
Side Channels in SW Implementation of the McEliece PKC

MARCH 2016 • VOLUME VIII • NUMBER 110

INFOCOMMUNICATIONS JOURNAL

1

Side Channels in SW Implementation of the
McEliece PKC

Marek Klein

Abstract—The McEliece cryptosystem is considered secure in
the presence of quantum computers because there is no known
quantum algorithm to solve the problem this cryptosystem is
built on. However, naive implementation of the cryptosystem can
open side channels, which can be used to gather information
about the message or the secret key. In this paper we present
results of chosen timing attacks on straightforward implemen-
tation of this cryptosystem. Furthermore, we present practical
countermeasures and evaluate their efficacy.

Index Terms—Side-channel attacks, timing attacks, post-
quantum cryptography, code based cryptography, countermea-
sures.

I. INTRODUCTION

PUBLIC key cryptography, or asymmetric cryptography, is
a set of cryptographic algorithms that require two keys.

One of the keys, public key, is published and everyone can
use it in order to encrypt their secret. Although everybody
knows how the message is encrypted, only the legitimate
receiver, an owner of the second key, is able to decrypt the
message. This property is widely used in the real world to
secure financial transactions, to provide authenticity and in
many other applications.

Security of currently most used cryptosystems, such as RSA
[1], DSA or ECDSA [2], is based on the factorization of large
primes or the calculation of the discrete logarithm. However,
these cryptosystems are insecure in the case of existence
of quantum computers, which are being actively developed
these days. Therefore, several solutions have been proposed
to be used instead of currently used cryptosystems. One of
the candidates for post-quantum cryptography is the McEliece
cryptosystem. It is based on the problem of decoding large
linear codes without a visible structure. This problem belongs
to the category of NP-complete problems and there is no
known algorithm, solving this decoding problem in polynomial
time.

In section II, we describe the McEliece cryptosystem, key
generation, encryption and decryption.

In section III, we describe known attacks against the
McEliece cryptosystem, and in section IV, we show that
BitPunch implementation [3] is vulnerable to chosen timing
side channel attacks and we present results of attacking chosen
implementation.

In section V, we present practical countermeasures against
chosen attacks and their efficiency.

Support by NATOs Public Diplomacy Division in the framework of
”Science for Peace”, Project MD.SFPP 984520, is acknowledged.

Manuscript received September 29, 2015; revised January 25, 2016.

II. THE MCELIECE CRYPTOSYSTEM

The McEliece cryptosystem [5] was introduced by Robert
J. McEliece in 1978. It is a public key cryptosystem based on
linear codes. As one of the first cryptosystems, it used ran-
domization during encryption. This cryptosystem uses error-
correcting codes for which there exist fast decoding algo-
rithms, for example Goppa codes.

In the following text, algorithms for generating keys, en-
cryption and decryption are described.

A. Key Generation

Generation of the private and public key, according to [6],
is described in 1. First, it is necessary to choose domain
parameters m and t, where m defines the size of the finite field
F(2m) and t is the number of errors that can be corrected by
the Patterson algorithm 4. Then monic irreducible polynomial
g (X) ∈ F(2m) of degree t is generated. Based on elements
α0, . . . , αn−1, where αi ∈ F(2m), and the polynomial g (X),
the control matrix H is created. The matrix H is computed
as multiplication of matrices X, Y and Z, which are as follows:

X =




gt 0 · · · 0
gt−1 gt · · · 0

...
...

. . .
...

g1 g2 · · · gt




Y =




1 1 · · · 1
α0 α1 · · · αn−1

...
...

. . .
...

αt−1
0 αt−1

1 · · · αt−1
n−1




Z = diag(g(α0)
−1, . . . , g(αn−1)

−1)

Afterward, a random permutation P is generated and the
control matrix H is permuted by the inverse permutation PT .
This permuted matrix is then transformed from the matrix
over F(2m) into the matrix H2 over F(2) where elements
from F(2m) are transformed into column vectors from F(2) of
length m. From matrix H2, a generator matrix is created for a
linear code and part of this matrix is published as a public key.
Private key consists of permutation P and polynomial g(X).

1

Side Channels in SW Implementation of the
McEliece PKC

Marek Klein

Abstract—The McEliece cryptosystem is considered secure in
the presence of quantum computers because there is no known
quantum algorithm to solve the problem this cryptosystem is
built on. However, naive implementation of the cryptosystem can
open side channels, which can be used to gather information
about the message or the secret key. In this paper we present
results of chosen timing attacks on straightforward implemen-
tation of this cryptosystem. Furthermore, we present practical
countermeasures and evaluate their efficacy.

Index Terms—Side-channel attacks, timing attacks, post-
quantum cryptography, code based cryptography, countermea-
sures.

I. INTRODUCTION

PUBLIC key cryptography, or asymmetric cryptography, is
a set of cryptographic algorithms that require two keys.

One of the keys, public key, is published and everyone can
use it in order to encrypt their secret. Although everybody
knows how the message is encrypted, only the legitimate
receiver, an owner of the second key, is able to decrypt the
message. This property is widely used in the real world to
secure financial transactions, to provide authenticity and in
many other applications.

Security of currently most used cryptosystems, such as RSA
[1], DSA or ECDSA [2], is based on the factorization of large
primes or the calculation of the discrete logarithm. However,
these cryptosystems are insecure in the case of existence
of quantum computers, which are being actively developed
these days. Therefore, several solutions have been proposed
to be used instead of currently used cryptosystems. One of
the candidates for post-quantum cryptography is the McEliece
cryptosystem. It is based on the problem of decoding large
linear codes without a visible structure. This problem belongs
to the category of NP-complete problems and there is no
known algorithm, solving this decoding problem in polynomial
time.

In section II, we describe the McEliece cryptosystem, key
generation, encryption and decryption.

In section III, we describe known attacks against the
McEliece cryptosystem, and in section IV, we show that
BitPunch implementation [3] is vulnerable to chosen timing
side channel attacks and we present results of attacking chosen
implementation.

In section V, we present practical countermeasures against
chosen attacks and their efficiency.

Support by NATOs Public Diplomacy Division in the framework of
”Science for Peace”, Project MD.SFPP 984520, is acknowledged.

Manuscript received September 29, 2015; revised January 25, 2016.

II. THE MCELIECE CRYPTOSYSTEM

The McEliece cryptosystem [5] was introduced by Robert
J. McEliece in 1978. It is a public key cryptosystem based on
linear codes. As one of the first cryptosystems, it used ran-
domization during encryption. This cryptosystem uses error-
correcting codes for which there exist fast decoding algo-
rithms, for example Goppa codes.

