
Network Coding as a Service

DECEMBER 2015 • VOLUME VII • NUMBER 42

INFOCOMMUNICATIONS JOURNAL

1

Network Coding as a Service
Dávid Szabó1, Attila Csoma1, Péter Megyesi1, András Gulyás1 2, Frank H.P. Fitzek3 4

Abstract—Network Coding (NC) shows great potential in
various communication scenarios through changing the packet
forwarding principles of current networks. It can improve
not only throughput, latency, reliability and security but also
alleviates the need of coordination in many cases. However, it
is still controversial due to widespread misunderstandings on
how to exploit the advantages of it. The aim of the paper
is to facilitate the usage of NC by (i) explaining how it can
improve the performance of the network (regardless the existence
of any butterfly in the network), (ii) showing how Software
Defined Networking (SDN) can resolve the crucial problems
of deployment and orchestration of NC elements, and (iii)
providing a prototype architecture with measurement results on
the performance of our network coding capable software router
implementation compared by fountain codes.

Index Terms—Network Coding; SDN; Click; VNF

I. INTRODUCTION

According to the traditional concept of packet switched
networks independent data flows may share network devices
but the information itself remains separated. NC breaks up this
principle as it treats these flows as algebraically combinable
information, thereby when two flows f1, f2 enter a node
Kirchoff’s law doesn’t hold any more; the output appears not
as f1 + f2 but F (f1, f2).

In the seminal paper [1] Ahlswede at al. show a butterfly
topology for illustrating that even a simple bitwise XOR, i.e.
F (f1, f2) = f1XORf2, used at the proper node of the network
can lead to a considerable throughput gain. Unfortunately this
nice example also caused confusion as many people mistak-
enly think that NC can only be used in such a far-fetched,
artificial situation. This misunderstanding often appears in
literature [2] and overshadows its intense evolution during the
last decade.

Nowadays NC is not only about butterflies and XOR opera-
tions but instead creating linear combinations in a distributed
way using random number generators, known as “random
linear network code” (RLNC) [3]. RLNC also introduces
recoding, i.e. to recombine the flows without first decoding
them thus fundamentally changes nodes’ behaviour since it
replaces the store-and-forward approach with compute-and-
forward. This is ground breaking to all other coding strategies
that are only end-to-end based (Reed-Solomon, Raptor, etc.)

Manuscript received: August 27, 2015. Revised: November 23, 2015.
1Budapest University of Technology and Economics, Hungary
1HSNLab, Dept. of Telecommunications and Media Informatics
2MTA-BME Information systems research group
3Technische Universität Dresden, Germany
45G Lab Germany
Email: {szabod,csoma,megyesi,gulyas}@tmit.bme.hu

frank.fitzek@tu-dresden.de

and leads to gain not only for throughput, but for latency,
security and complexity as well, furthermore it is feasible for
any topology.

However, for the efficient use of RLNC we have to deploy
encoder, decoder and recoder elements in the network and
we have to take care of steering the traffic properly over
them. At this point Software Defined Networking with Net-
work Function Virtualization (NFV) can be the “door opener”
technologies for RLNC, since they enable to implement RLNC
specific features as Virtualized Network Functions (VNFs) [4]
that can be connected, or chained, to create communication
services. These VNFs then can easily be orchestrated by the
control layer of SDN.

The integration of network coding into SDN has alreay been
proposed. [5] and [6] discuss the possibilities of using XOR
type network coding through the extension of OpenFlow pro-
tocol [7] and functions of switches. In [8] authors investigate
the delay bounds in survivable routing with network coding in
SDN. In this paper we extend our prior works [9], [10] that is
orthogonal to the aforementioned ones as we investigate the
usability of RLNC through NFV in SDNs, that doesn’t require
to modify existing devices or protocols (e.g. OpenFlow), and
also provide a proof of concept.

In the following we give an overview about RLNC and also
highlight its features that make it fundamentally different from
the generally used block codes (Section II), then we describe
our SDN prototype architecture - with implementation details
- that enables the definition, configuration and automated
deployment of RLNC specific VNFs (Section III), finally
we provide an extensive comparison about the performance
of RLNC and block codes with analytical and measurement
results side-by-side (Section IV). Section V concludes the
paper with future work.

II. RANDOM LINEAR NETWORK CODING

A. Fundamentals

RLNC treats data in the form of generations and symbols.
A symbol �s is a vector of Galois Field (GF) elements that
represent some data depending on the number of elements n
and the size of the GF f according to |�s| = n · log2(f) [byte].
For example 8 elements in GF(2) can represent 1 byte. A
generation G comprises g symbols of size |�s|, so it can
represent g · |�s| bytes of data and it is arranged into a matrix
M = [s1

ᵀ, s2
ᵀ, ..., sg

ᵀ].
In order to create a coded symbol �sc a coding vector �v

is required, that contains a coefficient – which is an element
of GF – for each symbol in the generation. To encode a new
symbol �sc from a generation at the source M is multiplied with
a randomly generated coding vector �v of length g, �sc = M·�vᵀ.

2

In this way we can produce g+e coded symbols, where e ∈ Z
is the number of extra symbols as RLNC is a rate-less code.

When a coded symbol is transmitted on the network it is
accompanied by its coding vector, and together they form a
coded packet pc = {�v, �sc}. In order to successfully decode a
generation the decoder has to receive g linearly independent
symbols and coding vectors from that generation. All received
symbols are placed in the matrix Sc = [�sc

ᵀ
1 , �sc

ᵀ
2 , ..., �sc

ᵀ
g]

and all coding vectors are placed in the matrix V =
[�v1

ᵀ, �v2
ᵀ, ..., �vg

ᵀ]. The original data then can be decoded as
M = Sc ·V−1.

In practice approximately any g coded symbols are enough
for a successful decoding of generation G. Certainly it is
possible to receive a linearly dependent symbol but the chances
of this is negligible by using at least GF(8), furthermore,
sending another randomly coded symbol is a much looser
constraint compared to when no coding is used, where exactly
all g unique, original symbols have to be collected.

However, the most important feature of RLNC is recoding.
Any node that received at least g′ ∈ [2, g] linearly independent
symbols from a generation and its rank is equal to the rank of
V, can recode. All received symbols are placed in the matrix
Sc = [�sc

ᵀ
1 , �sc

ᵀ
2 , ..., �sc

ᵀ
g′] and all coding vectors in the matrix

V = [�v1
ᵀ, �v2

ᵀ, ..., �vg′
ᵀ]. To recode a symbol these matrices

are multiplied with a randomly generated vector �w of length
g′, �v = V · �wᵀ, �sc = Sc · �wᵀ. In practice this means that a
node that have received more than one symbol can recombine
those symbols into recoded symbols, similar to the way coded
symbols are constructed at the source, but without having to
wait for the whole generation. In other words, a node can
change its behaviour from store-and-forward to compute-and-
forward.

B. Insights of the benefits of RLNC

In order to shed some more light on this conceptual change
we take a closer look on three different coding schemes that
are carried out on a single path - multihop channel. This
restriction may seem strange at first glance but we have two
good reasons for doing this: (i) packet forwarding on the
Internet is mostly carried out in this way, and (ii) we would
like to dispel the common misunderstanding that NC cannot
be used in any other case than multicast.

Accordingly we assume an encoder E that delivers a
message comprises G packets to a decoder D. Along the path
packets forwarded by multiple relay nodes (Xs) and we also
assume error prone links with loss probability 0 ≤ ε ≤ 1
(Fig. 1). We consider the following three cases:
Block codes in end-to-end manner (E2E): In this scheme
encoding and decoding are performed only once by E and
D, respectively. The relay nodes only store-and-forward each
successfully received packet, implying that E should emit
enough amount of extra packets for the whole channel to
compensate the loss and to make sure that D can reconstruct
the message (Fig. 1a). This eventuates unnecessary traffic
loads on the links closer to E, which is particularly painful
when losses occur only on links far from E, and also increase
latency.

Block codes in hop-by-hop manner (HbH): In this scheme
we assume that relay nodes can also perform encoding and
decoding that enables to generate extra packets per hop in a
distributed way (Fig. 1b). This unburdens the network from
the unnecessary packets but also infuse extra latency as every
relay has to wait to start encoding until the full message is
decoded.
Random Linear Network Coding: RLNC enables for relays
to perform recoding, that is to create a coded packet from
the received ones without decoding them first (Fig. 1c). This
is far less complex than decode/encode procedure, hence
eventuates immediate forwarding, furthermore, it is completely
transparent, so decoding doesn’t require extra effort. This
greatly reduces latency and as it is carried out per hop requires
the same number of packets as the HbH scheme. However, in
order to use RLNC efficiently, first we have to deploy elements
with encoding, decoding and recoding capabilities and we
have to take care of steering the traffic over them.

In Section IV we provide an extensive comparison of RLNC
and block codes supported both analytical and measurement
results, but as the measurements were carried out on our SDN
architecture first we show how SDN and virtualization can
facilitate the integration process of RLNC in a seamless way.

III. SDN PROTOTYPE ARCHITECTURE

Here we give a brief introduction about SDN and Network
Function Virtualization (NFV), followed by the implementa-
tion details of RLNC capable elements, finally we introduce
the architecture which enables the definition, configuration and
automated deployment of these novel elements implementing
code centric operation in the network.

A. SDN and virtualization

The basic concept of SDN is to enable network innovation -
realizing new capabilities and addressing persistent problems
with networking -, which is almost impossible nowadays.
The problem lies in the distributed and heterogen nature of
current networks. There are closed, vendor specific hardwares,
softwares and firmwares across the network managed by
distributed control functions through different interfaces. This
leads to difficult and extensive design and operation.

SDN aims to change this by creating well defined abstrac-
tions of different network layers, that each has its proper
functionality and interfaces. In this sense the idea is somewhat
similar to the ISO/OSI conception, but instead of individual
devices it concerns the network as a whole with the following
features: (i) maintains the separation of the data and control
planes, (ii) uses uniform vendor-agnostic interface – one of
the most commonly used is OpenFlow [7] – between control
and data planes, (iii) treats the control plane in a logically,
centralized way that is realized using a network operating
system that constructs and presents a logical map of the entire
network to services or control applications implemented on top
of it, and (iv) slices and virtualises the underlying physical
network.

During its two decades evolution [11] the concept of SDN
inspired several novel technologies and turned out that it

Network Coding as a Service
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2015 • VOLUME VII • NUMBER 4 3

1

Network Coding as a Service
Dávid Szabó1, Attila Csoma1, Péter Megyesi1, András Gulyás1 2, Frank H.P. Fitzek3 4

Abstract—Network Coding (NC) shows great potential in
various communication scenarios through changing the packet
forwarding principles of current networks. It can improve
not only throughput, latency, reliability and security but also
alleviates the need of coordination in many cases. However, it
is still controversial due to widespread misunderstandings on
how to exploit the advantages of it. The aim of the paper
is to facilitate the usage of NC by (i) explaining how it can
improve the performance of the network (regardless the existence
of any butterfly in the network), (ii) showing how Software
Defined Networking (SDN) can resolve the crucial problems
of deployment and orchestration of NC elements, and (iii)
providing a prototype architecture with measurement results on
the performance of our network coding capable software router
implementation compared by fountain codes.

Index Terms—Network Coding; SDN; Click; VNF

I. INTRODUCTION

According to the traditional concept of packet switched
networks independent data flows may share network devices
but the information itself remains separated. NC breaks up this
principle as it treats these flows as algebraically combinable
information, thereby when two flows f1, f2 enter a node
Kirchoff’s law doesn’t hold any more; the output appears not
as f1 + f2 but F (f1, f2).

