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Abstract—Face recognition system is exposed to video replay 

attacks and photo spoofing attacks along with the extensive use 
of identity authentication technology. Spoofing attack happens 
when an attacker tries to disguise as a legitimate user with 
permissions to spoof authentication system by replaying the 
recorded videos of legitimate users or utilizing the printed 
photos of legitimate users. Inspired by the differences between 
image acquisition and playback, printing properties, and light 
emission models, this paper proposes a live face detection 
method based on local binary pattern and Bandelet. The 
replayed video images and the printed face images usually 
contain characteristics that are easy to be detected by texture 
detection and frequency domain analysis. The proposed method 
analyzes the differences between live faces and photo faces in 
texture, at the same time it utilizes Bandelet to analyze face 
images with multi-scale analysis and extracts the high-frequency 
sub band coefficients as feature vectors to train Extreme 
Learning Machine (ELM) to classify and recognize. The 
algorithm is verified on the public CASIA_FASD, print-attack 
and replay-attack datasets, well known Face Anti-Spoofing 
Databases, and the experimental results show that the method 
reduces the computational complexity and improves the 
detection accuracy. 
 

Index Terms—liveness detection; Bandelet transform; replay attack; 
authentication technology 
 

I. INTRODUCTION 
N recent years, biometric authentication has attracted more 
and more attention, such as the safety assessment and 

vulnerability assessment. As a convenient user authentication 
technology, face recognition only needs regular cameras and a 
face detection application, so it has been widely applied to 
various scenarios under the efforts of many researchers. To 
give some examples, we can mention entrance guard systems, 
access security checks, criminal detection, the banking 
system, etc. However, face recognition system detects human 
faces through the analysis of the tactic flat images, so the 
system is easy to be spoofed by replayed videos or printed 
photos. In a real application scenario, the identity 
authentication system mainly faces three common spoofing 
methods [1]. 

1) Photo spoofing [2]: It is one of the most convenient 
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spoofing methods to access the photos of legitimate users. 
The spoofer bends and rotates the printed photos in front of 
image acquisition devices to simulate the real legitimate 
users, which can spoof the authentication system. 

2) Video spoofing [3]: The video of legitimate users is a 
more threatening spoofing tool, and it can be acquired by the 
secret cameras. Compared with photos, videos have 
characteristics of head movements, facial expressions, blink, 
etc. and their effects are similar to the real human faces. 

3) 3D model spoofing: Make a 3D model for the human 
faces of legitimate users, which can simulate the blink, 
talking, head movements of real people [2-4]. Compared with 
the photo spoofing and video spoofing, 3D model spoofing is 
more threatening, but forging the live 3D model is more 
difficult. So, photo spoofing and video spoofing are the most 
used methods of identity authentication spoofing.  

In this paper, our goal is to use a better algorithm to 
distinguish between real and fake faces. We propose a novel 
live face detection method, based on local binary pattern and 
Bandelet  that extracts texture features from living bodies and 
photos, and then trains ELM classifier to identify authenticity. 
Finally, the result is verified on the public CASIA_FASD 
database, print-attack and replay-attack databases. Our 
experimental results show that the proposed algorithm 
performs well on all datasets. 

The contribution of this article can be summarized as 
follows. We proposed a fusion method of LBP and Bandelet 
algorithm for countering spoof attacks in face recognition. 
We optimize the basic LBP and Bandelet algorithm to extract 
the features from face image respectively. Then we fuse the 
features and put them into the ELM classifier for training and 
learning. Our method finally is verified and evaluated on 
public CASIA-FASD, print-attack and replay-attack datasets, 
and the results show that the proposed approach outperforms 
the other methods in spoof detection. 

The rest of this paper is organized as follows: Section II 
presents related works about face spoofing detection. Section 
III introduces the details of our live face detection method, the 
local binary pattern, Bandelet decomposition, and the ELM 
classifier. Section IV shows our experimental results. Finally, 
we conclude the paper in section V. 

