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Abstract—Distributed network monitoring solutions face var-
ious challenges with the increase of line speed, the extending
variety of protocols, and new services with complex KPIs. This
paper addresses one part of the first challenge: faster line
speed necessitates time-stamping with higher granularity and
higher precision than ever. Proper, system-wide time-stamping
is inevitable for network monitoring and traffic analysis point
of view. It is hard to find feasible time synchronization solutions
for those systems that have nation-wide, physically distributed
probes.

Current networking equipment reside in server rooms, and
have many legacy nodes. Access to GPS signal is complicated in
these places, and Precision Time Protocol (PTP) does not seem to
be supported by all network nodes in the near future – so high
precision time-stamping is indeed a current problem. This paper
suggests a novel, practical solution to overcome the obstacles.

The core idea is that in real-life, distributed network mon-
itoring systems operate with a few, finite number of probe-
clusters, and their site should have a precise clock provided
by PTP or GPS somewhere in the building. The distribution
of time information within a site is still troublesome, even within
a server rack. This paper presents a closed control loop solution
implemented in an FPGA-based device in order to minimize the
jitter, and compensate the calculated delay.

Keywords—network monitoring, time synchronization, hard-
ware acceleration, closed control loop

I. INTRODUCTION

Network monitoring has a well-established practice at
telecommunication operators. There are fundamentally differ-
ent solutions available – depending on what kind of data are
initially available and how they are gathered. The least flexible
solutions are based on the functional networking elements:
they can provide pre-digested reports, statistical counters, and
occasionally (when not under heavy load), even detailed infor-
mation on the actual messages. Some operators use standalone
protocol analyzers, which do not suffer from the temporal,
load-related bottlenecks – rather, they have spatial data capture
issues: only a segment of the network is visible at any given
time. On the other hand, complete traffic information can
be gathered by network-wide traffic monitoring. These latter
solutions are based on passive, distributed probes; central pro-
cessing entities; and client software – also distributed – at the
operating personnel. This paper discusses a peculiar problem
of such systems: effective time synchronization among the
entities.

The authors are with the Department of Telecommunications and
MediaInformatics, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, Magyar tudósok
körútja 2., 1117 Budapest, Hungary (phone: +36704213213; e-mail:
fecjanky@gmail.com and pvarga@tmit.bme.hu)

Network traffic analysis requires the understanding of the
order of the messages appearing in the network, even if they
appear at different interfaces. This makes high resolution and
high precision time-stamping the basic requirement, beside
lossless message capture. While there are standardized net-
work protocols available for tackling this issue, there are
practical obstacles in their network-wide usage. Although the
Network Time Protocol (NTP) is widely available [1], it cannot
be used as a general purpose synchronization protocol. In fact,
the message transfer delay between NTP clients and servers is
not compensated, hence the different nodes end up setting their
local time to a clock value with a random delay. The typical
order of the forwarding delay in current core routers is in the
0.5-5 microseconds range, depending on the traffic volume –
among other factors. Since the minimum packet interarrival-
time is 0.672 microsecond even at a 1 Gbps link (and 67.2
nanoseconds for a 10 Gbps link), such delays cannot be left
without compensation for time synchronization.

Precision Time Protocol (PTP), on the other hand covers the
delay-compensation issue well [2]. Unfortunately, PTP is not
at all wide-spread, even after 10 years of commercialization
for PTPv2. The concept, however, necessitates that all network
nodes in the path have PTPv2 capability. Otherwise – even
if one node cannot compute and share its delay data –,
compensation of time information is not possible.

Another solution could be to introduce time information of
GPS (Global Positioning System) satellites into the nodes –
this is not feasible, since rack cabinets in server rooms lack
the line of sight.

We can suppose that at least one machine at each monitoring
site has the possibility to get synchronized to the master
clock of the network (e.g. through PTP or GPS). Nevertheless,
synchronizing all clocks within the site with nanosecond-range
precision, is still a challenge.

This paper presents a solution for the time synchronization
issues of systems with FPGA-based monitoring probes. What
makes FPGA a key player here is that hardware-acceleration
removes the jitter of operating system and protocol-stack delay
from the equation. The delay of handling time information
within an FPGA is constant, we can calculate with it precisely
– and compensate this delay for the time-stamp.

In this paper we focus on the time synchronization chal-
lenges of a monitoring site. The implemented solution is based
on the practical pre-requisite that each site has a reference
clock available for the monitoring system. This paper sug-
gests an FPGA-based clock synchronization method for the
distributed monitoring equipment, more precisely, its interface
cards.
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Fig. 1. A generic architecture for distributed network monitoring

II. NETWORK MONITORING SUPPORTED BY FPGA-BASED
PROBES

A. The Generic Concept of Distributed Network Monitoring

The distributed network monitoring architecture depicted
by Figure 1 supports local, probe-based pre-processing
(time-stamping, requirement-based packet chunking, filtering
criteria-based distribution) and central, deep analysis (corre-
lation of messages and transactions, data record compilation,
statistics generation), even on-the-fly. The time-based ordering
and interleaving of messages are enabled by the hardware-
accelerated time-stamping, providing nanosecond-range reso-
lution with sub-microsecond precision. The information stored
locally at the distributed Monitoring Probes can be accessed
by client applications of the operator. Besides, the Monitoring
Probes send pre-digested data to the Servers for correlation
(creating e.g. Call Data Records, CDRs), as well as periodic
reports containing their calculated statistics [3].

Since user data and control data are often carried over
the same channels, their division requires message analysis
on network- or transaction-level (e.g., IP- or TCP-level). The
changing traffic patterns force the operators to look for new
tools to process even the user traffic. The first step towards this
is the compilation of XDRs (eXtended Data Records) based on
control- and user-plane messages and transactions. These often
contain message-level timestamps, as well. Based on these
data, the deep traffic analysis tools provide valuable informa-
tion towards business-intelligence and network optimization.
Besides, all nodes can be configured to report directly to the
NOC (Network Operations Center).

Operators use the network-wide, passive monitoring for
fault detection, service quality assurance, and resource plan-
ning, among others [4]. Besides lossless data capture, network
monitoring covers further functions, as well:

– precise time-stamping, ordering;
– compilation, search and fetch of Call Data Records

(CDRs) and Extended Data Records (XDRs);
– calculation and reporting of Key Performance Indicators,

KPIs;
– Call Tracing at various complexity levels;
– bit-wise message decoding for protocol analysis; etc.
All these functions are present in the network monitoring

practice, since beside user-level data analysis, network analysis
is important from connection-level to application-level, as
well.

System elements of the described generic architecture can
be implemented in many ways. In the SGA-7N system –
which serves as the base implementation for the presented
solution – monitoring probes of the presented system are called
“Monitors”. These consist of three main building blocks: a
high performance Field Programmable Gate Array (FPGA)-
based custom hardware platform, a firmware dedicated for
network monitoring, and the probe software [5].

B. FPGA-based packet processing

There are many features that make FPGAs useful in packet
processing tasks [6]. The main concept itself allows parallel
processing of the input data. Different, simultaneous tasks
can be carried out at each clock cycle on the same data,

which in this case is the packet header [7], [8]. Besides,
the input word length is much greater for FPGAs (getting
90 bytes) than for modern CPUs (64 bits). Furthermore,
FPGA are set up in hardware-defined languages, and they are
indeed reconfigurable hardware: their internal wiring can be
changed within milliseconds. These features enable FPGA-
based hardware platforms to become high performance net-
working devices, e.g., network monitors, switches, routers,
firewalls or intrusion detection systems [9]. Nevertheless, as a
network monitoring system, it supports distributed and lossless
packet level monitoring of Ethernet links for 1 or 10 Gbps.