In the following text, algorithms for generating keys, en-
cryption and decryption are described.

A. Key Generation

Generation of the private and public key, according to [6],
is described in 1. First, it is necessary to choose domain
parameters m and t, where m defines the size of the finite field
F(2m) and t is the number of errors that can be corrected by
the Patterson algorithm 4. Then monic irreducible polynomial
g (X) ∈ F(2m) of degree t is generated. Based on elements
α0, . . . , αn−1, where αi ∈ F(2m), and the polynomial g (X),
the control matrix H is created. The matrix H is computed
as multiplication of matrices X, Y and Z, which are as follows:

X =




gt 0 · · · 0
gt−1 gt · · · 0

...
...

. . .
...

g1 g2 · · · gt




Y =




1 1 · · · 1
α0 α1 · · · αn−1

...
...

. . .
...

αt−1
0 αt−1

1 · · · αt−1
n−1




Z = diag(g(α0)
−1, . . . , g(αn−1)

−1)

Afterward, a random permutation P is generated and the
control matrix H is permuted by the inverse permutation PT .
This permuted matrix is then transformed from the matrix
over F(2m) into the matrix H2 over F(2) where elements
from F(2m) are transformed into column vectors from F(2) of
length m. From matrix H2, a generator matrix is created for a
linear code and part of this matrix is published as a public key.
Private key consists of permutation P and polynomial g(X).

1

Side Channels in SW Implementation of the
McEliece PKC

Marek Klein

Abstract—The McEliece cryptosystem is considered secure in
the presence of quantum computers because there is no known
quantum algorithm to solve the problem this cryptosystem is
built on. However, naive implementation of the cryptosystem can
open side channels, which can be used to gather information
about the message or the secret key. In this paper we present
results of chosen timing attacks on straightforward implemen-
tation of this cryptosystem. Furthermore, we present practical
countermeasures and evaluate their efficacy.

Index Terms—Side-channel attacks, timing attacks, post-
quantum cryptography, code based cryptography, countermea-
sures.

I. INTRODUCTION

PUBLIC key cryptography, or asymmetric cryptography, is
a set of cryptographic algorithms that require two keys.

One of the keys, public key, is published and everyone can
use it in order to encrypt their secret. Although everybody
knows how the message is encrypted, only the legitimate
receiver, an owner of the second key, is able to decrypt the
message. This property is widely used in the real world to
secure financial transactions, to provide authenticity and in
many other applications.

Security of currently most used cryptosystems, such as RSA
[1], DSA or ECDSA [2], is based on the factorization of large
primes or the calculation of the discrete logarithm. However,
these cryptosystems are insecure in the case of existence
of quantum computers, which are being actively developed
these days. Therefore, several solutions have been proposed
to be used instead of currently used cryptosystems. One of
the candidates for post-quantum cryptography is the McEliece
cryptosystem. It is based on the problem of decoding large
linear codes without a visible structure. This problem belongs
to the category of NP-complete problems and there is no
known algorithm, solving this decoding problem in polynomial
time.

In section II, we describe the McEliece cryptosystem, key
generation, encryption and decryption.

In section III, we describe known attacks against the
McEliece cryptosystem, and in section IV, we show that
BitPunch implementation [3] is vulnerable to chosen timing
side channel attacks and we present results of attacking chosen
implementation.

In section V, we present practical countermeasures against
chosen attacks and their efficiency.

Support by NATOs Public Diplomacy Division in the framework of
”Science for Peace”, Project MD.SFPP 984520, is acknowledged.

Manuscript received September 29, 2015; revised January 25, 2016.

II. THE MCELIECE CRYPTOSYSTEM

The McEliece cryptosystem [5] was introduced by Robert
J. McEliece in 1978. It is a public key cryptosystem based on
linear codes. As one of the first cryptosystems, it used ran-
domization during encryption. This cryptosystem uses error-
correcting codes for which there exist fast decoding algo-
rithms, for example Goppa codes.

In the following text, algorithms for generating keys, en-
cryption and decryption are described.

A. Key Generation

Generation of the private and public key, according to [6],
is described in 1. First, it is necessary to choose domain
parameters m and t, where m defines the size of the finite field
F(2m) and t is the number of errors that can be corrected by
the Patterson algorithm 4. Then monic irreducible polynomial
g (X) ∈ F(2m) of degree t is generated. Based on elements
α0, . . . , αn−1, where αi ∈ F(2m), and the polynomial g (X),
the control matrix H is created. The matrix H is computed
as multiplication of matrices X, Y and Z, which are as follows:

X =




gt 0 · · · 0
gt−1 gt · · · 0

...
...

. . .
...

g1 g2 · · · gt




Y =




1 1 · · · 1
α0 α1 · · · αn−1

...
...

. . .
...

αt−1
0 αt−1

1 · · · αt−1
n−1




Z = diag(g(α0)
−1, . . . , g(αn−1)

−1)

Afterward, a random permutation P is generated and the
control matrix H is permuted by the inverse permutation PT .
This permuted matrix is then transformed from the matrix
over F(2m) into the matrix H2 over F(2) where elements
from F(2m) are transformed into column vectors from F(2) of
length m. From matrix H2, a generator matrix is created for a
linear code and part of this matrix is published as a public key.
Private key consists of permutation P and polynomial g(X).

Side Channels in SW Implementation of the McEliece PKC
INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 11

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

2

Algorithm 1 McEliece-PKC Key Generation.

Require: McEliece domain parameters m and t.
Ensure: Public key RT and private key (P, g (X)).

1: Construct F(2m) = {α0, . . . , αn−1}, where n = 2m.
2: Generate a random monic, irreducible polynomial g (X)

of degree t, having coefficients in F(2m) and X ∈ F(2m).
3: Calculate the t× n control matrix H for the Goppa code

generated by the polynomial g (X).
4: Create a random n× n permutation matrix P.
5: Calculate the permuted control matrix Ĥ = HPT .
6: Transform the t×n matrix Ĥ over F(2m) into the mt×n

matrix H2 over F(2).
7: Bring H2 into the systematic form Ĝ = [Imt|R].
8: The expanded public key is the k × n matrix over F(2),

denoted as G =
[
RT |Ik

]
.

9: return RT and (P, g(X))

B. Encryption

Algorithm 2 describes the encryption process. The corre-
sponding codeword c′ from linear code, generated by the
matrix G, is computed for the message m. This codeword
is then encrypted by adding the error vector with t nonzero
entries.

Algorithm 2 McEliece-PKC Encryption.

