation of the CPU utilization was under 
10% in each case, whereas it was very small (0.46%) with ten 
clients. This phenomenon indicates consistent utilization of 
the CPU. 

The memory consumption was extremely low and it was 
growing almost continuously. 

The traffic volume increased until the system reached its 
limit with 6 clients. From this point the throughput of the 
system started very slightly fluctuating. The maximum value 
of the number of transferred packets per second was 43970 
with 9 clients. 

The relay did not show significant decrease in its 
throughput even in serious overload situations thus it complied 
with the graceful degradation principles [59].  

E. NetBSD 6.1.2_x86 – stf 
The results have been listed in Table V., whereas the 

graphical representation of the forwarded packets per seconds 

and the CPU utilization are shown in Fig. 6. 
Evaluation of the results: 
The proportion of the packet loss ratio strictly increased 

until 5 clients, where it started to decrease monotonically. This 
phenomenon is strange, but the packet loss ratio was always 
very low. 

The average, the standard deviation and the maximum value 
of the response times were increasing with some fluctuation, 
but the average value did not exceed 2.52 milliseconds with 
ten clients. 

One client could generate 38.96% load on the CPU. The 
CPU utilization was increasing continuously, but only by 
smaller and smaller value. 

The standard deviation of the CPU utilization was under 
10% in each case, which indicates consistent utilization of the 
CPU. 

TABLE V 
NETBSD 6.1.2_X86 – STF 6TO4 RELAY PERFORMANCE RESULTS 

Number of clients 1 2 3 4 5 6 7 8 9 10 
Packet loss (%) 0.011 0.016 0.028 0.047 0.056 0.051 0.044 0.038 0.031 0.031 

Response time 
(ms) 

Average 0.301 0.418 0.603 0.823 1.061 1.326 1.620 1.908 2.210 2.519 
Std. dev. 0.186 0.236 0.319 0.403 0.499 0.571 0.631 0.681 0.707 0.712 

Maximum 5.760 11.500 13.600 16.900 18.900 21.400 21.100 21.700 22.200 24.300 
CPU Utilization 

(%) 
Average 38.957 65.382 80.290 89.055 94.130 96.671 98.259 98.435 99.020 99.306 
Std. dev. 4.519 6.229 9.771 3.769 5.878 6.664 3.759 5.751 6.243 4.642 

Memory consumption (kB) 0.016 0.027 0.055 0.148 0.191 0.203 0.695 0.336 0.480 0.180 
Traffic volume (packets/sec) 17797 31937 40639 45745 48913 50686 51345 51750 52062 52202 

 

 
Fig. 5.  FreeBSD stf forwarded packets and CPU utilization. 
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Fig. 6.  NetBSD stf forwarded packets and CPU utilization. 
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than the value with one client. Then the slope was reduced, 
until the CPU approached its maximum capacity with 6 
clients. 

The standard deviation of the CPU utilization were under 
10% in each case, which indicates consistent utilization of the 
CPU. 

The memory consumption was almost constant and very 
low. 

The traffic volume increased until the system reached its 
limit with 9 clients. With 10 clients, the number of transferred 
packets were decreased by 0.97% from 59332 to 58763. 

D. FreeBSD 9.1_x86 – stf 
The results have been listed in Table IV., whereas the 

graphical representation of the forwarded packets per seconds 
and the CPU utilization are shown in Fig. 5. 

Evaluation of the results: 
The packet loss ratio was always very low and starting from 

two clients it increased with the number of clients, whereas the 
value of it was the same with one and five clients. The 
maximum value of it was 0.019% with ten clients. 

The average and the standard deviation value of the 
response times were increasing with higher load on the 6to4 
relay computer, but the average value did not exceed 3.13 
milliseconds with ten clients. The maximum value of the 
response times showed some fluctuation 

One client could generate 51.53% load on the CPU. The 
CPU utilization was increasing continuously, but not linearly, 
until the CPU reached its almost maximum capacity (99.44%) 
with 6 clients. 

The standard deviation of the CPU utilization was under 
10% in each case, whereas it was very small (0.46%) with ten 
clients. This phenomenon indicates consistent utilization of 
the CPU. 

The memory consumption was extremely low and it was 
growing almost continuously. 

The traffic volume increased until the system reached its 
limit with 6 clients. From this point the throughput of the 
system started very slightly fluctuating. The maximum value 
of the number of transferred packets per second was 43970 
with 9 clients. 

The relay did not show significant decrease in its 
throughput even in serious overload situations thus it complied 
with the graceful degradation principles [59].  

E. NetBSD 6.1.2_x86 – stf 
The results have been listed in Table V., whereas the 

graphical representation of the forwarded packets per seconds 

and the CPU utilization are shown in Fig. 6. 
Evaluation of the results: 
The proportion of the packet loss ratio strictly increased 

until 5 clients, where it started to decrease monotonically. This 
phenomenon is strange, but the packet loss ratio was always 
very low. 

The average, the standard deviation and the maximum value 
of the response times were increasing with some fluctuation, 
but the average value did not exceed 2.52 milliseconds with 
ten clients. 

One client could generate 38.96% load on the CPU. The 
CPU utilization was increasing continuously, but only by 
smaller and smaller value. 