Beside providing sufficient resources for switching and
routing at 1 or 10 Gbps, the design of SGA-GPLANAR [10]
and SGA-10GED [11] used in SGA-7N includes some special,
network monitoring-related requirements, namely

– lossless packet capture,
– 64-bit time-stamping with sub-microsecond resolution,
– header-only capture: configurable depth of decoding,
– on-the-fly packet parsing by hardware [12],
– parameterized packet/flow generator for mass testing

[13],[14].
Various applications then require other supported function-

alities. As an example, the high-speed monitoring application
[15] consists of the following sub-modules:

– time-stamping every frame upon reception;
– packet decoding from layer 2 up to the application layer;
– packet filtering with a reconfigurable rule-set to decide

what we do with a given packet;
– packet chunking: packets can be truncated depending on

the matching rule;
– packet distribution: to distribute packets by different

criteria: IP flows, fragment steering, steering based on
mobile core network parameters, etc.;

– packet encapsulation: monitoring information is stored in
a specified header format.

These features and capabilities make the FPGA a suitable
enabler of hardware acceleration within the Monitors.

III. CHALLENGES AND REQUIREMENTS IN DETAIL

For a distributed monitoring solution described in the pre-
vious sections, there is a strong requirement for having a
monotonic clock. Otherwise, packet reordering would happen
even with a single monitoring node (changing its clock) – and
this is not feasible, since traffic analysis is heavily dependent
upon packet timestamps. As a consequence, the need for
monotonic system time is inherent.

Another challenge comes from the fact that a distributed
monitoring system has its components geographically sep-
arated from each other, therefore the clock frequency and
the time information of the clocks of the nodes have to be
frequency- and phase-synchronized to each other with some
given threshold. This problem has many solutions, e.g., using
GPS based synchronization systems [16]. Although technically
it can work well [17], as a drawback, this requires additional
installation expenditures on an indoor site that has no installed
antenna system to carry the GPS signal inside the building
and could also result in extensive cabling work. A convenient

alternative is to use network time synchronization that utilizes
the telecommunication network for exchanging packets as
per a designated protocol to achieve frequency and phase
synchronization. Examples for this are Network Time Protocol
(NTP) [1] and Precision Time Protocol (PTP) [2].

When speaking about time synchronization, the following
properties describe a clock – which are in-line with the generic
definition of clock properties [18]:

• accuracy – i.e. how good is the time information com-
pared to some reference

• precision – i.e. how precise is a tick of the clock com-
pared to some reference

• stability – i.e. how does the clock frequency change e.g.,
over time or based on external temperature changes etc.

The biggest challenge of all – as usual – is to adapt to the
existing monitoring framework described in II with minimal
modifications to the existing solution, while satisfying all the
precision and accuracy related requirements. As mentioned
before, the platform for proof-of-concept is the SGA-7N
monitoring system, which utilizes FPGA-based monitoring
cards. These are capable of capturing on high-speed network
interfaces – with fine-grained time-stamping capabilities –, and
they have their own, existing time-keeping facilities.

In order to tackle all the above mentioned issues with a
solution fitting into the network monitoring architecture, we
suggested to create a new FPGA-based card that implements
these functions:

• network time synchronization,
• local time synchronization,
• interfacing with the existing nodes – OAMP functions.
The following sections describe this solution, and show its

feasibility in the running monitoring system.

IV. ARCHITECTURE OF THE DISTRIBUTED TIME
SYNCHRONIZED MONITORING SYSTEM

A. Generic concept

For providing easy adaptation into the existing system,
and also taking into account FPGA resource usage, a hybrid
solution has been designed. This solution implements network
time synchronization in a standalone card that distributes the
digital timing information over a dedicated control bus, as
illustrated by Figure 2.

The synchronization framework provides a platform-
independent agent that can be integrated into the existing
FPGA cards’ top level VHDL (VHSIC Hardware Description
Language, [19]) modules, and is used through a well-defined
and portable interface.

The agent itself has low complexity, and as a result, the
solution does not waste CLB (Configurable Logic Block)
resources – as if the whole network synchronization stack
were instantiated N times on all monitoring node cards.
Furthermore, this results in better internal synchronization
compared to the replicated stacks, since those can have skew
to each other (within the boundaries), as specified by their
protocol.

As shown by Figure 2, each node has its own network
synchronization function, therefore the accuracy and precision
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– lossless packet capture,
– 64-bit time-stamping with sub-microsecond resolution,
– header-only capture: configurable depth of decoding,
– on-the-fly packet parsing by hardware [12],
– parameterized packet/flow generator for mass testing

[13],[14].
Various applications then require other supported function-

alities. As an example, the high-speed monitoring application
[15] consists of the following sub-modules:

– time-stamping every frame upon reception;
– packet decoding from layer 2 up to the application layer;
– packet filtering with a reconfigurable rule-set to decide

what we do with a given packet;
– packet chunking: packets can be truncated depending on

the matching rule;
– packet distribution: to distribute packets by different

criteria: IP flows, fragment steering, steering based on
mobile core network parameters, etc.;

– packet encapsulation: monitoring information is stored in
a specified header format.

These features and capabilities make the FPGA a suitable
enabler of hardware acceleration within the Monitors.

III. CHALLENGES AND REQUIREMENTS IN DETAIL

For a distributed monitoring solution described in the pre-
vious sections, there is a strong requirement for having a
monotonic clock. Otherwise, packet reordering would happen
even with a single monitoring node (changing its clock) – and
this is not feasible, since traffic analysis is heavily dependent
upon packet timestamps. As a consequence, the need for
monotonic system time is inherent.

Another challenge comes from the fact that a distributed
monitoring system has its components geographically sep-
arated from each other, therefore the clock frequency and
the time information of the clocks of the nodes have to be
frequency- and phase-synchronized to each other with some
given threshold. This problem has many solutions, e.g., using
GPS based synchronization systems [16]. Although technically
it can work well [17], as a drawback, this requires additional
installation expenditures on an indoor site that has no installed
antenna system to carry the GPS signal inside the building
and could also result in extensive cabling work. A convenient

alternative is to use network time synchronization that utilizes
the telecommunication network for exchanging packets as
per a designated protocol to achieve frequency and phase
synchronization. Examples for this are Network Time Protocol
(NTP) [1] and Precision Time Protocol (PTP) [2].

When speaking about time synchronization, the following
properties describe a clock – which are in-line with the generic
definition of clock properties [18]:

• accuracy – i.e. how good is the time information com-
pared to some reference

• precision – i.e. how precise is a tick of the clock com-
pared to some reference

• stability – i.e. how does the clock frequency change e.g.,
over time or based on external temperature changes etc.

The biggest challenge of all – as usual – is to adapt to the
existing monitoring framework described in II with minimal
modifications to the existing solution, while satisfying all the
precision and accuracy related requirements. As mentioned
before, the platform for proof-of-concept is the SGA-7N
monitoring system, which utilizes FPGA-based monitoring
cards. These are capable of capturing on high-speed network
interfaces – with fine-grained time-stamping capabilities –, and
they have their own, existing time-keeping facilities.

In order to tackle all the above mentioned issues with a
solution fitting into the network monitoring architecture, we
suggested to create a new FPGA-based card that implements
these functions:

• network time synchronization,
• local time synchronization,
• interfacing with the existing nodes – OAMP functions.
The following sections describe this solution, and show its

feasibility in the running monitoring system.