In the seminal paper [1] Ahlswede at al. show a butterfly
topology for illustrating that even a simple bitwise XOR, i.e.
F (f1, f2) = f1XORf2, used at the proper node of the network
can lead to a considerable throughput gain. Unfortunately this
nice example also caused confusion as many people mistak-
enly think that NC can only be used in such a far-fetched,
artificial situation. This misunderstanding often appears in
literature [2] and overshadows its intense evolution during the
last decade.

Nowadays NC is not only about butterflies and XOR opera-
tions but instead creating linear combinations in a distributed
way using random number generators, known as “random
linear network code” (RLNC) [3]. RLNC also introduces
recoding, i.e. to recombine the flows without first decoding
them thus fundamentally changes nodes’ behaviour since it
replaces the store-and-forward approach with compute-and-
forward. This is ground breaking to all other coding strategies
that are only end-to-end based (Reed-Solomon, Raptor, etc.)

Manuscript received: August 27, 2015. Revised: November 23, 2015.
1Budapest University of Technology and Economics, Hungary
1HSNLab, Dept. of Telecommunications and Media Informatics
2MTA-BME Information systems research group
3Technische Universität Dresden, Germany
45G Lab Germany
Email: {szabod,csoma,megyesi,gulyas}@tmit.bme.hu

frank.fitzek@tu-dresden.de

and leads to gain not only for throughput, but for latency,
security and complexity as well, furthermore it is feasible for
any topology.

However, for the efficient use of RLNC we have to deploy
encoder, decoder and recoder elements in the network and
we have to take care of steering the traffic properly over
them. At this point Software Defined Networking with Net-
work Function Virtualization (NFV) can be the “door opener”
technologies for RLNC, since they enable to implement RLNC
specific features as Virtualized Network Functions (VNFs) [4]
that can be connected, or chained, to create communication
services. These VNFs then can easily be orchestrated by the
control layer of SDN.

The integration of network coding into SDN has alreay been
proposed. [5] and [6] discuss the possibilities of using XOR
type network coding through the extension of OpenFlow pro-
tocol [7] and functions of switches. In [8] authors investigate
the delay bounds in survivable routing with network coding in
SDN. In this paper we extend our prior works [9], [10] that is
orthogonal to the aforementioned ones as we investigate the
usability of RLNC through NFV in SDNs, that doesn’t require
to modify existing devices or protocols (e.g. OpenFlow), and
also provide a proof of concept.

In the following we give an overview about RLNC and also
highlight its features that make it fundamentally different from
the generally used block codes (Section II), then we describe
our SDN prototype architecture - with implementation details
- that enables the definition, configuration and automated
deployment of RLNC specific VNFs (Section III), finally
we provide an extensive comparison about the performance
of RLNC and block codes with analytical and measurement
results side-by-side (Section IV). Section V concludes the
paper with future work.

II. RANDOM LINEAR NETWORK CODING

A. Fundamentals

RLNC treats data in the form of generations and symbols.
A symbol �s is a vector of Galois Field (GF) elements that
represent some data depending on the number of elements n
and the size of the GF f according to |�s| = n · log2(f) [byte].
For example 8 elements in GF(2) can represent 1 byte. A
generation G comprises g symbols of size |�s|, so it can
represent g · |�s| bytes of data and it is arranged into a matrix
M = [s1

ᵀ, s2
ᵀ, ..., sg

ᵀ].
In order to create a coded symbol �sc a coding vector �v

is required, that contains a coefficient – which is an element
of GF – for each symbol in the generation. To encode a new
symbol �sc from a generation at the source M is multiplied with
a randomly generated coding vector �v of length g, �sc = M·�vᵀ.

2

In this way we can produce g+e coded symbols, where e ∈ Z
is the number of extra symbols as RLNC is a rate-less code.

When a coded symbol is transmitted on the network it is
accompanied by its coding vector, and together they form a
coded packet pc = {�v, �sc}. In order to successfully decode a
generation the decoder has to receive g linearly independent
symbols and coding vectors from that generation. All received
symbols are placed in the matrix Sc = [�sc

ᵀ
1 , �sc

ᵀ
2 , ..., �sc

ᵀ
g]

and all coding vectors are placed in the matrix V =
[�v1

ᵀ, �v2
ᵀ, ..., �vg

ᵀ]. The original data then can be decoded as
M = Sc ·V−1.

In practice approximately any g coded symbols are enough
for a successful decoding of generation G. Certainly it is
possible to receive a linearly dependent symbol but the chances
of this is negligible by using at least GF(8), furthermore,
sending another randomly coded symbol is a much looser
constraint compared to when no coding is used, where exactly
all g unique, original symbols have to be collected.

However, the most important feature of RLNC is recoding.
Any node that received at least g′ ∈ [2, g] linearly independent
symbols from a generation and its rank is equal to the rank of
V, can recode. All received symbols are placed in the matrix
Sc = [�sc

ᵀ
1 , �sc

ᵀ
2 , ..., �sc

ᵀ
g′] and all coding vectors in the matrix

V = [�v1
ᵀ, �v2

ᵀ, ..., �vg′
ᵀ]. To recode a symbol these matrices

are multiplied with a randomly generated vector �w of length
g′, �v = V · �wᵀ, �sc = Sc · �wᵀ. In practice this means that a
node that have received more than one symbol can recombine
those symbols into recoded symbols, similar to the way coded
symbols are constructed at the source, but without having to
wait for the whole generation. In other words, a node can
change its behaviour from store-and-forward to compute-and-
forward.

B. Insights of the benefits of RLNC

In order to shed some more light on this conceptual change
we take a closer look on three different coding schemes that
are carried out on a single path - multihop channel. This
restriction may seem strange at first glance but we have two
good reasons for doing this: (i) packet forwarding on the
Internet is mostly carried out in this way, and (ii) we would
like to dispel the common misunderstanding that NC cannot
be used in any other case than multicast.

Accordingly we assume an encoder E that delivers a
message comprises G packets to a decoder D. Along the path
packets forwarded by multiple relay nodes (Xs) and we also
assume error prone links with loss probability 0 ≤ ε ≤ 1
(Fig. 1). We consider the following three cases:
Block codes in end-to-end manner (E2E): In this scheme
encoding and decoding are performed only once by E and
D, respectively. The relay nodes only store-and-forward each
successfully received packet, implying that E should emit
enough amount of extra packets for the whole channel to
compensate the loss and to make sure that D can reconstruct
the message (Fig. 1a). This eventuates unnecessary traffic
loads on the links closer to E, which is particularly painful
when losses occur only on links far from E, and also increase
latency.

Block codes in hop-by-hop manner (HbH): In this scheme
we assume that relay nodes can also perform encoding and
decoding that enables to generate extra packets per hop in a
distributed way (Fig. 1b). This unburdens the network from
the unnecessary packets but also infuse extra latency as every
relay has to wait to start encoding until the full message is
decoded.
Random Linear Network Coding: RLNC enables for relays
to perform recoding, that is to create a coded packet from
the received ones without decoding them first (Fig. 1c). This
is far less complex than decode/encode procedure, hence
eventuates immediate forwarding, furthermore, it is completely
transparent, so decoding doesn’t require extra effort. This
greatly reduces latency and as it is carried out per hop requires
the same number of packets as the HbH scheme. However, in
order to use RLNC efficiently, first we have to deploy elements
with encoding, decoding and recoding capabilities and we
have to take care of steering the traffic over them.

In Section IV we provide an extensive comparison of RLNC
and block codes supported both analytical and measurement
results, but as the measurements were carried out on our SDN
architecture first we show how SDN and virtualization can
facilitate the integration process of RLNC in a seamless way.

III. SDN PROTOTYPE ARCHITECTURE

Here we give a brief introduction about SDN and Network
Function Virtualization (NFV), followed by the implementa-
tion details of RLNC capable elements, finally we introduce
the architecture which enables the definition, configuration and
automated deployment of these novel elements implementing
code centric operation in the network.

A. SDN and virtualization

The basic concept of SDN is to enable network innovation -
realizing new capabilities and addressing persistent problems
with networking -, which is almost impossible nowadays.
The problem lies in the distributed and heterogen nature of
current networks. There are closed, vendor specific hardwares,
softwares and firmwares across the network managed by
distributed control functions through different interfaces. This
leads to difficult and extensive design and operation.

SDN aims to change this by creating well defined abstrac-
tions of different network layers, that each has its proper
functionality and interfaces. In this sense the idea is somewhat
similar to the ISO/OSI conception, but instead of individual
devices it concerns the network as a whole with the following
features: (i) maintains the separation of the data and control
planes, (ii) uses uniform vendor-agnostic interface – one of
the most commonly used is OpenFlow [7] – between control
and data planes, (iii) treats the control plane in a logically,
centralized way that is realized using a network operating
system that constructs and presents a logical map of the entire
network to services or control applications implemented on top
of it, and (iv) slices and virtualises the underlying physical
network.

During its two decades evolution [11] the concept of SDN
inspired several novel technologies and turned out that it

Network Coding as a Service

DECEMBER 2015 • VOLUME VII • NUMBER 44

INFOCOMMUNICATIONS JOURNAL

3

E x Dx
G

β

dp

ε ε ε

la
te

nc
y

(a) end− to− end

D/EE D
G
β

dp

ε ε ε

la
te

nc
y

D/E

(b) hop− by − hop

R2R1E D
G
β

dp

ε ε ε

la
te

nc
y

(c) RLNC

Fig. 1: Illustration of end− to− end, hop− by − hop and RLNC coding schemes for sending a message of 2 packets (G)
through three hops with 50% probability loss on each link (ε = 0.5). β stands for redundancy (700%, 50% and 50% for E2E,
HbH and RLNC, respectively) and dp for propagation delay.

synergizes well with many existing ones. One that really shines
out amongst them is Network Function Virtualization (NFV).
NFV enables to implement any hardware middleboxes (a
network device that manipulates traffic, e.g. firewall, network
address translator, etc.) into software by creating Virtualized
Network Functions (VNFs). These VNFs has exactly the same
functionality but they don’t require specific hardware and
hundreds of them can be installed - even remotely - on a
single device. This offers nice synergy with SDN as the control
layer is capable to orchestrate the installation, configuration
and traffic steering over VNFs in an automated way.

Such orchestration and steering is in perfect agreement
with the current practice of Internet Service Providers (ISPs)
that services are implemented in the form of appropriately
concatenated middleboxes, also known as service chains [12].
However, todays service chains are usually built around spe-
cial purpose networking hardware elements, configuring and
operating these chains is a highly non-trivial task which
still requires human interaction. SDN and virtualization can
be a promising way out of this managerial trap as they
enable flexible and automated deployment of service chains
comprising our RLNC capable VNFs.

B. Implementation of RLNC Software Router Prototype

Since VNFs are run on NFV platforms the first de-
sign step is to choose one from the many existing ones
([13],[14],[15],[16]). Our design choice was ClickOS [17], as
ClickOS virtual machines are extremely small (5 Mb), can
boot very quickly (about 30 ms), add small delay (around
45 µs) and hundreds of them can run concurrently with a
throughput around 10 Gb/s. ClickOS requires VNFs created by
the Click modular router platform [18], which enables to built
custom routers by creating configurations pieced together from
built-in or own-developed elements that implement atomic
functionality like packet classifying, scheduling, queuing etc.
Using the Kodo [19] network coding software library we
have developed the RLNC encoder, recoder and decoder Click
elements and using built-in modules we have created fully-
fledged compute and forward software routers.

The Click interpreter reads configurations written in a Click-
specific language. These config files describe a directed graph
with elements at vertices and edges specifying possible paths

for the packets within the router. The behaviour of the elements
are given by C++ code. At the code level each element is a
subclass of the Element class, which has around 20 virtual
functions and most subclasses have to override only up to
six of them. The most simple subclass implementation, the
NullElement, contains only 8 lines of code and overrides
five Element class functions. Similarly, we have implemented
our code-centric elements which encode, recode and decode
the incoming packets using Kodo.