The standard deviation of the CPU utilization was under 
10% in each case, which indicates consistent utilization of the 
CPU. 

TABLE V 
NETBSD 6.1.2_X86 – STF 6TO4 RELAY PERFORMANCE RESULTS 

Number of clients 1 2 3 4 5 6 7 8 9 10 
Packet loss (%) 0.011 0.016 0.028 0.047 0.056 0.051 0.044 0.038 0.031 0.031 

Response time 
(ms) 

Average 0.301 0.418 0.603 0.823 1.061 1.326 1.620 1.908 2.210 2.519 
Std. dev. 0.186 0.236 0.319 0.403 0.499 0.571 0.631 0.681 0.707 0.712 

Maximum 5.760 11.500 13.600 16.900 18.900 21.400 21.100 21.700 22.200 24.300 
CPU Utilization 

(%) 
Average 38.957 65.382 80.290 89.055 94.130 96.671 98.259 98.435 99.020 99.306 
Std. dev. 4.519 6.229 9.771 3.769 5.878 6.664 3.759 5.751 6.243 4.642 

Memory consumption (kB) 0.016 0.027 0.055 0.148 0.191 0.203 0.695 0.336 0.480 0.180 
Traffic volume (packets/sec) 17797 31937 40639 45745 48913 50686 51345 51750 52062 52202 
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Fig. 6.  NetBSD stf forwarded packets and CPU utilization. 
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The memory consumption was extremely low and it was 
growing with some fluctuation. 
The traffic volume strictly increased. 

VIII. COMPARISON OF THE RESULTS 
To facilitate the comparison of the properties of the 

different 6to4 relay implementations, we represented the 
packet loss ratio, the response time, number of forwarded 
packets per second and the average value of the CPU 
utilization in graphical form in Figures 7, 8, 9 and 10, 
respectively. 
It is visible at first sight that the Linux sit and v4tunnel 
produced almost the same results in all of the four represented 
areas. 

All of the tested implementations proved to be reliable and 
the packet loss ratios of the different implementations were 
always low. The packet loss ratio of the Linux and OpenWrt 
implementations increased with the number of clients, 
whereas the NetBSD stf produced the highest packet loss with 
5 clients. We note that even these low packet loss rates may 
cause significant loss of TCP performance. For example 
0.08% packet loss may result in about 50% decrease of TCP 
performance at 80ms RTT, see the calculations of [60]. 

All of the implementations proved their stability under 
overload situations. 

Linux v4 tunnel forwarded the most packets per second, but 
the performance of it started to visibly decrease in overload 
situation, whereas the Linux sit system only differs slightly. 
The OpenWrt sit performance is the next one, and the two 
BSD systems are the last competitors in the performance 
comparison. FreeBSD stf produced 43970 maximum 
throughput, whereas Linux v4tunnel had 74025 maximum 
packets per second. This means Linux outperformed the 
FreeBSD system by 1.68 times. 

All of the implementations use negligibly small amount of 
memory, which is usually proportional to the generated load. 

With one client, all of the implementations forwarded 
similar number of packets, but with significantly different 
CPU utilization, which property can explain the high degree of 
difference in the performance with more clients. Linux sit 6to4 
relay implementation used 1.76% of CPU with one client, 
whereas FreeBSD stf used 51.53%, which means about 29 
times difference. 

IX. CONCLUSION 
The 6to4 protocol is a useful transition technique in a 

situation, where two IPv6 enabled hosts have to communicate 
over an IPv4 only network. All of the tested open source 6to4 
relay implementations are reliable solutions in production 
networks, but the two Linux based ones showed the best 

 
Fig. 9.  Performance of the different 6to4 implementations. 
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Fig. 10.  Average CPU utilization of the different 6to4 implementations. 
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Fig. 7.  Packet loss ratio of the different 6to4 implementations. 
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Fig. 8.  Response time of the different 6to4 implementations. 

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10

response time 
(ms)

number of clients

Response time

Linux - sit Linux - v4tunnel OpenWrt - sit

FreeBSD - stf NetBSD - stf

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

9 

performance characteristics, whereas the OpenWrt based one 
was the second to them. In an environment, where BSD 
systems are preferred, the two BSD based implementations are 
usable solutions as well. 

The authors hope that their work has contributed to the 
early adoption of the IPv6 protocol and the published results 
and methodology are valuable for both researchers and 
network professionals. 

REFERENCES 
[1] S. Bradner and A. Mankin, “The recommendation for the IP next 

generation protocol”, IETF, January 1995. (RFC 1752) Available: 
https://tools.ietf.org/html/rfc1752 

[2] M. Waiser, “Whatever happened to the Next-Generation Internet?”, 
Communications of the ACM, vol. 44, no. 9. pp. 61-69, 2001. 

