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TC-linearisation of tweakable polynomials
Josef Bárta, Michal Hojsı́k

Abstract—Based on the Cube Attack by Itai Dinur and Adi
Shamir and another, in the essence similar, method we devised a
new polynomial linearisation technique, which proved to be more
powerful, than the Cube Attack alone. Moreover, we present
detailed description with formal proof not only of our findings,
but also of the Cube Attack. Finally, we demonstrate the results
of our efforts on a Trivium variant that is reduced in key
and initialisation vector bit count. We managed to linearise
polynomials representing a keystream bit output after up to 621
initialisation rounds using purely techniques described in this
paper, compared to 581 initialisation rounds with original attack.

Index Terms—Cube Attacks, cryptanalysis, stream ciphers,
lightweight cryptography, Boolean functions, linearisation,
tweakable polynomials

I. INTRODUCTION

IN this paper we present a detailed description of Adi
Shamir’s Cube Attack and then to devise a generalisation,

which could help push the boundaries of usability of the
Cube Attack. Other important target of ours are of course
the polynomials as such. Therefore we decided to actually
compute the polynomial expression of the state and keystream
bits of Trivium reduced in the number of the bits used as
variables and then to analyse them without having to do any
guessing. More specifically, we wanted to assess, whether the
polynomials are linearisable using the techniques devised by
us and whether they are any more effective than the original
Cube Attack.

In the next section there is described the basic notation
we use throughout the paper. Thereafter we ”translate” the
Cube Attack into our notation and we present its detailed
description. In further sections we describe in the same manner
another technique that can be used for attack in a similar way
to the Cube Attack, which we simplify into two easier, but
nonetheless effective techniques. The details about analysis of
the polynomials and a description of the cryptosystem they
represent can be found in the second to last section.

II. TC-LINEARISATION OF TWEAKABLE POLYNOMIALS

In this section we describe the theory behind the Cube
Attack. Further in the text we define a technique, which is
in itself very simple, but in its full variant could prove to be a
very powerful way of linearising polynomials, if it was not for
the computational complexity of the algorithm the equivalent
condition yields. Nevertheless, we also present two simple
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variants, one of which proves in the next section to be quite
powerful, when teamed up with the Cube Attack.

A. Tweakable polynomials

In this section, we introduce some notation and define the
classes of polynomials we will be working with.

Throughout this paper, we denote by [n] the set
{0, 1, . . . , n − 1} for any n ∈ N. The set of all Boolean
functions in n variables is denoted by Bn, i.e. Bn = {f :
Fn
2 → F2}.
Algebraic normal form (ANF) of a Boolean function f

is its representation as a polynomial f(x0, . . . , xn−1) ∈
F2[x0, . . . , xn−1] such that none of its monomials contain any
variable in degree greater than one. For each Boolean function,
there exist a unique algebraic normal form.

For I ⊆ [n], we will use xI to denote the monomial∏
i∈I xi. So for every Boolean function f ∈ Bn there exists a

unique set I ⊆ P([n]) such that f(x0, . . . , xn−1) =
∑

I∈I xI .
We will write xI ∈ f if I ∈ I.

Definition II-A.1. Let m,n ∈ N. We define set of secret
variables X = {xi; i ∈ [n]} and set of public variables
Y = {yj ; j ∈ [m]}.

Later on, the secret variables will represent the secret key,
while the public variables will represent the initialisation vec-
tor of a stream cipher, which is public and can be potentially
set by an attacker.

In the rest of the paper we will use the ANF rep-
resentation of Boolean functions and use the notation
B[X], B[Y ], B[X,Y ] for Boolean functions (polynomials)
in variables X , Y or X ∪ Y respectively.

Definition II-A.2. We call a polynomial p tweakable, if p ∈
B[X,Y ] and fully tweakable, if p ∈ B[Y ].

B. Basic Cube Attack

This section describes the basic principles of the Cube
Attack in the same way it was done in [1]. For demonstration
purposes we use fully tweakable polynomials.

Definition II-B.1. [1] Let p ∈ B[Y ] be a polynomial and
J ⊆ [m] a variable index subset. A superpoly of J in p is a
polynomial pS(J) ∈ B[Y ] such that

p(Y ) = yJ · pS(J)(Y ) + qJ(Y ) (II-B.1)

where q =
∑

J �⊆J ′
bJ′yJ ′ , bJ ′ ∈ F2. We call yJ a maxterm, if

the superpoly pS(J) is a linear, non-constant polynomial.

Note II-B.2. The superpoly pS(J) does not contain any
variables indexed by J .
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∃l ∈ Lp, l = xiyJ : (∀h ∈ Hp ∃j ∈ [m] \ J : yj |h)

then p is T-linearisable. Specially, we say that p is T1-
linearisable.

Proof. If there is such l that the condition holds, then every
h ∈ Hp can be eliminated by setting respective yj = 0 while
the secret part of l will be kept in the polynomial by setting
the public variables indexed by a smallest J ′ ⊆ J such that
xiyJ ′ ∈ Lp to one and the remaining ones to zero.

We recall the polynomial from previous example to demon-
strate the T1-linearisation:

Example II-D.3. Let

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 +
x2y0y1 + y0y1 + y0y2 + y0 + y2

We can linearise this polynomial in secret variables by setting
y1 = 0, which gives us a non-constant polynomial, that is
linear in secret variables

p|y1=0 = x0y0y2 + y0y2 + y0 + y2

and finally, by setting y0 = y2 = 1 we get

p|y1=0,y0=y2=1 = x0 + 1

which is a linear polynomial in secret variables only.

Corrolary II-D.4. C-linearisability does not imply T1-
linearisability.

Proof. Consider polynomial p = x0y0y1 + x0x1y1. This
polynomial is clearly not T1-linearisable, but it is obviously
C-linearisable using J = {0, 1}.

Clearly T1-linearisability is not a necessary condition for
T-linearisability. Consider p ∈ B[X,Y ],

p = x0x1y0 + x0x1 + x2 = (y0 + 1)x0x1 + x2.

This polynomial obviously is T-linearisable by setting y0 = 1,
but due to the monomial x0x1 T1-linearisation does not work
here.