Kodo offers a number of different erasure correcting codes
of which we chose Full Random Linear Network Code
(Full RLNC), as it is one of the most common RLNC
variants and provides several of the advantages that RLNCs
have over traditional erasure correcting codes. Accordingly
our three custom Click elements are FullRLNCEncoder,
FullRLNCDecoder and FullRLNCRecoder. All of them
take around 120-150 lines of C++ code (with no partic-
ular optimization) and override seven virtual functions of
the Element class. They have one input and one output
port and the coding parameters can be tuned through input
arguments: SYMBOLS, SYMBOL SIZE, GF SIZE, EXTRA. The
SYMBOLS argument stands for the generation size and tells the
maximal number of symbols that can be combined into a coded
symbol by the encoder. Increasing the generation size also
increases the decoding delay, since the decoder has to receive
at least SYMBOLS number of packets to be able to decode
the whole generation. SYMBOL SIZE represents the size of
each symbol in bytes. Increasing this eventuates increased
coding complexity. So the SYMBOLS∗SYMBOL SIZE product
should be considered carefully and large data typically sent
through multiple generations. The GF SIZE argument stands
for the size of the Galois Field, which has influence on the
probability that an encoded packet doesn’t carry any useful
information. Finally the EXTRA parameter represents the ratio
of redundancy, in other words tells how many extra packet
should be generated. This parameter is required only for the
encoder and the recoder.

Since other built-in Click elements can preprocess UDP1

packets (i.e. strip IP and UDP headers) the general behaviour
of our code-centric elements is quite simple: After a packet

1Our current implementation can process UDP packets only. The handling
of TCP flows is in our future work list.

4

OVS

OVS

OVS

MininetKodo
recoder1

Code centric router!

OVS

N
E
T
C
O
N
F

Kodo recoder2

VNF SLOT 2

VNF SLOT 3

VNF
execution

environment

Kodo
encoder

VNF
execution

environment

Kodo
decoder

VNF
execution

environment

OVS

Kodo
recoder3

VNF
execution

environment

N
E
T
C
O
N
F

N
E
T
C
O
N
F

N
E
T
C
O
N
F

N
E
T
C
O
N
F

Dataplane connections
Packet switched service

Code centric service

N
E
T
C
O
N
F

OpenFlow

NETCONF

Service chains
Packet switched Code centric

H2H1 H2D

H2

R

R

R

EH1

H1

Fig. 2: The prototype architecture.

arrives extract the payload, encode/recode/decode it by calling
the proper functions of Kodo, update IP and UDP headers (size
and checksum fields as we slightly increase the packet size
by adding the coding coefficients) and forward the packet. In
this way our router configurations implement the compute and
forward router as a VNF that performs code-centric operations
on the packet going through and can easily be deployed into
SDN environment.

C. Architecture

For showing the seamless integration of network coding and
SDN we have built a prototype of the code centric network
architecture. In a real network it would be a practical choice
for operators to place NC encoder and decoder elements as
close to the edge of the network as possible, while recoders
operate in the most efficient way at intermediate nodes where
they can aggreagate traffic flows. To test our proof-of-concept
we created a smaller network to model a similar topology
where every packet between two users traverses an encoder
a recoder and a decoder (in this order). To simulate such
network we implemented our architecture in the ESCAPE
prototyping environment. Well detailed description about it
can be found in [20], however, here we recollect the most
important information of the components.

ESCAPE is capable to simulate OpenFlow networks com-
bining Mininet network virtualizer [21] using Open vSwitch
(OVS) [22] instances and a POX netowork control prototyping
software [23], which contains a steering module handling
the flow tables according to the configuration of the running
service chains. ESCAPE is designed in such way that it
can initiate Mininet virtual containers which capable to run
binaries or source codes written in Click language. To use
these containers as VNFs ESCAPE configure OVS elements
with POX in such way that all traffic between end users tra-
verse them. Typically after an initial deployment process OVS
configuration remains the same during the simulation. Since

the controller can automatically deploy VNFs implemented in
Click and our software router in Sec. III-B is implemented
in the Click platform too, our work here was to translate
our Click configurations according to the templates used by
ESCAPE and install all software required to run ESCAPE
and Kodo. Note that the traffic steering in a real network
with multiple users, diverse requirements and huge amount
of independent flows raises several open questions. However,
in this paper we restricted ourselves only to provide a proof of
concept implementation which requires a minimalistic network
with a few traffic flows.

Fig. 2 presents a scenario of our code-centric prototype.
We build an OpenFlow 1.0 network of three Open vSwitch
instances (OVS), two hosts (H1/H2) and three VNF containers.
These containers (yellow boxes) are advanced Mininet hosts
which can start a given VNF process. This solution stands
for the case when we run VNFs outside the routers e.g. in
a near OpenStack [24] data center. In these containers we
deployed our compute and forward software router configured
to encode/recode/decode packets similarly to our scenarios
in Fig. 1 for implementing our coding schemes (E2E, HbH
and RLNC). This solution may slightly increase latency but
provides the possibility of scaling out in the presence of
massive network loads combined with more complex coding
schemes (e.g. more efficient random linear codes using larger
GF field size).

Alternatively, we have also built a visionary prototype of
the code centric router (green box). This router consists of
a standard OVS (no modifications in OpenFlow) instance
but has the capability to execute VNFs. Using code centric
routers adds less delay but there is no way to scale out
beyond the router’s hardware resources. The POX orchestrator
module receives service chains as inputs (can be given by
GUI), configure the switches and start the appropriate VNFs
accordingly.

Network Coding as a Service
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2015 • VOLUME VII • NUMBER 4 5

3

E x Dx
G

β

dp

ε ε ε

la
te

nc
y

(a) end− to− end

D/EE D
G
β

dp

ε ε ε

la
te

nc
y

D/E

(b) hop− by − hop

R2R1E D
G
β

dp

ε ε ε

la
te

nc
y

(c) RLNC

Fig. 1: Illustration of end− to− end, hop− by − hop and RLNC coding schemes for sending a message of 2 packets (G)
through three hops with 50% probability loss on each link (ε = 0.5). β stands for redundancy (700%, 50% and 50% for E2E,
HbH and RLNC, respectively) and dp for propagation delay.

synergizes well with many existing ones. One that really shines
out amongst them is Network Function Virtualization (NFV).
NFV enables to implement any hardware middleboxes (a
network device that manipulates traffic, e.g. firewall, network
address translator, etc.) into software by creating Virtualized
Network Functions (VNFs). These VNFs has exactly the same
functionality but they don’t require specific hardware and
hundreds of them can be installed - even remotely - on a
single device. This offers nice synergy with SDN as the control
layer is capable to orchestrate the installation, configuration
and traffic steering over VNFs in an automated way.

Such orchestration and steering is in perfect agreement
with the current practice of Internet Service Providers (ISPs)
that services are implemented in the form of appropriately
concatenated middleboxes, also known as service chains [12].
However, todays service chains are usually built around spe-
cial purpose networking hardware elements, configuring and
operating these chains is a highly non-trivial task which
still requires human interaction. SDN and virtualization can
be a promising way out of this managerial trap as they
enable flexible and automated deployment of service chains
comprising our RLNC capable VNFs.

B. Implementation of RLNC Software Router Prototype

Since VNFs are run on NFV platforms the first de-
sign step is to choose one from the many existing ones
([13],[14],[15],[16]). Our design choice was ClickOS [17], as
ClickOS virtual machines are extremely small (5 Mb), can
boot very quickly (about 30 ms), add small delay (around
45 µs) and hundreds of them can run concurrently with a
throughput around 10 Gb/s. ClickOS requires VNFs created by
the Click modular router platform [18], which enables to built
custom routers by creating configurations pieced together from
built-in or own-developed elements that implement atomic
functionality like packet classifying, scheduling, queuing etc.
Using the Kodo [19] network coding software library we
have developed the RLNC encoder, recoder and decoder Click
elements and using built-in modules we have created fully-
fledged compute and forward software routers.

The Click interpreter reads configurations written in a Click-
specific language. These config files describe a directed graph
with elements at vertices and edges specifying possible paths

for the packets within the router. The behaviour of the elements
are given by C++ code. At the code level each element is a
subclass of the Element class, which has around 20 virtual
functions and most subclasses have to override only up to
six of them. The most simple subclass implementation, the
NullElement, contains only 8 lines of code and overrides
five Element class functions. Similarly, we have implemented
our code-centric elements which encode, recode and decode
the incoming packets using Kodo.

Kodo offers a number of different erasure correcting codes
of which we chose Full Random Linear Network Code
(Full RLNC), as it is one of the most common RLNC
variants and provides several of the advantages that RLNCs
have over traditional erasure correcting codes. Accordingly
our three custom Click elements are FullRLNCEncoder,
FullRLNCDecoder and FullRLNCRecoder. All of them
take around 120-150 lines of C++ code (with no partic-
ular optimization) and override seven virtual functions of
the Element class. They have one input and one output
port and the coding parameters can be tuned through input
arguments: SYMBOLS, SYMBOL SIZE, GF SIZE, EXTRA. The
SYMBOLS argument stands for the generation size and tells the
maximal number of symbols that can be combined into a coded
symbol by the encoder. Increasing the generation size also
increases the decoding delay, since the decoder has to receive
at least SYMBOLS number of packets to be able to decode
the whole generation. SYMBOL SIZE represents the size of
each symbol in bytes. Increasing this eventuates increased
coding complexity. So the SYMBOLS∗SYMBOL SIZE product
should be considered carefully and large data typically sent
through multiple generations. The GF SIZE argument stands
for the size of the Galois Field, which has influence on the
probability that an encoded packet doesn’t carry any useful
information. Finally the EXTRA parameter represents the ratio
of redundancy, in other words tells how many extra packet
should be generated. This parameter is required only for the
encoder and the recoder.

Since other built-in Click elements can preprocess UDP1

packets (i.e. strip IP and UDP headers) the general behaviour
of our code-centric elements is quite simple: After a packet

1Our current implementation can process UDP packets only. The handling
of TCP flows is in our future work list.

4

OVS

OVS

OVS

MininetKodo
recoder1

Code centric router!

OVS

N
E
T
C
O
N
F

Kodo recoder2

VNF SLOT 2

VNF SLOT 3

VNF
execution

environment

Kodo
encoder

VNF
execution

environment

Kodo
decoder

VNF
execution

environment

OVS

Kodo
recoder3

VNF
execution

environment

N
E
T
C
O
N
F

N
E
T
C
O
N
F

N
E
T
C
O
N
F

N
E
T
C
O
N
F

Dataplane connections
Packet switched service

Code centric service

N
E
T
C
O
N
F

OpenFlow

NETCONF

Service chains
Packet switched Code centric

H2H1 H2D

H2

R

R

R

EH1

H1

Fig. 2: The prototype architecture.

arrives extract the payload, encode/recode/decode it by calling
the proper functions of Kodo, update IP and UDP headers (size
and checksum fields as we slightly increase the packet size
by adding the coding coefficients) and forward the packet. In
this way our router configurations implement the compute and
forward router as a VNF that performs code-centric operations
on the packet going through and can easily be deployed into
SDN environment.

C. Architecture

For showing the seamless integration of network coding and
SDN we have built a prototype of the code centric network
architecture. In a real network it would be a practical choice
for operators to place NC encoder and decoder elements as
close to the edge of the network as possible, while recoders
operate in the most efficient way at intermediate nodes where
they can aggreagate traffic flows. To test our proof-of-concept
we created a smaller network to model a similar topology
where every packet between two users traverses an encoder
a recoder and a decoder (in this order). To simulate such
network we implemented our architecture in the ESCAPE
prototyping environment. Well detailed description about it
can be found in [20], however, here we recollect the most
important information of the components.