[3] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6) 
specification”, IETF, December 1998. (RFC 2460) Available: 
https://tools.ietf.org/html/rfc2460 

[4] Google, “IPv6 statistics”, Available: 
http://www.google.com/ipv6/statistics.html 

[5] IEEE-USA, “Next generation internet: IPv4 address exhaustion, 
mitigation strategies and implications for the U.S.”, IEEE-USA White 
Paper, 2009. Available: 
http://www.ieeeusa.org/policy/whitepapers/IEEEUSAWP-IPv62009.pdf 

[6] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The 
internet address assignment and aggregation plan”, IETF, August 2006. 
(RFC 4632) Available: https://tools.ietf.org/html/rfc4632 

[7] P. Srisuresh and K. Egevang, “Traditional IP network address translator 
(Traditional NAT)”, IETF, January 2001. (RFC 3022) Available: 
https://tools.ietf.org/html/rfc3022 

[8] S. Jiang, D. Guo, and B. Carpenter, “An incremental carrier-grade NAT 
(CGN) for IPv6 transition”, IETF, June 2011. (RFC 6264) Available: 
http://tools.ietf.org/html/rfc6264 

[9] M. Mueller, “Scarcity in IP addresses: IPv4 address transfer markets and 
the regional internet address registries”, Internet Governance Project, 
July 2008. Available: http://www.internetgovernance.org/wordpress/wp-
content/uploads/IPAddress_TransferMarkets.pdf 

[10] G. Huston, “IPv4 address report”, Available: 
http://www.potaroo.net/tools/ipv4/index.html 

[11] L. Smith and I. Lipner, “Free pool of IPv4 address space depleted”, 
Number Resource Organization, February 2011. Available: 
https://www.nro.net/news/ipv4-free-pool-depleted 

[12] E. Nordmark and R. Gilligan, “Basic transition mechanisms for IPv6 
hosts and routers”, IETF, October 2005. (RFC 4213) Available: 
https://tools.ietf.org/html/rfc4213 

[13] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS 
extensions for network address translation from IPv6 clients to IPv4 
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147) Available: 
https://tools.ietf.org/html/rfc6147 

[14] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: network 
address and protocol translation from IPv6 clients to IPv4 servers”, 
IETF, April 2011. ISSN: 2070-1721 (RFC 6146) Available: 
https://tools.ietf.org/html/rfc6146 

[15] G. Lencse and S. Répás, “Performance analysis and comparison of 
different DNS64 implementations for Linux, OpenBSD and FreeBSD” 
in Proc. 27th IEEE International Conference on Advanced Information 
Networking and Applications (AINA-2013), Barcelona, 2013, pp. 877-
884, doi: 10.1109/AINA.2013.80 

[16] G. Lencse and S. Répás, "Performance analysis and comparison of the 
TAYGA and of the PF NAT64 implementations" in Proc. 36th 
International Conference on Telecommunications and Signal Processing 
(TSP-2013), Rome, 2013, pp. 71-76, doi: 10.1109/TSP.2013.6613894 

[17] S. Répás, T. Hajas and G. Lencse, “Application compatibility of the 
NAT64 IPv6 transition technology” in Proc. 37th International 
Conference on Telecommunications and Signal Processing (TSP-2014), 
Berlin, 2014, pp. 49-55, DOI: 10.1109/TSP.2015.7296383 

[18] A. Conta and S. Deering, “Generic packet tunneling in IPv6 
specification”, IETF, December 1998. (RFC 2473) Available: 
http://tools.ietf.org/html/rfc2473 

[19] SixXS - IPv6 Deployment & Tunnel Broker, 
https://www.sixxs.net/main/ 

[20] Hurricane Electric Free IPv6 Tunnel Broker, https://tunnelbroker.net/ 
[21] R. Despres, “IPv6 rapid deployment on IPv4 infrastructures (6rd)”, 

IETF, January 2010. ISSN: 2070-1721  (RFC 5569) Available: 
https://tools.ietf.org/html/rfc5569 

[22] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network 
Address Translations (NATs)”, IETF, February 2006. (RFC 4380) 
Available: https://tools.ietf.org/html/rfc4380 

[23] F. Templin, T. Gleeson and D. Thaler, “Intra-Site Automatic Tunnel 
Addressing Protocol (ISATAP)”, IETF, March 2008. (RFC 5214) 
Available: https://tools.ietf.org/html/rfc5214 

[24] B. Carpenter and K. Moore, “Connection of IPv6 domains via IPv4 
clouds”, IETF, February 2001. (RFC 3056) Available: 
https://tools.ietf.org/html/rfc3056 

[25] P. Wu, Y.  Cui, J. Wu, J. Liu, and C. Metz, “Transition from IPv4 to 
IPv6: A state-of-the-art survey”, IEEE Communications Surveys & 
Tutorials, vol. 15, no. 3. pp. 1407-1424, 2013, doi: 
10.1109/SURV.2012.110112.00200 

[26] R. Gilligan and E. Nordmark, “Transition mechanisms for IPv6 hosts 
and routers”, IETF, August 2000. (RFC 2893) Available: 
https://tools.ietf.org/html/rfc2893 

[27] M. Cotton, L. Vegoda, R. Bonica and B. Haberman, “Special-purpose IP 
address registries”, IETF, April 2013. ISSN: 2070-1721 (RFC 6890) 
Available: https://tools.ietf.org/html/rfc6890 

[28] C. Partridge, T. Mendez and W. Milliken, “Host anycasting service”, 
IETF, November 1993. (RFC 1546), Available: 
https://tools.ietf.org/html/rfc1546 