IV. ARCHITECTURE OF THE DISTRIBUTED TIME
SYNCHRONIZED MONITORING SYSTEM

A. Generic concept

For providing easy adaptation into the existing system,
and also taking into account FPGA resource usage, a hybrid
solution has been designed. This solution implements network
time synchronization in a standalone card that distributes the
digital timing information over a dedicated control bus, as
illustrated by Figure 2.

The synchronization framework provides a platform-
independent agent that can be integrated into the existing
FPGA cards’ top level VHDL (VHSIC Hardware Description
Language, [19]) modules, and is used through a well-defined
and portable interface.

The agent itself has low complexity, and as a result, the
solution does not waste CLB (Configurable Logic Block)
resources – as if the whole network synchronization stack
were instantiated N times on all monitoring node cards.
Furthermore, this results in better internal synchronization
compared to the replicated stacks, since those can have skew
to each other (within the boundaries), as specified by their
protocol.

As shown by Figure 2, each node has its own network
synchronization function, therefore the accuracy and precision

Fig. 1. A generic architecture for distributed network monitoring

II. NETWORK MONITORING SUPPORTED BY FPGA-BASED
PROBES

A. The Generic Concept of Distributed Network Monitoring

The distributed network monitoring architecture depicted
by Figure 1 supports local, probe-based pre-processing
(time-stamping, requirement-based packet chunking, filtering
criteria-based distribution) and central, deep analysis (corre-
lation of messages and transactions, data record compilation,
statistics generation), even on-the-fly. The time-based ordering
and interleaving of messages are enabled by the hardware-
accelerated time-stamping, providing nanosecond-range reso-
lution with sub-microsecond precision. The information stored
locally at the distributed Monitoring Probes can be accessed
by client applications of the operator. Besides, the Monitoring
Probes send pre-digested data to the Servers for correlation
(creating e.g. Call Data Records, CDRs), as well as periodic
reports containing their calculated statistics [3].

Since user data and control data are often carried over
the same channels, their division requires message analysis
on network- or transaction-level (e.g., IP- or TCP-level). The
changing traffic patterns force the operators to look for new
tools to process even the user traffic. The first step towards this
is the compilation of XDRs (eXtended Data Records) based on
control- and user-plane messages and transactions. These often
contain message-level timestamps, as well. Based on these
data, the deep traffic analysis tools provide valuable informa-
tion towards business-intelligence and network optimization.
Besides, all nodes can be configured to report directly to the
NOC (Network Operations Center).

Operators use the network-wide, passive monitoring for
fault detection, service quality assurance, and resource plan-
ning, among others [4]. Besides lossless data capture, network
monitoring covers further functions, as well:

– precise time-stamping, ordering;
– compilation, search and fetch of Call Data Records

(CDRs) and Extended Data Records (XDRs);
– calculation and reporting of Key Performance Indicators,

KPIs;
– Call Tracing at various complexity levels;
– bit-wise message decoding for protocol analysis; etc.
All these functions are present in the network monitoring

practice, since beside user-level data analysis, network analysis
is important from connection-level to application-level, as
well.

System elements of the described generic architecture can
be implemented in many ways. In the SGA-7N system –
which serves as the base implementation for the presented
solution – monitoring probes of the presented system are called
“Monitors”. These consist of three main building blocks: a
high performance Field Programmable Gate Array (FPGA)-
based custom hardware platform, a firmware dedicated for
network monitoring, and the probe software [5].

B. FPGA-based packet processing

There are many features that make FPGAs useful in packet
processing tasks [6]. The main concept itself allows parallel
processing of the input data. Different, simultaneous tasks
can be carried out at each clock cycle on the same data,
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based custom hardware platform, a firmware dedicated for
network monitoring, and the probe software [5].
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There are many features that make FPGAs useful in packet
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can be carried out at each clock cycle on the same data,
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network monitoring concept

between two monitoring nodes can be guaranteed only to an
extent that the utilized time synchronization protocol provides.
Due to the uncompensated delay of routers, switches and
transmission paths, this is in the magnitude of milliseconds
of a software implementation of NTP. This precision, can
be increased by using FPGAs for hardware acceleration.
Depending on the PTP version and the underlying network
capabilities, this can fall into the magnitude of nanoseconds.

The main idea of the solution is to install a local time-
distribution bus between the nodes within a site. This allows
us to achieve nanosecond-range synchronicity, as there is
less perturbation between the hardware implementations of
the transmitting and receiving ends – no OS scheduler, no
network etc. Moreover, frequency synchronization can also be
easily achieved by implementing a synchronous bus – i.e.,
transmitting the clock signal along with the data.

B. External time synch. subsystem design and implementation

When selecting the candidate for implementing the external
time synchronization function, three protocols were consid-
ered:

• Network Time Protocol (NTP) [1],
• Precision Time Protocol v1 (PTPv1) [20],
• Precision Time Protocol v2 (PTPv2) [2].

In order to achieve the best synchronization between PTPv2
clocks, the protocol requires PTPv2-enabled switches/routers
throughout the network. These do the bookkeeping of the
processing delay values in the synchronization packets as
they traverse through the network. Without this feature, the
achievable synchronicity in a multi-hop network is around the
same as by using PTPv1.

Since PTPv2 is not widely available in current networks,
we concluded in either selecting NTP or PTPv1, due to their
simplicity. PTPv1 has way more modes of operation when
compared to NTP. Still, these two protocols are operating
based on semantically the same principle when determining
the round trip time and offset compared to a reference clock
entity. Although there are significant differences originated
from their packet structure, the time-stamp format and also
the epoch that could result in more complex implementation
if PTPv1 would be chosen. Still, the NTP time-stamp format
includes a 32-bit unsigned seconds field spanning 136 years
and a 32-bit fraction field resolving 232 picoseconds the prime

epoch, or base date of era 0, is 0 h 1 January 1900 UTC –
i.e., when all bits are zero.

Based on the requirements, the above considerations, and
the Occam principle, the design decision led to selecting
NTP protocol to be used for synchronizing the FPGA-based
monitoring cards through a card that is responsible for im-
plementing the external and internal (see Section IV-C) time
synchronized function called SGA-Clock.

Each FPGA-based packet processing and networking proto-
col implementation has its own complexity. There are several
readily available implementations that can be used for packet
processing in FPGAs with some limited flexibility when it
comes to interconnecting it with other modules. The one that
has been used for the current implementation is a flexible
solution for Protocol Implementations within FPGAs. The
solution detailed in [21] provides a generic framework in
VHSIC Hardware Description Language (VHDL) that enables
rapid prototyping of networking protocols. Among many other
things it provides the following main features:

– supports protocol module interconnection via layering;
– handles reception and transmission of Protocol Data Units

(PDUs) with queuing;
– provides a high level interface for separating and combin-

ing Protocol Control Information (PCI) and Service Data
Unite (SDU), forwarding, pausing or dropping SDUs;

– provides a unified way to handle Interface Control In-
formation (ICI), SDU, and PDU events (e.g., error sig-
nalling) [22];

– adds support of auxiliary information that travels along
with messages

– provides components for common tasks recurring during
implementing networking protocols (de/serialization, ar-
bitration etc.).
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Fig. 3. Fundamental building block of the FPGA networking framework used
for the Protocol Implementation

The framework’s basic building block (shown by Figure 3)
was used for implementing a pure FPGA-based UDP/IP proto-
col stack with ARP [23] on top of 802.3 Ethernet. It provides
a platform with deterministic timing for the likewise FPGA-
based implementation of NTP. For each of these protocols the

corresponding protocol-specific parts have been described in
VHDL, using the generic framework [21].
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Fig. 4. NTP module block diagram of components

The internal structure of the NTP module is shown by
Figure 4. The NTP Poller component is responsible for the
NTP packet transmission and reception, and implementing
the On-Wire protocol for determining the offset – based on
the packet messages. The packet-handling part is also im-
plemented through the Protocol Implementations framework.
The NTP ClockFilter component is there to regulate the offset
values presented by the poller by ordering the results based on
delay, updating internal state variables, calculating jitter, and
suppressing spikes based on jitter and last successful test time.
If the offset data got passed the filter stage, it gets forwarded
for further processing by the NTP Discipline module.