ESCAPE is capable to simulate OpenFlow networks com-
bining Mininet network virtualizer [21] using Open vSwitch
(OVS) [22] instances and a POX netowork control prototyping
software [23], which contains a steering module handling
the flow tables according to the configuration of the running
service chains. ESCAPE is designed in such way that it
can initiate Mininet virtual containers which capable to run
binaries or source codes written in Click language. To use
these containers as VNFs ESCAPE configure OVS elements
with POX in such way that all traffic between end users tra-
verse them. Typically after an initial deployment process OVS
configuration remains the same during the simulation. Since

the controller can automatically deploy VNFs implemented in
Click and our software router in Sec. III-B is implemented
in the Click platform too, our work here was to translate
our Click configurations according to the templates used by
ESCAPE and install all software required to run ESCAPE
and Kodo. Note that the traffic steering in a real network
with multiple users, diverse requirements and huge amount
of independent flows raises several open questions. However,
in this paper we restricted ourselves only to provide a proof of
concept implementation which requires a minimalistic network
with a few traffic flows.

Fig. 2 presents a scenario of our code-centric prototype.
We build an OpenFlow 1.0 network of three Open vSwitch
instances (OVS), two hosts (H1/H2) and three VNF containers.
These containers (yellow boxes) are advanced Mininet hosts
which can start a given VNF process. This solution stands
for the case when we run VNFs outside the routers e.g. in
a near OpenStack [24] data center. In these containers we
deployed our compute and forward software router configured
to encode/recode/decode packets similarly to our scenarios
in Fig. 1 for implementing our coding schemes (E2E, HbH
and RLNC). This solution may slightly increase latency but
provides the possibility of scaling out in the presence of
massive network loads combined with more complex coding
schemes (e.g. more efficient random linear codes using larger
GF field size).

Alternatively, we have also built a visionary prototype of
the code centric router (green box). This router consists of
a standard OVS (no modifications in OpenFlow) instance
but has the capability to execute VNFs. Using code centric
routers adds less delay but there is no way to scale out
beyond the router’s hardware resources. The POX orchestrator
module receives service chains as inputs (can be given by
GUI), configure the switches and start the appropriate VNFs
accordingly.

Network Coding as a Service

DECEMBER 2015 • VOLUME VII • NUMBER 46

INFOCOMMUNICATIONS JOURNAL

5

IV. COMPARING RLNC WITH BLOCK CODES

A comprehensive analysis can be found in [25] and [26]
about the performance of difference coding schemes including
complexity, delay, memory requirement, achievable rate, and
adaptability. However, in order to facilitate understanding we
recall the most important claims on the number of sent packets
and latency adjusted to the communication scenarios described
in Section II-B and provide measurements results for a wide
range of parameter settings side-by-side.

For the measurements we realized all the three scenarios
as service chains in our prototype architecture and besides
the properties of the links (erasure probability and bitrate) we
varied the number of hops, packet size and coding generation
as well (Table I).

Parameter Values
erasure probability ε 10%, 20%, 30%, 40%, 50%
packet size L 250 B, 500 B, 750 B, 1000 B, 1450 B
generation size G 16, 32, 64, 128
number of hops H 2, 3, 4, 5, 6, 7
channel rate 0.25, 0.5, 1, 2, 4, 8 Mbps

TABLE I: The parameter set for the measurements.

During the analysis we assume a single path - multihop
channel (described in Section II), where the encoder E delivers
a message of G packets through H number of links to
a decoder D, we also assume error prone links with loss
probability 0 ≤ ε ≤ 1.

A. Number of Sent Packets

Now we calculate the overall number of sent packets
required D to successfully decode the message. In the case of
E2E this is the sum of packets sent per hop - comprises extra
packets for compensating losses - on the rest of the channel,
which depends on generation size G, number of hops H and
loss probability ε:

PE2E =
H∑

h=1

G
H∏
i=h

1

1− εi
(1)

For HbH and RLNC it is again the sum of the packets sent
individually but here losses have only local impact due to the
decode/encode procedure carried out at each hop:

PHbH = PRLNC = G ·
H∑
i=h

1

1− εi
(2)

In Fig. 3 the number of overall packets conveyed in a three
hop communication network versus the erasure probability per
link for the three forwarding schemes is given for the theoret-
ical (indicated by (T) in the figure) and for the measurement
results. The figure show that the results of the theory and
measurements are consistent with each other. HbH and RLNC
use the same amount of packets, and while they increase the
number of packets linearly with the loss probability, the E2E
approach increases exponentially.

0 10 20 30 40 50

0
20

0
60

0

loss [%]

pa
ck

et
s

●

●
●

●
●

●

●

End−to−end (T)
Hop−by−hop / RLNC (T)
End−to−end
Hop−by−hop / RLNC

Fig. 3: Number of overall packets conveyed in the network
versus channel loss probability (Packets 64 - Size 250 B -
Hops 3)

●

●

●

●

●

●

0 2 4 6 8

10
50

50
0

50
00

bitrate [Mb/s]

la
te

nc
y

[m
s]

● End−to−end (T)
Hop−by−hop (T)
RLNC (T)

End−to−end
Hop−by−hop
RLNC

Fig. 4: Latency in the network versus channel rate for three
coding approaches and no losses (Packets 64 - Size 1450 B -
Loss 0% - Hops 3)

B. Latency

Based on packet numbers we can calculate the time required
for decoding the message successfully. In other words, we are
interested in the time that takes to deliver all packets of G from
E to D and we also calculate with an inter packet time τP
which is the multiplicative inverse of the packet sanding rate
and link delay τL that each packet suffers during forwarding
(we assume the same dealy for every H links).

In the case of E2E this is the sum of packets emitted at first
hop - comprises extra packets as well - and an extra delay per
hop (since packets are forwarded immediately and in parallel
at each hop):

DE2E = G ·
H∏
i=1

1

1− εi
· τP +H · τL (3)

For HbH this is the time for the first hop multiplied by
the number of hops as every node has to perform decod-
ing/encoding before forwarding even the first packet:

DHbH = G · τP ·
H∑
i=1

1

1− εi
+H · τL (4)

6

●

●

●

●

●

●

0 2 4 6 8

10
10

0
50

00

bitrate [Mb/s]

la
te

nc
y

[m
s]

● End−to−end (T)
Hop−by−hop (T)
RLNC (T)

End−to−end
Hop−by−hop
RLNC

Fig. 5: Latency in the network versus channel rate for three
coding approaches and high losses (Packets 64 - Size 1450 B
- Loss 50% - Hops 3)

The case of RLNC scheme comprises the best part from
both E2E and HbH, since packets are forwarded immediately
and in parallel with the same number of packets per hop as
in HbH:

DRLNC = G · τP · 1

1− max
1≤i≤H

εi
+H · τL (5)

Fig. 4 presents the latency in a three hop communication
network versus channel rate without any losses for the three
coding approaches. If there are no losses E2E and RLNC have
the same latency values (since no extra packets are required
to send, which would slow E2E), while the HbH ends up in
higher latency values because each intermediate node needs to
wait for all packet of G. The gain of RLNC over HbH remains
constant for the higher values which means that the ratio of
latency is independent from the bandwidth. Roughly, the ratio
of the gain in latency equals to H , when G is significantly
higher than H .

The latency results change a lot if the channel is error prone
as given in Fig. 5 with an error probability of 50%. Now
the advantage of RLNC over the other two schemes becomes
evident and E2E is now even worse than HbH. After having a
look again at Fig. 1 this is not so surprising, since E2E have
to send through all redundancy on the whole channel. While
HbH can unburden the network, as redundancy have to be

sent per hop, there the store and forward behaviour increases
latency.

However, in Fig. 5 it can be observed that while measure-
ment follows theory well for E2E and HbH we got much
higher values for RLNC. In [25] authors already proved that in
the case of a two-hop network with identical links the delay
function grows as

√
n thus it does not follows the original

formula in Eq. 5. We investigated this phenomenon further
and discuss the reasons in Appendix A. Suffice it to say for
now that RLNC performs a bit worse as theory would suggest
when the error probabilities of the links are similar.

In the followings we extend the measurements for a wide
variation of parameters and based on the fact that RLNC
performs worse than expected when error probabilities are
close to each other we set the values accordingly in order
to show that even in this case RLNC outperforms the other
coding schemes.

In Fig. 6 latency for the three transmission schemes depend-

2
3

4
5

6
7 0

10
20

30
40

50
0

4

8

12

16

ga
in

hop
loss [%]

ga
in

0

4

8

12

16

(a) Gain of RLNC over E2E

2
3

4
5

6
7

0
10

20
30

40
50

0
2
4
6
8

10
12
14
16

ga
in

hop
loss [%]

0

2

4

6

8

(b) Gain of RLNC over HbH

Fig. 7: Gains for the three transmission schemes (Packets 64
- Size 250 B - Bitrate 0.25 Mb/s).

2
3

4
5

6
7 0

10
20

30
40

50
0

20

40

60

80

100

la
te

nc
y

[s
]

hop
loss [%]

la
te

nc
y

[s
]

0
20
40
60
80
100

(a) end− to− end

2
3

4
5

6
7 0

10
20

30
40

50
0

2

4

6

8

10

la
te

nc
y

[s
]

hop
loss [%]

la
te

nc
y

[s
]

0
2
4
6
8
10

(b) hop− by − hop

2
3

4
5

6
7 0

10
20

30
40

50
0

2

4

6

8

10

la
te

nc
y

[s
]

hop
loss [%]

la
te

nc
y

[s
]

0

2

4

6

(c) RLNC

Fig. 6: Latency for the three transmission schemes depending on number of hops and loss (Packets 64 - Size 250 B - Bitrate
0.25 Mb/s).

Network Coding as a Service
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2015 • VOLUME VII • NUMBER 4 7

5

IV. COMPARING RLNC WITH BLOCK CODES

A comprehensive analysis can be found in [25] and [26]
about the performance of difference coding schemes including
complexity, delay, memory requirement, achievable rate, and
adaptability. However, in order to facilitate understanding we
recall the most important claims on the number of sent packets
and latency adjusted to the communication scenarios described
in Section II-B and provide measurements results for a wide
range of parameter settings side-by-side.

For the measurements we realized all the three scenarios
as service chains in our prototype architecture and besides
the properties of the links (erasure probability and bitrate) we
varied the number of hops, packet size and coding generation
as well (Table I).

Parameter Values
erasure probability ε 10%, 20%, 30%, 40%, 50%
packet size L 250 B, 500 B, 750 B, 1000 B, 1450 B
generation size G 16, 32, 64, 128
number of hops H 2, 3, 4, 5, 6, 7
channel rate 0.25, 0.5, 1, 2, 4, 8 Mbps

TABLE I: The parameter set for the measurements.

During the analysis we assume a single path - multihop
channel (described in Section II), where the encoder E delivers
a message of G packets through H number of links to
a decoder D, we also assume error prone links with loss
probability 0 ≤ ε ≤ 1.

A. Number of Sent Packets

Now we calculate the overall number of sent packets
required D to successfully decode the message. In the case of
E2E this is the sum of packets sent per hop - comprises extra
packets for compensating losses - on the rest of the channel,
which depends on generation size G, number of hops H and
loss probability ε:

PE2E =
H∑

h=1

G
H∏
i=h

1

1− εi
(1)

For HbH and RLNC it is again the sum of the packets sent
individually but here losses have only local impact due to the
decode/encode procedure carried out at each hop:

PHbH = PRLNC = G ·
H∑
i=h

1

1− εi
(2)

In Fig. 3 the number of overall packets conveyed in a three
hop communication network versus the erasure probability per
link for the three forwarding schemes is given for the theoret-
ical (indicated by (T) in the figure) and for the measurement
results. The figure show that the results of the theory and
measurements are consistent with each other. HbH and RLNC
use the same amount of packets, and while they increase the
number of packets linearly with the loss probability, the E2E
approach increases exponentially.