[29] C. Huitema, “An anycast prefix for 6to4 relay routers”, IETF, June 
2001. (RFC 3068) Available: https://tools.ietf.org/html/rfc3068 

[30] D. Malone, “Counting 6to4 relay routers”, SIGCOMM Computer 
Communication Review, vol. 36, no. 1. pp. 79-82, 2006, doi: 
10.1145/1111322.1111340 

[31] RIPEstat, https://stat.ripe.net 
[32] P. Savola and C. Patel, “Security considerations for 6to4”, IETF, 

December 2004. (RFC 3964), Available: 
https://tools.ietf.org/html/rfc3964  

[33] W. Townsley and O. Troan, “IPv6 Rapid Deployment on IPv4 
Infrastructures (6rd)”, IETF, August 2010, (RFC 5969), Available: 
https://tools.ietf.org/html/rfc5969  

[34] O. Troan and G. Van de Velde, “Request to move connection of IPv6 
domains via IPv4 clouds (6to4) to historic status”, February, 2011, 
(expired internet draft), Available: https://tools.ietf.org/html/draft-troan-
v6ops-6to4-to-historic-00  

[35] O. Troan and B. Carpenter, ed, “Deprecating the anycast prefix for 6to4 
relay routers”, May 2015, (RFC 7526), Available: 
https://tools.ietf.org/html/rfc7526 

[36] B. Carpenter, “Advisory Guidelines for 6to4 Deployment”, August 
2011, (RFC 6343), Available: https://tools.ietf.org/html/rfc6343 

[37] G. Lencse and S. Répás, “Performance analysis and comparison of 6to4 
relay implementations”, International Journal of Advanced Computer 
Science and Applications, vol. 4, no. 9. pp. 13-21, 2013, doi: 
10.14569/IJACSA.2013.040903 

[38] M. Nikkhah, R. Guérin, Y. Lee and R. Woundy, “Assessing IPv6 
through web access a measurement study and its findings” in Proc. 
Seventh Conference on emerging Networking EXperiments and 
Technologies (CoNEXT '11), Tokyo, 2011, doi: 
10.1145/2079296.2079322 

[39] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil and M. 
Bailey, “Measuring IPv6 adoption” in Proc. ACM conference on 
SIGCOMM (SIGCOMM '14), Chicago, 2014, pp. 87-98. doi: 
10.1145/2619239.2626295 

[40] M. Aazam, A.M. Syed, S.A.H. Shah, I. Khan and M. Alam, “Evaluation 
of 6to4 and ISATAP on a test LAN” in Proc. IEEE Symposium on 
Computers & Informatics (ISCSI 2011), Kuala Lumpur, 2011, pp. 46-50. 
doi: 10.1109/ISCI.2011.5958881 

[41] F. Sans and E. Gamess, “Analytical performance evaluation of native 
IPv6 and several tunneling technics using benchmarking tools” in Proc. 
XXXIX Latin American Computing Conference (CLEI 2013), Naiguata, 
2013, pp. 1-9. doi: 10.1109/CLEI.2013.6670610 

[42] J. L. Shah and J. Parvez, “An examination of next generation IP 
migration techniques: Constraints and evaluation” in Proc. International 
Conference on Control, Instrumentation, Communication and 
Computational Technologies (ICCICCT-2014), Kanyakumari District, 
2014, pp. 776-781. doi: 10.1109/ICCICCT.2014.6993064 



Stability Analysis and Performance Comparison  
of Five 6to4 Relay Implementations

INFOCOMMUNICATIONS JOURNAL

JUNE 2016 • VOLUME VIII • NUMBER 2 9

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

9 

performance characteristics, whereas the OpenWrt based one 
was the second to them. In an environment, where BSD 
systems are preferred, the two BSD based implementations are 
usable solutions as well. 

The authors hope that their work has contributed to the 
early adoption of the IPv6 protocol and the published results 
and methodology are valuable for both researchers and 
network professionals. 

REFERENCES 
[1] S. Bradner and A. Mankin, “The recommendation for the IP next 

generation protocol”, IETF, January 1995. (RFC 1752) Available: 
https://tools.ietf.org/html/rfc1752 

[2] M. Waiser, “Whatever happened to the Next-Generation Internet?”, 
Communications of the ACM, vol. 44, no. 9. pp. 61-69, 2001. 

[3] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6) 
specification”, IETF, December 1998. (RFC 2460) Available: 
https://tools.ietf.org/html/rfc2460 

[4] Google, “IPv6 statistics”, Available: 
http://www.google.com/ipv6/statistics.html 

[5] IEEE-USA, “Next generation internet: IPv4 address exhaustion, 
mitigation strategies and implications for the U.S.”, IEEE-USA White 
Paper, 2009. Available: 
http://www.ieeeusa.org/policy/whitepapers/IEEEUSAWP-IPv62009.pdf 

[6] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The 
internet address assignment and aggregation plan”, IETF, August 2006. 
(RFC 4632) Available: https://tools.ietf.org/html/rfc4632 

[7] P. Srisuresh and K. Egevang, “Traditional IP network address translator 
(Traditional NAT)”, IETF, January 2001. (RFC 3022) Available: 
https://tools.ietf.org/html/rfc3022 