Definition II-D.5. For any index subset I ⊆ [n] and polyno-
mial p ∈ B[X,Y ] we define the set of public monomials of p
relative to I as Ep(I) = {yJ : xIyJ ∈ p} and the tweaking
polynomial pEp(I) ∈ B[Y ] as pEp(I) =

∑
yJ∈Ep(I)

yJ .

Using this we can express any tweakable polynomial p ∈
B[X,Y ] as p =

∑
I⊆[n] pEp(I)xI . In other words, pEp(I) is

the coefficient of xI in p if seen as p ∈ B[Y ][X].
Clearly, if we want to obtain a linear polynomial in X , we

need to evaluate all B[Y ] coefficients of xI , |I| ≥ 2 to zero. In
the following proposition we use this to present an equivalent
definition of T-linearisation.

Proposition II-D.6. Tweakable polynomial p ∈ B[X,Y ] is
T-linearisable if and only if

∃J ⊆ [m] :
(∃v ∈ CJ : [∀I ⊆ [n], |I| ≥ 2 : pEp(I)|v = 0

∧ (∃I ′ ⊆ [n], |I ′| = 1 : pE(I′)|v �= 0)])

In other words, a tweakable polynomial is T-linearisable,
if there is a solution to the system of polynomial equations
yielded by pEp(I)’s, where |I| ≥ 2 for that some of the
pEp(I′), |I ′| = 1 does not evaluate to zero.

Proof. We prove the forward implication by contradiction, the
backward directly.
”⇒”: Let’s assume that p is T-linearisable and

∀a ∈ Fm
2 [(∃I ⊆ [n], |I| ≥ 2 : pEp(I)(a) = 1)

∨ (∀I ′ ⊆ [n], |I ′| = 1 : pE(I′)(a) = 0)]

That means that after any partial evaluation in public variables
there either remains some monomial that is not linear in secret
variables or the resulting polynomial is a constant. Hence the
contradiction.
”⇐”: If there exists such J and v ∈ CJ , then we can eliminate
all the monomials that are non-linear in secret variables by
partial evaluation in v and there is at least one monomial, that
is linear in secret variables that remains in the polynomial after
the partial evaluation. So p|v is a polynomial that is linear in
secret variables, hence p is T-linearisable.

This proposition yields a very compelling way of T-
linearising a tweakable polynomial. First, we find the solutions
for the system of polynomial equations defined by the pEp(I)’s
for |I| ≥ 2. Then we choose those solutions, for which there
exist I ′ such that |I ′| = 1 and pEp(I′) is non-zero after the
partial evaluation. Naturally, this may be ineffective or even
impossible, as shown in following example:

Example II-D.7. Because our usual example polynomial is,
as demonstrated, T-linearisable, for purposes of this example,
we present a different polynomial, q ∈ B[X,Y ], q = x0 +
x0x1y0 + x1x2y0 + x1x2. Obviously,

q = x0 + x0x1 · y0 + x1x2 · (y0 + 1)

which yields an equation system

y0 + 1 = 0
y0 = 0

which has no solution.

Because solving a system of polynomial equations over F2

in general is computationally ineffective, we present a simpler
version, which we might be able to solve in a more efficient
manner (given that the system of equations actually has a
solution, otherwise we just conclude that there is none).

Corrolary II-D.8. Let p ∈ B[X,Y ]. If

∀xIyJ ∈ Hp : |J | ≤ 1 ∧
∧ [∃a ∈ Fm

2 : (∀I ′ ⊆ [n], |I ′| ≥ 2 : pE(I′)(a) = 0) ∧ (∃i ∈
[n] : pE({i})(a) = 1)]

then p is T-linearisable. Specially, we say that p is T2-
linearisable.

This means, that a polynomial is T2-linearisable, if is T-
linearisable and the tweaking polynomials for all I’s, such
that |I| ≥ 2, are linear or constant.

2

Example II-B.3. Let p ∈ B[Y ] be a polynomial

p = y0y3y4y5 + y1y3y4y5 + y0y3y5 + y0y2y3y4 + y0y1 +
y1y2y4 + y2y3y4 + y3y4 + y3y5 + y3 + y4 .

We can factor out the monomial yJ = y3y4y5 so we get

p = y3y4y5︸ ︷︷ ︸
yJ

·

pS(J)(Y )︷ ︸︸ ︷
(y0 + y1)+

+ y0y3y5 + y0y2y3y4 + y0y1 + y1y2y4+︸ ︷︷ ︸
qJ (Y )

+y2y3y4 + y3y4 + y3y5 + y3 + y4︸ ︷︷ ︸
qJ (Y ) continued

In this case, yJ is a maxterm of J in p.

Definition II-B.4. For an index subset J ⊆ [m], |J | = k
we define a summation cube CJ as the set of k-tuples of
variables yj : j ∈ J where all possible combinations of
values of variables yj are assigned. We can also understand
CJ as a vector space Fk

2 with information about indices of
the variables. Hence we set dim(CJ) = k.

Definition II-B.5. [1] For every polynomial p ∈ B[Y ] and for
any k-dimensional summation cube CJ , J ⊆ [m] we define
pJ :=

∑
v∈CJ

p|v where p|v is a derived polynomial with
m− k variables {yj : j ∈ [m] \ J} and the variables indexed
with J are assigned values from the k-tuple v.

Now we can present a vital property of the superpoly of J
in p, which is the main theorem in [1].

Proposition II-B.6. [1] For any polynomial p ∈ B[Y ] and
variable subset J , pJ = pS(J).

For our purposes, from now on, we shall call this technique
of summing (partial) evaluations of a polynomial the C-
linearisation of fully tweakable polynomials.

C. C-linearisation of tweakable polynomials

In this section we describe the C-linearisation (cube attack)
on tweakable polynomials. We present a clear description of
what makes a polynomial C-linearisable. In [1] this part was
skipped, for they dealt with black box polynomials which
demand a different approach than polynomials the explicit
representation of which is known.

Definition II-C.1. We call a polynomial p ∈ B[X,Y ] C-
linearisable, if there exists J ⊆ [m] such that pJ(X,Y =
(1, ..., 1)) is linear.