II. RELATED WORKS 
Currently, many scholars in China and the rest of the world 

are committed to the study of the liveness detection problem, 
and there are already many live detection methods that are 
presented in the international conferences and journal articles. 
Presently, the live detection methods applied to face 
recognition mainly include the following categories: 
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A. Image quality analysis based methods 
As an example of image quality analysis method, D. Gong 

et al. proposed a new feature descriptor called common 
encoding model for heterogeneous face recognition, which is 
able to capture common discriminant information, such as the 
large modality gap [5]. I. Kim proposed a novel approach to 
robustly find the spoofing faces using the highlight removal 
effect, which is based on the reflection information. Because 
the spoofed face image is recaptured by a camera, it has 
additional light information [6]. D. Wen et al. proposed an 
efficient and rather robust face spoof detection algorithm 
based on image distortion analysis (IDA). Four different 
features (specular reflection, blurriness, chromatic moment, 
and color diversity) are extracted to form the IDA feature 
vector [7]. M. Uzair et al. proposed a hyperspectral face 
recognition algorithm using a spatiospectral covariance for 
band fusion and partial least square regression for 
classification. Moreover, they extended 13 existing face 
recognition techniques, for the first time, to perform 
hyperspectral face recognition [8]. Galbally et al. extracted 25 
features from an image such as peak signal-to-noise ratio and 
structural similarity index to detect subtle image quality [9]. 
Karubgaru et al. solved the feature extracted method by 
"increasing" the data available from the original image using 
several preprocesses, such as, image mirroring, colour and 
edges information [10]. 

B. Move option based methods 
Shervin et al. proposed a multiscale dynamic texture 

descriptor based on binarized statistical image features on 
three orthogonal planes (MBSIF-TOP) that is effective in 
detecting spoofing attacks and showing promising 
performances compared with existing alternatives [11]. Pan et 
al. have conducted live detection by blink actions [12]. 
Santosh T et al. have proposed a classification pipeline 
consisting of DMD, local binary patterns (LBPs), and support 
vector machines (SVMs) with a histogram intersection kernel. 
A unique property of DMD is its ability to conveniently 
represent the temporal information of the entire video as a 
single image with the same dimensions as those images 
contained in the video [13]. W. Yin et al. explored the issue of 
face anti-spoofing with good performance in accuracy by 
utilizing optical flow vector on two types of attacks: photos 
and videos shown on high-resolution electronic screens. The 
key idea is to calculate the displacement of the optical flow 
vector between two successive frames of a face video and 
obtain a displacement sum of a certain number of frames [14]. 
Many scholars were studying video sequences and dynamic 
descriptors that were extracted from video sequences [15-16]. 
Besides, Zhang Yu et al. improved the Piecewise Aggregate 
Approximation (PAA) method, and proposed a Hierarchical 
Clustering technique (HC-PAA) [17].  

C. Texture based methods 
N. Werghi et al. presented a novel approach for fusing 

shape and texture local binary patterns (LBPs) on a mesh for 
3D face recognition. Using a recently proposed framework, 
they computed LBP directly on the face mesh surface, then 
they construct a grid of the regions on the facial surface that 
can accommodate global and partial descriptions [18]. K. 

Patel et al. analyzed the image distortion of the print and 
replay attacks using different: 1) intensity channels (R, G, B, 
and grayscale); 2) image regions (entire image, detected face, 
or facial component between nose and chin); and 3) feature 
descriptors. They developed an efficient face spoof detection 
system on an Android smartphone. Their studies of Android 
face spoof detection system involving 20 participants showed 
that the proposed approach worked very well in real 
application scenarios [19]. Pereira et al. applied a local binary 
pattern (LBP) to the X-Y，X-T and Y-T dimensions to 
analyze the texture of time and space [20]. T. Edmunds et al. 
proposed an  original approach was that the fake face 
detection process occurs after the face identification process. 
Having access to enrollment data of each client, it becomes 
possible to estimate the exposure transformation between a 
test sample and its enrollment counterpart [21]. 
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Although much work has been directed towards tackling 

issues related to face spoofing detection, there is still 
significant room for improvement for anti-spoofing methods 
in face recognition [22]. Table I shows some advantages and 
disadvantages of the three methods listed in this article. In this 
paper, we proposed live face detection method based on local 
binary pattern and Bandelet. This method doesn’t need users’ 
active cooperation, so it has certain concealment. At the same 
time, the dimensions of extracted features are not high, while 
it reduces the time and the algorithm complexity.  