Require: k-bit plain text m, public key (G, t).
Ensure: n-bit cipher text c.

1: c′ = mG
2: Generate the n-bit error vector e such that hwt (e) = t.
3: c = c′ ⊕ e
4: return c

C. Decryption

Algorithm 3 describes decryption of the received message c.
The received message is permuted by the private permutation
P. Afterward, Patterson algorithm [4] is used to remove the
error vector from the message and then the plain text is
reconstructed.

Algorithm 3 McEliece-PKC Decryption.

Require: n-bit cipher text c, private key (P, g (X)).
Ensure: k-bit plain text m.

1: Permute c: c′ = cP.
2: Use Patterson algorithm 4 to reconstruct the error vector

e′.
3: Permute the error vector e = e′PT .
4: Remove the error vector from the received message c′ =

c ⊕ e.
5: Reconstruct the plain text m from c′.
6: return m

III. TIMING SIDE-CHANNEL ATTACKS

There exist numerous different side-channel attacks on the
McEliece cryptosystem. In this section, we describe such at-
tacks, which we realized against the BitPunch implementation.

A. Attack against the Degree of the Error Locator Polynomial

Timing attack described in [7] can be executed during
decryption of the received message. The attack is aimed at
determining the error vector e.

Let us assume we have a cipher text c and that we are
looking for the corresponding plain text m. The aim is to
remove the error vector e from the received cipher text c.

We try to decode the message ci for all ei, where i =
0, . . . , n− 1.

During decryption it is necessary to determine the error e
that was added to the message c′. This error is determined
by the error locator polynomial σc (X), whose degree is
deg (σc) = hwt (e), if hwt (e) ≤ t. If hwt (e) > t, then
deg(σc (X)) = t with probability 1− 2−m. Therefore, evalu-
ation time of the polynomial σ (X) depends on the degree of
this polynomial.

a) Attack description:
We only need to measure the time of evaluation of the error

vector e = (σci (α0) , . . . , σci (αn−1))⊕(1, . . . , 1). As we can
see, the polynomial σci (X) is evaluated n-times and if n is
large enough then even a small difference in the degree of
σci (X) might cause considerable time difference and therefore
we can determine e.

Let τi = T ((σci (α0) , . . . , σci (αn−1))⊕ (1, . . . , 1)) be the
time of decoding message ci. Put the t smallest τi into the set
I . Then the error vector can be created as: e =

⊕
i ei, for i

such that τi ∈ I .
b) Countermeasure:

To avoid this attack, we can artificially raise the degree of
the polynomial σc (X) to t in case deg (σc (X)) < t.

B. Timing Attack against Secret Permutation

Timing attack described in [8] can be used to determine the
secret permutation P. The attacker violates encryption schema
by sending specific ciphertexts with only 4 errors instead of t
errors.

To understand this attack, it is necessary to realize that the
error locator polynomial σ (X), determined during decryption,
can be written in the following forms:

σ (X) = σt

∏
j∈ε′

(X − αj) =

t∑
i=0

σiX
i (1)

where ε′ is set of indexes i, for which e′i = 1, i.e. those
elements of F2m that correspond to error positions in the
permuted error vector.

Authors use the ability of constructing their own cipher
texts; therefore they can control the number of errors and
positions of errors in the error vector e. They decided to create
an error vector e with the hamming weight w < t. Specifically,
they used w = 4, since it is the only one offering a plain timing
attack.

If w = 4, then deg (σ (X)) = 4. Since deg (σ (X)) is even,
deg (a (X)) is 2. Hence, a (X) provides a leading coefficient
of σ (X) and deg(b (X)) ≤ 1. This freedom in the degree of
b (X) leads to two possible control flows in the decryption
algorithm. One iteration in the Extended Euclidean algorithm

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

Side Channels in SW Implementation of the McEliece PKC

MARCH 2016 • VOLUME VIII • NUMBER 112

INFOCOMMUNICATIONS JOURNAL

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

3

(XGCD) (5) or zero iterations in the XGCD. These cases lead
to two different forms of σ (X). In case of one iteration,
we find σ3 �= 0, because b (X) = q1 (X). In case of zero
iterations, we find σ3 = 0, because b (X) = 1.

c) Attack description:
Let ε = {f1, f2, f3, f4} be the set of indexes of four

positions of errors in the non-permuted error vector e.
We can rewrite the equation for the error locator polynomial

(Equation 1) as

σ (X) = σ4

∏
j∈ε

(
X − αPj

)
, (2)

where Pj is the vector notation of permutation P. While e =
e′P, we can write ei = e′Pi

for entries of vector e.
From Equation 2, we can write the coefficient σ3 as a

function of error positions:

σ3 (f1, f2, f3, f4) = σ4

(
αPf1

+ αPf2
+ αPf3

+ αPf4

)
. (3)

The aim is to build a set of linear equations describing
the secret permutation P. Since the attacker can construct
his own cipher texts with the hamming weight hwt(e) = 4,
he can ask the decryption device to decrypt his messages
and measures the timing of step 4 of Patterson algorithm 4.
If the attacker concludes from the timing that the number
of iterations in XGCD algorithm is zero, the attacker adds
equation σ3 (f1, f2, f3, f4) = 0 into the set of equations.

The equation system can be represented as an l×n matrix,
where l is the number of equations and n is the length of the
code used in the McEliece cryptosystem.

Depending on the rank of the matrix, a number of entries
of the permutation have to be guessed.

d) Countermeasure:
As described in [8], to avoid this attack, it is necessary to

check, and if needed, manipulate the degree of τ (X), because
if the number of iterations in the XGCD algorithm 5 is zero,
then deg (τ (X)) ≤ d = �t/2� before the first iteration.

It is necessary to perform the test whether deg (τ (X)) <
d after determining τ (X) in Patterson algorithm 4. In case
deg (τ (X)) < d, then τ (X) must be manipulated in such a
way that deg (τ (X)) = t− 1.

It is recommended to use pseudo-random values derived
from the cipher text to manipulate coefficients of τ (X).
In case of using truly random values, the attacker might
determine that the decryption operation is not deterministic.

e) Note:
Similar attack is described in [9]. The same as above, au-

thors construct their own ciphertexts of low hamming weights
and exploit the XGCD algorithm. Moreover, they also use error
vectors of higher hamming weights; therefore, they can gather
more linear equations.

IV. ATTACKS ON THE BITPUNCH LIBRARY

In this section we present results of attacking BitPunch
implementation of the McEliece cryptosystem.