For purposes of C-linearisation we present the following
grouping of monomials: Let p ∈ B[X,Y ] be a tweakable
polynomial. Then we can write

p =
∑

(I,J)∈I
xIyJ =

∑
l∈Lp

l +
∑

b∈Bp

b+
∑

h∈Hp

h

where I ⊆ P([n])× P([m]) and Bp = {xIyJ ∈ p : |I| = 0},
Lp = {xIyJ ∈ p : |I| = 1} and Hp = {xIyJ ∈ p : |I| > 1}.

The set Bp contains all monomials consisting purely of
public variables and the free monomial. Lp contains all
monomials consisting of exactly one secret and any number

and combination of public variables. Hp consists of monomials
with two or more secret variables. We can plainly see that
Lp ∪Bp ∪Hp contains all monomials of p.

Before we present the condition which describes precisely
a C-linearisable polynomial, we present a simple lemma about
C-linearisability:

Lemma II-C.2. Let p ∈ B[X,Y ] be a tweakable polynomial.
If Lp = ∅, then p is not C-linearisable.

Proof. If there is no monomial that is linear in secret variables,
there is definitely no monomial yJ , J ⊆ [m], such that pS(J)

is linear in secret variables.

Now we can propose an equivalent definition of a C-
linearisable tweakable polynomial:

Proposition II-C.3. A tweakable polynomial p ∈ B[X,Y ] is
C-linearisable if and only if

∃xiyJ ∈ Lp, : (∀yJ ′xI ∈ Hp : yJ � |yJ ′)

Proof. We shall prove the first implication by contradiction,
the second directly:
”⇒”: For contradiction, we assume that p is C-linearisable and
∀yJxi ∈ Lp∃yJ ′xI ∈ Hp : yJ |yJ ′ . This implies that for every
choice of J will in the superpoly pS(J) remain a monomial that
is non-linear in secret variables, i.e. the superpoly will contain
yJ′
yJ

xI and |I| ≥ 2 as yJ ′xI ∈ Hp. Thus the contradiction.
”⇐”: We assume that ∃yJxi ∈ Lp ∀yJ ′xI ∈ Hp : yJ � |yJ ′ .
That implies yJ is a maxterm, which yields a superpoly pS(J)

that is linear in secret variables.

Example II-C.4. In this example we rewrite the polynomial
from previous example into the notation of the tweakable
polynomials with distinguished secret and public variables.
We shall have m = n = 3. So let p ∈ B[X,Y ] be a tweakable
polynomial:

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 +
x2y0y1 + y0y1 + y0y2 + y0 + y2

We can factor out yI = y0y1y2, so we obtain

p = y0y1y2 · (x0 + x1) + x0y0y2 + x0x1y0y1 + x1x2y1 +
x2y0y1 + y0y1 + y0y2 + y0 + y2

where x0 + x1 is the linear superpoly of I = {0, 1, 2} in p
and yI is a maxterm.

D. T-linearisation of tweakable polynomials

Now we present T-linearisation, a technique we devised and
describe to aid the C-linearisation to be as effective as possible
when linearising a polynomial.

Definition II-D.1. We call a polynomial p ∈ B[X,Y ] T-
linearisable, if

∃J ⊆ [m] : (∃v ∈ CJ : p|v is linear in secret variables)

In other words there exists a (partial) evaluation of the
polynomial in public variables that results in p|v being linear
in secret variables.

Proposition II-D.2. Let p ∈ B[X,Y ]. If
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∃l ∈ Lp, l = xiyJ : (∀h ∈ Hp ∃j ∈ [m] \ J : yj |h)

then p is T-linearisable. Specially, we say that p is T1-
linearisable.

Proof. If there is such l that the condition holds, then every
h ∈ Hp can be eliminated by setting respective yj = 0 while
the secret part of l will be kept in the polynomial by setting
the public variables indexed by a smallest J ′ ⊆ J such that
xiyJ ′ ∈ Lp to one and the remaining ones to zero.

We recall the polynomial from previous example to demon-
strate the T1-linearisation:

Example II-D.3. Let

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 +
x2y0y1 + y0y1 + y0y2 + y0 + y2

We can linearise this polynomial in secret variables by setting
y1 = 0, which gives us a non-constant polynomial, that is
linear in secret variables

p|y1=0 = x0y0y2 + y0y2 + y0 + y2

and finally, by setting y0 = y2 = 1 we get

p|y1=0,y0=y2=1 = x0 + 1

which is a linear polynomial in secret variables only.

Corrolary II-D.4. C-linearisability does not imply T1-
linearisability.

Proof. Consider polynomial p = x0y0y1 + x0x1y1. This
polynomial is clearly not T1-linearisable, but it is obviously
C-linearisable using J = {0, 1}.

Clearly T1-linearisability is not a necessary condition for
T-linearisability. Consider p ∈ B[X,Y ],

p = x0x1y0 + x0x1 + x2 = (y0 + 1)x0x1 + x2.

This polynomial obviously is T-linearisable by setting y0 = 1,
but due to the monomial x0x1 T1-linearisation does not work
here.

Definition II-D.5. For any index subset I ⊆ [n] and polyno-
mial p ∈ B[X,Y ] we define the set of public monomials of p
relative to I as Ep(I) = {yJ : xIyJ ∈ p} and the tweaking
polynomial pEp(I) ∈ B[Y ] as pEp(I) =

∑
yJ∈Ep(I)

yJ .

Using this we can express any tweakable polynomial p ∈
B[X,Y ] as p =

∑
I⊆[n] pEp(I)xI . In other words, pEp(I) is

the coefficient of xI in p if seen as p ∈ B[Y ][X].
Clearly, if we want to obtain a linear polynomial in X , we

need to evaluate all B[Y ] coefficients of xI , |I| ≥ 2 to zero. In
the following proposition we use this to present an equivalent
definition of T-linearisation.

Proposition II-D.6. Tweakable polynomial p ∈ B[X,Y ] is
T-linearisable if and only if

∃J ⊆ [m] :
(∃v ∈ CJ : [∀I ⊆ [n], |I| ≥ 2 : pEp(I)|v = 0

∧ (∃I ′ ⊆ [n], |I ′| = 1 : pE(I′)|v �= 0)])

In other words, a tweakable polynomial is T-linearisable,
if there is a solution to the system of polynomial equations
yielded by pEp(I)’s, where |I| ≥ 2 for that some of the
pEp(I′), |I ′| = 1 does not evaluate to zero.