The NTP Discipline module controls the clock module – by
adjusting the time increment – based on the filtered offset data.
The NTP clock module provides an interface for controlling
the time increment that itself is added to the clock register
in each system clock cycle – thus implementing the clock
functionality. The time information is fed back to each module
as illustrated on Figure 4. This chain of modules with the
feedback is another realization of a closed loop control chain
described in the following section.

C. Internal time synch. subsystem design and implementation

Since time-stamping is done by the monitoring interface
cards, the time synchronization information has to be spread
around all interface cards of all monitoring units within the
site. This time synchronization is an internal matter of the
monitoring system. The relationship between “external” and
“internal” time synchronization is shown by Figure 5.

The internal time information synchronization function is
responsible for having all clocks in all monitoring functions to
be completely synchronized within a monitoring node. Since
this is an internal component, the amount of perturbation
that potentially affects this subsystem is considered minimal
compared to the external time synchronization subsystem.

The elements of this subsystem are:

Fig. 5. Time synchronization within a monitoring site – methods for external
and internal subsystems differ to allow high precision and accuracy in time-
stamping
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• digital bus that is able to transmit time and status infor-
mation;

• a driver module of that bus that resides in the Network
clock synchronization function;

• receiver modules attached to that bus performing local
time synchronization.

Internally to each monitoring probe, all FPGA boards that
implement a monitoring function can operate from different
power supply units. As a consequence, ground level isolation
is necessary over the bus. For reducing the physical layer com-
plexity, a point-to-point bus system has been designed. In order
to be able to maximize the number of clients connected the
bus, it utilizes an asynchronous serial communication using 2
wires that provides uni-directional communication – with this
system bi-directional communication would require 4 wires.
The communication protocol executed by the driver module
(the internal time synch. distribution module in Figure 5)
multiplexes arbitrary data units and the time information over
the bus into frames – equipped with error detection code – in
an alternating pattern. That results in periodic transmission of
valid time information.

The parameters of the physical signalling are:
• LVCMOS33 (Low Voltage CMOS 3.3) levels for repre-

senting logical values;
• asymmetric signal transmission;
• 15.625MHz clock frequency with 4x oversampling;
• NRZ line coding.
The frame format used on the bus is shown in Figure 6. The

corresponding protocol-specific parts have been described in
VHDL, using the generic framework [21].
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• digital bus that is able to transmit time and status infor-
mation;

• a driver module of that bus that resides in the Network
clock synchronization function;

• receiver modules attached to that bus performing local
time synchronization.

Internally to each monitoring probe, all FPGA boards that
implement a monitoring function can operate from different
power supply units. As a consequence, ground level isolation
is necessary over the bus. For reducing the physical layer com-
plexity, a point-to-point bus system has been designed. In order
to be able to maximize the number of clients connected the
bus, it utilizes an asynchronous serial communication using 2
wires that provides uni-directional communication – with this
system bi-directional communication would require 4 wires.
The communication protocol executed by the driver module
(the internal time synch. distribution module in Figure 5)
multiplexes arbitrary data units and the time information over
the bus into frames – equipped with error detection code – in
an alternating pattern. That results in periodic transmission of
valid time information.

The parameters of the physical signalling are:
• LVCMOS33 (Low Voltage CMOS 3.3) levels for repre-

senting logical values;
• asymmetric signal transmission;
• 15.625MHz clock frequency with 4x oversampling;
• NRZ line coding.
The frame format used on the bus is shown in Figure 6. The
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between two monitoring nodes can be guaranteed only to an
extent that the utilized time synchronization protocol provides.
Due to the uncompensated delay of routers, switches and
transmission paths, this is in the magnitude of milliseconds
of a software implementation of NTP. This precision, can
be increased by using FPGAs for hardware acceleration.
Depending on the PTP version and the underlying network
capabilities, this can fall into the magnitude of nanoseconds.

The main idea of the solution is to install a local time-
distribution bus between the nodes within a site. This allows
us to achieve nanosecond-range synchronicity, as there is
less perturbation between the hardware implementations of
the transmitting and receiving ends – no OS scheduler, no
network etc. Moreover, frequency synchronization can also be
easily achieved by implementing a synchronous bus – i.e.,
transmitting the clock signal along with the data.

B. External time synch. subsystem design and implementation

When selecting the candidate for implementing the external
time synchronization function, three protocols were consid-
ered:

• Network Time Protocol (NTP) [1],
• Precision Time Protocol v1 (PTPv1) [20],
• Precision Time Protocol v2 (PTPv2) [2].

In order to achieve the best synchronization between PTPv2
clocks, the protocol requires PTPv2-enabled switches/routers
throughout the network. These do the bookkeeping of the
processing delay values in the synchronization packets as
they traverse through the network. Without this feature, the
achievable synchronicity in a multi-hop network is around the
same as by using PTPv1.

Since PTPv2 is not widely available in current networks,
we concluded in either selecting NTP or PTPv1, due to their
simplicity. PTPv1 has way more modes of operation when
compared to NTP. Still, these two protocols are operating
based on semantically the same principle when determining
the round trip time and offset compared to a reference clock
entity. Although there are significant differences originated
from their packet structure, the time-stamp format and also
the epoch that could result in more complex implementation
if PTPv1 would be chosen. Still, the NTP time-stamp format
includes a 32-bit unsigned seconds field spanning 136 years
and a 32-bit fraction field resolving 232 picoseconds the prime

epoch, or base date of era 0, is 0 h 1 January 1900 UTC –
i.e., when all bits are zero.

Based on the requirements, the above considerations, and
the Occam principle, the design decision led to selecting
NTP protocol to be used for synchronizing the FPGA-based
monitoring cards through a card that is responsible for im-
plementing the external and internal (see Section IV-C) time
synchronized function called SGA-Clock.

Each FPGA-based packet processing and networking proto-
col implementation has its own complexity. There are several
readily available implementations that can be used for packet
processing in FPGAs with some limited flexibility when it
comes to interconnecting it with other modules. The one that
has been used for the current implementation is a flexible
solution for Protocol Implementations within FPGAs. The
solution detailed in [21] provides a generic framework in
VHSIC Hardware Description Language (VHDL) that enables
rapid prototyping of networking protocols. Among many other
things it provides the following main features:

– supports protocol module interconnection via layering;
– handles reception and transmission of Protocol Data Units

(PDUs) with queuing;
– provides a high level interface for separating and combin-

ing Protocol Control Information (PCI) and Service Data
Unite (SDU), forwarding, pausing or dropping SDUs;

– provides a unified way to handle Interface Control In-
formation (ICI), SDU, and PDU events (e.g., error sig-
nalling) [22];

– adds support of auxiliary information that travels along
with messages

– provides components for common tasks recurring during
implementing networking protocols (de/serialization, ar-
bitration etc.).
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The framework’s basic building block (shown by Figure 3)
was used for implementing a pure FPGA-based UDP/IP proto-
col stack with ARP [23] on top of 802.3 Ethernet. It provides
a platform with deterministic timing for the likewise FPGA-
based implementation of NTP. For each of these protocols the

corresponding protocol-specific parts have been described in
VHDL, using the generic framework [21].
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The internal structure of the NTP module is shown by
Figure 4. The NTP Poller component is responsible for the
NTP packet transmission and reception, and implementing
the On-Wire protocol for determining the offset – based on
the packet messages. The packet-handling part is also im-
plemented through the Protocol Implementations framework.
The NTP ClockFilter component is there to regulate the offset
values presented by the poller by ordering the results based on
delay, updating internal state variables, calculating jitter, and
suppressing spikes based on jitter and last successful test time.
If the offset data got passed the filter stage, it gets forwarded
for further processing by the NTP Discipline module.