[8] S. Jiang, D. Guo, and B. Carpenter, “An incremental carrier-grade NAT 
(CGN) for IPv6 transition”, IETF, June 2011. (RFC 6264) Available: 
http://tools.ietf.org/html/rfc6264 

[9] M. Mueller, “Scarcity in IP addresses: IPv4 address transfer markets and 
the regional internet address registries”, Internet Governance Project, 
July 2008. Available: http://www.internetgovernance.org/wordpress/wp-
content/uploads/IPAddress_TransferMarkets.pdf 

[10] G. Huston, “IPv4 address report”, Available: 
http://www.potaroo.net/tools/ipv4/index.html 

[11] L. Smith and I. Lipner, “Free pool of IPv4 address space depleted”, 
Number Resource Organization, February 2011. Available: 
https://www.nro.net/news/ipv4-free-pool-depleted 

[12] E. Nordmark and R. Gilligan, “Basic transition mechanisms for IPv6 
hosts and routers”, IETF, October 2005. (RFC 4213) Available: 
https://tools.ietf.org/html/rfc4213 

[13] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS 
extensions for network address translation from IPv6 clients to IPv4 
servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147) Available: 
https://tools.ietf.org/html/rfc6147 

[14] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: network 
address and protocol translation from IPv6 clients to IPv4 servers”, 
IETF, April 2011. ISSN: 2070-1721 (RFC 6146) Available: 
https://tools.ietf.org/html/rfc6146 

[15] G. Lencse and S. Répás, “Performance analysis and comparison of 
different DNS64 implementations for Linux, OpenBSD and FreeBSD” 
in Proc. 27th IEEE International Conference on Advanced Information 
Networking and Applications (AINA-2013), Barcelona, 2013, pp. 877-
884, doi: 10.1109/AINA.2013.80 

[16] G. Lencse and S. Répás, "Performance analysis and comparison of the 
TAYGA and of the PF NAT64 implementations" in Proc. 36th 
International Conference on Telecommunications and Signal Processing 
(TSP-2013), Rome, 2013, pp. 71-76, doi: 10.1109/TSP.2013.6613894 

[17] S. Répás, T. Hajas and G. Lencse, “Application compatibility of the 
NAT64 IPv6 transition technology” in Proc. 37th International 
Conference on Telecommunications and Signal Processing (TSP-2014), 
Berlin, 2014, pp. 49-55, DOI: 10.1109/TSP.2015.7296383 

[18] A. Conta and S. Deering, “Generic packet tunneling in IPv6 
specification”, IETF, December 1998. (RFC 2473) Available: 
http://tools.ietf.org/html/rfc2473 

[19] SixXS - IPv6 Deployment & Tunnel Broker, 
https://www.sixxs.net/main/ 

[20] Hurricane Electric Free IPv6 Tunnel Broker, https://tunnelbroker.net/ 
[21] R. Despres, “IPv6 rapid deployment on IPv4 infrastructures (6rd)”, 

IETF, January 2010. ISSN: 2070-1721  (RFC 5569) Available: 
https://tools.ietf.org/html/rfc5569 

[22] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network 
Address Translations (NATs)”, IETF, February 2006. (RFC 4380) 
Available: https://tools.ietf.org/html/rfc4380 

[23] F. Templin, T. Gleeson and D. Thaler, “Intra-Site Automatic Tunnel 
Addressing Protocol (ISATAP)”, IETF, March 2008. (RFC 5214) 
Available: https://tools.ietf.org/html/rfc5214 

[24] B. Carpenter and K. Moore, “Connection of IPv6 domains via IPv4 
clouds”, IETF, February 2001. (RFC 3056) Available: 
https://tools.ietf.org/html/rfc3056 

[25] P. Wu, Y.  Cui, J. Wu, J. Liu, and C. Metz, “Transition from IPv4 to 
IPv6: A state-of-the-art survey”, IEEE Communications Surveys & 
Tutorials, vol. 15, no. 3. pp. 1407-1424, 2013, doi: 
10.1109/SURV.2012.110112.00200 

[26] R. Gilligan and E. Nordmark, “Transition mechanisms for IPv6 hosts 
and routers”, IETF, August 2000. (RFC 2893) Available: 
https://tools.ietf.org/html/rfc2893 

[27] M. Cotton, L. Vegoda, R. Bonica and B. Haberman, “Special-purpose IP 
address registries”, IETF, April 2013. ISSN: 2070-1721 (RFC 6890) 
Available: https://tools.ietf.org/html/rfc6890 

[28] C. Partridge, T. Mendez and W. Milliken, “Host anycasting service”, 
IETF, November 1993. (RFC 1546), Available: 
https://tools.ietf.org/html/rfc1546 

[29] C. Huitema, “An anycast prefix for 6to4 relay routers”, IETF, June 
2001. (RFC 3068) Available: https://tools.ietf.org/html/rfc3068 

[30] D. Malone, “Counting 6to4 relay routers”, SIGCOMM Computer 
Communication Review, vol. 36, no. 1. pp. 79-82, 2006, doi: 
10.1145/1111322.1111340 

[31] RIPEstat, https://stat.ripe.net 
[32] P. Savola and C. Patel, “Security considerations for 6to4”, IETF, 