Attacks were realized on the following platform:
• CPU - Intel Core i5-3230M CPU @ 2.60GHz × 4
• Architecture - 64-bit

• Operating system - Ubuntu 14.04

In order to achieve the most accurate results, Intel Hyper-
Threading, turbo mode, and frequency scaling were turned off.
To measure execution time, we used the RDTSC instruction
[10].

A. Attack against The Degree of ELP

In this section, we present results of attacks based on the
degree of the error locator polynomial, described in subsec-
tion III-A.

First, we attacked the cryptosystem as in a real-life situation.
We asked for decryption of manipulated ciphertext. For each
ciphertext ci = c ⊕ ei, we measured ten times of the whole
decryption process and averaged these iterations. With this
simple attack, we were able to reveal from 45 to 50 errors.
Results of the attack are presented in Figure 1.

0 500 1000 1500 2000

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1e7

t=50
mean=9849209
t=49
mean=9786155

flipped bit

cy
cl

es

Fig. 1: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

In Figure 2, we can see decryption times corresponding to
the ciphertext containing 50 error bits compared to decryption
times corresponding to the ciphertext containing only 49 error
bits. According to mean values and standard deviations, we
can claim that the instance when the attacker revealed the bit
in the error vector is easily distinguishable from when the
attacker added the error bit to the ciphertext.

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

Side Channels in SW Implementation of the McEliece PKC
INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 13

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es

experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

4

0 50 100 150 200 250 300
9740000

9760000

9780000

9800000

9820000

9840000

9860000

t=50
mean=9831224
std=10364
t=49
mean=9766812
std=10294

cy
cl

es
experiment number

Fig. 2: Decryption times for ciphertext containing 50 error
bits compared to decryption times for ciphertext containing
49 error bits.

B. Attack against Secret Permutation and Syndrome Inversion

In this section, we present results of attacks described in
subsection III-B. However, to point out these time differ-
ences, we attacked the system with applied countermeasures
described in section V.

This attack and the attack described in [9] are strongly tied,
since they exploit the same vulnerability and time differences
caused by revealing that σ3 = 0 are added one to another.
We can see this addition in Table I. This attack is required on
the chosen platform for approximately 25 minutes to gain 102
equations like Equation 3, where σ3(f1, f2, f3, f4) = 0.

Permutation Inversion Decryption
σ3 �= 0 141169 160546 17637240
σ3 = 0 60 95770 17416713
difference 141109 64776 220527

TABLE I: Attacks against permutation and inversion.

V. COUNTERMEASURES AGAINST ELP BASED ATTACK

In this section, we present countermeasures against attacks
based on manipulation of error locator polynomial σ(X) and
their efficiency. In the following, we show the code causing
timing differences in case of t = 50 compared to case of
t = 49.

A. Naive implementation

In Code 1, we can see the naive implementation of deter-
mining error vector. Determination is done by evaluation of
polynomial σ(X) for each element from the support Γ. The
critical operation is on line 3, which represents the evaluation
of the element αl, where l = 0, . . . , n− 1.

Code 1: Naive implementation.
1 ...
2 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

3 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

4 if (tmp_eval == 0) {
5 BPU_gf2VecSetBit(error, l, 1);
6 }
7 }
8 ...

Since the aim of following countermeasures is to ensure
constant execution time of Code 1, we provide graph of times
needed to execute mentioned block of code in Figure 3.

0 20 40 60 80 100 120 140 160
3230000

3240000

3250000

3260000

3270000

3280000

3290000

3300000

3310000

t=50
mean=3304830
std=254
t=49
mean=3239563
std=330

experiment number

cy
cl

es

Fig. 3: Evaluation of σ(X) without countermeasures.

B. Practical countermeasures

In Code 2, we can see the implementation of polynomial
evaluation where running time directly depends on a degree
of evaluated polynomial.

Code 2: Polynomial evaluation.
1 BPU_T_GF2_16x BPU_gf2xPolyEval(const

BPU_T_GF2_16x_Poly *poly, const
BPU_T_GF2_16x x, const BPU_T_Math_Ctx
*math_ctx) {

2 int i;
3 BPU_T_GF2_16x ret = 0;
4 ret = poly->coef[0];
5

6 for (i = 1; i <= poly->deg; i++) {
7 ret = ret ˆ

BPU_gf2xMulModT(poly->coef[i],
BPU_gf2xPowerModT(x, i, math_ctx),
math_ctx);

8 }
9 return ret;

10 }

Since the number of iterations in Code 2 depends on the
degree of polynomial σ(X), it is necessary to artificially
increase its degree to the expected value. In this case, it is

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

Side Channels in SW Implementation of the McEliece PKC

MARCH 2016 • VOLUME VIII • NUMBER 114

INFOCOMMUNICATIONS JOURNAL

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

5

the number of errors that the decoding algorithm is capable
of correcting. The degree of polynomial σ(X) is increased at
line 2 of Code 3.

However, just raising the degree of polynomial σ(X) is
insufficient. This significant time difference is caused by the
“If” statement in line 4 of Code 1.

Code 3: Countermeasure 1.

1 ...
2 sigma.deg = ctx->t;
3 for (l = 0; l <

ctx->code_spec->goppa->support_len;
l++) {

4 tmp_eval = BPU_gf2xPolyEval(&sigma,
ctx->math_ctx->exp_table[l],
ctx->math_ctx);

5 BPU_gf2VecSetBit(error, l, !tmp_eval);
6 }
7 ...

Essential part of polynomial evaluation is multiplication of
elements in the finite field. This is realized by using look-
up tables, but as we can see in Code 4, this operation can
differ according to its inputs. More specifically, if one of the
elements a or b is 0, then the time needed to compute their
product is shorter, because look-up tables are not used. This
is caused by the “if” statement in line 3; when the condition
is evaluated as true then 0 is returned immediately.

Code 4: Naive implementation of multiplication in finite field.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 int power;
4 if (a == 0 || b == 0)
5 return 0;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord;

7 return math_ctx->exp_table[power];
8 }
9 ...

To avoid this difference, we decided to compute the product
by look-up tables for every case and then find if one of the
inputs is 0. This can be done by integer multiplication as is
shown in Code Code 5, line 5. The result of the multiplication
is saved in a new variable, which is, if needed, returned instead
of the value computed by look-up tables.

Code 5: Multiplication in finite field with simple countermea-
sure.
1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_32x condition;
4 BPU_T_GF2_16x candidate;
5 int power;
6 power = (math_ctx->log_table[a] +

math_ctx->log_table[b]) %
math_ctx->ord

7 candidate = math_ctx->exp_table[power];
8 if (condition = (a * b))
9 return candidate;

10 return condition;
11 }
12 ...