The NTP Discipline module controls the clock module – by
adjusting the time increment – based on the filtered offset data.
The NTP clock module provides an interface for controlling
the time increment that itself is added to the clock register
in each system clock cycle – thus implementing the clock
functionality. The time information is fed back to each module
as illustrated on Figure 4. This chain of modules with the
feedback is another realization of a closed loop control chain
described in the following section.

C. Internal time synch. subsystem design and implementation

Since time-stamping is done by the monitoring interface
cards, the time synchronization information has to be spread
around all interface cards of all monitoring units within the
site. This time synchronization is an internal matter of the
monitoring system. The relationship between “external” and
“internal” time synchronization is shown by Figure 5.

The internal time information synchronization function is
responsible for having all clocks in all monitoring functions to
be completely synchronized within a monitoring node. Since
this is an internal component, the amount of perturbation
that potentially affects this subsystem is considered minimal
compared to the external time synchronization subsystem.

The elements of this subsystem are:
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• digital bus that is able to transmit time and status infor-
mation;

• a driver module of that bus that resides in the Network
clock synchronization function;

• receiver modules attached to that bus performing local
time synchronization.

Internally to each monitoring probe, all FPGA boards that
implement a monitoring function can operate from different
power supply units. As a consequence, ground level isolation
is necessary over the bus. For reducing the physical layer com-
plexity, a point-to-point bus system has been designed. In order
to be able to maximize the number of clients connected the
bus, it utilizes an asynchronous serial communication using 2
wires that provides uni-directional communication – with this
system bi-directional communication would require 4 wires.
The communication protocol executed by the driver module
(the internal time synch. distribution module in Figure 5)
multiplexes arbitrary data units and the time information over
the bus into frames – equipped with error detection code – in
an alternating pattern. That results in periodic transmission of
valid time information.

The parameters of the physical signalling are:
• LVCMOS33 (Low Voltage CMOS 3.3) levels for repre-

senting logical values;
• asymmetric signal transmission;
• 15.625MHz clock frequency with 4x oversampling;
• NRZ line coding.
The frame format used on the bus is shown in Figure 6. The

corresponding protocol-specific parts have been described in
VHDL, using the generic framework [21].
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The internal structure of the NTP module is shown by
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NTP packet transmission and reception, and implementing
the On-Wire protocol for determining the offset – based on
the packet messages. The packet-handling part is also im-
plemented through the Protocol Implementations framework.
The NTP ClockFilter component is there to regulate the offset
values presented by the poller by ordering the results based on
delay, updating internal state variables, calculating jitter, and
suppressing spikes based on jitter and last successful test time.
If the offset data got passed the filter stage, it gets forwarded
for further processing by the NTP Discipline module.

The NTP Discipline module controls the clock module – by
adjusting the time increment – based on the filtered offset data.
The NTP clock module provides an interface for controlling
the time increment that itself is added to the clock register
in each system clock cycle – thus implementing the clock
functionality. The time information is fed back to each module
as illustrated on Figure 4. This chain of modules with the
feedback is another realization of a closed loop control chain
described in the following section.

C. Internal time synch. subsystem design and implementation

Since time-stamping is done by the monitoring interface
cards, the time synchronization information has to be spread
around all interface cards of all monitoring units within the
site. This time synchronization is an internal matter of the
monitoring system. The relationship between “external” and
“internal” time synchronization is shown by Figure 5.

The internal time information synchronization function is
responsible for having all clocks in all monitoring functions to
be completely synchronized within a monitoring node. Since
this is an internal component, the amount of perturbation
that potentially affects this subsystem is considered minimal
compared to the external time synchronization subsystem.

The elements of this subsystem are:
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mation;

• a driver module of that bus that resides in the Network
clock synchronization function;

• receiver modules attached to that bus performing local
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Internally to each monitoring probe, all FPGA boards that
implement a monitoring function can operate from different
power supply units. As a consequence, ground level isolation
is necessary over the bus. For reducing the physical layer com-
plexity, a point-to-point bus system has been designed. In order
to be able to maximize the number of clients connected the
bus, it utilizes an asynchronous serial communication using 2
wires that provides uni-directional communication – with this
system bi-directional communication would require 4 wires.
The communication protocol executed by the driver module
(the internal time synch. distribution module in Figure 5)
multiplexes arbitrary data units and the time information over
the bus into frames – equipped with error detection code – in
an alternating pattern. That results in periodic transmission of
valid time information.

The parameters of the physical signalling are:
• LVCMOS33 (Low Voltage CMOS 3.3) levels for repre-

senting logical values;
• asymmetric signal transmission;
• 15.625MHz clock frequency with 4x oversampling;
• NRZ line coding.
The frame format used on the bus is shown in Figure 6. The

corresponding protocol-specific parts have been described in
VHDL, using the generic framework [21].

NTP module

NTP Clock Discipline Module

NTP ClockFilter

NTP Poller

NTP Clock  

Module

NTP Time

U
D

P
 IF

Fig. 4. NTP module block diagram of components

The internal structure of the NTP module is shown by
Figure 4. The NTP Poller component is responsible for the
NTP packet transmission and reception, and implementing
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Figure 4. The NTP Poller component is responsible for the
NTP packet transmission and reception, and implementing
the On-Wire protocol for determining the offset – based on
the packet messages. The packet-handling part is also im-
plemented through the Protocol Implementations framework.
The NTP ClockFilter component is there to regulate the offset
values presented by the poller by ordering the results based on
delay, updating internal state variables, calculating jitter, and
suppressing spikes based on jitter and last successful test time.
If the offset data got passed the filter stage, it gets forwarded
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• receiver modules attached to that bus performing local
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plexity, a point-to-point bus system has been designed. In order
to be able to maximize the number of clients connected the
bus, it utilizes an asynchronous serial communication using 2
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(the internal time synch. distribution module in Figure 5)
multiplexes arbitrary data units and the time information over
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The internal structure of the NTP module is shown by
Figure 4. The NTP Poller component is responsible for the
NTP packet transmission and reception, and implementing
the On-Wire protocol for determining the offset – based on
the packet messages. The packet-handling part is also im-
plemented through the Protocol Implementations framework.
The NTP ClockFilter component is there to regulate the offset
values presented by the poller by ordering the results based on
delay, updating internal state variables, calculating jitter, and
suppressing spikes based on jitter and last successful test time.
If the offset data got passed the filter stage, it gets forwarded
for further processing by the NTP Discipline module.

The NTP Discipline module controls the clock module – by
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the time increment that itself is added to the clock register
in each system clock cycle – thus implementing the clock
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plexity, a point-to-point bus system has been designed. In order
to be able to maximize the number of clients connected the
bus, it utilizes an asynchronous serial communication using 2
wires that provides uni-directional communication – with this
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The communication protocol executed by the driver module
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multiplexes arbitrary data units and the time information over
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The internal structure of the NTP module is shown by
Figure 4. The NTP Poller component is responsible for the
NTP packet transmission and reception, and implementing
the On-Wire protocol for determining the offset – based on
the packet messages. The packet-handling part is also im-
plemented through the Protocol Implementations framework.
The NTP ClockFilter component is there to regulate the offset
values presented by the poller by ordering the results based on
delay, updating internal state variables, calculating jitter, and
suppressing spikes based on jitter and last successful test time.
If the offset data got passed the filter stage, it gets forwarded
for further processing by the NTP Discipline module.