Proof. We prove the forward implication by contradiction, the
backward directly.
”⇒”: Let’s assume that p is T-linearisable and

∀a ∈ Fm
2 [(∃I ⊆ [n], |I| ≥ 2 : pEp(I)(a) = 1)

∨ (∀I ′ ⊆ [n], |I ′| = 1 : pE(I′)(a) = 0)]

That means that after any partial evaluation in public variables
there either remains some monomial that is not linear in secret
variables or the resulting polynomial is a constant. Hence the
contradiction.
”⇐”: If there exists such J and v ∈ CJ , then we can eliminate
all the monomials that are non-linear in secret variables by
partial evaluation in v and there is at least one monomial, that
is linear in secret variables that remains in the polynomial after
the partial evaluation. So p|v is a polynomial that is linear in
secret variables, hence p is T-linearisable.

This proposition yields a very compelling way of T-
linearising a tweakable polynomial. First, we find the solutions
for the system of polynomial equations defined by the pEp(I)’s
for |I| ≥ 2. Then we choose those solutions, for which there
exist I ′ such that |I ′| = 1 and pEp(I′) is non-zero after the
partial evaluation. Naturally, this may be ineffective or even
impossible, as shown in following example:

Example II-D.7. Because our usual example polynomial is,
as demonstrated, T-linearisable, for purposes of this example,
we present a different polynomial, q ∈ B[X,Y ], q = x0 +
x0x1y0 + x1x2y0 + x1x2. Obviously,

q = x0 + x0x1 · y0 + x1x2 · (y0 + 1)

which yields an equation system

y0 + 1 = 0
y0 = 0

which has no solution.

Because solving a system of polynomial equations over F2

in general is computationally ineffective, we present a simpler
version, which we might be able to solve in a more efficient
manner (given that the system of equations actually has a
solution, otherwise we just conclude that there is none).

Corrolary II-D.8. Let p ∈ B[X,Y ]. If

∀xIyJ ∈ Hp : |J | ≤ 1 ∧
∧ [∃a ∈ Fm

2 : (∀I ′ ⊆ [n], |I ′| ≥ 2 : pE(I′)(a) = 0) ∧ (∃i ∈
[n] : pE({i})(a) = 1)]

then p is T-linearisable. Specially, we say that p is T2-
linearisable.

This means, that a polynomial is T2-linearisable, if is T-
linearisable and the tweaking polynomials for all I’s, such
that |I| ≥ 2, are linear or constant.

2

Example II-B.3. Let p ∈ B[Y ] be a polynomial

p = y0y3y4y5 + y1y3y4y5 + y0y3y5 + y0y2y3y4 + y0y1 +
y1y2y4 + y2y3y4 + y3y4 + y3y5 + y3 + y4 .

We can factor out the monomial yJ = y3y4y5 so we get

p = y3y4y5︸ ︷︷ ︸
yJ

·

pS(J)(Y )︷ ︸︸ ︷
(y0 + y1)+

+ y0y3y5 + y0y2y3y4 + y0y1 + y1y2y4+︸ ︷︷ ︸
qJ (Y )

+y2y3y4 + y3y4 + y3y5 + y3 + y4︸ ︷︷ ︸
qJ (Y ) continued

In this case, yJ is a maxterm of J in p.

Definition II-B.4. For an index subset J ⊆ [m], |J | = k
we define a summation cube CJ as the set of k-tuples of
variables yj : j ∈ J where all possible combinations of
values of variables yj are assigned. We can also understand
CJ as a vector space Fk

2 with information about indices of
the variables. Hence we set dim(CJ) = k.

Definition II-B.5. [1] For every polynomial p ∈ B[Y ] and for
any k-dimensional summation cube CJ , J ⊆ [m] we define
pJ :=

∑
v∈CJ

p|v where p|v is a derived polynomial with
m− k variables {yj : j ∈ [m] \ J} and the variables indexed
with J are assigned values from the k-tuple v.

Now we can present a vital property of the superpoly of J
in p, which is the main theorem in [1].

Proposition II-B.6. [1] For any polynomial p ∈ B[Y ] and
variable subset J , pJ = pS(J).

For our purposes, from now on, we shall call this technique
of summing (partial) evaluations of a polynomial the C-
linearisation of fully tweakable polynomials.

C. C-linearisation of tweakable polynomials

In this section we describe the C-linearisation (cube attack)
on tweakable polynomials. We present a clear description of
what makes a polynomial C-linearisable. In [1] this part was
skipped, for they dealt with black box polynomials which
demand a different approach than polynomials the explicit
representation of which is known.

Definition II-C.1. We call a polynomial p ∈ B[X,Y ] C-
linearisable, if there exists J ⊆ [m] such that pJ(X,Y =
(1, ..., 1)) is linear.

For purposes of C-linearisation we present the following
grouping of monomials: Let p ∈ B[X,Y ] be a tweakable
polynomial. Then we can write

p =
∑

(I,J)∈I
xIyJ =

∑
l∈Lp

l +
∑

b∈Bp

b+
∑

h∈Hp

h

where I ⊆ P([n])× P([m]) and Bp = {xIyJ ∈ p : |I| = 0},
Lp = {xIyJ ∈ p : |I| = 1} and Hp = {xIyJ ∈ p : |I| > 1}.

The set Bp contains all monomials consisting purely of
public variables and the free monomial. Lp contains all
monomials consisting of exactly one secret and any number

and combination of public variables. Hp consists of monomials
with two or more secret variables. We can plainly see that
Lp ∪Bp ∪Hp contains all monomials of p.

Before we present the condition which describes precisely
a C-linearisable polynomial, we present a simple lemma about
C-linearisability:

Lemma II-C.2. Let p ∈ B[X,Y ] be a tweakable polynomial.
If Lp = ∅, then p is not C-linearisable.

Proof. If there is no monomial that is linear in secret variables,
there is definitely no monomial yJ , J ⊆ [m], such that pS(J)

is linear in secret variables.