0 10 20 30 40 50

0
20

0
60

0

loss [%]

pa
ck

et
s

●

●
●

●
●

●

●

End−to−end (T)
Hop−by−hop / RLNC (T)
End−to−end
Hop−by−hop / RLNC

Fig. 3: Number of overall packets conveyed in the network
versus channel loss probability (Packets 64 - Size 250 B -
Hops 3)

●

●

●

●

●

●

0 2 4 6 8

10
50

50
0

50
00

bitrate [Mb/s]

la
te

nc
y

[m
s]

● End−to−end (T)
Hop−by−hop (T)
RLNC (T)

End−to−end
Hop−by−hop
RLNC

Fig. 4: Latency in the network versus channel rate for three
coding approaches and no losses (Packets 64 - Size 1450 B -
Loss 0% - Hops 3)

B. Latency

Based on packet numbers we can calculate the time required
for decoding the message successfully. In other words, we are
interested in the time that takes to deliver all packets of G from
E to D and we also calculate with an inter packet time τP
which is the multiplicative inverse of the packet sanding rate
and link delay τL that each packet suffers during forwarding
(we assume the same dealy for every H links).

In the case of E2E this is the sum of packets emitted at first
hop - comprises extra packets as well - and an extra delay per
hop (since packets are forwarded immediately and in parallel
at each hop):

DE2E = G ·
H∏
i=1

1

1− εi
· τP +H · τL (3)

For HbH this is the time for the first hop multiplied by
the number of hops as every node has to perform decod-
ing/encoding before forwarding even the first packet:

DHbH = G · τP ·
H∑
i=1

1

1− εi
+H · τL (4)

6

●

●

●

●

●

●

0 2 4 6 8

10
10

0
50

00

bitrate [Mb/s]

la
te

nc
y

[m
s]

● End−to−end (T)
Hop−by−hop (T)
RLNC (T)

End−to−end
Hop−by−hop
RLNC

Fig. 5: Latency in the network versus channel rate for three
coding approaches and high losses (Packets 64 - Size 1450 B
- Loss 50% - Hops 3)

The case of RLNC scheme comprises the best part from
both E2E and HbH, since packets are forwarded immediately
and in parallel with the same number of packets per hop as
in HbH:

DRLNC = G · τP · 1

1− max
1≤i≤H

εi
+H · τL (5)

Fig. 4 presents the latency in a three hop communication
network versus channel rate without any losses for the three
coding approaches. If there are no losses E2E and RLNC have
the same latency values (since no extra packets are required
to send, which would slow E2E), while the HbH ends up in
higher latency values because each intermediate node needs to
wait for all packet of G. The gain of RLNC over HbH remains
constant for the higher values which means that the ratio of
latency is independent from the bandwidth. Roughly, the ratio
of the gain in latency equals to H , when G is significantly
higher than H .

The latency results change a lot if the channel is error prone
as given in Fig. 5 with an error probability of 50%. Now
the advantage of RLNC over the other two schemes becomes
evident and E2E is now even worse than HbH. After having a
look again at Fig. 1 this is not so surprising, since E2E have
to send through all redundancy on the whole channel. While
HbH can unburden the network, as redundancy have to be

sent per hop, there the store and forward behaviour increases
latency.

However, in Fig. 5 it can be observed that while measure-
ment follows theory well for E2E and HbH we got much
higher values for RLNC. In [25] authors already proved that in
the case of a two-hop network with identical links the delay
function grows as

√
n thus it does not follows the original

formula in Eq. 5. We investigated this phenomenon further
and discuss the reasons in Appendix A. Suffice it to say for
now that RLNC performs a bit worse as theory would suggest
when the error probabilities of the links are similar.

In the followings we extend the measurements for a wide
variation of parameters and based on the fact that RLNC
performs worse than expected when error probabilities are
close to each other we set the values accordingly in order
to show that even in this case RLNC outperforms the other
coding schemes.

In Fig. 6 latency for the three transmission schemes depend-

2
3

4
5

6
7 0

10
20

30
40

50
0

4

8

12

16
ga

in

hop
loss [%]

ga
in

0

4

8

12

16

(a) Gain of RLNC over E2E

2
3

4
5

6
7

0
10

20
30

40
50

0
2
4
6
8

10
12
14
16

ga
in

hop
loss [%]

0

2

4

6

8

(b) Gain of RLNC over HbH

Fig. 7: Gains for the three transmission schemes (Packets 64
- Size 250 B - Bitrate 0.25 Mb/s).

2
3

4
5

6
7 0

10
20

30
40

50
0

20

40

60

80

100

la
te

nc
y

[s
]

hop
loss [%]

la
te

nc
y

[s
]

0
20
40
60
80
100

(a) end− to− end

2
3

4
5

6
7 0

10
20

30
40

50
0

2

4

6

8

10

la
te

nc
y

[s
]

hop
loss [%]

la
te

nc
y

[s
]

0
2
4
6
8
10

(b) hop− by − hop

2
3

4
5

6
7 0

10
20

30
40

50
0

2

4

6

8

10

la
te

nc
y

[s
]

hop
loss [%]

la
te

nc
y

[s
]

0

2

4

6

(c) RLNC

Fig. 6: Latency for the three transmission schemes depending on number of hops and loss (Packets 64 - Size 250 B - Bitrate
0.25 Mb/s).

Network Coding as a Service

DECEMBER 2015 • VOLUME VII • NUMBER 48

INFOCOMMUNICATIONS JOURNAL

7

2
3

4
5

6
7 0

500
1000

15000
3
6
9

12
15
18
21
24

la
te

nc
y

[s
]

hop packet size [byte]

la
te

nc
y

[s
]

0

3

6

9

(a) end− to− end

2
3

4
5

6
7 0

500
1000

15000
3
6
9

12
15
18
21
24

la
te

nc
y

[s
]

hop packet size [byte]

la
te

nc
y

[s
]

0
3
6
9
12
15
18
21
24

(b) hop− by − hop

2
3

4
5

6
7 0

500
1000

15000
3
6
9

12
15
18
21
24

la
te

nc
y

[s
]

hop packet size [byte]

la
te

nc
y

[s
]

0

3

6

(c) RLNC

Fig. 8: Latency for the three transmission schemes depending on number of hops and packet size (Packets 64 - Loss 10% -
Bitrate 0.25 Mb/s).

ing on number of hops and loss probabilities is given. In the
case of small number of hops with low loss E2E can keep pace
with RLNC, at the expense of more sent packets. However, the
latency increases significantly for large number of hops that
are highly error prone. For HbH it increases linearly with the
number of hops and increases with the probability of losses
as given in Equation 4. RLNC has a lower latency than the
other two schemes over a wide range of parameters.

In Fig. 7 the gain of RLNC over the two schemes are given,
namely E2E versus RLNC and HbH versus RLNC in Fig. 7a
and Fig. 7b, respectively for a better comparison of the three
schemes. The gain is calculated by the division of the latency
either for E2E or HbH and RLNC. The plots in Fig. 7 show
a clear gain of RLNC over the other schemes. The maximum
gain over E2E and HbH for the given parameters is 16x and
6x, respectively. Note, in Fig. 7b the axes have been switched
in order to increase visibility.

In Fig. 8 the loss probability is still set to 10% and the
latency is plotted against the number of hops and the packet
size. Most communication scenarios will use the maximum
transfer unit (MTU) size of ∼1500 bytes, but smaller packet
size will probably come up in future. For all three forwarding
schemes latency increases linearly with packet size but HbH
suffers the most as it is slower up to 4 times – and E2E is up
to 1.5 times – compared to RLNC. Considering that the rate
of loss is small what really makes the difference here is the
different packet forwarding mechanisms described in Fig. 1.
So with very small losses E2E can operate almost as efficient
as RLNC, because the few number of extra packets, but HbH
still slow due to the decoding-encoding at the middle nodes.
So summing up the cases observed RLNC does not resonate
as much as the other two schemes and breaks new grounds
for future networking systems.

V. CONCLUSION AND FUTURE WORK

In this paper we have investigated some of the most impor-
tant advantages of RLNC, the modern form of network coding,
and we have shed some light on its application possibilities.
We have provided a detailed comparison of RLNC and other
coding strategies in terms of latency and traffic imposed
to the network. In order to facilitate the use of RLNC we
have also presented a prototype architecture demonstrating a
feasible integration in SDN environment by using Virtualized

Networking Functions. The VNFs implement RLNC function-
ality that enables us to leave all the management and traffic
steering tasks on the SDN controller. This lead to flexible and
automated deployment of service chains comprising network
coding specific features, hereby introducing the code centric
networking in SDN environment which is at same time com-
patible with the traditional packet switched networks.

According to our results - both analytical and measure-
ment - RLNC not only outperforms the others, as efficiently
decreasing latency and number of sent packets, but also
introducing flexibility by enabling packet forwarding without
a centralized scheduling logic. In the future we will extend
the measurements and the SDN prototype with multi-path
functionality, since multipath communication will not only
increase the throughout and resilience, but also contribute to
a further decreased latency. The need for RLNC over other
coding techniques will become even more evident in the
multipath context. Instead of the FullRLNC mode of Kodo,
in the future we can use the sliding window approach that
will reduce further the packet delay significantly.

APPENDIX A
RECURSIVE FORMULA FOR CALCULATING LATENCY IN A

TWO HOP SYSTEM

To take a closer look on the difference between measure-
ments and theory in Fig. 5 for RLNC we created a simulation
environment for the most simple case of RLNC comprising
only one encoder, one recoder and one decoder with two error
prone links between them. For the sake of simplicity, in the
simulation we calculated link delay as zero and used time
slots as an analogy for inter packet time, so each node sends
one packet per slot. Fig. 10 shows the latency as number
of time slots required until the full message was decoded
in dependency of the two channel error probabilities ε1 and
ε2. It can be seen that difference occurs between theory and
simulation only when error probabilities are close to each other
(ε1 ≈ ε2), which suggests that Eq. 5 isn’t precise but what
actually happens is that due to the finite generation sizes the
actual loss on the two channels during the simulation is not
exactly ε1 and ε2 but slightly differs from them as a random
variable. When the error rate on one channel is significantly
higher than the rate on the other the impact of this effect is
very small since there is very low chance that more packet

8

1-ε₁ ε₁

1-ε₂ ε₂

(g,0)

(g-1,0) (g,1)

(g,0)

(a) State transition graph when the
recoder is empty.

1-ε₁ ε₁

1-ε₂ ε₂ 1-ε₂ ε₂

(g,r)

(g-1,r) (g,r+1) (g-1,r-1) (g,r)

(b) State transition graph when the
recoder has at least on linearly inde-
pendent packet.

Fig. 9: Graphical representation of a two hop system: g is
the number of packets that the decoder still needs in order
to decode the full generation, r is the number of linearly
independent packets in the recoder.

will be lost on the lower error rate channel (we can say that
the higher error suppresses the lower). When the two error
rates are close to each other we always have to calculate with
the higher random value thus the result will be higher than
expected from the theory.