The NTP Discipline module controls the clock module – by
adjusting the time increment – based on the filtered offset data.
The NTP clock module provides an interface for controlling
the time increment that itself is added to the clock register
in each system clock cycle – thus implementing the clock
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The internal time information synchronization function is
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• a driver module of that bus that resides in the Network
clock synchronization function;

• receiver modules attached to that bus performing local
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Internally to each monitoring probe, all FPGA boards that
implement a monitoring function can operate from different
power supply units. As a consequence, ground level isolation
is necessary over the bus. For reducing the physical layer com-
plexity, a point-to-point bus system has been designed. In order
to be able to maximize the number of clients connected the
bus, it utilizes an asynchronous serial communication using 2
wires that provides uni-directional communication – with this
system bi-directional communication would require 4 wires.
The communication protocol executed by the driver module
(the internal time synch. distribution module in Figure 5)
multiplexes arbitrary data units and the time information over
the bus into frames – equipped with error detection code – in
an alternating pattern. That results in periodic transmission of
valid time information.
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The internal structure of the NTP module is shown by
Figure 4. The NTP Poller component is responsible for the
NTP packet transmission and reception, and implementing
the On-Wire protocol for determining the offset – based on
the packet messages. The packet-handling part is also im-
plemented through the Protocol Implementations framework.
The NTP ClockFilter component is there to regulate the offset
values presented by the poller by ordering the results based on
delay, updating internal state variables, calculating jitter, and
suppressing spikes based on jitter and last successful test time.
If the offset data got passed the filter stage, it gets forwarded
for further processing by the NTP Discipline module.

The NTP Discipline module controls the clock module – by
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• digital bus that is able to transmit time and status infor-
mation;

• a driver module of that bus that resides in the Network
clock synchronization function;

• receiver modules attached to that bus performing local
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Internally to each monitoring probe, all FPGA boards that
implement a monitoring function can operate from different
power supply units. As a consequence, ground level isolation
is necessary over the bus. For reducing the physical layer com-
plexity, a point-to-point bus system has been designed. In order
to be able to maximize the number of clients connected the
bus, it utilizes an asynchronous serial communication using 2
wires that provides uni-directional communication – with this
system bi-directional communication would require 4 wires.
The communication protocol executed by the driver module
(the internal time synch. distribution module in Figure 5)
multiplexes arbitrary data units and the time information over
the bus into frames – equipped with error detection code – in
an alternating pattern. That results in periodic transmission of
valid time information.
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Fig. 7. Internal clock module diagram

frame starts with an all 1’s preamble, and it is followed by a
start bit with value 0. The type field is used to differentiate
the payload types. When T=1 it indicates that the payload is
time information otherwise it is data – hence an overlay data
communication protocol can be used on this data channel. The
time format is in line with the external time synchronization,
i.e., it uses the NTP time format for representing the time
information. For detecting transmission errors on the bus, a
CRC-8 value is calculated for the ‘Type’ and ‘Payload’ fields
and appended to the frame that is checked on frame reception
for detecting transmission errors.

Tframe = Nbits × Tbit (1)

and
Tbit = 1/fsignalling (2)

Where Tbit is the bit time, fsignalling is the signalling fre-
quency on the internal bus, and Nbits is the number of bits
in the frame. Calculating (1) and (2) with the above given
parameters, the frame time is 90/15.625MHz = 5.76 µs. Since
every other frame carries time information, the clock on
the receiver side can be disciplined/controlled on a 11.52 µs
basis. Under such short period of time even low quality, non-
temperature controlled crystal oscillators have negligible drift.
As a result, this update period is adequate for the network
monitoring use case.

The receiver module (i.e., in the FPGA-based Clock Card
in Figure 5) de-multiplexes the data and the time information
from the payload of the received frame. It also verifies that
the received frame’s CRC-8 value matches the calculated one.
If no errors were detected then it feeds the time information
into a module that performs time synchronization executing
the pseudo-code in algorithm 1

The client clock module – as shown in Figure 7 – is
incrementing a clock counter with an increment value –
corresponding to the nominal clock frequency in the internal
time representation – in each system clock period. The clock
module frequency can be adjusted through modifying the time
increment itself. The Delaystatic constant can be measured for
a given configuration and adjusted accordingly. The algorithm
is illustrated by a sample waveform of the master and slave
entity in Figure 8. Informally if the skew is less than the
desired precision under one synchronization period – i.e. when

Algorithm 1 Receiver local time disciple algorithm
Increment ⇐ 1/fclk
Delaystatic ⇐ x
Tlocal ⇐ 0
for Each rising edge of system clock do

if Received valid time-stamp from Master then
Tlocal ⇐ Trecv + Increment+Delaystatic

else
Tlocal ⇐ Tlocal + Increment

end if
end for

the valid time is transmitted by the master entity – then the
phase of time progresses in sync on the two entities.

Fig. 8. Illustration of timing on the internal synchronization bus

To concede that this system can have nanosecond synchro-
nization let us execute the algorithm: let Tn be the nth time
point where synchronization occurs between the master and
the slave entity. At time point Tn when the client receives a
time-stamp the local clock will be in sync with the master
clock – given that the Delaystatic constant was determined
correctly. De-synchronization arises due to errors in the master
and client clock oscillator frequency. To ensure that the desired
level of synchronization is reached it has to be shown that
the master and client clock would not diverge more than
one nanoseconds under time interval (Tn, Tn+1) – since by
definition at Tn+1 the clocks will be in sync again and
this process is periodic. Given a worst case calculation the
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In equation 3 ε stands for the precision of the oscillator, fclk
is the system clock frequency and Tts is the time-stamp frame
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with Tts = 2Tframe = 11.52 µs and ε = 50 ppm results in
1.15ns � 1ns which is approximately satisfying.

It is important to note that this accuracy and precision is
only achieved over the internal time synchronization bus. If
the external subsystem – that is completely orthogonal to
the internal subsystem – synchronizes to its reference with
µs accuracy then this results in the same accuracy for the
monitoring probe vs. external reference relation. Even though
the synchronicity will be still at the ns level in the monitoring
probe vs. monitoring probe relation inside the same monitoring
node driven by the same master.

D. Implementation

The realized system with all internal components is shown
by Figure 9, where the external time synchronization – as
presented in Section IV-B – is done by the SGA Clock card
– visible in the bottom right part. Similarly, the internal time
synchronization – described in Section IV-C – is performed
over the local bus with agent modules. These modules run in
all the FPGA-based monitoring cards acting as slaves at the
high-speed time-stamp interfaces; all are driven by the SGA
Clock card acting as a master.
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V. VERIFICATION & RESULTS

There has been extensive testing and measurements carried
out for verifying the solution. In order to analyze the degree
of synchronization to the master NTP clock, a packet capturer
was installed on the Ethernet segment at which the FPGA
implementation of the NTP slave was connected. The NTP
packets used for synchronization were captured bidirectionally.
This packet capture then was filtered for those NTP packets
that had all 4 timestamps used in the On-Wire protocol to cal-
culate the offset from the reference clock value. Our dedicated
post-processing utility then extracted the offset information
along with the time elapsed from the start of measurement –
which is determined by the first NTP packet present in the
packet capture.

A sample packet capture is shown by Figure 10. The
statistical parameters – like the clock drift and real offset –
of the device was determined by fitting a linear curve on the
offset values. There were various measurements carried out –
for the actual measurement presented in this paper, the capture
was taken for approximately 3 hours. The results and the fitted
curve plot can be seen on Figure 11.