Now we can propose an equivalent definition of a C-
linearisable tweakable polynomial:

Proposition II-C.3. A tweakable polynomial p ∈ B[X,Y ] is
C-linearisable if and only if

∃xiyJ ∈ Lp, : (∀yJ ′xI ∈ Hp : yJ � |yJ ′)

Proof. We shall prove the first implication by contradiction,
the second directly:
”⇒”: For contradiction, we assume that p is C-linearisable and
∀yJxi ∈ Lp∃yJ ′xI ∈ Hp : yJ |yJ ′ . This implies that for every
choice of J will in the superpoly pS(J) remain a monomial that
is non-linear in secret variables, i.e. the superpoly will contain
yJ′
yJ

xI and |I| ≥ 2 as yJ ′xI ∈ Hp. Thus the contradiction.
”⇐”: We assume that ∃yJxi ∈ Lp ∀yJ ′xI ∈ Hp : yJ � |yJ ′ .
That implies yJ is a maxterm, which yields a superpoly pS(J)

that is linear in secret variables.

Example II-C.4. In this example we rewrite the polynomial
from previous example into the notation of the tweakable
polynomials with distinguished secret and public variables.
We shall have m = n = 3. So let p ∈ B[X,Y ] be a tweakable
polynomial:

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 +
x2y0y1 + y0y1 + y0y2 + y0 + y2

We can factor out yI = y0y1y2, so we obtain

p = y0y1y2 · (x0 + x1) + x0y0y2 + x0x1y0y1 + x1x2y1 +
x2y0y1 + y0y1 + y0y2 + y0 + y2

where x0 + x1 is the linear superpoly of I = {0, 1, 2} in p
and yI is a maxterm.

D. T-linearisation of tweakable polynomials

Now we present T-linearisation, a technique we devised and
describe to aid the C-linearisation to be as effective as possible
when linearising a polynomial.

Definition II-D.1. We call a polynomial p ∈ B[X,Y ] T-
linearisable, if

∃J ⊆ [m] : (∃v ∈ CJ : p|v is linear in secret variables)

In other words there exists a (partial) evaluation of the
polynomial in public variables that results in p|v being linear
in secret variables.

Proposition II-D.2. Let p ∈ B[X,Y ]. If
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obtain the keystream zi = pi(K, IV ) (chosen IV attack). His
goal is to find K by solving the respective equation systems.

For this purpose we need to compute the polynomials
gi,j(X,Y ) for all inner state bits and use them to compute
the polynomials pi(X,Y ) expressing the keystream bits. To
obtain the actual values of zi, we need an implementation of
Trivium-8 that computes the keystream bits from the K and
IV.

Attack on black-box polynomials, i.e. polynomials explicit
representation of which is unknown to us, is out of scope of
this paper and subject of future work.

1) Attack using T-linearisation: This part is pretty straight-
forward. Assume that IV ∈ Fm

2 and i ≥ 0 such that pi(X, IV )
is linear in X . Then we get the value of zi = pi(K, IV ) and
form a linear equation pi(X, IV ) = zi.

If the J from the definition of T-linearisation is such that
J �= [m], we add to the values of respective v ∈ CJ values
for the remaining public variables arbitrarily.

2) Attack using C-linearisation: Assume that for an J ⊆
[m] the yJ is a maxterm of pi(X,Y ) so by assigning ones
to all yj , j /∈ J we obtain a linear superpoly. We set
U = {(u0, . . . , um−1) ∈ Fm

2 ;uj = 1 ∀j /∈ J} and obtain
zi(a) = pi(K,u) for all u ∈ U . The equation obtained by
C-linearisation is then pS(J)(X, v) =

∑
u∈U zi(u) where v is

an element of U . Note that pS(J)(X,Y ) can depend only on
public variables with indices not in J , hence the equation does
not depend on the particular choice of v ∈ U .

3) Attack using TC-linearisation: In C-linearisation, we set
all public variables with indices not in J to one. In TC-
linearisation, we assume that there exists w ∈ C[m]\J , such
that pS(J)|w is linear. I.e. when summing over all k-tuples
from the cube CJ , we have to extend each k-tuple with the T-
linearising bits for partial evaluation, that remain fixed during
the whole summing.

C. Experimental results

In this section we present results we got when we applied
the presented linearisation techniques on Trivium-8 as pre-
sented in respective section.

Since solving a system of linear equations is simple, in our
experiments we shall concentrate on whether we can actually
obtain any linear, non-constant polynomials, from which we
could build such.

For polynomial multiplication to build the representation we
used a variant of algorithm from [2].

1) C-linearisation: The C-linearisation proved to be, as
expected, very effective. We could use it to linearise the poly-
nomials representing keystream bits with indices up to 609. It
is important to note, that by not all keystream polynomials up
to the 610th are C-linearisable. Moreover, it is only effective
up to the 582nd keystream bit, because after that the linearising
cube has dimension 8. making the linearisation uneffective.

2) T1-linearisation: T1-linearisation did not prove to be
especially effective. We could T1-linearise polynomials repre-
senting up to the 361st keystream bit.

This is actually a result we expected: If T1-linearisation
would be effective on the polynomials, even if in relatively

early stages of the initialisation, it would mean, that there
would be no monomial xIy∅, I ⊆ [n]. This is highly improb-
able though, because it would mean that none of a set of 2n

monomials would be present, which happens with probability
of 2−2n if dealing with a random polynomial, which we
assume the polynomials in the later stages of initialisation to
be.

3) T2-linearisation: In spite of T2-linearisation using an
approach that significantly differs from that used in T1-
linearisation, we managed to linearise keystream polynomials
only up to p361. It is easy to see, why this technique was
not any more successful: it demands, that for the polynomial
p ∈ B[X,Y ] that we are attempting to linearise every mono-
mial in Hp has degree at most one in public variables. In fact
then, this is a surprisingly good result.

4) TC1-linearisation: With TC1-linearisation, the situation
is a bit more complicated. It is at least as effective as C-
linearisation, but it could at some point prove to be able to re-
duce the cube and therefore the complexity of the linearisation.
This happened only when the polynomial was T1-linearisable,
so this technique turned out to be a bit disappointing.

5) TC2-linearisation: As we already hinted, TC2-
linearisation is the technique, that really does improve
the C-linearisation. We managed to linearise polynomials
representing the keystream of Trivium-8 with indices up
to 622, which is slightly more, than we managed using
C-linearisation (609).