To check our intuition we created a recursive formula based
on the forwarding process that can calculate the latency in this
2 hop case. Since forwarding ends when the full generation
comprising G packets is delivered to the decoder, let (g, r)
be the state of the system, where g is the number of packets
that has to be delivered to the decoder and r the number of
linear independent – i.e. the useful – packets the recoder has
and can send innovative packets based on them. This let us
to distinguish two fundamentally different situations (Fig. 9),
(i) when recoder is running dry (Fig. 9a) and (ii) when the
recoder has useful packets to forward an innovative packet
(Fig. 9a). When the recoder is running dry it means that if
the packet from the encoder is lost the recoder can not send
an innovative packet to the decoder thus the system stays
in the same (g, 0) state but one time slot wasted. In [25]
authors present a similar model for delay calculation in RLNC
and they state that a closed formula is too complex when g
is larger than 4. After that they use a random variable for
modelling the delay thus -due to our knowledge- we are the
first ones to present a closed recursive formula for delay in
RLNC using arbitrary generation number and link losses in a
two hop network.

We differentiate three cases as follows.

1) If r = g: in case the recorer has enough number of

linearly independent packets to send the reminder of the
generation to the decoder, it does not need any extra
packet from the encoder. Thus it means that we have
to send g number of packet through a single link with an
error probability of ε2. In this case the expected number
of time slots can be calculated as follows.

E(g, g) = g · 1

1− ε2
(6)

2) If r = 0: in this situation if the packet from the encoder
get lost the recoder can not send an innovative packet
to the controller (see Fig. 9a). The expected number of
time slot needed for sending the remaining packet can be
calculated with the following recursive formula.

E(g, 0) = 1 + (1− ε1)(1− ε2)E(g − 1, 0)

+(1− ε1)ε2E(g, 1) + ε1E(g, 0)

=
1

1− ε1
+ (1− ε2)E(g − 1, 0) + ε2E(g, 1)

(7)

3) If 0 < r < g: in this case the recoder already has r
number of linearly independent packets thus even when
the packet from the encoder to the recoder get lost the
recoder can send an innovative packet to the decoder (see
Fig. 9b). The expected number of time slot needed for
sending the remaining packet can be calculated with the
following recursive formula.

E(g, r) = 1 + (1− ε1)(1− ε2)E(g − 1, r)

+(1− ε1)ε2E(g, r + 1)

+ε1(1− ε2)E(g − 1, r − 1)

+ε1ε2E(g, r)

=
1

1− ε1ε2

+
(1− ε1)(1− ε2)

1− ε1ε2
E(g − 1, r)

+
(1− ε1)ε2
1− ε1ε2

E(g, r + 1)

+
ε1(1− ε2)

1− ε1ε2
E(g − 1, r − 1) (8)

On Fig. 11 we compared again the simulations with the
values derived from the recursive formula and we get almost
no difference, so this formula describes the process precisely.
However, generalizing this recursive formula for H number of
hops has exponential complexity since the state system can be
described by H number of variables (the number of packets
that the decoder still needs to decode the full generation and
the linearly independent packets in every H − 1 recoders).

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” Information Theory, IEEE Transactions on, vol. 46, no. 4,
pp. 1204–1216, 2000.

[2] M. Medard, M.-J. Montpetit, C. Rosenberg, and F. Fitzek, “Network
coding mythbusting: Why it is not about butterflies anymore,” 2012.

[3] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Transactions on Networking (TON), vol. 11, no. 5, pp. 782–
795, 2003.

Network Coding as a Service
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2015 • VOLUME VII • NUMBER 4 9

7

2
3

4
5

6
7 0

500
1000

15000
3
6
9

12
15
18
21
24

la
te

nc
y

[s
]

hop packet size [byte]

la
te

nc
y

[s
]

0

3

6

9

(a) end− to− end

2
3

4
5

6
7 0

500
1000

15000
3
6
9

12
15
18
21
24

la
te

nc
y

[s
]

hop packet size [byte]

la
te

nc
y

[s
]

0
3
6
9
12
15
18
21
24

(b) hop− by − hop

2
3

4
5

6
7 0

500
1000

15000
3
6
9

12
15
18
21
24

la
te

nc
y

[s
]

hop packet size [byte]

la
te

nc
y

[s
]

0

3

6

(c) RLNC

Fig. 8: Latency for the three transmission schemes depending on number of hops and packet size (Packets 64 - Loss 10% -
Bitrate 0.25 Mb/s).

ing on number of hops and loss probabilities is given. In the
case of small number of hops with low loss E2E can keep pace
with RLNC, at the expense of more sent packets. However, the
latency increases significantly for large number of hops that
are highly error prone. For HbH it increases linearly with the
number of hops and increases with the probability of losses
as given in Equation 4. RLNC has a lower latency than the
other two schemes over a wide range of parameters.

In Fig. 7 the gain of RLNC over the two schemes are given,
namely E2E versus RLNC and HbH versus RLNC in Fig. 7a
and Fig. 7b, respectively for a better comparison of the three
schemes. The gain is calculated by the division of the latency
either for E2E or HbH and RLNC. The plots in Fig. 7 show
a clear gain of RLNC over the other schemes. The maximum
gain over E2E and HbH for the given parameters is 16x and
6x, respectively. Note, in Fig. 7b the axes have been switched
in order to increase visibility.

In Fig. 8 the loss probability is still set to 10% and the
latency is plotted against the number of hops and the packet
size. Most communication scenarios will use the maximum
transfer unit (MTU) size of ∼1500 bytes, but smaller packet
size will probably come up in future. For all three forwarding
schemes latency increases linearly with packet size but HbH
suffers the most as it is slower up to 4 times – and E2E is up
to 1.5 times – compared to RLNC. Considering that the rate
of loss is small what really makes the difference here is the
different packet forwarding mechanisms described in Fig. 1.
So with very small losses E2E can operate almost as efficient
as RLNC, because the few number of extra packets, but HbH
still slow due to the decoding-encoding at the middle nodes.
So summing up the cases observed RLNC does not resonate
as much as the other two schemes and breaks new grounds
for future networking systems.

V. CONCLUSION AND FUTURE WORK

In this paper we have investigated some of the most impor-
tant advantages of RLNC, the modern form of network coding,
and we have shed some light on its application possibilities.
We have provided a detailed comparison of RLNC and other
coding strategies in terms of latency and traffic imposed
to the network. In order to facilitate the use of RLNC we
have also presented a prototype architecture demonstrating a
feasible integration in SDN environment by using Virtualized

Networking Functions. The VNFs implement RLNC function-
ality that enables us to leave all the management and traffic
steering tasks on the SDN controller. This lead to flexible and
automated deployment of service chains comprising network
coding specific features, hereby introducing the code centric
networking in SDN environment which is at same time com-
patible with the traditional packet switched networks.

According to our results - both analytical and measure-
ment - RLNC not only outperforms the others, as efficiently
decreasing latency and number of sent packets, but also
introducing flexibility by enabling packet forwarding without
a centralized scheduling logic. In the future we will extend
the measurements and the SDN prototype with multi-path
functionality, since multipath communication will not only
increase the throughout and resilience, but also contribute to
a further decreased latency. The need for RLNC over other
coding techniques will become even more evident in the
multipath context. Instead of the FullRLNC mode of Kodo,
in the future we can use the sliding window approach that
will reduce further the packet delay significantly.

APPENDIX A
RECURSIVE FORMULA FOR CALCULATING LATENCY IN A

TWO HOP SYSTEM

To take a closer look on the difference between measure-
ments and theory in Fig. 5 for RLNC we created a simulation
environment for the most simple case of RLNC comprising
only one encoder, one recoder and one decoder with two error
prone links between them. For the sake of simplicity, in the
simulation we calculated link delay as zero and used time
slots as an analogy for inter packet time, so each node sends
one packet per slot. Fig. 10 shows the latency as number
of time slots required until the full message was decoded
in dependency of the two channel error probabilities ε1 and
ε2. It can be seen that difference occurs between theory and
simulation only when error probabilities are close to each other
(ε1 ≈ ε2), which suggests that Eq. 5 isn’t precise but what
actually happens is that due to the finite generation sizes the
actual loss on the two channels during the simulation is not
exactly ε1 and ε2 but slightly differs from them as a random
variable. When the error rate on one channel is significantly
higher than the rate on the other the impact of this effect is
very small since there is very low chance that more packet

8

1-ε₁ ε₁

1-ε₂ ε₂

(g,0)

(g-1,0) (g,1)

(g,0)

(a) State transition graph when the
recoder is empty.

1-ε₁ ε₁

1-ε₂ ε₂ 1-ε₂ ε₂

(g,r)

(g-1,r) (g,r+1) (g-1,r-1) (g,r)

(b) State transition graph when the
recoder has at least on linearly inde-
pendent packet.

Fig. 9: Graphical representation of a two hop system: g is
the number of packets that the decoder still needs in order
to decode the full generation, r is the number of linearly
independent packets in the recoder.

will be lost on the lower error rate channel (we can say that
the higher error suppresses the lower). When the two error
rates are close to each other we always have to calculate with
the higher random value thus the result will be higher than
expected from the theory.

To check our intuition we created a recursive formula based
on the forwarding process that can calculate the latency in this
2 hop case. Since forwarding ends when the full generation
comprising G packets is delivered to the decoder, let (g, r)
be the state of the system, where g is the number of packets
that has to be delivered to the decoder and r the number of
linear independent – i.e. the useful – packets the recoder has
and can send innovative packets based on them. This let us
to distinguish two fundamentally different situations (Fig. 9),
(i) when recoder is running dry (Fig. 9a) and (ii) when the
recoder has useful packets to forward an innovative packet
(Fig. 9a). When the recoder is running dry it means that if
the packet from the encoder is lost the recoder can not send
an innovative packet to the decoder thus the system stays
in the same (g, 0) state but one time slot wasted. In [25]
authors present a similar model for delay calculation in RLNC
and they state that a closed formula is too complex when g
is larger than 4. After that they use a random variable for
modelling the delay thus -due to our knowledge- we are the
first ones to present a closed recursive formula for delay in
RLNC using arbitrary generation number and link losses in a
two hop network.

We differentiate three cases as follows.

1) If r = g: in case the recorer has enough number of

linearly independent packets to send the reminder of the
generation to the decoder, it does not need any extra
packet from the encoder. Thus it means that we have
to send g number of packet through a single link with an
error probability of ε2. In this case the expected number
of time slots can be calculated as follows.

E(g, g) = g · 1

1− ε2
(6)

2) If r = 0: in this situation if the packet from the encoder
get lost the recoder can not send an innovative packet
to the controller (see Fig. 9a). The expected number of
time slot needed for sending the remaining packet can be
calculated with the following recursive formula.

E(g, 0) = 1 + (1− ε1)(1− ε2)E(g − 1, 0)

+(1− ε1)ε2E(g, 1) + ε1E(g, 0)

=
1

1− ε1
+ (1− ε2)E(g − 1, 0) + ε2E(g, 1)

(7)

3) If 0 < r < g: in this case the recoder already has r
number of linearly independent packets thus even when
the packet from the encoder to the recoder get lost the
recoder can send an innovative packet to the decoder (see
Fig. 9b). The expected number of time slot needed for
sending the remaining packet can be calculated with the
following recursive formula.

E(g, r) = 1 + (1− ε1)(1− ε2)E(g − 1, r)

+(1− ε1)ε2E(g, r + 1)

+ε1(1− ε2)E(g − 1, r − 1)

+ε1ε2E(g, r)

=
1

1− ε1ε2

+
(1− ε1)(1− ε2)

1− ε1ε2
E(g − 1, r)

+
(1− ε1)ε2
1− ε1ε2

E(g, r + 1)

+
ε1(1− ε2)

1− ε1ε2
E(g − 1, r − 1) (8)

On Fig. 11 we compared again the simulations with the
values derived from the recursive formula and we get almost
no difference, so this formula describes the process precisely.
However, generalizing this recursive formula for H number of
hops has exponential complexity since the state system can be
described by H number of variables (the number of packets
that the decoder still needs to decode the full generation and
the linearly independent packets in every H − 1 recoders).