III. LIVE FACE DETECTION METHOD BASED ON MULTISCALE 
ANALYSIS 

It could be very difficult for us to distinguish the live faces 
in the photos accurately with our eyes, as shown in Figure I. In 
fact, live faces are complicated non-rigid 3D objects, while 
photo faces or video faces are flat rigid objects, so they can 
differ in light reflection and shadow. Photo faces usually 
contain the defects of printing quality, and this difference can 
be detected well by utilizing texture details.  

A. Local Binary Pattern 
Local binary pattern is a kind of operator used to describe 

the local texture features of images. Obviously, its function is 
feature extraction, and the extracted features are the texture 
features of images and they are local texture features. As show 
in Figure II, the original LBP operator is defined in the 
window of 3x3 pixels. The window’s center pixel is regarded 
as a threshold and is compared with the grey values of eight 
adjacent pixels. If the surrounding pixel value is greater than 

 

A. Image quality analysis based methods 
As an example of image quality analysis method, D. Gong 

et al. proposed a new feature descriptor called common 
encoding model for heterogeneous face recognition, which is 
able to capture common discriminant information, such as the 
large modality gap [5]. I. Kim proposed a novel approach to 
robustly find the spoofing faces using the highlight removal 
effect, which is based on the reflection information. Because 
the spoofed face image is recaptured by a camera, it has 
additional light information [6]. D. Wen et al. proposed an 
efficient and rather robust face spoof detection algorithm 
based on image distortion analysis (IDA). Four different 
features (specular reflection, blurriness, chromatic moment, 
and color diversity) are extracted to form the IDA feature 
vector [7]. M. Uzair et al. proposed a hyperspectral face 
recognition algorithm using a spatiospectral covariance for 
band fusion and partial least square regression for 
classification. Moreover, they extended 13 existing face 
recognition techniques, for the first time, to perform 
hyperspectral face recognition [8]. Galbally et al. extracted 25 
features from an image such as peak signal-to-noise ratio and 
structural similarity index to detect subtle image quality [9]. 
Karubgaru et al. solved the feature extracted method by 
"increasing" the data available from the original image using 
several preprocesses, such as, image mirroring, colour and 
edges information [10]. 

B. Move option based methods 
Shervin et al. proposed a multiscale dynamic texture 

descriptor based on binarized statistical image features on 
three orthogonal planes (MBSIF-TOP) that is effective in 
detecting spoofing attacks and showing promising 
performances compared with existing alternatives [11]. Pan et 
al. have conducted live detection by blink actions [12]. 
Santosh T et al. have proposed a classification pipeline 
consisting of DMD, local binary patterns (LBPs), and support 
vector machines (SVMs) with a histogram intersection kernel. 
A unique property of DMD is its ability to conveniently 
represent the temporal information of the entire video as a 
single image with the same dimensions as those images 
contained in the video [13]. W. Yin et al. explored the issue of 
face anti-spoofing with good performance in accuracy by 
utilizing optical flow vector on two types of attacks: photos 
and videos shown on high-resolution electronic screens. The 
key idea is to calculate the displacement of the optical flow 
vector between two successive frames of a face video and 
obtain a displacement sum of a certain number of frames [14]. 
Many scholars were studying video sequences and dynamic 
descriptors that were extracted from video sequences [15-16]. 
Besides, Zhang Yu et al. improved the Piecewise Aggregate 
Approximation (PAA) method, and proposed a Hierarchical 
Clustering technique (HC-PAA) [17].  

C. Texture based methods 
N. Werghi et al. presented a novel approach for fusing 

shape and texture local binary patterns (LBPs) on a mesh for 
3D face recognition. Using a recently proposed framework, 
they computed LBP directly on the face mesh surface, then 
they construct a grid of the regions on the facial surface that 
can accommodate global and partial descriptions [18]. K. 