After these modifications, time differences between evalua-
tion times for polynomials of degree 50 and 49 are decreased,
but it is still easy to distinguish between polynomials with 50
roots and polynomials with significantly less roots. It means
that if attacker adds one more error to the ciphertext, then the
polynomial σ(X) is of degree 50, but it does not have 50 roots
in a chosen finite field.

After the polynomial is evaluated, the appropriate bit is set
to 1 if the result of evaluation is 0; otherwise, it is set to 0.
This operation is executed by a macro shown in Code 6. We
can see that setting the bit to 0 needs one more operation
compared to setting the bit to 1.

Code 6: Naive implementation of bit setting macro.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 if (bit) { \
3 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] |=
((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size);\

4 } \
5 else { \
6 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

7 }

Countermeasure shown in Code 7 not only provides the
same number of operations, but also removes branching that
can be used to attack the system by power analysis.

Code 7: Bit setting macro with countermeasure.
1 #define BPU_gf2VecSetBit(v_pointer, i, bit)
2 (v_pointer)->elements[(i) /

(v_pointer)->element_bit_size] &=
((BPU_T_GF2) (0xFFFFFFFFu)) ˆ
(((BPU_T_GF2) 1) << ((i) %
(v_pointer)->element_bit_size));\

3 (v_pointer)->elements[(i) /
(v_pointer)->element_bit_size] |=
((BPU_T_GF2) bit) << ((i) %
(v_pointer)->element_bit_size);

Side Channels in SW Implementation of the McEliece PKC
INFOCOMMUNICATIONS JOURNAL

MARCH 2016 • VOLUME VIII • NUMBER 1 15

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

6

Another operation used during the evaluation of polynomial
σ(X) is BPU gf2xPowerModT(x, i, math ctx). This operation
is used to compute the ith power of the element x ∈ F(2m).
Execution time of this operation depends on parameters x and
i. If one of these parameters is 0, then execution time is shorter.
To avoid using this operation, we implemented polynomial
evaluation by Horner’s method, described by Equation 4,
which uses only multiplication:

σ(X) =

n∑
i=0

aiX
i. (4)

After applying the previous countermeasures, the only more
complex, thus the most vulnerable operation, is multiplication
of elements X,Y ∈ F(2m). When we look at its implementa-
tion in Code 5, we can see that the same number of instructions
should be used during its execution. Nevertheless, different
inputs a and b cause different execution times for this block
of code, more specifically, modulo operation in line 5.

Logarithmic and exponential tables are implemented in the
following way:
E[i] = αi, where i = 0, . . . , 2m − 2 and E[2m − 1] = 0.
L[E[i]] = i, where i = 0, . . . , 2m − 2 and L[0] = 2m − 1.
Since D = 2m − 1 is used as a divisor, modulo operation
needs more time if a dividend L[a] +L[b] >= D than in case
L[a] + L[b] < D. If a = 0 or b = 0, then L[a] + L[b] >= D;
therefore, zero coefficients of σ(X) cause this time difference.

In Code 8, modulo operation is replaced by the code at
lines 6 − 10. This replacement of modulo operation is not
only a time constant, but also faster than the previous version.
Unfortunately,it is not possible to apply this countermeasure
on cryptosystem where parameter n �= 2m.

Code 8: With countermeasure 6.

1 ...
2 BPU_T_GF2_16x BPU_gf2xMulModT(BPU_T_GF2_16x

a, BPU_T_GF2_16x b, const
BPU_T_Math_Ctx *math_ctx) {

3 BPU_T_GF2_16x candidate;
4 BPU_T_GF2_16x exp, bit, carry_mask = 1 <<

math_ctx->mod_deg;
5 BPU_T_GF2_32x condition;
6 exp = math_ctx->log_table[a] +

math_ctx->log_table[b];
7 exp = exp + 1;
8 bit = (exp & carry_mask);
9 exp = (exp & math_ctx->ord);

10 exp = (exp & math_ctx->ord) - !bit;
11 candidate = math_ctx->exp_table[exp];
12 if (condition = (a * b))
13 return candidate;
14 return condition;
15 }
16 ...

In Figure 4, we can see that measured times for polynomials
σ(X) of degrees 50 and 49 are approximately the same.

0 100 200 300 400 500 600
500

1000

1500

2000

2500

3000

3500

4000

4500 +2.408e6

t=50
mean=2412099
std=234
t=49
mean=2412113
std=178

cy
cl

es

experiment number

Fig. 4: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 49.

However, in Figure 5, it is shown that time differences
between evaluation times for polynomials σ(X) of degree 50
and 1 are still significant enough to say that algorithms are
not time constant.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000 +2.406e6

t=50
mean=2411950
std=310
t=1
mean=2410320
std=303

experiment number

cy
cl

es

Fig. 5: Evaluation of σ(X) - deg(σ(X)) = 50 compared to
deg(σ(X)) = 1.

Since frequently used data can be stored in the CPU cache
for faster access of processor to data, time differences pointed
out in Figure 5 could be caused by this “caching”. We decided
to replace multiplication done by logarithmic and exponential
tables by time constant implementation of modular arithmetic
as listed in Code 9. Unfortunately, this multiplication is
approximately 2.5 times slower.

7

Code 9: Countermeasure 7.

1 BPU_T_GF2_16x BPU_gf2xMulModC(BPU_T_GF2_16x
a, BPU_T_GF2_16x b, BPU_T_GF2_16x mod,
BPU_T_GF2_16x mod_deg) {

2 BPU_T_GF2_16x ret=0, i;
3 for(i = 0; i < mod_deg; i++) {
4 b ˆ= ((b >> mod_deg) & 1) * mod;
5 ret ˆ= ((a >> i) & 1) * b;
6 b = b << 1;
7 }
8 return ret;
9 }

In Figure 6, we can see that evaluation times for polynomi-
als σ(X) of degrees 50 and 49 are approximately the same.
However, they are not exactly the same, but oscillate around
the same values; see Table II.

0 100 200 300 400 500 600
8895000

8900000

8905000

8910000

8915000

8920000

8925000

8930000

8935000

t=50
mean=8923571
std=5912
t=49
mean=8923430
std=5797

experiment number

cy
cl

es

Fig. 6: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8923666 8921522 8919976 8919626
deg(σ(X)) = 49 8924178 8920578 8919431 8920110
Difference −512 944 545 −484

TABLE II: Evaluation times of σ(X) of degree 50 and 49.

