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Abstract—By opposition to biometric matching, biometric
identification is a relatively costly process. Let B = {h1,...,b.}
be a database of n biometric templates and let & be a given
individual biometric acquisition. The biometric identification
problem consists in finding the most likely b; corresponding to
b. This paper assumes the existence of an oracle 2 taking as b
and b;, and responding with truc or false. Considering 20 as an
atomic operation, any system-level optimization must necessarily
minimize the number of calls to 2 per identification session. This
is the parameter that we optimize in this paper.

Index Terms—biometrics, biometric identification, correlation

I. INTRODUCTION

By opposition to biometric matching, biometric identi-
fication [2], [3] is a rclatively costly process. Let B =
{b1,...,b,} be a dalabasc of n biometric templates and let
b be a given individual biomcltric acquisition. The biometric
identification problem consists in finding the most likely b;
corresponding to & [1].

Whilst in reality matching algorithms return a score com-
pared to a threshold, for the sake of simplicity this paper
assume the existence of an oracle 2 taking b and b; as input,
and responding with true or false:

A(b, by) € {T,F}

Considering 21 as an atomic operation, any system-level
optimization must necessarily minimize the number of calls
to 2 per identification session. This is the parameter that we
attempt to optimize in this paper.

For doing so, we assume that every user 7 has a col-
lection of & additional biometric parameters m; |, ...m; .
An m, ; can be cither derived from the emplate b; (ic.
m; j = function; (b;)) or measured independently. For instance
il b; is a [ingerprint then m; 7 can be the densily of minutiac
(the number of minutiae per unit of surface) or an additional
parameter, such as the person’s height, which is not correlated
to b;.

We will use the m; ; to accelerate identification by applying
2 to the most probable candidates first. We denote by o; the
standard deviation of the m; ;’s, for all users 7.

The proposed identification process is:
1) Acquire the biometric candidate information b and the
additional information rry, ..., .
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2) Compute for every user ¢ the score:

t; =

k
i=

(mj —m, ;)?
1 bl

3) Try (b, b;) by order of increasing #; values.

Given that 21 will be applied to the most promising candi-
dates first (the ones with the lowest (;), this is likely to result
in a significantly faster identification procedure.

However, the comparison of the £;’s assumes that the m, ;
arc independent. This is not always the case. For instance a
tall person is likely to be heavier. In other words, height (e.g.
m; ») and weight (e.g. ;) are correlated.

The process described so far did not take such correlations
into account.

II. ANALYSIS OF TLE PROCEDURE

We start by analyzing the proposed procedure without taking
correlations into account.

The computation of the #;’s as given by equation (1) rests
on the assumption that the measurcments m; cach [ollow
an independent normal distribution. More precisely, assuming
that every measurement 1z follows a normal distribution with
mean p; and standard deviation o, the density function can
be expressed as:

1 x— )3
(‘.xp(—( . ;j) )
oV 20;
When the m;’s are independently distributed, the probability
density of all measurements mj; for 1 < j = k can be
expressed as a k-dimensional multivariate distribution:

k .
() — ny)*
CXD (—Z JQ(_}"IjZJ )

=1

fm._f- (’1’“) =

k 1
@) =] s () = ————

(2m)/2 1] o
=1

=1

where ¥ = (z1,...,2Tk).

Note that in the previous equation p; and o; are the mean
and standard deviation of m; for all users 7. For a measurement
m; corresponding to a specific user i, we can also assume
that m; Tollows a normal distribution with mean yi; = m, 4
and standard deviation ;; we also assume that the standard
deviation @ around ;5 is the same for all uscrs. In this casc,
the measurement rm; corresponding (o user ¢ has the following
distribution:

ke

fﬁ(f)=%em(_zw)

(2m)k/2 H] & i=1 i
J=
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Additionally, we assumc that the standard deviation &; of my;
around 1, ; is proportional to the standard deviation o of m;
when all users are considered, ie. we assume ¢; = - o for
all 1 = j < k for some « € R. In this case, the probability
densn;y function of the #72;’s for user ¢ can be written as:

fi(m) = ;ﬁ
(2m)k/ 2ok Il o;

_ 1 E‘XD( t; )
N G 7
(2m)k 20k 1] oy '

g1

2
mT mz T) )
20:2

M»

exp (
J=1

where [; is precisely the quantity given by equation (1). The
probability to obtain measurements m; from user i is thus
a decreasing function of ;. Given 1i, the most probable
candidate is hence the one with the lowest ;.

ITI. TAKING CORRELATION INTO ACCOUNT

The comparison of the t;’s assumes that the different
biometric measurements m;; are independent. This is not
necessarily the case since (for instance) a tall person is likely
to be heavier; in other words, height and weight are correlated.
In this scction we the delinition of #; (o take correlation into
account.

A. Multivariate Normal Distribution
We denote by X the covariance matrix of the measurements
m;, defined as follows:
T
Y =var(m)=var | . | =
s

var(my)  cov(mms) cov(mymy)

cov(rmyims)

cov(myimy) var(my)

where cov(X.Y) = T(XY) — Ty
E(X?) - T(X)2

We assume that the measurements m; follow a k-
dimensional multivariate distribution with mean [ and covari-
ance matrix X; the probability density function can then be
expressed as:

X)E(Y) and var(X) =

1 e
fal@) = o P (—5(9«“ —0)'S (T - ﬂ))

where |Z| is the determinant of £. Note that mean [ is a
E-dimensional vector and ¥ is a & x k-matrix.