December 2004. (RFC 3964), Available: 
https://tools.ietf.org/html/rfc3964  

[33] W. Townsley and O. Troan, “IPv6 Rapid Deployment on IPv4 
Infrastructures (6rd)”, IETF, August 2010, (RFC 5969), Available: 
https://tools.ietf.org/html/rfc5969  

[34] O. Troan and G. Van de Velde, “Request to move connection of IPv6 
domains via IPv4 clouds (6to4) to historic status”, February, 2011, 
(expired internet draft), Available: https://tools.ietf.org/html/draft-troan-
v6ops-6to4-to-historic-00  

[35] O. Troan and B. Carpenter, ed, “Deprecating the anycast prefix for 6to4 
relay routers”, May 2015, (RFC 7526), Available: 
https://tools.ietf.org/html/rfc7526 

[36] B. Carpenter, “Advisory Guidelines for 6to4 Deployment”, August 
2011, (RFC 6343), Available: https://tools.ietf.org/html/rfc6343 

[37] G. Lencse and S. Répás, “Performance analysis and comparison of 6to4 
relay implementations”, International Journal of Advanced Computer 
Science and Applications, vol. 4, no. 9. pp. 13-21, 2013, doi: 
10.14569/IJACSA.2013.040903 

[38] M. Nikkhah, R. Guérin, Y. Lee and R. Woundy, “Assessing IPv6 
through web access a measurement study and its findings” in Proc. 
Seventh Conference on emerging Networking EXperiments and 
Technologies (CoNEXT '11), Tokyo, 2011, doi: 
10.1145/2079296.2079322 

[39] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil and M. 
Bailey, “Measuring IPv6 adoption” in Proc. ACM conference on 
SIGCOMM (SIGCOMM '14), Chicago, 2014, pp. 87-98. doi: 
10.1145/2619239.2626295 

[40] M. Aazam, A.M. Syed, S.A.H. Shah, I. Khan and M. Alam, “Evaluation 
of 6to4 and ISATAP on a test LAN” in Proc. IEEE Symposium on 
Computers & Informatics (ISCSI 2011), Kuala Lumpur, 2011, pp. 46-50. 
doi: 10.1109/ISCI.2011.5958881 

[41] F. Sans and E. Gamess, “Analytical performance evaluation of native 
IPv6 and several tunneling technics using benchmarking tools” in Proc. 
XXXIX Latin American Computing Conference (CLEI 2013), Naiguata, 
2013, pp. 1-9. doi: 10.1109/CLEI.2013.6670610 

[42] J. L. Shah and J. Parvez, “An examination of next generation IP 
migration techniques: Constraints and evaluation” in Proc. International 
Conference on Control, Instrumentation, Communication and 
Computational Technologies (ICCICCT-2014), Kanyakumari District, 
2014, pp. 776-781. doi: 10.1109/ICCICCT.2014.6993064 



Stability Analysis and Performance Comparison  
of Five 6to4 Relay Implementations

JUNE 2016 • VOLUME VIII • NUMBER 210

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

10 

[43] Riverbed Modeler, http://www.riverbed.com/products/performance-
management-control/network-performance-management/network-
simulation.html 

[44] D. Hadiya, R. Save and G. Geetu, “Network performance evaluation of 
6to4 and configured tunnel transition mechanisms: An empirical test-bed 
analysis” in Proc. 6th International Conference on Emerging Trends in 
Engineering and Technology (ICETET-13), Nagpur, 2013, pp. 56-60. 
doi: 10.1109/ICETET.2013.14 

[45] N. Bahaman, E. Hamid and A.S. Prabuwono, “Network performance 
evaluation of 6to4 tunneling” in  Proc. 2012 International Conference 
on Innovation Management and Technology Research ((ICIMTR), 
Malacca, 2012, pp. 263-268. doi: 10.1109/ICIMTR.2012.6236400 

[46] M. Elich, P. Velan, T. Jirsik and P. Celeda, “An investigation into teredo 
and 6to4 transition mechanisms: Traffic analysis” in Proc. IEEE 38th 
Conference on Local Computer Networks Workshops (LCN 2013 
Workshops), Sydney, 2013, pp. 1018-1024. doi: 
10.1109/LCNW.2013.6758546 

[47] S. Pekka,” Observations of IPv6 traffic on a 6to4 relay”, SIGCOMM 
Computer Communication Review, vol. 35, no. 1. pp. 23-28, 2005. doi: 
10.1145/1052812.1052821 

[48] S. Narayan and S. Tauch, “Network performance evaluation of IPv4-v6 
configured tunnel and 6to4 transition mechanisms on windows server 
operating systems” in Proc. 2010 International Conference on Computer 
Design and Applications (ICCDA 2010), Qinhuangdao, 2010, pp. V5-
435-V5-440. doi: 10.1109/ICCDA.2010.5540939 

[49] S. Narayan and S. Tauch, “IPv4-v6 configured tunnel and 6to4 transition 
mechanisms network performance evaluation on Linux operating 
systems” in Proc. 2nd International Conference on Signal Processing 
Systems (ICSPS 2010), Dalian, 2010, pp. V2-113-V2-117. doi: 
10.1109/ICSPS.2010.5555209 