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” Information Theory, IEEE Transactions on, vol. 46, no. 4,
pp. 1204–1216, 2000.

[2] M. Medard, M.-J. Montpetit, C. Rosenberg, and F. Fitzek, “Network
coding mythbusting: Why it is not about butterflies anymore,” 2012.

[3] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Transactions on Networking (TON), vol. 11, no. 5, pp. 782–
795, 2003.

Network Coding as a Service

DECEMBER 2015 • VOLUME VII • NUMBER 410

INFOCOMMUNICATIONS JOURNAL

9

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 250
 500
 750

 1000

pa
ck

et
#

e1
e2

pa
ck

et
#

 0
 250
 500
 750
 1000

(a) Latency calculated from theory in Eq. (5).

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 250
 500
 750

 1000

pa
ck

et
#

e1
e2

pa
ck

et
#

 0
 250
 500
 750
 1000

(b) Latency calculated from simulations.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 25
 50
 75

 100

la
te

nc
y

[ti
m

e
slo

t]

e1
e2

la
te

nc
y

[ti
m

e
slo

t]

 0
 25
 50
 75
 100

(c) The difference between the theory in Eq. (5)
and the simulations.

Fig. 10: Number of time slots required to successfully send one generation of packets using RLNC through a two channel
network with loss probabilities of ε1 and ε2.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 250
 500
 750

 1000

pa
ck

et
#

e1
e2

pa
ck

et
#

 0
 250
 500
 750
 1000

(a) Latency calculated from recursive formula in
Eq. (7).

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 250
 500
 750

 1000

pa
ck

et
#

e1
e2

pa
ck

et
#

 0
 250
 500
 750
 1000

(b) Latency calculated from simulations.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 25
 50
 75

 100

la
te

nc
y

[ti
m

e
slo

t]

e1
e2

la
te

nc
y

[ti
m

e
slo

t]

 0
 25
 50
 75
 100

(c) The difference between the values calculated
from the recursive formula in Eq. (7) and the
simulations.

Fig. 11: Number of time slots required to successfully send one generation of packets using RLNC through a two channel
network with loss probabilities of ε1 and ε2.

[4] “Etsiportal, networkfunctionsvirtualisation: An introduction, benefits,
enablers, challenges and call for action.” October2012. [Online].
Available: ”http://portal.etsi.org/NFV/NFV White Paper.pdf”

[5] F. Németh, Á. Stipkovits, B. Sonkoly, and A. Gulyás, “Towards smart-
flow: case studies on enhanced programmable forwarding in openflow
switches,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 85–86, 2012.

[6] S. Liu and B. Hua, “Ncos: A framework for realizing network coding
over software-defined network,” in Local Computer Networks (LCN),
2014 IEEE 39th Conference on. IEEE, 2014, pp. 474–477.

[7] N. McKeown et al., “OpenFlow: enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
2008.

[8] A. Pašic and P. Babarczi, “Delay aware survivable routing with network
coding in software defined networks,” 2015.

[9] D. Szabó, A. Gulyás, F. Fitzek, and D. E. L. Roetter, “Towards the
tactile internet: Decreasing communication latency with network coding
and software defined networking.”

[10] D. Szabó, F. Németh, B. Sonkoly, A. Gulyás, and F. H. Fitzek,
“Towards the 5g revolution: A software defined network architecture
exploiting network coding as a service,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15, 2015, pp. 105–106.

[11] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol. 11, no. 12, p. 20, 2013.

[12] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research direc-
tions in network service chaining,” in Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for. IEEE, 2013, pp. 1–7.

[13] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Presented
as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12). San Jose, CA: USENIX, 2012,
pp. 323–336. [Online]. Available: https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/sekar

[14] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, ser. SIGCOMM ’12. New
York, NY, USA: ACM, 2012, pp. 13–24. [Online]. Available:
http://doi.acm.org/10.1145/2342356.2342359

[15] “Cisco. cisco cloud services router 1000v data sheet,” July
2012. [Online]. Available: ”http://www.cisco.com/en/US/prod/collateral/
routers/ps12558/ps12559/data sheet c78-705395.html”

[16] “Vyatta. the open source networking community,” July 2012. [Online].
Available: ”http://www.vyatta.org”

[17] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proc. USENIX NSDI, 2014, pp. 459–473.

[18] E. Kohler et al., “The click modular router,” ACM Trans. Comput. Syst.,
vol. 18, no. 3, pp. 263–297, Aug. 2000.

[19] M. V. Pedersen, J. Heide, and F. H. Fitzek, “Kodo: An open and research
oriented network coding library,” in NETWORKING 2011 Workshops.
Springer, 2011, pp. 145–152.

[20] A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyas, W. Tavernier,
and S. Sahhaf, “Escape: Extensible service chain prototyping
environment using mininet, click, netconf and pox,” in Proceedings
of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14.
New York, NY, USA: ACM, 2014, pp. 125–126. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2631448

[21] B. Lantz et al., “A network in a laptop: Rapid prototyping for software-
defined networks,” in ACM HotNets 2010.

[22] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Hotnets, 2009.

[23] “Pox wiki - open networking lab.” [Online]. Available: ”https:
//openflow.stanford.edu/display/ONL/POX+Wiki”

[24] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, pp. 38–42, 2012.

[25] T. K. Dikaliotis, A. G. Dimakis, T. Ho, and M. Effros, “On the delay of
network coding over line networks,” in Information Theory, 2009. ISIT
2009. IEEE International Symposium on. IEEE, 2009, pp. 1408–1412.

[26] P. Pakzad, C. Fragouli, and A. Shokrollahi, “Coding schemes for
line networks,” in Information Theory, 2005. ISIT 2005. Proceedings.
International Symposium on. IEEE, 2005, pp. 1853–1857.

Network Coding as a Service
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2015 • VOLUME VII • NUMBER 4 11

9

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 250
 500
 750

 1000

pa
ck

et
#

e1
e2

pa
ck

et
#

 0
 250
 500
 750
 1000

(a) Latency calculated from theory in Eq. (5).

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 250
 500
 750

 1000

pa
ck

et
#

e1
e2

pa
ck

et
#

 0
 250
 500
 750
 1000

(b) Latency calculated from simulations.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 25
 50
 75

 100

la
te

nc
y

[ti
m

e
slo

t]

e1
e2

la
te

nc
y

[ti
m

e
slo

t]

 0
 25
 50
 75
 100

(c) The difference between the theory in Eq. (5)
and the simulations.

Fig. 10: Number of time slots required to successfully send one generation of packets using RLNC through a two channel
network with loss probabilities of ε1 and ε2.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 250
 500
 750

 1000

pa
ck

et
#

e1
e2

pa
ck

et
#

 0
 250
 500
 750
 1000

(a) Latency calculated from recursive formula in
Eq. (7).

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 250
 500
 750

 1000

pa
ck

et
#

e1
e2

pa
ck

et
#

 0
 250
 500
 750
 1000

(b) Latency calculated from simulations.

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1
 0

 25
 50
 75

 100

la
te

nc
y

[ti
m

e
slo

t]

e1
e2

la
te

nc
y

[ti
m

e
slo

t]

 0
 25
 50
 75
 100

(c) The difference between the values calculated
from the recursive formula in Eq. (7) and the
simulations.

Fig. 11: Number of time slots required to successfully send one generation of packets using RLNC through a two channel
network with loss probabilities of ε1 and ε2.

[4] “Etsiportal, networkfunctionsvirtualisation: An introduction, benefits,
enablers, challenges and call for action.” October2012. [Online].
Available: ”http://portal.etsi.org/NFV/NFV White Paper.pdf”

[5] F. Németh, Á. Stipkovits, B. Sonkoly, and A. Gulyás, “Towards smart-
flow: case studies on enhanced programmable forwarding in openflow
switches,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 85–86, 2012.

[6] S. Liu and B. Hua, “Ncos: A framework for realizing network coding
over software-defined network,” in Local Computer Networks (LCN),
2014 IEEE 39th Conference on. IEEE, 2014, pp. 474–477.

[7] N. McKeown et al., “OpenFlow: enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
2008.

[8] A. Pašic and P. Babarczi, “Delay aware survivable routing with network
coding in software defined networks,” 2015.

[9] D. Szabó, A. Gulyás, F. Fitzek, and D. E. L. Roetter, “Towards the
tactile internet: Decreasing communication latency with network coding
and software defined networking.”

[10] D. Szabó, F. Németh, B. Sonkoly, A. Gulyás, and F. H. Fitzek,
“Towards the 5g revolution: A software defined network architecture
exploiting network coding as a service,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15, 2015, pp. 105–106.

[11] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol. 11, no. 12, p. 20, 2013.

[12] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research direc-
tions in network service chaining,” in Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for. IEEE, 2013, pp. 1–7.

[13] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Presented
as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12). San Jose, CA: USENIX, 2012,
pp. 323–336. [Online]. Available: https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/sekar

[14] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, ser. SIGCOMM ’12. New
York, NY, USA: ACM, 2012, pp. 13–24. [Online]. Available:
http://doi.acm.org/10.1145/2342356.2342359

[15] “Cisco. cisco cloud services router 1000v data sheet,” July
2012. [Online]. Available: ”http://www.cisco.com/en/US/prod/collateral/
routers/ps12558/ps12559/data sheet c78-705395.html”

[16] “Vyatta. the open source networking community,” July 2012. [Online].
Available: ”http://www.vyatta.org”

[17] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proc. USENIX NSDI, 2014, pp. 459–473.

[18] E. Kohler et al., “The click modular router,” ACM Trans. Comput. Syst.,
vol. 18, no. 3, pp. 263–297, Aug. 2000.

[19] M. V. Pedersen, J. Heide, and F. H. Fitzek, “Kodo: An open and research
oriented network coding library,” in NETWORKING 2011 Workshops.
Springer, 2011, pp. 145–152.

[20] A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyas, W. Tavernier,
and S. Sahhaf, “Escape: Extensible service chain prototyping
environment using mininet, click, netconf and pox,” in Proceedings
of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14.
New York, NY, USA: ACM, 2014, pp. 125–126. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2631448

[21] B. Lantz et al., “A network in a laptop: Rapid prototyping for software-
defined networks,” in ACM HotNets 2010.

[22] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Hotnets, 2009.

[23] “Pox wiki - open networking lab.” [Online]. Available: ”https:
//openflow.stanford.edu/display/ONL/POX+Wiki”

[24] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, pp. 38–42, 2012.

[25] T. K. Dikaliotis, A. G. Dimakis, T. Ho, and M. Effros, “On the delay of
network coding over line networks,” in Information Theory, 2009. ISIT
2009. IEEE International Symposium on. IEEE, 2009, pp. 1408–1412.

[26] P. Pakzad, C. Fragouli, and A. Shokrollahi, “Coding schemes for
line networks,” in Information Theory, 2005. ISIT 2005. Proceedings.
International Symposium on. IEEE, 2005, pp. 1853–1857.

10

Dávid Szabó Received M.Sc. in Informatics at
Budapest University of Technology and Economics
(BME), Budapest, Hungary in 2010. Since 2012, he
is a Ph.D. student at the High Speed Networks Labo-
ratory at the Department of Telecommunications and
Media Informatics, BME. His Ph.D. research is in
the field of complex networks and routing protocols.
His research interests also include network coding
and future Internet technologies. Since 2013, Dávid
is also enrolled in the Doctoral School on Innovation
& Entrepreneurship organized by the EIT Digital of

the European Institute of Innovation and Technology.

Attila Csoma Received B.Sc. and M.Sc degree in
Informatics at Budapest University of Technology
and Economics (BME), Budapest, Hungary in 2010
and 2012 respectively. Since 2012, he is a Ph.D.
student at the High Speed Networks Laboratory at
the Department of Telecommunications and Media
Informatics, BME. He conducts his Ph.D. research
on network topology and complex networks. His
research interests also include network coding and
IoT.