In the figure below, we present our results graphically. The
dashed line denotes, where there are only such C-linearisable
polynomials that are linearisable with a cube of dimension
8 only. Clearly, we consider the results achieved with TC2-
linearisation to be a great success.

z1152z0 z57 z361 z609 z622

T1

T2

C

TC1

TC2

full Trivium

keystream

output

z582

Fig. 2. Range of effectiveness of linearisation techniques

IV. CONCLUSION

In this paper we presented a detailed description of Cube
Attack devised by Adi Shamir et. al. and its generalisation
that proved to be slightly more effective when tested on key-
and IV-reduced Trivium variant. However, none of these tech-
niques is advanced enough to linearise keystream polynomials
after full 1152 initialisation rounds.
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Corrolary II-D.9. T2-linearisability does not imply T1-
linearisability.

Proof. Polynomial p = x0y0y1 + x0x1y0 + x0x1 = x0y0y1 +
x0x1(y0 + 1) is clearly T2-linearisable (set y0 = y1 = 1), but
not T1-linearisable.

Corrolary II-D.10. T1-linearisability does not imply T2-
linearisability

Proof. Polynomial p = x0y0 + x0x1y0y1 is clearly T1-
linearisable (set y1 = 0), but not T2-linearisable.

E. TC-linearisation of tweakable polynomials

In this section we present TC-linearisation, our generalisa-
tion of Shamir’s Cube Attack’s C-linearisation.

In order to proceed to the definition of a TC-linearisable
polynomial, we first define more general version of a maxterm.

Definition II-E.1. Let J ⊆ [m] be an index subset. We call
the monomial yJ a T1-/T2-/T-maxterm, if the superpoly of J
in p is a T1-/T2-/T-linearisable polynomial.

Definition II-E.2. Let p ∈ B[X,Y ] be a tweakable poly-
nomial. Then p is TC1-/TC2-/TC-linearisable if and only if
there exists J ⊆ [m] such that yJ is a T1-/T2-/T-maxterm
respectively.

Note, that TC1-/TC2-/TC-linearisation with J = ∅ equals
T1-/T2-/T-linearisation since pS(∅) = p.

Example II-E.3. In this example we use the same polynomial
p ∈ B[X,Y ] as previously:

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 +
x2y0y1 + y0y1 + y0y2 + y0 + y2

This polynomial is TC-linearisable, because we can either set
y0 = y2 = 1, y1 = 0 and obtain a non-constant linear
polynomial x0 + 1 by T-linearisation only or get for example
x0 + x1 by summing over the cube defined by J = {0, 1, 2}.
There is also the possibility of using a combination of both,
as is made possible using TC-linearisation:

p = y0 · (x0y1y2 + x1y1y2 + x0y2 + x0x1y1 + x2y1 + y1 +
y2 + 1) + x1x2y1 + y2

and then we set y1 = 0 ∧ y2 = 1 to get x0 as our linear
polynomial. In this particular case it would of course be more
efficient to use T-linearisation only, because x0 is

Note II-E.4. We call a tweakable polynomial p ∈ B[X,Y ]
TC1-/TC2-/TC-linearisable, if we can derive a polynomial that
is linear in secret variables from it by using partial evalua-
tion as described in the equivalent definitions of T1-/T2-/T-
linearisation and cube summation presented as C-linearisation
combined.

Clearly, if a tweakable polynomial does not contain any
monomials linear in secret variables, then we can not apply
any of the presented techniques:

Corrolary II-E.5. Let p ∈ B[X,Y ] be a tweakable polyno-
mial. If Lp = ∅, then p is not T-, C- or TC-linearisable.

III. LINEARISING TRIVIUM KEYSTREAM POLYNOMIALS

With the previous one dealing with the underlying theory,
this section describes the experimental part of the paper. At
first we describe the cryptosystem we will be attacking and
after that we present the attack itself. Since we wanted only to
test our linearisation methods, we have not attempted the key-
recovery, which is the aim of the full attack. In other words
we show, how far we got with the techniques devised by us
and compare them to the Cube Attack.

A. Trivium

Before we present the attack itself, we describe the cryp-
tosystem we are about to attack. It is a reduced variation of
a stream cipher Trivium [4]. At first we describe the original
cryptosystem and after that we describe reduced variation we
will attack.

Trivium is a very simple stream cipher with three non-linear
feedback registers, 80 bit key and 80 bit initialisation vector
(IV). The cipher produces a keystream {zi}, zi ∈ F2 which is
added to the plaintext to produce the ciphertext. The detailed
description is to be found in [4].

si,0 si,65 si,68 si,90 si,91 si,92

si,93 si,161 si,170 si,174 si,175 si,176

si,177 si,242 si,263 si,285 si,286 si,287

zi

Fig. 1. Trivium cipher scheme

For our endeavour we had to reduce the original cryptosys-
tem. Trivium-8 is a version of Trivium with shortened key
and IV to 8 bits each. Aside from the shortened key and IV,
it is the same Trivium as described above, so it has a 288
bit inner state. The length of the key and IV was chosen
to be 8, i.e. K = (k0, . . . , k7) and IV = (IV0, . . . , IV7),
since this should be enough to make the polynomials pi(X,Y )
reasonably complex (interesting) while maintaining them small
enough for the computation to be feasible with a standard PC.

In order to demonstrate the capabilities of the presented
techniques we will assume that the keystream generation starts
without any initialisation rounds (there are 1152 initialisation
rounds in Trivium).

B. Attack description

As already mentioned, we will use the described linearisa-
tion methods to attack Trivium-8, a Trivium reduced in key
and IV bits.

We assume that an attacker has access to Trivium-8 with
fixed unknown key K. He can repeatedly choose the IV and
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obtain the keystream zi = pi(K, IV ) (chosen IV attack). His
goal is to find K by solving the respective equation systems.

For this purpose we need to compute the polynomials
gi,j(X,Y ) for all inner state bits and use them to compute
the polynomials pi(X,Y ) expressing the keystream bits. To
obtain the actual values of zi, we need an implementation of
Trivium-8 that computes the keystream bits from the K and
IV.

Attack on black-box polynomials, i.e. polynomials explicit
representation of which is unknown to us, is out of scope of
this paper and subject of future work.