Note that in the previous equation /7 and ¥ are the expected
value and covariance matrix of measurements 7r.; for all users
i. As in Section II, for measurements m;’s corresponding to
a specific user ¢, we also assume that the m;’s follow a k-
multivariate normal distribution with mean yi; = m;; and
covariance matrix ¥; we also assume that ¥ is the same for
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all users. In this casc, the mecasurement 77 for user ¢ lollows
the multivariate distribution:

Jw (&) = %[f—'ﬂﬁ,)’i*l(f—ﬂf{!,))

1
(27 )k/2|52)1/2 I (
As in Section II we additionally assume that the covariance
matrix satisfies > = « - 2 for some « € R. In this case, the
probability density function can be written as:

fm(T) =

% _L(-*_ -~ )f
(2ra) 25172 exXp | =g\ T =My,

which gives:

“A(@—nii,))

1 ti
falz) = (@) 22 exXp ( - Z)
where:
ti = (i —ni; ) B (i — i) (2)

Therefore we obtain that equation (2) is a generalization of
equation (1) when taking correlations into account.

B. The New ldentification Procedure
The new algorithm is:

1) Collect from the user the biometric information b and
the additional information m, ..., my.

2) Compute for every user ¢ the value:
ti = (m — i} ) — nij.)

3) Sort the t;’s by increasing values and apply 20(b, b;) to
uscr @ by increasing f; valucs.

C. Bivariate Case
To illustrate the algorithm we (irst restrict ourselves o the
bivariate case. In this case, the covariance matrix between
variables X and Y can be written:
_[ e posoy
poLoy O
where var(X) = o2, var(Y) = o2 and cov(X,Y) = po,a,
where p is the correlation between X and Y. In this case, we

have: _ 1 —p
_1 1 a2 Ty Ty

12|

P Ty d)‘j

and the probability density function can be written:

fly) =

1 ( 2,0:1:3*;])
—  xp| -
27.'03303’,\/1 — p2 T Ty

In this case, cquation (2) gets simplified as follows:

oy
ST |52 T2
2(1 — p?) |62 o2

T iy

(‘ml - m«;,i)z ('m2 _'mi,2)27

t; =
2 2
G'-| 0'2

2{)('!’”,1 — 'TH\.‘___]_)('H'JQ — 'H’J_.,j__z)
T1Ta

where oy = var(my), o2 = var(ims) and p is the correlation
between m; and ma.

43




Accelerating Biometric Identification

D. Ilustration
We illustrate this with a set of simulated measurements:
height, weight and number of collected minutiac, for 13 users.
| User [ 1 [ 2] 3[4 ] 576 ] 7]
Height 178 | 165 | 190 | 176 | 174 | 192 | 182

Weight 71 66 82 80 76 85 76
Minutiae 14 15 14 27 15 25 14

User || 8 | 9 [ 1011 [12]13]
Height ][ 162 [ 168 [ 175 | 187 [ 195 | 168
Weight || 65 [ 80 | 77 [ 68 [ 92 | 72
Minutize || 22 | 23 | 24 [ 23 | 19 | 25

We obtain the following correlation matrix:

104.9 52.9 — 5.2
r= 52.9 56.3 3.9
— 5.2 3.9 22.8
which can be written as:
U% M20107 MaT103
Y= | pr2ao103 Uﬁ P230203
P130103  P230203 o3

where o7 = 10.2, 0y = 7.5, o3 = 4.8, and p1» = 0.688390,
p1z = —0.107015, poy = 0.109587.

Since p13 and pas are small, for simplicity we consider only
correlations between the first and second variables (height and
weight). More precisely we consider the simplified covariance
matrix: 9

lor) pPo102
Y= | poioz 05
73
with the same previous values of 04, 02, o3 and p = py5. This

gives: _,

1
(1—p2 }e‘r%

(1—p?)oraz
x = £ —
(1—p?)oio2 (1 p?)os

L
z
T3

This gives the following formula for ¢; which takes into
account correlations between height and weight:

(my—mia)? | (ma—mia)?

ti = ~ ——
(O E= R
_Qp(-m.l —my)(mg —my;2)  (mg—my3)?
(1= p?)oros a3
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IV. CONCLUSIONS

In the paper we have presented an approach o acceelerate the
biometric identilication process. The algoritm is based on the
basic principle of testing the most probable candidates first.
We started with assumption that set of measurements of a
user are considered to be independent and later we introduced
correlations into the scheme.

One drawback of the previous technique is that given a
measurement 173 = (m,...,my) the t;’s must be computed
for all users 7. A possible speed-up could be to select only
those users @ for which |y —m,; 1| is relatively small. This can
be done efficiently it the values mn; ; are pre-sorted. Another
refinement consists computing all the {;’s simultaneously (i.e.
compute j-wise rather than i-wise), progressively delay the
computation of “heavier” ¢;’s and start the comparison of the
“lighter” ones as soon as these become available.
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