Similar results were achieved when evaluation of poly-
nomial σ(X) of degree 50 was compared to evaluation of
polynomial σ(X) of degree 1; see Figure 7 and Table III.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000 +8.907e6

t=50
mean=8913037
std=1650
t=1
mean=8913073
std=1638

cy
cl

es

experiment number

Fig. 7: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8916516 8912341 8912524 8913037
deg(σ(X)) = 1 8917032 8911855 8912581 8913073
Difference −516 486 −57 −36

TABLE III: Evaluation times of σ(X) of degree 50 and 1.

VI. CONCLUSION

Proposed countermeasures should avoid the attack described
in subsection III-A in a way in which it is not possible to
distinguish if attacker guessed the correct position of bit in the
error vector or not. On the other side, these countermeasures
slow down the evaluation of polynomial σ(X). This secured
code needs 3 times longer time than naive implementation,
where the biggest difference is caused by multiplication in
finite field. This operation can be easily implemented in hard-
ware; therefore, we suggest to construct a hybrid implemen-
tation of the McEliece cryptosystem. Hybrid implementation
could use hardware implementation of time critical operations
and software implementation of higher logic.

REFERENCES

[1] Rivest R. L., Shamir A., and Adleman L., ”A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
1978, pp. 120-126.

[2] National Institute of Standards and Technology, ”FIPS PUB 186-4 FED-
ERAL INFORMATION PROCESSING STANDARDS PUBLICATION
Digital Signature Standard (DSS),” 2013.

[3] Gulyás A., Klein M., Kudláč J., Machovec F., and Uhrecký F., ”Reálna
implementácia code-based cryptography,” Unpublished master’s project,
Slovak University of Technology in Bratislava, Slovakia, 2014.

[4] Patterson N., ”The algebraic decoding of Goppa codes,” IEEE Transac-
tions on Information Theory 21, 2, 1975, pp. 203-207.

[5] McEliece R. J., ”A public-key cryptosystem based on algebraic coding
theory,” DSN progress report, Vol. 42-44., 1978, pp. 114-116.

[6] Shoufan A., et al., ”A novel processor architecture for McEliece cryp-
tosystem and FPGA platforms,” In Proceedings of the 2009 20th IEEE
International Conference on Application-specific Systems, Architectures
and Processors (ASAP ’09), IEEE Computer Society, 2009, pp. 98-105.

[7] Strenzke F., Tews E., Molter H. G., Overbeck R., and Shoufan A.,
”Side channels in the mceliece PKC,” In Proceedings of the Second
International Workshop, Post-Quantum Cryptography, 2008, pp. 216-229.

[8] Strenzke F., ”A timing attack against the secret permutation in the
mceliece PKC,” In Proceedings of the Third international conference
on Post-Quantum Cryptography (PQCrypto’10), Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 95-107.

7

Code 9: Countermeasure 7.

1 BPU_T_GF2_16x BPU_gf2xMulModC(BPU_T_GF2_16x
a, BPU_T_GF2_16x b, BPU_T_GF2_16x mod,
BPU_T_GF2_16x mod_deg) {

2 BPU_T_GF2_16x ret=0, i;
3 for(i = 0; i < mod_deg; i++) {
4 b ˆ= ((b >> mod_deg) & 1) * mod;
5 ret ˆ= ((a >> i) & 1) * b;
6 b = b << 1;
7 }
8 return ret;
9 }

In Figure 6, we can see that evaluation times for polynomi-
als σ(X) of degrees 50 and 49 are approximately the same.
However, they are not exactly the same, but oscillate around
the same values; see Table II.

0 100 200 300 400 500 600
8895000

8900000

8905000

8910000

8915000

8920000

8925000

8930000

8935000

t=50
mean=8923571
std=5912
t=49
mean=8923430
std=5797

experiment number

cy
cl

es

Fig. 6: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8923666 8921522 8919976 8919626
deg(σ(X)) = 49 8924178 8920578 8919431 8920110
Difference −512 944 545 −484

TABLE II: Evaluation times of σ(X) of degree 50 and 49.

Similar results were achieved when evaluation of poly-
nomial σ(X) of degree 50 was compared to evaluation of
polynomial σ(X) of degree 1; see Figure 7 and Table III.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000 +8.907e6

t=50
mean=8913037
std=1650
t=1
mean=8913073
std=1638

cy
cl

es

experiment number

Fig. 7: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8916516 8912341 8912524 8913037
deg(σ(X)) = 1 8917032 8911855 8912581 8913073
Difference −516 486 −57 −36

TABLE III: Evaluation times of σ(X) of degree 50 and 1.

VI. CONCLUSION

Proposed countermeasures should avoid the attack described
in subsection III-A in a way in which it is not possible to
distinguish if attacker guessed the correct position of bit in the
error vector or not. On the other side, these countermeasures
slow down the evaluation of polynomial σ(X). This secured
code needs 3 times longer time than naive implementation,
where the biggest difference is caused by multiplication in
finite field. This operation can be easily implemented in hard-
ware; therefore, we suggest to construct a hybrid implemen-
tation of the McEliece cryptosystem. Hybrid implementation
could use hardware implementation of time critical operations
and software implementation of higher logic.

REFERENCES

[1] Rivest R. L., Shamir A., and Adleman L., ”A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
1978, pp. 120-126.

[2] National Institute of Standards and Technology, ”FIPS PUB 186-4 FED-
ERAL INFORMATION PROCESSING STANDARDS PUBLICATION
Digital Signature Standard (DSS),” 2013.

[3] Gulyás A., Klein M., Kudláč J., Machovec F., and Uhrecký F., ”Reálna
implementácia code-based cryptography,” Unpublished master’s project,
Slovak University of Technology in Bratislava, Slovakia, 2014.

[4] Patterson N., ”The algebraic decoding of Goppa codes,” IEEE Transac-
tions on Information Theory 21, 2, 1975, pp. 203-207.

[5] McEliece R. J., ”A public-key cryptosystem based on algebraic coding
theory,” DSN progress report, Vol. 42-44., 1978, pp. 114-116.

[6] Shoufan A., et al., ”A novel processor architecture for McEliece cryp-
tosystem and FPGA platforms,” In Proceedings of the 2009 20th IEEE
International Conference on Application-specific Systems, Architectures
and Processors (ASAP ’09), IEEE Computer Society, 2009, pp. 98-105.

[7] Strenzke F., Tews E., Molter H. G., Overbeck R., and Shoufan A.,
”Side channels in the mceliece PKC,” In Proceedings of the Second
International Workshop, Post-Quantum Cryptography, 2008, pp. 216-229.

[8] Strenzke F., ”A timing attack against the secret permutation in the
mceliece PKC,” In Proceedings of the Third international conference
on Post-Quantum Cryptography (PQCrypto’10), Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 95-107.