Patel et al. analyzed the image distortion of the print and 
replay attacks using different: 1) intensity channels (R, G, B, 
and grayscale); 2) image regions (entire image, detected face, 
or facial component between nose and chin); and 3) feature 
descriptors. They developed an efficient face spoof detection 
system on an Android smartphone. Their studies of Android 
face spoof detection system involving 20 participants showed 
that the proposed approach worked very well in real 
application scenarios [19]. Pereira et al. applied a local binary 
pattern (LBP) to the X-Y，X-T and Y-T dimensions to 
analyze the texture of time and space [20]. T. Edmunds et al. 
proposed an  original approach was that the fake face 
detection process occurs after the face identification process. 
Having access to enrollment data of each client, it becomes 
possible to estimate the exposure transformation between a 
test sample and its enrollment counterpart [21]. 
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Although much work has been directed towards tackling 

issues related to face spoofing detection, there is still 
significant room for improvement for anti-spoofing methods 
in face recognition [22]. Table I shows some advantages and 
disadvantages of the three methods listed in this article. In this 
paper, we proposed live face detection method based on local 
binary pattern and Bandelet. This method doesn’t need users’ 
active cooperation, so it has certain concealment. At the same 
time, the dimensions of extracted features are not high, while 
it reduces the time and the algorithm complexity.  

III. LIVE FACE DETECTION METHOD BASED ON MULTISCALE 
ANALYSIS 

It could be very difficult for us to distinguish the live faces 
in the photos accurately with our eyes, as shown in Figure I. In 
fact, live faces are complicated non-rigid 3D objects, while 
photo faces or video faces are flat rigid objects, so they can 
differ in light reflection and shadow. Photo faces usually 
contain the defects of printing quality, and this difference can 
be detected well by utilizing texture details.  

A. Local Binary Pattern 
Local binary pattern is a kind of operator used to describe 

the local texture features of images. Obviously, its function is 
feature extraction, and the extracted features are the texture 
features of images and they are local texture features. As show 
in Figure II, the original LBP operator is defined in the 
window of 3x3 pixels. The window’s center pixel is regarded 
as a threshold and is compared with the grey values of eight 
adjacent pixels. If the surrounding pixel value is greater than 
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features (specular reflection, blurriness, chromatic moment, 
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band fusion and partial least square regression for 
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recognition techniques, for the first time, to perform 
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structural similarity index to detect subtle image quality [9]. 
Karubgaru et al. solved the feature extracted method by 
"increasing" the data available from the original image using 
several preprocesses, such as, image mirroring, colour and 
edges information [10]. 
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Shervin et al. proposed a multiscale dynamic texture 

descriptor based on binarized statistical image features on 
three orthogonal planes (MBSIF-TOP) that is effective in 
detecting spoofing attacks and showing promising 
performances compared with existing alternatives [11]. Pan et 
al. have conducted live detection by blink actions [12]. 
Santosh T et al. have proposed a classification pipeline 
consisting of DMD, local binary patterns (LBPs), and support 
vector machines (SVMs) with a histogram intersection kernel. 
A unique property of DMD is its ability to conveniently 
represent the temporal information of the entire video as a 
single image with the same dimensions as those images 
contained in the video [13]. W. Yin et al. explored the issue of 
face anti-spoofing with good performance in accuracy by 
utilizing optical flow vector on two types of attacks: photos 
and videos shown on high-resolution electronic screens. The 
key idea is to calculate the displacement of the optical flow 
vector between two successive frames of a face video and 
obtain a displacement sum of a certain number of frames [14]. 
Many scholars were studying video sequences and dynamic 
descriptors that were extracted from video sequences [15-16]. 
Besides, Zhang Yu et al. improved the Piecewise Aggregate 
Approximation (PAA) method, and proposed a Hierarchical 
Clustering technique (HC-PAA) [17].  

C. Texture based methods 
N. Werghi et al. presented a novel approach for fusing 

shape and texture local binary patterns (LBPs) on a mesh for 
3D face recognition. Using a recently proposed framework, 
they computed LBP directly on the face mesh surface, then 
they construct a grid of the regions on the facial surface that 
can accommodate global and partial descriptions [18]. K. 