[50] S. Narayan and S. Tauch, “IPv4-v6 transition mechanisms network 
performance evaluation on operating systems” in Proc. 3rd IEEE 
International Conference on Computer Science and Information 
Technology (ICCSIT 2010), Chengdu, 2010, pp. 664-668. doi: 
10.1109/ICCSIT.2010.5564141 

[51] S. Répás, V. Horváth and G. Lencse, "Stability Analysis and 
Performance Comparison of Three 6to4 Relay Implementations" in 
Proc. 38th International Conference on Telecommunications and Signal 
Processing (TSP 2015), Prague, July 9-11, 2015, pp. 82-87. DOI: 
10.1109/TSP.2015.7296228 

[52] Open Source Initiative, “The open source definition”, 
http://opensource.org/docs/osd 

[53] Free Software Fundation, “The free software definition”, 
http://www.gnu.org/philosophy/free-sw.en.html 

[54] Debian, http://www.debian.org/ 
[55] OpenBSD, http://www.openbsd.org/ 
[56] FreeBSD, http://www.freebsd.org/ 
[57] NetBSD, http://www.netbsd.org/ 
[58] OpenWrt, https://openwrt.org/ 
[59] NTIA ITS, “Definition of ‘graceful degradation’ ”, Available: 

http://www.its.bldrdoc.gov/fs-1037/dir-017/_2479.htm  
[60] Network Throughput Calculator, http://wintelguy.com/wanperf.pl 
 

Sándor Répás received his BA in 
business administration and 
management from the Corvinus 
University of Budapest in 2009 and 
MSc in electrical engineering from the 
Széchenyi István University, Győr in 
2013. 

He is a full time PhD student in 
information technology at the 

Széchenyi István University. The main field of his research is 
the IPv6 implementation technologies. His other favorite 
topics are computer networking, information security, and 
critical information infrastructure protection. He has several 
certificates from Cisco, ISACA, Microsoft, MikroTik, Novell, 
and other vendors. 

Mr. Répás is a student member of the Association for 
Computer Machinery (ACM), and member of the Information 

Scientific Association for Infocommunications Hungary 
(HTE), and the John von Neumann Computer Society. 
 

Viktor Horváth received his BSc in 
electrical engineering at Széchenyi 
István University in Győr in 2014. He 
had been working at the Department of 
Telecommunications as a graduate 
student during his thesis research. The 
area of his research included 
performance analysis of IPv6 
transition technologies, router boards 

and several Linux and BSD operating system. Nowadays he is 
mostly interested in computer security field. He is an IT 
security engineer at one of the most professional value added 
security distributor company in Hungary. Horváth's other 
favorite topics are computer networking, wireless networking 
and secure mobile device management. He has several vendor 
specific certificate from MobileIron, SafeNet, Unitrends, 
Opswat and others. 

During his work he got familiar with several IT security 
vendor and solution. His main responsibilities include 
professional enterprise level IT support, IT Infrastructure 
Management and administration, trainings, technical 
presentations, site surveys and security infrastructure 
integration. 

He took part in most of the reasonable IT security focused 
events in Hungary where he was responsible for the IT 
infrastructure behind the "scene". These days he is involved in 
several project at multinational companies. 
 

Gábor Lencse received his MSc in 
electrical engineering and computer 
systems from the Technical 
University of Budapest in 1994, and 
his PhD in 2001. 

He has been working for the 
Department of Telecommunications, 
Széchenyi István University in Győr 
since 1997. Now, he is an Associate 
Professor. He teaches Computer 
networks and the Linux operating 

system. He is responsible for the specialization of the 
information and communication technology of the BSc level 
electrical engineering education. He is a founding member and 
also a core member of the Multidisciplinary Doctoral School 
of Engineering Sciences, Széchenyi István University. The 
area of his research includes discrete-event simulation 
methodology, performance analysis of computer networks and 
IPv6 transition technologies. He has been working part time 
for the Department of Networked Systems and Services, 
Budapest University of Technology and Economics (the 
former Technical University of Budapest) since 2005. There 
he teaches Computer architectures and Computer networks. 

Dr. Lencse is a member of the Institute of Electronics, 
Information and Communication Engineers (IEICE). 

Sándor Répás received his BA in business 
administration and management from the 
Corvinus University of Budapest in 2009 
and MSc in electrical engineering from the 
Széchenyi István University, Győr in 2013.
He is a full time PhD student in information 
technology at the Széchenyi István University. 
The main field of his research is the IPv6 
implementation technologies. His other favorite 
topics are computer networking, information 
security, and critical information infrastructure 
protection. He has several certificates from 

Cisco, ISACA, Microsoft, MikroTik, Novell, and other vendors.
Mr. Répás is a student member of the Association for Computer Machinery 
(ACM), and member of the Information Scientific Association for 
Infocommunications Hungary (HTE), and the John von Neumann Computer 
Society.