Side Channels in SW Implementation of the McEliece PKC

MARCH 2016 • VOLUME VIII • NUMBER 116

INFOCOMMUNICATIONS JOURNAL

8

[9] Strenzke F., ”Timing attacks against the syndrome inversion in code-based
cryptosystems,” In Proceedings of the Fifth International Conference on
Post-Quantum Cryptography - PQCrypto 2013, pp. 217-230.

[10] Paoloni G., ”How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” White Paper, 2010.

APPENDIX A
ALGORITHMS

Algorithm 4 Patterson Algorithm.

Require: n-bit word c, Goppa polynomial g (X).
Ensure: n-bit error vector e.

1: Compute syndrome polynomial Sc (X) =

cHT
(
Xt−1, . . . , X, 1

)T
, where H is control matrix

for Goppa code generated by polynomial g (X).
2: Invert S−1

c (X).

3: Let τ (X) =
√
S−1

c (X) +X .
4: Find polynomials a (X) and b (X), so that b (X) τ (X) =

a (X) mod g (X), and deg (a) ≤ � t
2�.

5: Determine error locator polynomial σ (X) = a2 (X) +
xb2 (X), where deg (σ) ≤ t.

6: Reconstruct the error vector e = (σ (α0) , . . . , σ (αn−1))⊕
(1, . . . , 1).

7: return e

Algorithm 5 Extended Euclidean Algorithm.

Require: τ (X) , g (X) , dbreak
Ensure: a (X) , b (X) such that b (X) τ (X) = a (X)

mod g (X) and deg (a) ≤ dbreak
1: r−1 (X) = g (X)
2: r0 (X) = τ (X)
3: b−1 (X) = 0
4: b0 (X) = 1
5: i = 0
6: while deg (ri) > dbreak do
7: i = i+ 1
8: qi (X) = ri−2 (X) /ri−1 (X)
9: ri (X) = ri−2 (X) mod ri−1 (X)

10: bi (X) = bi−2 (X) + qi (X) bi−1 (X)

11: a (X) = ri (X)
12: b (X) = bi (X)
13: return a (X) and b (X)

Marek Klein received his Bc. degree in Modeling
and Simulation of Event Systems and Ing. degree in
Security of Information Technologies from Slovak
University of Technology in Bratislava in 2013 and
2015 respectively. He currently works as developer
at Disig, a.s. in the Department of Experimental
Development.

8

[9] Strenzke F., ”Timing attacks against the syndrome inversion in code-based
cryptosystems,” In Proceedings of the Fifth International Conference on
Post-Quantum Cryptography - PQCrypto 2013, pp. 217-230.

[10] Paoloni G., ”How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” White Paper, 2010.

APPENDIX A
ALGORITHMS

Algorithm 4 Patterson Algorithm.

Require: n-bit word c, Goppa polynomial g (X).
Ensure: n-bit error vector e.

1: Compute syndrome polynomial Sc (X) =

cHT
(
Xt−1, . . . , X, 1

)T
, where H is control matrix

for Goppa code generated by polynomial g (X).
2: Invert S−1

c (X).

3: Let τ (X) =
√
S−1

c (X) +X .
4: Find polynomials a (X) and b (X), so that b (X) τ (X) =

a (X) mod g (X), and deg (a) ≤ � t
2�.

5: Determine error locator polynomial σ (X) = a2 (X) +
xb2 (X), where deg (σ) ≤ t.

6: Reconstruct the error vector e = (σ (α0) , . . . , σ (αn−1))⊕
(1, . . . , 1).

7: return e

Algorithm 5 Extended Euclidean Algorithm.

Require: τ (X) , g (X) , dbreak
Ensure: a (X) , b (X) such that b (X) τ (X) = a (X)

mod g (X) and deg (a) ≤ dbreak
1: r−1 (X) = g (X)
2: r0 (X) = τ (X)
3: b−1 (X) = 0
4: b0 (X) = 1
5: i = 0
6: while deg (ri) > dbreak do
7: i = i+ 1
8: qi (X) = ri−2 (X) /ri−1 (X)
9: ri (X) = ri−2 (X) mod ri−1 (X)

10: bi (X) = bi−2 (X) + qi (X) bi−1 (X)

11: a (X) = ri (X)
12: b (X) = bi (X)
13: return a (X) and b (X)

Marek Klein received his Bc. degree in Modeling
and Simulation of Event Systems and Ing. degree in
Security of Information Technologies from Slovak
University of Technology in Bratislava in 2013 and
2015 respectively. He currently works as developer
at Disig, a.s. in the Department of Experimental
Development.

8

[9] Strenzke F., ”Timing attacks against the syndrome inversion in code-based
cryptosystems,” In Proceedings of the Fifth International Conference on
Post-Quantum Cryptography - PQCrypto 2013, pp. 217-230.

[10] Paoloni G., ”How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” White Paper, 2010.

APPENDIX A
ALGORITHMS

Algorithm 4 Patterson Algorithm.

Require: n-bit word c, Goppa polynomial g (X).
Ensure: n-bit error vector e.

1: Compute syndrome polynomial Sc (X) =

cHT
(
Xt−1, . . . , X, 1

)T
, where H is control matrix

for Goppa code generated by polynomial g (X).
2: Invert S−1

c (X).

3: Let τ (X) =
√
S−1

c (X) +X .
4: Find polynomials a (X) and b (X), so that b (X) τ (X) =

a (X) mod g (X), and deg (a) ≤ � t
2�.

5: Determine error locator polynomial σ (X) = a2 (X) +
xb2 (X), where deg (σ) ≤ t.

6: Reconstruct the error vector e = (σ (α0) , . . . , σ (αn−1))⊕
(1, . . . , 1).

7: return e

Algorithm 5 Extended Euclidean Algorithm.

Require: τ (X) , g (X) , dbreak
Ensure: a (X) , b (X) such that b (X) τ (X) = a (X)

mod g (X) and deg (a) ≤ dbreak
1: r−1 (X) = g (X)
2: r0 (X) = τ (X)
3: b−1 (X) = 0
4: b0 (X) = 1
5: i = 0
6: while deg (ri) > dbreak do
7: i = i+ 1
8: qi (X) = ri−2 (X) /ri−1 (X)
9: ri (X) = ri−2 (X) mod ri−1 (X)

10: bi (X) = bi−2 (X) + qi (X) bi−1 (X)

11: a (X) = ri (X)
12: b (X) = bi (X)
13: return a (X) and b (X)

Marek Klein received his Bc. degree in Modeling
and Simulation of Event Systems and Ing. degree in
Security of Information Technologies from Slovak
University of Technology in Bratislava in 2013 and
2015 respectively. He currently works as developer
at Disig, a.s. in the Department of Experimental
Development.