Patel et al. analyzed the image distortion of the print and 
replay attacks using different: 1) intensity channels (R, G, B, 
and grayscale); 2) image regions (entire image, detected face, 
or facial component between nose and chin); and 3) feature 
descriptors. They developed an efficient face spoof detection 
system on an Android smartphone. Their studies of Android 
face spoof detection system involving 20 participants showed 
that the proposed approach worked very well in real 
application scenarios [19]. Pereira et al. applied a local binary 
pattern (LBP) to the X-Y，X-T and Y-T dimensions to 
analyze the texture of time and space [20]. T. Edmunds et al. 
proposed an  original approach was that the fake face 
detection process occurs after the face identification process. 
Having access to enrollment data of each client, it becomes 
possible to estimate the exposure transformation between a 
test sample and its enrollment counterpart [21]. 
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issues related to face spoofing detection, there is still 
significant room for improvement for anti-spoofing methods 
in face recognition [22]. Table I shows some advantages and 
disadvantages of the three methods listed in this article. In this 
paper, we proposed live face detection method based on local 
binary pattern and Bandelet. This method doesn’t need users’ 
active cooperation, so it has certain concealment. At the same 
time, the dimensions of extracted features are not high, while 
it reduces the time and the algorithm complexity.  

III. LIVE FACE DETECTION METHOD BASED ON MULTISCALE 
ANALYSIS 

It could be very difficult for us to distinguish the live faces 
in the photos accurately with our eyes, as shown in Figure I. In 
fact, live faces are complicated non-rigid 3D objects, while 
photo faces or video faces are flat rigid objects, so they can 
differ in light reflection and shadow. Photo faces usually 
contain the defects of printing quality, and this difference can 
be detected well by utilizing texture details.  

A. Local Binary Pattern 
Local binary pattern is a kind of operator used to describe 

the local texture features of images. Obviously, its function is 
feature extraction, and the extracted features are the texture 
features of images and they are local texture features. As show 
in Figure II, the original LBP operator is defined in the 
window of 3x3 pixels. The window’s center pixel is regarded 
as a threshold and is compared with the grey values of eight 
adjacent pixels. If the surrounding pixel value is greater than 
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effect, which is based on the reflection information. Because 
the spoofed face image is recaptured by a camera, it has 
additional light information [6]. D. Wen et al. proposed an 
efficient and rather robust face spoof detection algorithm 
based on image distortion analysis (IDA). Four different 
features (specular reflection, blurriness, chromatic moment, 
and color diversity) are extracted to form the IDA feature 
vector [7]. M. Uzair et al. proposed a hyperspectral face 
recognition algorithm using a spatiospectral covariance for 
band fusion and partial least square regression for 
classification. Moreover, they extended 13 existing face 
recognition techniques, for the first time, to perform 
hyperspectral face recognition [8]. Galbally et al. extracted 25 
features from an image such as peak signal-to-noise ratio and 
structural similarity index to detect subtle image quality [9]. 
Karubgaru et al. solved the feature extracted method by 
"increasing" the data available from the original image using 
several preprocesses, such as, image mirroring, colour and 
edges information [10]. 

B. Move option based methods 
Shervin et al. proposed a multiscale dynamic texture 

descriptor based on binarized statistical image features on 
three orthogonal planes (MBSIF-TOP) that is effective in 
detecting spoofing attacks and showing promising 
performances compared with existing alternatives [11]. Pan et 
al. have conducted live detection by blink actions [12]. 
Santosh T et al. have proposed a classification pipeline 
consisting of DMD, local binary patterns (LBPs), and support 
vector machines (SVMs) with a histogram intersection kernel. 
A unique property of DMD is its ability to conveniently 
represent the temporal information of the entire video as a 
single image with the same dimensions as those images 
contained in the video [13]. W. Yin et al. explored the issue of 
face anti-spoofing with good performance in accuracy by 
utilizing optical flow vector on two types of attacks: photos 
and videos shown on high-resolution electronic screens. The 
key idea is to calculate the displacement of the optical flow 
vector between two successive frames of a face video and 
obtain a displacement sum of a certain number of frames [14]. 
Many scholars were studying video sequences and dynamic 
descriptors that were extracted from video sequences [15-16]. 
Besides, Zhang Yu et al. improved the Piecewise Aggregate 
Approximation (PAA) method, and proposed a Hierarchical 
Clustering technique (HC-PAA) [17].  