1) Attack using T-linearisation: This part is pretty straight-
forward. Assume that IV ∈ Fm

2 and i ≥ 0 such that pi(X, IV )
is linear in X . Then we get the value of zi = pi(K, IV ) and
form a linear equation pi(X, IV ) = zi.

If the J from the definition of T-linearisation is such that
J �= [m], we add to the values of respective v ∈ CJ values
for the remaining public variables arbitrarily.

2) Attack using C-linearisation: Assume that for an J ⊆
[m] the yJ is a maxterm of pi(X,Y ) so by assigning ones
to all yj , j /∈ J we obtain a linear superpoly. We set
U = {(u0, . . . , um−1) ∈ Fm

2 ;uj = 1 ∀j /∈ J} and obtain
zi(a) = pi(K,u) for all u ∈ U . The equation obtained by
C-linearisation is then pS(J)(X, v) =

∑
u∈U zi(u) where v is

an element of U . Note that pS(J)(X,Y ) can depend only on
public variables with indices not in J , hence the equation does
not depend on the particular choice of v ∈ U .

3) Attack using TC-linearisation: In C-linearisation, we set
all public variables with indices not in J to one. In TC-
linearisation, we assume that there exists w ∈ C[m]\J , such
that pS(J)|w is linear. I.e. when summing over all k-tuples
from the cube CJ , we have to extend each k-tuple with the T-
linearising bits for partial evaluation, that remain fixed during
the whole summing.

C. Experimental results

In this section we present results we got when we applied
the presented linearisation techniques on Trivium-8 as pre-
sented in respective section.

Since solving a system of linear equations is simple, in our
experiments we shall concentrate on whether we can actually
obtain any linear, non-constant polynomials, from which we
could build such.

For polynomial multiplication to build the representation we
used a variant of algorithm from [2].

1) C-linearisation: The C-linearisation proved to be, as
expected, very effective. We could use it to linearise the poly-
nomials representing keystream bits with indices up to 609. It
is important to note, that by not all keystream polynomials up
to the 610th are C-linearisable. Moreover, it is only effective
up to the 582nd keystream bit, because after that the linearising
cube has dimension 8. making the linearisation uneffective.

2) T1-linearisation: T1-linearisation did not prove to be
especially effective. We could T1-linearise polynomials repre-
senting up to the 361st keystream bit.

This is actually a result we expected: If T1-linearisation
would be effective on the polynomials, even if in relatively

early stages of the initialisation, it would mean, that there
would be no monomial xIy∅, I ⊆ [n]. This is highly improb-
able though, because it would mean that none of a set of 2n

monomials would be present, which happens with probability
of 2−2n if dealing with a random polynomial, which we
assume the polynomials in the later stages of initialisation to
be.

3) T2-linearisation: In spite of T2-linearisation using an
approach that significantly differs from that used in T1-
linearisation, we managed to linearise keystream polynomials
only up to p361. It is easy to see, why this technique was
not any more successful: it demands, that for the polynomial
p ∈ B[X,Y ] that we are attempting to linearise every mono-
mial in Hp has degree at most one in public variables. In fact
then, this is a surprisingly good result.

4) TC1-linearisation: With TC1-linearisation, the situation
is a bit more complicated. It is at least as effective as C-
linearisation, but it could at some point prove to be able to re-
duce the cube and therefore the complexity of the linearisation.
This happened only when the polynomial was T1-linearisable,
so this technique turned out to be a bit disappointing.

5) TC2-linearisation: As we already hinted, TC2-
linearisation is the technique, that really does improve
the C-linearisation. We managed to linearise polynomials
representing the keystream of Trivium-8 with indices up
to 622, which is slightly more, than we managed using
C-linearisation (609).

In the figure below, we present our results graphically. The
dashed line denotes, where there are only such C-linearisable
polynomials that are linearisable with a cube of dimension
8 only. Clearly, we consider the results achieved with TC2-
linearisation to be a great success.

z1152z0 z57 z361 z609 z622
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Fig. 2. Range of effectiveness of linearisation techniques

IV. CONCLUSION

In this paper we presented a detailed description of Cube
Attack devised by Adi Shamir et. al. and its generalisation
that proved to be slightly more effective when tested on key-
and IV-reduced Trivium variant. However, none of these tech-
niques is advanced enough to linearise keystream polynomials
after full 1152 initialisation rounds.
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Corrolary II-D.9. T2-linearisability does not imply T1-
linearisability.

Proof. Polynomial p = x0y0y1 + x0x1y0 + x0x1 = x0y0y1 +
x0x1(y0 + 1) is clearly T2-linearisable (set y0 = y1 = 1), but
not T1-linearisable.

Corrolary II-D.10. T1-linearisability does not imply T2-
linearisability

Proof. Polynomial p = x0y0 + x0x1y0y1 is clearly T1-
linearisable (set y1 = 0), but not T2-linearisable.

E. TC-linearisation of tweakable polynomials

In this section we present TC-linearisation, our generalisa-
tion of Shamir’s Cube Attack’s C-linearisation.

In order to proceed to the definition of a TC-linearisable
polynomial, we first define more general version of a maxterm.

Definition II-E.1. Let J ⊆ [m] be an index subset. We call
the monomial yJ a T1-/T2-/T-maxterm, if the superpoly of J
in p is a T1-/T2-/T-linearisable polynomial.

Definition II-E.2. Let p ∈ B[X,Y ] be a tweakable poly-
nomial. Then p is TC1-/TC2-/TC-linearisable if and only if
there exists J ⊆ [m] such that yJ is a T1-/T2-/T-maxterm
respectively.

Note, that TC1-/TC2-/TC-linearisation with J = ∅ equals
T1-/T2-/T-linearisation since pS(∅) = p.