The curve fitted on this measurement shows that there was
a fix 14.52 µs offset compared to the reference clock. As
presented in Section III having a precise and stable clock –
with known offset – is as good as having an accurate one. Be-
sides, the first order stability of the device is −0.7 1/ns. This
precision and stability are considered adequate for satisfying
the requirements of the external time synchronization part.

As for the internal synchronization part, it is by design
has accuracy and precision in the magnitude of 1 ns – see
Section IV-C for details.
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frame starts with an all 1’s preamble, and it is followed by a
start bit with value 0. The type field is used to differentiate
the payload types. When T=1 it indicates that the payload is
time information otherwise it is data – hence an overlay data
communication protocol can be used on this data channel. The
time format is in line with the external time synchronization,
i.e., it uses the NTP time format for representing the time
information. For detecting transmission errors on the bus, a
CRC-8 value is calculated for the ‘Type’ and ‘Payload’ fields
and appended to the frame that is checked on frame reception
for detecting transmission errors.

Tframe = Nbits × Tbit (1)

and
Tbit = 1/fsignalling (2)

Where Tbit is the bit time, fsignalling is the signalling fre-
quency on the internal bus, and Nbits is the number of bits
in the frame. Calculating (1) and (2) with the above given
parameters, the frame time is 90/15.625MHz = 5.76 µs. Since
every other frame carries time information, the clock on
the receiver side can be disciplined/controlled on a 11.52 µs
basis. Under such short period of time even low quality, non-
temperature controlled crystal oscillators have negligible drift.
As a result, this update period is adequate for the network
monitoring use case.

The receiver module (i.e., in the FPGA-based Clock Card
in Figure 5) de-multiplexes the data and the time information
from the payload of the received frame. It also verifies that
the received frame’s CRC-8 value matches the calculated one.
If no errors were detected then it feeds the time information
into a module that performs time synchronization executing
the pseudo-code in algorithm 1

The client clock module – as shown in Figure 7 – is
incrementing a clock counter with an increment value –
corresponding to the nominal clock frequency in the internal
time representation – in each system clock period. The clock
module frequency can be adjusted through modifying the time
increment itself. The Delaystatic constant can be measured for
a given configuration and adjusted accordingly. The algorithm
is illustrated by a sample waveform of the master and slave
entity in Figure 8. Informally if the skew is less than the
desired precision under one synchronization period – i.e. when

Algorithm 1 Receiver local time disciple algorithm
Increment ⇐ 1/fclk
Delaystatic ⇐ x
Tlocal ⇐ 0
for Each rising edge of system clock do

if Received valid time-stamp from Master then
Tlocal ⇐ Trecv + Increment+Delaystatic

else
Tlocal ⇐ Tlocal + Increment

end if
end for

the valid time is transmitted by the master entity – then the
phase of time progresses in sync on the two entities.

Fig. 8. Illustration of timing on the internal synchronization bus

To concede that this system can have nanosecond synchro-
nization let us execute the algorithm: let Tn be the nth time
point where synchronization occurs between the master and
the slave entity. At time point Tn when the client receives a
time-stamp the local clock will be in sync with the master
clock – given that the Delaystatic constant was determined
correctly. De-synchronization arises due to errors in the master
and client clock oscillator frequency. To ensure that the desired
level of synchronization is reached it has to be shown that
the master and client clock would not diverge more than
one nanoseconds under time interval (Tn, Tn+1) – since by
definition at Tn+1 the clocks will be in sync again and
this process is periodic. Given a worst case calculation the
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V. VERIFICATION & RESULTS

There has been extensive testing and measurements carried
out for verifying the solution. In order to analyze the degree
of synchronization to the master NTP clock, a packet capturer
was installed on the Ethernet segment at which the FPGA
implementation of the NTP slave was connected. The NTP
packets used for synchronization were captured bidirectionally.
This packet capture then was filtered for those NTP packets
that had all 4 timestamps used in the On-Wire protocol to cal-
culate the offset from the reference clock value. Our dedicated
post-processing utility then extracted the offset information
along with the time elapsed from the start of measurement –
which is determined by the first NTP packet present in the
packet capture.

A sample packet capture is shown by Figure 10. The
statistical parameters – like the clock drift and real offset –
of the device was determined by fitting a linear curve on the
offset values. There were various measurements carried out –
for the actual measurement presented in this paper, the capture
was taken for approximately 3 hours. The results and the fitted
curve plot can be seen on Figure 11.

The curve fitted on this measurement shows that there was
a fix 14.52 µs offset compared to the reference clock. As
presented in Section III having a precise and stable clock –
with known offset – is as good as having an accurate one. Be-
sides, the first order stability of the device is −0.7 1/ns. This
precision and stability are considered adequate for satisfying
the requirements of the external time synchronization part.

As for the internal synchronization part, it is by design
has accuracy and precision in the magnitude of 1 ns – see
Section IV-C for details.
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In equation 3 ε stands for the precision of the oscillator, fclk
is the system clock frequency and Tts is the time-stamp frame
time on the internal synchronization bus. In theory equation 3
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packets used for synchronization were captured bidirectionally.
This packet capture then was filtered for those NTP packets
that had all 4 timestamps used in the On-Wire protocol to cal-
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post-processing utility then extracted the offset information
along with the time elapsed from the start of measurement –
which is determined by the first NTP packet present in the
packet capture.

A sample packet capture is shown by Figure 10. The
statistical parameters – like the clock drift and real offset –
of the device was determined by fitting a linear curve on the
offset values. There were various measurements carried out –
for the actual measurement presented in this paper, the capture
was taken for approximately 3 hours. The results and the fitted
curve plot can be seen on Figure 11.

The curve fitted on this measurement shows that there was
a fix 14.52 µs offset compared to the reference clock. As
presented in Section III having a precise and stable clock –
with known offset – is as good as having an accurate one. Be-
sides, the first order stability of the device is −0.7 1/ns. This
precision and stability are considered adequate for satisfying
the requirements of the external time synchronization part.

As for the internal synchronization part, it is by design
has accuracy and precision in the magnitude of 1 ns – see
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Fig. 10. Measurement result – a typical example of an NTP packet containing four timestamps

Fig. 11. Measurement result – plot of derived offset-measurement data

The ∼1 ns accuracy over the internal synchronization bus
satisfies the criteria of any monitoring system with 1, 10 or
even 100 Gbit/s Ethernet, since packet inter-arrival time even
of the latter case is 6.72ns [24] – almost one magnitude greater
than the theoretical accuracy of the presented, implemented
and verified time synchronization method.

As a real-life verification, the above described time-
synchronization system has been put into operation at Magyar
Telekom. The system hardware (with its FPGA firmware) has
been installed beside the SGA-7N network monitoring system,
and showed the expected result. The system provides accurate
time information to the monitoring cards ever since, and it is
planned to be expanded for covering all related monitoring
cards, network-wide.

VI. CONCLUSION

In this paper, we introduced a general time synchronization
solution for a high performance, lossless network monitoring
system called SGA-7N that is based on a reconfigurable archi-
tecture. The probes of the system are called “Monitors”, which
consists of three main building blocks: a high performance
Field Programmable Gate Array (FPGA)-based custom hard-
ware platform, a firmware dedicated for network monitoring,
and the probe software. The reconfigurable property of the
FPGA chip enables to turn the Monitor hardware platform
into a high performance networking device – among others, a
network monitoring probe. Beside supporting distributed and
lossless packet level monitoring of Ethernet links for 1 or 10
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tecture. The probes of the system are called “Monitors”, which
consists of three main building blocks: a high performance
Field Programmable Gate Array (FPGA)-based custom hard-
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and the probe software. The reconfigurable property of the
FPGA chip enables to turn the Monitor hardware platform
into a high performance networking device – among others, a
network monitoring probe. Beside supporting distributed and
lossless packet level monitoring of Ethernet links for 1 or 10

Gbps of the described system, the FPGA serves as the base
platform of the time synchronization solution for the interface
cards of the Monitors.