Viktor Horváth received his BSc in electrical 
engineering at Széchenyi István University 
in Győr in 2014. He had been working at 
the Department of Telecommunications as a 
graduate student during his thesis research. 
The area of his research included performance 
analysis of IPv6 transition technologies, router 
boards and several Linux and BSD operating 
system. Nowadays he is mostly interested in 
computer security field. He is an IT security 
engineer at one of the most professional 
value added security distributor company in 

Hungary. Horváth’s other favorite topics are computer networking, wireless 
networking and secure mobile device management. He has several vendor 
specific certificate from MobileIron, SafeNet, Unitrends, Opswat and others.
During his work he got familiar with several IT security vendor and 
solution. His main responsibilities include professional enterprise level 
IT support, IT Infrastructure Management and administration, trainings, 
technical presentations, site surveys and security infrastructure integration.
He took part in most of the reasonable IT security focused events in 
Hungary where he was responsible for the IT infrastructure behind the 
“scene”. These days he is involved in several project at multinational 
companies.

Gábor Lencse received his MSc in electrical 
engineering and computer systems from the 
Technical University of Budapest in 1994, 
and his PhD in 2001.
He has been working for the Department 
of Telecommunications, Széchenyi István 
University in Győr since 1997. Now, he is 
an Associate Professor. He teaches Computer 
networks and the Linux operating system. He 
is responsible for the specialization of the 
information and communication technology 
of the BSc level electrical engineering 
education. He is a founding member and 
also a core member of the Multidisciplinary 

Doctoral School of Engineering Sciences, Széchenyi István University. 
The area of his research includes discrete-event simulation methodology, 
performance analysis of computer networks and IPv6 transition 
technologies. He has been working part time for the Department of 
Networked Systems and Services, Budapest University of Technology 
and Economics (the former Technical University of Budapest) since 2005. 
There he teaches Computer architectures and Computer networks.
Dr. Lencse is a member of the Institute of Electronics, Information and 
Communication Engineers (IEICE).

1

Supporting LTE Network and Service Management
through Session Data Record Analysis

Dániel Kozma, Gábor Soós, Pál Varga

Abstract—Gathering and processing data for performance and
fault management continues to be a burning issue, from LTE
operations and maintenance point of view. Regarding the Evolved
Packet Core (EPC), this is especially true, since it has newly
defined interfaces, with new protocols - some of them are even
ciphered. Network-wide data capture and analysis for the EPC
requires new processing methods. These would allow operators to
correlate control and user plane information of various interfaces
and protocols. There are many obstacles to overcome here,
including ciphered control messages and global identifiers hidden
by temporary ones. This paper presents a system for S1AP
session data record assembling, it shows what key parameters
are needed to be extracted in order to enable expert analysis.
The deciphering mechanism is especially important here, hence
we discuss how its success affects analysis results. We present Call
Data Record assembling methods for various scenarios - such as
network attachments or tracking area changes. Furthermore, this
paper presents the methods for gathering cross-correlated data on
specific fault management use-cases, especially for unsuccessful
voice calls.

I. INTRODUCTION

W IRELESS data traffic is increasing exponentially
worldwide [1]. Supporting and managing this growth

of traffic on the signaling links poses a great challenge to
the operators. Fault management - especially the detection
and the root cause analysis of failures - has become very
complex, and requires deep telecommunications knowledge.
Magyar Telekom - the Hungarian subsidiary of the Deutsche
Telekom Group - is facing a milestone in its operation, when
introducing voice calls over its 4G network - or in other
terms, the Voice over LTE (VoLTE) [2] service. One of the
key information-exchange points of 4G call establishment is
the S1-MME interface (between eNodeB and MME entities;
see Fig. 1). Various important elements of 4G call procedures
can be observed at this interface - hence its monitoring is
critical from the operator’s point of view. On this interface,
the role of the S1 Application Protocol (S1AP) [3] is essential
when introducing the 4G voice call feature. The monitoring
of this interface is important from the Voice over LTE ser-
vice assurance point of view. Passive monitoring is supposed
to be lossless: when the links are tapped, and the probes
receive data in a non-intrusive manner, they cannot ask for
resending anything. What they missed seeing, they have lost
capturing. Based on the monitoring data, engineers can support
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performance management, network optimization, as well as
failure detection, which is one of the most important tasks
for operations and maintenance. This paper discusses the
requirements and the functions of an S1AP monitoring system,
which is under deployment. Furthermore, the paper presents
some practical use-cases on call tracing with deciphering
issues, as well.

II. MONITORING THE LTE EVOLVED PACKET CORE

Before discussing the monitoring requirements, this section
briefly summarizes the main functions of LTE EPC nodes,
and lists the interfaces among them. Parts of LTE network
monitoring are discussed in the scientific community; however
papers that are sharing actual methodologies and results appear
very rarely. The motivations and fundamental challenges of
LTE monitoring are discussed in [8]. The basics of network
monitoring applied to LTE core system monitoring are sum-
marized in [9]. In [10] the authors describe protocol decoders
for LTE, and raise similar issues that our current paper raises
and solves.There are also descriptions availale for complete
performance management solutions for the backhaul [12] and
for end-to-end services [11] – these use the results of LTE
EPC monitoring systems, for which an example is presented
in the current paper. A CDR synthesis-system for the S1-
MME interface is described in [13] – this system shares the
fundamentals with the SGA system described in the following
sections.

Fig. 1. The architectural elements and interfaces of the LTE EPC
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