Example II-E.3. In this example we use the same polynomial
p ∈ B[X,Y ] as previously:

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 +
x2y0y1 + y0y1 + y0y2 + y0 + y2

This polynomial is TC-linearisable, because we can either set
y0 = y2 = 1, y1 = 0 and obtain a non-constant linear
polynomial x0 + 1 by T-linearisation only or get for example
x0 + x1 by summing over the cube defined by J = {0, 1, 2}.
There is also the possibility of using a combination of both,
as is made possible using TC-linearisation:

p = y0 · (x0y1y2 + x1y1y2 + x0y2 + x0x1y1 + x2y1 + y1 +
y2 + 1) + x1x2y1 + y2

and then we set y1 = 0 ∧ y2 = 1 to get x0 as our linear
polynomial. In this particular case it would of course be more
efficient to use T-linearisation only, because x0 is

Note II-E.4. We call a tweakable polynomial p ∈ B[X,Y ]
TC1-/TC2-/TC-linearisable, if we can derive a polynomial that
is linear in secret variables from it by using partial evalua-
tion as described in the equivalent definitions of T1-/T2-/T-
linearisation and cube summation presented as C-linearisation
combined.

Clearly, if a tweakable polynomial does not contain any
monomials linear in secret variables, then we can not apply
any of the presented techniques:

Corrolary II-E.5. Let p ∈ B[X,Y ] be a tweakable polyno-
mial. If Lp = ∅, then p is not T-, C- or TC-linearisable.

III. LINEARISING TRIVIUM KEYSTREAM POLYNOMIALS

With the previous one dealing with the underlying theory,
this section describes the experimental part of the paper. At
first we describe the cryptosystem we will be attacking and
after that we present the attack itself. Since we wanted only to
test our linearisation methods, we have not attempted the key-
recovery, which is the aim of the full attack. In other words
we show, how far we got with the techniques devised by us
and compare them to the Cube Attack.

A. Trivium

Before we present the attack itself, we describe the cryp-
tosystem we are about to attack. It is a reduced variation of
a stream cipher Trivium [4]. At first we describe the original
cryptosystem and after that we describe reduced variation we
will attack.

Trivium is a very simple stream cipher with three non-linear
feedback registers, 80 bit key and 80 bit initialisation vector
(IV). The cipher produces a keystream {zi}, zi ∈ F2 which is
added to the plaintext to produce the ciphertext. The detailed
description is to be found in [4].

si,0 si,65 si,68 si,90 si,91 si,92

si,93 si,161 si,170 si,174 si,175 si,176

si,177 si,242 si,263 si,285 si,286 si,287

zi

Fig. 1. Trivium cipher scheme

For our endeavour we had to reduce the original cryptosys-
tem. Trivium-8 is a version of Trivium with shortened key
and IV to 8 bits each. Aside from the shortened key and IV,
it is the same Trivium as described above, so it has a 288
bit inner state. The length of the key and IV was chosen
to be 8, i.e. K = (k0, . . . , k7) and IV = (IV0, . . . , IV7),
since this should be enough to make the polynomials pi(X,Y )
reasonably complex (interesting) while maintaining them small
enough for the computation to be feasible with a standard PC.

In order to demonstrate the capabilities of the presented
techniques we will assume that the keystream generation starts
without any initialisation rounds (there are 1152 initialisation
rounds in Trivium).

B. Attack description

As already mentioned, we will use the described linearisa-
tion methods to attack Trivium-8, a Trivium reduced in key
and IV bits.

We assume that an attacker has access to Trivium-8 with
fixed unknown key K. He can repeatedly choose the IV and
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I. INTRODUCTION 

The Internet traffic is dominated by streaming multimedia 
content as users demand higher quality video and ubiquitously 
available services. With the advent of high performance smart 
handheld devices the users expect that their usual services 
received on their desktops are available on these smart devices, 
too. Thus users can access advanced services from new places 
where they start to use their devices on regular basis. On turn, 
these new situations generate new demands: once the users get 
used to the new scenario, they start to require new, adapted 
services.  

A typical scenario is a crowded event, where even a few years 
ago users could not use their mobile devices due to network 
congestion. E.g., it was common that during New Year’s Eve 
calls were blocked and only SMS-es went through the 
overloaded networks. Similarly, sporting events at remote areas 
required a careful design and temporary increase in mobile 
access capacity to serve the increased demand. This motivated 
us to offload access networks during crowded events for a new 
streaming service, specific to this environment. 

Users attend crowded events for the live experience, which 
combines the feeling of “being there” with the potential of rich 
social interactions among fellow users with similar interests. 
Nevertheless, until recently the participation at such events 
forced the attendants to stop following the online (e.g., live 
commentaries, additional info) and broadcasted (e.g., TV) 
content. The solution that offers both experiences, live 
attendance and online information stream, comes with the 
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introduction of the so called “second screen”.  
Second screen originally refers to the use of an online device 

(e.g., smartphone, iPad) that doubles the screen of a device 
offering “linear” program (e.g., TV, projector). We extend the 
meaning of this term, calling second screen any online device 
that offers additional content associated with a live event, 
attended by the user of the device. Current access networks are 
hard pressed to provide the required QoS, because attendees of 
live events continue using their smart devices as second screens 
(to consume more and more multimedia content). In this 
environment, shortage of available capacity seems to perpetuate 
at least until the mid-2020s, when 5G technologies will mature. 
The focus of the operators is on assuring the basic service, not 
to mention any new service with additional bandwidth demand. 
Therefore offloading the wireless access currently is very 
important for the operators, and it will be so for the coming 
decade. 

The data to be distributed in such an environment is not only 
the real-time, live multimedia stream, but also extra, add-on 
content, which has less strict delay constraints, and is related to 
recent events (e.g., replays, statistical analysis of the game, 
etc.). Still, their importance is higher soon after the original 
event happened (e.g., a goal right after it was scored), that is 
why we call them near real-time events. We propose a novel 
streaming service specific to this environment that can be 
offered on top of classical streaming media services, consisting 
of replayed live scenes. At the core of our solution to offload 
the access network delivering this service is the distributed local 
caching of the data, made reliable and versatile by the 
introduction of network coding techniques. To best of our 
knowledge, network coding was not proposed before to support 
such caching solutions (also see section III-C). The motivation 
behind such novel add-on services are not only recognized by 
recent research projects [1], but also attract major players from 
the streaming live event distribution industry [2]. 

In the next section we present related work that we relied on 
in our research. Then we present several scenario variants for 
our proposal and introduce the novel near real-time data 
delivering service that can be offered on top of classical 
streaming media services. In section IV we present a model that 
will allow us to analyze its behavior, and we evaluate it in 
section V. Finally we conclude our paper. 
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