Time synchronization of the network monitoring nodes are
crucial, since the analysis depends highly on the proper mes-
sage sequence, which is determined mainly by the timestamps.

First, each monitoring site has to have a reference clock
that is synchronized with other reference clocks at other sites.
Naturally, the monitoring system has to be synchronized to
the reference clock available at the physical site. In this
paper we call it external time synchronization, and it is
solved by an FPGA-based, NTP implementation that use
data filtering and has a clock discipline module in order to
output monotonous clock information. This avoids timestamps
jumping backwards, or jumping forward too much within one
step, hence the clock if the monitoring system becomes well-
regulated. Each interface at the monitoring node has to get
synchronized with this clock information. In this paper we call
it internal time synchronization, and it is implemented through
a proprietary time-synchronization protocol. Its sender, (or
master) part works in a distributor-card residing at the main
reference clock machine of the monitoring system, whereas
the receiver (or slave) parts are realized within the FPGA of
the monitoring cards.

As presented in the paper, the overall system shows sub-
nanosecond accuracy and stability, meeting the requirements
of 10 Gbps, or even 100 Gbps Ethernet-based packet monitor-
ing. The presented solution is already installed in the network-
wide, real-life monitoring at Magyar Telekom.
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crucial, since the analysis depends highly on the proper mes-
sage sequence, which is determined mainly by the timestamps.

First, each monitoring site has to have a reference clock
that is synchronized with other reference clocks at other sites.
Naturally, the monitoring system has to be synchronized to
the reference clock available at the physical site. In this
paper we call it external time synchronization, and it is
solved by an FPGA-based, NTP implementation that use
data filtering and has a clock discipline module in order to
output monotonous clock information. This avoids timestamps
jumping backwards, or jumping forward too much within one
step, hence the clock if the monitoring system becomes well-
regulated. Each interface at the monitoring node has to get
synchronized with this clock information. In this paper we call
it internal time synchronization, and it is implemented through
a proprietary time-synchronization protocol. Its sender, (or
master) part works in a distributor-card residing at the main
reference clock machine of the monitoring system, whereas
the receiver (or slave) parts are realized within the FPGA of
the monitoring cards.

As presented in the paper, the overall system shows sub-
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of 10 Gbps, or even 100 Gbps Ethernet-based packet monitor-
ing. The presented solution is already installed in the network-
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Gbps of the described system, the FPGA serves as the base
platform of the time synchronization solution for the interface
cards of the Monitors.

Time synchronization of the network monitoring nodes are
crucial, since the analysis depends highly on the proper mes-
sage sequence, which is determined mainly by the timestamps.

First, each monitoring site has to have a reference clock
that is synchronized with other reference clocks at other sites.
Naturally, the monitoring system has to be synchronized to
the reference clock available at the physical site. In this
paper we call it external time synchronization, and it is
solved by an FPGA-based, NTP implementation that use
data filtering and has a clock discipline module in order to
output monotonous clock information. This avoids timestamps
jumping backwards, or jumping forward too much within one
step, hence the clock if the monitoring system becomes well-
regulated. Each interface at the monitoring node has to get
synchronized with this clock information. In this paper we call
it internal time synchronization, and it is implemented through
a proprietary time-synchronization protocol. Its sender, (or
master) part works in a distributor-card residing at the main
reference clock machine of the monitoring system, whereas
the receiver (or slave) parts are realized within the FPGA of
the monitoring cards.

As presented in the paper, the overall system shows sub-
nanosecond accuracy and stability, meeting the requirements
of 10 Gbps, or even 100 Gbps Ethernet-based packet monitor-
ing. The presented solution is already installed in the network-
wide, real-life monitoring at Magyar Telekom.
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The ∼1 ns accuracy over the internal synchronization bus
satisfies the criteria of any monitoring system with 1, 10 or
even 100 Gbit/s Ethernet, since packet inter-arrival time even
of the latter case is 6.72ns [24] – almost one magnitude greater
than the theoretical accuracy of the presented, implemented
and verified time synchronization method.

As a real-life verification, the above described time-
synchronization system has been put into operation at Magyar
Telekom. The system hardware (with its FPGA firmware) has
been installed beside the SGA-7N network monitoring system,
and showed the expected result. The system provides accurate
time information to the monitoring cards ever since, and it is
planned to be expanded for covering all related monitoring
cards, network-wide.

VI. CONCLUSION

In this paper, we introduced a general time synchronization
solution for a high performance, lossless network monitoring
system called SGA-7N that is based on a reconfigurable archi-
tecture. The probes of the system are called “Monitors”, which
consists of three main building blocks: a high performance
Field Programmable Gate Array (FPGA)-based custom hard-
ware platform, a firmware dedicated for network monitoring,
and the probe software. The reconfigurable property of the
FPGA chip enables to turn the Monitor hardware platform
into a high performance networking device – among others, a
network monitoring probe. Beside supporting distributed and
lossless packet level monitoring of Ethernet links for 1 or 10
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As a real-life verification, the above described time-
synchronization system has been put into operation at Magyar
Telekom. The system hardware (with its FPGA firmware) has
been installed beside the SGA-7N network monitoring system,
and showed the expected result. The system provides accurate
time information to the monitoring cards ever since, and it is
planned to be expanded for covering all related monitoring
cards, network-wide.

VI. CONCLUSION

In this paper, we introduced a general time synchronization
solution for a high performance, lossless network monitoring
system called SGA-7N that is based on a reconfigurable archi-
tecture. The probes of the system are called “Monitors”, which
consists of three main building blocks: a high performance
Field Programmable Gate Array (FPGA)-based custom hard-
ware platform, a firmware dedicated for network monitoring,
and the probe software. The reconfigurable property of the
FPGA chip enables to turn the Monitor hardware platform
into a high performance networking device – among others, a
network monitoring probe. Beside supporting distributed and
lossless packet level monitoring of Ethernet links for 1 or 10

Gbps of the described system, the FPGA serves as the base
platform of the time synchronization solution for the interface
cards of the Monitors.

Time synchronization of the network monitoring nodes are
crucial, since the analysis depends highly on the proper mes-
sage sequence, which is determined mainly by the timestamps.

First, each monitoring site has to have a reference clock
that is synchronized with other reference clocks at other sites.
Naturally, the monitoring system has to be synchronized to
the reference clock available at the physical site. In this
paper we call it external time synchronization, and it is
solved by an FPGA-based, NTP implementation that use
data filtering and has a clock discipline module in order to
output monotonous clock information. This avoids timestamps
jumping backwards, or jumping forward too much within one
step, hence the clock if the monitoring system becomes well-
regulated. Each interface at the monitoring node has to get
synchronized with this clock information. In this paper we call
it internal time synchronization, and it is implemented through
a proprietary time-synchronization protocol. Its sender, (or
master) part works in a distributor-card residing at the main
reference clock machine of the monitoring system, whereas
the receiver (or slave) parts are realized within the FPGA of
the monitoring cards.

As presented in the paper, the overall system shows sub-
nanosecond accuracy and stability, meeting the requirements
of 10 Gbps, or even 100 Gbps Ethernet-based packet monitor-
ing. The presented solution is already installed in the network-
wide, real-life monitoring at Magyar Telekom.
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