C. Texture based methods 
N. Werghi et al. presented a novel approach for fusing 

shape and texture local binary patterns (LBPs) on a mesh for 
3D face recognition. Using a recently proposed framework, 
they computed LBP directly on the face mesh surface, then 
they construct a grid of the regions on the facial surface that 
can accommodate global and partial descriptions [18]. K. 

Patel et al. analyzed the image distortion of the print and 
replay attacks using different: 1) intensity channels (R, G, B, 
and grayscale); 2) image regions (entire image, detected face, 
or facial component between nose and chin); and 3) feature 
descriptors. They developed an efficient face spoof detection 
system on an Android smartphone. Their studies of Android 
face spoof detection system involving 20 participants showed 
that the proposed approach worked very well in real 
application scenarios [19]. Pereira et al. applied a local binary 
pattern (LBP) to the X-Y，X-T and Y-T dimensions to 
analyze the texture of time and space [20]. T. Edmunds et al. 
proposed an  original approach was that the fake face 
detection process occurs after the face identification process. 
Having access to enrollment data of each client, it becomes 
possible to estimate the exposure transformation between a 
test sample and its enrollment counterpart [21]. 
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Although much work has been directed towards tackling 

issues related to face spoofing detection, there is still 
significant room for improvement for anti-spoofing methods 
in face recognition [22]. Table I shows some advantages and 
disadvantages of the three methods listed in this article. In this 
paper, we proposed live face detection method based on local 
binary pattern and Bandelet. This method doesn’t need users’ 
active cooperation, so it has certain concealment. At the same 
time, the dimensions of extracted features are not high, while 
it reduces the time and the algorithm complexity.  

III. LIVE FACE DETECTION METHOD BASED ON MULTISCALE 
ANALYSIS 

It could be very difficult for us to distinguish the live faces 
in the photos accurately with our eyes, as shown in Figure I. In 
fact, live faces are complicated non-rigid 3D objects, while 
photo faces or video faces are flat rigid objects, so they can 
differ in light reflection and shadow. Photo faces usually 
contain the defects of printing quality, and this difference can 
be detected well by utilizing texture details.  

A. Local Binary Pattern 
Local binary pattern is a kind of operator used to describe 

the local texture features of images. Obviously, its function is 
feature extraction, and the extracted features are the texture 
features of images and they are local texture features. As show 
in Figure II, the original LBP operator is defined in the 
window of 3x3 pixels. The window’s center pixel is regarded 
as a threshold and is compared with the grey values of eight 
adjacent pixels. If the surrounding pixel value is greater than 
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Figure I. Live faces in the CASIA database (a), photo faces (b)  
and video faces (c). 

 
the center pixel value, then the position of this pixel is marked 
as 1, otherwise is marked as 0. In this case, eight points in a 
3x3 window can produce an 8-bit unsigned number, and then 
the LBP value of this window can be obtained to reflect the 
texture information of this area. 

After the original LBP was brought up, researchers 
increasingly proposed various improvements and 
optimizations to get an LBP operator where there are P 
sampling points in the circular area with R in radius: LBP 

uniform pattern, LBP rotation invariant pattern, LBP 
equivalent pattern, etc. 
  

 
Figure II. The processing of LBP 

Apparently, the above extracted LBP operator can get an 
LBP code in each pixel. Then, the obtained original LBP 
features are still an image after extracting the original LBP 
operator from an image. However, the objects in this image 
have been converted to secondary features, which cannot be 
directly applied to the discriminant analysis. We can see that 
this feature is closely relevant to the position information 
from the above analysis. So it can have a considerable 
deviation due to non-aligned positions if we directly conduct 
discriminant analysis on this feature of two images. Later, the 
researchers found that an image can be divided into several 
sub areas and LBP features are extracted from each pixel in 
each sub area, and then, statistical histograms of LBP features 
are established in each sub area. In this way, each sub area can 
be described by a statistical histogram. The whole image is 
composed of several statistical histograms. For example, an 
image with 100x100 pixels is divided into 100 sub areas with 
10x10 pixels, and the size of each sub area is 10x10 pixels. 
LBP features are extracted from each pixel in each sub area, 
and then, statistical histograms are established. In this way, 
the image has 10x10 sub areas and 10x10 statistical 
histograms. This image can be described by these 10x10 
statistical histograms. After that, we can judge the similarity 
between two images by various similarity measure functions. 