Péter Megyesi Received his B.Sc. and M.Sc. in
Electrical Engineering from the Budapest Univer-
sity of Technology and Economics (BME), Bu-
dapest, Hungary, in 2010 and 2012, respectively.
Since 2012, he is a Ph.D. student at the High
Speed Networks Laboratory at the Department of
Telecommunications and Media Informatics, BME.
His Ph.D. research is focused on synthetic network
traffic generation. His research interests also include
traffic measurements, traffic modeling and analysis
and traffic identification. Since 2013, Péter is also

enrolled in the Doctoral School on Innovation & Entrepreneurship organized
by the EIT Digital of the European Institute of Innovation and Technology.

András Gulyás Received M.Sc. and Ph.D. degree
in Informatics at Budapest University of Technology
and Economics, Budapest, Hungary in 2002 and
2008 respectively. Currently he is a research fellow
at the Department of Telecommunications and Me-
dia Informatics. His research interests are complex
and self-organizing networks and software defined
networking.

Frank H. P. Fitzek Received his diploma (Dipl.-
Ing.) degree in electrical engineering from the
University of Technology - Rheinisch-Westfälische
Technische Hochschule (RWTH) - Aachen, Ger-
many, in 1997 and his Ph.D. (Dr.-Ing.) in Electrical
Engineering from the Technical University Berlin,
Germany in 2002 and became Adjunct Professor at
the University of Ferrara, Italy in the same year.
In 2003 he joined Aalborg University as Associate
Professor and later became Professor. From 2014 he
is the head of Chair of Communication Networks at

Technische Universität Dresden.

10

Dávid Szabó Received M.Sc. in Informatics at
Budapest University of Technology and Economics
(BME), Budapest, Hungary in 2010. Since 2012, he
is a Ph.D. student at the High Speed Networks Labo-
ratory at the Department of Telecommunications and
Media Informatics, BME. His Ph.D. research is in
the field of complex networks and routing protocols.
His research interests also include network coding
and future Internet technologies. Since 2013, Dávid
is also enrolled in the Doctoral School on Innovation
& Entrepreneurship organized by the EIT Digital of

the European Institute of Innovation and Technology.

Attila Csoma Received B.Sc. and M.Sc degree in
Informatics at Budapest University of Technology
and Economics (BME), Budapest, Hungary in 2010
and 2012 respectively. Since 2012, he is a Ph.D.
student at the High Speed Networks Laboratory at
the Department of Telecommunications and Media
Informatics, BME. He conducts his Ph.D. research
on network topology and complex networks. His
research interests also include network coding and
IoT.

Péter Megyesi Received his B.Sc. and M.Sc. in
Electrical Engineering from the Budapest Univer-
sity of Technology and Economics (BME), Bu-
dapest, Hungary, in 2010 and 2012, respectively.
Since 2012, he is a Ph.D. student at the High
Speed Networks Laboratory at the Department of
Telecommunications and Media Informatics, BME.
His Ph.D. research is focused on synthetic network
traffic generation. His research interests also include
traffic measurements, traffic modeling and analysis
and traffic identification. Since 2013, Péter is also

enrolled in the Doctoral School on Innovation & Entrepreneurship organized
by the EIT Digital of the European Institute of Innovation and Technology.

András Gulyás Received M.Sc. and Ph.D. degree
in Informatics at Budapest University of Technology
and Economics, Budapest, Hungary in 2002 and
2008 respectively. Currently he is a research fellow
at the Department of Telecommunications and Me-
dia Informatics. His research interests are complex
and self-organizing networks and software defined
networking.

Frank H. P. Fitzek Received his diploma (Dipl.-
Ing.) degree in electrical engineering from the
University of Technology - Rheinisch-Westfälische
Technische Hochschule (RWTH) - Aachen, Ger-
many, in 1997 and his Ph.D. (Dr.-Ing.) in Electrical
Engineering from the Technical University Berlin,
Germany in 2002 and became Adjunct Professor at
the University of Ferrara, Italy in the same year.
In 2003 he joined Aalborg University as Associate
Professor and later became Professor. From 2014 he
is the head of Chair of Communication Networks at

Technische Universität Dresden.

10

Dávid Szabó Received M.Sc. in Informatics at
Budapest University of Technology and Economics
(BME), Budapest, Hungary in 2010. Since 2012, he
is a Ph.D. student at the High Speed Networks Labo-
ratory at the Department of Telecommunications and
Media Informatics, BME. His Ph.D. research is in
the field of complex networks and routing protocols.
His research interests also include network coding
and future Internet technologies. Since 2013, Dávid
is also enrolled in the Doctoral School on Innovation
& Entrepreneurship organized by the EIT Digital of

the European Institute of Innovation and Technology.

Attila Csoma Received B.Sc. and M.Sc degree in
Informatics at Budapest University of Technology
and Economics (BME), Budapest, Hungary in 2010
and 2012 respectively. Since 2012, he is a Ph.D.
student at the High Speed Networks Laboratory at
the Department of Telecommunications and Media
Informatics, BME. He conducts his Ph.D. research
on network topology and complex networks. His
research interests also include network coding and
IoT.

Péter Megyesi Received his B.Sc. and M.Sc. in
Electrical Engineering from the Budapest Univer-
sity of Technology and Economics (BME), Bu-
dapest, Hungary, in 2010 and 2012, respectively.
Since 2012, he is a Ph.D. student at the High
Speed Networks Laboratory at the Department of
Telecommunications and Media Informatics, BME.
His Ph.D. research is focused on synthetic network
traffic generation. His research interests also include
traffic measurements, traffic modeling and analysis
and traffic identification. Since 2013, Péter is also

enrolled in the Doctoral School on Innovation & Entrepreneurship organized
by the EIT Digital of the European Institute of Innovation and Technology.

András Gulyás Received M.Sc. and Ph.D. degree
in Informatics at Budapest University of Technology
and Economics, Budapest, Hungary in 2002 and
2008 respectively. Currently he is a research fellow
at the Department of Telecommunications and Me-
dia Informatics. His research interests are complex
and self-organizing networks and software defined
networking.

Frank H. P. Fitzek Received his diploma (Dipl.-
Ing.) degree in electrical engineering from the
University of Technology - Rheinisch-Westfälische
Technische Hochschule (RWTH) - Aachen, Ger-
many, in 1997 and his Ph.D. (Dr.-Ing.) in Electrical
Engineering from the Technical University Berlin,
Germany in 2002 and became Adjunct Professor at
the University of Ferrara, Italy in the same year.
In 2003 he joined Aalborg University as Associate
Professor and later became Professor. From 2014 he
is the head of Chair of Communication Networks at

Technische Universität Dresden.

10

Dávid Szabó Received M.Sc. in Informatics at
Budapest University of Technology and Economics
(BME), Budapest, Hungary in 2010. Since 2012, he
is a Ph.D. student at the High Speed Networks Labo-
ratory at the Department of Telecommunications and
Media Informatics, BME. His Ph.D. research is in
the field of complex networks and routing protocols.
His research interests also include network coding
and future Internet technologies. Since 2013, Dávid
is also enrolled in the Doctoral School on Innovation
& Entrepreneurship organized by the EIT Digital of

the European Institute of Innovation and Technology.

Attila Csoma Received B.Sc. and M.Sc degree in
Informatics at Budapest University of Technology
and Economics (BME), Budapest, Hungary in 2010
and 2012 respectively. Since 2012, he is a Ph.D.
student at the High Speed Networks Laboratory at
the Department of Telecommunications and Media
Informatics, BME. He conducts his Ph.D. research
on network topology and complex networks. His
research interests also include network coding and
IoT.

Péter Megyesi Received his B.Sc. and M.Sc. in
Electrical Engineering from the Budapest Univer-
sity of Technology and Economics (BME), Bu-
dapest, Hungary, in 2010 and 2012, respectively.
Since 2012, he is a Ph.D. student at the High
Speed Networks Laboratory at the Department of
Telecommunications and Media Informatics, BME.
His Ph.D. research is focused on synthetic network
traffic generation. His research interests also include
traffic measurements, traffic modeling and analysis
and traffic identification. Since 2013, Péter is also

enrolled in the Doctoral School on Innovation & Entrepreneurship organized
by the EIT Digital of the European Institute of Innovation and Technology.

András Gulyás Received M.Sc. and Ph.D. degree
in Informatics at Budapest University of Technology
and Economics, Budapest, Hungary in 2002 and
2008 respectively. Currently he is a research fellow
at the Department of Telecommunications and Me-
dia Informatics. His research interests are complex
and self-organizing networks and software defined
networking.

Frank H. P. Fitzek Received his diploma (Dipl.-
Ing.) degree in electrical engineering from the
University of Technology - Rheinisch-Westfälische
Technische Hochschule (RWTH) - Aachen, Ger-
many, in 1997 and his Ph.D. (Dr.-Ing.) in Electrical
Engineering from the Technical University Berlin,
Germany in 2002 and became Adjunct Professor at
the University of Ferrara, Italy in the same year.
In 2003 he joined Aalborg University as Associate
Professor and later became Professor. From 2014 he
is the head of Chair of Communication Networks at

Technische Universität Dresden.

10

Dávid Szabó Received M.Sc. in Informatics at
Budapest University of Technology and Economics
(BME), Budapest, Hungary in 2010. Since 2012, he
is a Ph.D. student at the High Speed Networks Labo-
ratory at the Department of Telecommunications and
Media Informatics, BME. His Ph.D. research is in
the field of complex networks and routing protocols.
His research interests also include network coding
and future Internet technologies. Since 2013, Dávid
is also enrolled in the Doctoral School on Innovation
& Entrepreneurship organized by the EIT Digital of

the European Institute of Innovation and Technology.

Attila Csoma Received B.Sc. and M.Sc degree in
Informatics at Budapest University of Technology
and Economics (BME), Budapest, Hungary in 2010
and 2012 respectively. Since 2012, he is a Ph.D.
student at the High Speed Networks Laboratory at
the Department of Telecommunications and Media
Informatics, BME. He conducts his Ph.D. research
on network topology and complex networks. His
research interests also include network coding and
IoT.

Péter Megyesi Received his B.Sc. and M.Sc. in
Electrical Engineering from the Budapest Univer-
sity of Technology and Economics (BME), Bu-
dapest, Hungary, in 2010 and 2012, respectively.
Since 2012, he is a Ph.D. student at the High
Speed Networks Laboratory at the Department of
Telecommunications and Media Informatics, BME.
His Ph.D. research is focused on synthetic network
traffic generation. His research interests also include
traffic measurements, traffic modeling and analysis
and traffic identification. Since 2013, Péter is also

enrolled in the Doctoral School on Innovation & Entrepreneurship organized
by the EIT Digital of the European Institute of Innovation and Technology.

András Gulyás Received M.Sc. and Ph.D. degree
in Informatics at Budapest University of Technology
and Economics, Budapest, Hungary in 2002 and
2008 respectively. Currently he is a research fellow
at the Department of Telecommunications and Me-
dia Informatics. His research interests are complex
and self-organizing networks and software defined
networking.

Frank H. P. Fitzek Received his diploma (Dipl.-
Ing.) degree in electrical engineering from the
University of Technology - Rheinisch-Westfälische
Technische Hochschule (RWTH) - Aachen, Ger-
many, in 1997 and his Ph.D. (Dr.-Ing.) in Electrical
Engineering from the Technical University Berlin,
Germany in 2002 and became Adjunct Professor at
the University of Ferrara, Italy in the same year.
In 2003 he joined Aalborg University as Associate
Professor and later became Professor. From 2014 he
is the head of Chair of Communication Networks at

Technische Universität Dresden.