7

Code 9: Countermeasure 7.

1 BPU_T_GF2_16x BPU_gf2xMulModC(BPU_T_GF2_16x
a, BPU_T_GF2_16x b, BPU_T_GF2_16x mod,
BPU_T_GF2_16x mod_deg) {

2 BPU_T_GF2_16x ret=0, i;
3 for(i = 0; i < mod_deg; i++) {
4 b ˆ= ((b >> mod_deg) & 1) * mod;
5 ret ˆ= ((a >> i) & 1) * b;
6 b = b << 1;
7 }
8 return ret;
9 }

In Figure 6, we can see that evaluation times for polynomi-
als σ(X) of degrees 50 and 49 are approximately the same.
However, they are not exactly the same, but oscillate around
the same values; see Table II.

0 100 200 300 400 500 600
8895000

8900000

8905000

8910000

8915000

8920000

8925000

8930000

8935000

t=50
mean=8923571
std=5912
t=49
mean=8923430
std=5797

experiment number

cy
cl

es

Fig. 6: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8923666 8921522 8919976 8919626
deg(σ(X)) = 49 8924178 8920578 8919431 8920110
Difference −512 944 545 −484

TABLE II: Evaluation times of σ(X) of degree 50 and 49.

Similar results were achieved when evaluation of poly-
nomial σ(X) of degree 50 was compared to evaluation of
polynomial σ(X) of degree 1; see Figure 7 and Table III.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000 +8.907e6

t=50
mean=8913037
std=1650
t=1
mean=8913073
std=1638

cy
cl

es

experiment number

Fig. 7: Evaluation of σ(X) - countermeasure no. 7.

T1 T2 T3 T4

deg(σ(X)) = 50 8916516 8912341 8912524 8913037
deg(σ(X)) = 1 8917032 8911855 8912581 8913073
Difference −516 486 −57 −36

TABLE III: Evaluation times of σ(X) of degree 50 and 1.

VI. CONCLUSION

Proposed countermeasures should avoid the attack described
in subsection III-A in a way in which it is not possible to
distinguish if attacker guessed the correct position of bit in the
error vector or not. On the other side, these countermeasures
slow down the evaluation of polynomial σ(X). This secured
code needs 3 times longer time than naive implementation,
where the biggest difference is caused by multiplication in
finite field. This operation can be easily implemented in hard-
ware; therefore, we suggest to construct a hybrid implemen-
tation of the McEliece cryptosystem. Hybrid implementation
could use hardware implementation of time critical operations
and software implementation of higher logic.

REFERENCES

[1] Rivest R. L., Shamir A., and Adleman L., ”A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
1978, pp. 120-126.

[2] National Institute of Standards and Technology, ”FIPS PUB 186-4 FED-
ERAL INFORMATION PROCESSING STANDARDS PUBLICATION
Digital Signature Standard (DSS),” 2013.

[3] Gulyás A., Klein M., Kudláč J., Machovec F., and Uhrecký F., ”Reálna
implementácia code-based cryptography,” Unpublished master’s project,
Slovak University of Technology in Bratislava, Slovakia, 2014.

[4] Patterson N., ”The algebraic decoding of Goppa codes,” IEEE Transac-
tions on Information Theory 21, 2, 1975, pp. 203-207.

[5] McEliece R. J., ”A public-key cryptosystem based on algebraic coding
theory,” DSN progress report, Vol. 42-44., 1978, pp. 114-116.

[6] Shoufan A., et al., ”A novel processor architecture for McEliece cryp-
tosystem and FPGA platforms,” In Proceedings of the 2009 20th IEEE
International Conference on Application-specific Systems, Architectures
and Processors (ASAP ’09), IEEE Computer Society, 2009, pp. 98-105.

[7] Strenzke F., Tews E., Molter H. G., Overbeck R., and Shoufan A.,
”Side channels in the mceliece PKC,” In Proceedings of the Second
International Workshop, Post-Quantum Cryptography, 2008, pp. 216-229.

[8] Strenzke F., ”A timing attack against the secret permutation in the
mceliece PKC,” In Proceedings of the Third international conference
on Post-Quantum Cryptography (PQCrypto’10), Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 95-107.

8

[9] Strenzke F., ”Timing attacks against the syndrome inversion in code-based
cryptosystems,” In Proceedings of the Fifth International Conference on
Post-Quantum Cryptography - PQCrypto 2013, pp. 217-230.

[10] Paoloni G., ”How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” White Paper, 2010.

APPENDIX A
ALGORITHMS

Algorithm 4 Patterson Algorithm.

Require: n-bit word c, Goppa polynomial g (X).
Ensure: n-bit error vector e.

1: Compute syndrome polynomial Sc (X) =

cHT
(
Xt−1, . . . , X, 1

)T
, where H is control matrix

for Goppa code generated by polynomial g (X).
2: Invert S−1

c (X).

3: Let τ (X) =
√

S−1
c (X) +X .

4: Find polynomials a (X) and b (X), so that b (X) τ (X) =
a (X) mod g (X), and deg (a) ≤ � t

2�.
5: Determine error locator polynomial σ (X) = a2 (X) +

xb2 (X), where deg (σ) ≤ t.
6: Reconstruct the error vector e = (σ (α0) , . . . , σ (αn−1))⊕

(1, . . . , 1).
7: return e

Algorithm 5 Extended Euclidean Algorithm.

Require: τ (X) , g (X) , dbreak
Ensure: a (X) , b (X) such that b (X) τ (X) = a (X)

mod g (X) and deg (a) ≤ dbreak
1: r−1 (X) = g (X)
2: r0 (X) = τ (X)
3: b−1 (X) = 0
4: b0 (X) = 1
5: i = 0
6: while deg (ri) > dbreak do
7: i = i+ 1
8: qi (X) = ri−2 (X) /ri−1 (X)
9: ri (X) = ri−2 (X) mod ri−1 (X)

10: bi (X) = bi−2 (X) + qi (X) bi−1 (X)

11: a (X) = ri (X)
12: b (X) = bi (X)
13: return a (X) and b (X)

Marek Klein received his Bc. degree in Modeling
and Simulation of Event Systems and Ing. degree in
Security of Information Technologies from Slovak
University of Technology in Bratislava in 2013 and
2015 respectively. He currently works as developer
at Disig, a.s. in the Department of Experimental
Development.