At present, the LBP local texture extraction operator has 
been successfully applied to fingerprint recognition, character 
recognition, face recognition, license plate recognition and 
other fields. 

B. Bandelet Decomposition 
The main idea of constructing Bandelet transform [23] is to 

define geometric features in images as a vector field, rather 
than a set of common edges. And the vector field denotes the 
local regularity direction of gray value variations in an image 
spatial structure. Bandelet base is not predetermined, and it is 
chosen according to the optimization of final application 
results. A. Lutz et al. proposed the quick search method of the 
optimal base in Bandelet variation. 

For geometric regularity images, geometric flows are 
parallel within a local scope. The wavelet transform is 
essentially the convolution of wavelet function and the 
original image, and the wavelet function can be regarded as 
the fuzzy kernel in this sense, so wavelet transform has a 
smoothing effect on the original image. This smoothing effect 
makes the image to has the regularity of direction that is 
vertical with the geometric flow, and it makes that the 
positioning of geometric flow doesn’t need to be strictly 
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or facial component between nose and chin); and 3) feature 
descriptors. They developed an efficient face spoof detection 
system on an Android smartphone. Their studies of Android 
face spoof detection system involving 20 participants showed 
that the proposed approach worked very well in real 
application scenarios [19]. Pereira et al. applied a local binary 
pattern (LBP) to the X-Y，X-T and Y-T dimensions to 
analyze the texture of time and space [20]. T. Edmunds et al. 
proposed an  original approach was that the fake face 
detection process occurs after the face identification process. 
Having access to enrollment data of each client, it becomes 
possible to estimate the exposure transformation between a 
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Although much work has been directed towards tackling 

issues related to face spoofing detection, there is still 
significant room for improvement for anti-spoofing methods 
in face recognition [22]. Table I shows some advantages and 
disadvantages of the three methods listed in this article. In this 
paper, we proposed live face detection method based on local 
binary pattern and Bandelet. This method doesn’t need users’ 
active cooperation, so it has certain concealment. At the same 
time, the dimensions of extracted features are not high, while 
it reduces the time and the algorithm complexity.  

III. LIVE FACE DETECTION METHOD BASED ON MULTISCALE 
ANALYSIS 

It could be very difficult for us to distinguish the live faces 
in the photos accurately with our eyes, as shown in Figure I. In 
fact, live faces are complicated non-rigid 3D objects, while 
photo faces or video faces are flat rigid objects, so they can 
differ in light reflection and shadow. Photo faces usually 
contain the defects of printing quality, and this difference can 
be detected well by utilizing texture details.  

A. Local Binary Pattern 
Local binary pattern is a kind of operator used to describe 

the local texture features of images. Obviously, its function is 
feature extraction, and the extracted features are the texture 
features of images and they are local texture features. As show 
in Figure II, the original LBP operator is defined in the 
window of 3x3 pixels. The window’s center pixel is regarded 
as a threshold and is compared with the grey values of eight 
adjacent pixels. If the surrounding pixel value is greater than 

 

A. Image quality analysis based methods 
As an example of image quality analysis method, D. Gong 

et al. proposed a new feature descriptor called common 
encoding model for heterogeneous face recognition, which is 
able to capture common discriminant information, such as the 
large modality gap [5]. I. Kim proposed a novel approach to 
robustly find the spoofing faces using the highlight removal 
effect, which is based on the reflection information. Because 
the spoofed face image is recaptured by a camera, it has 
additional light information [6]. D. Wen et al. proposed an 
efficient and rather robust face spoof detection algorithm 
based on image distortion analysis (IDA). Four different 
features (specular reflection, blurriness, chromatic moment, 
and color diversity) are extracted to form the IDA feature 
vector [7]. M. Uzair et al. proposed a hyperspectral face 
recognition algorithm using a spatiospectral covariance for 
band fusion and partial least square regression for 
classification. Moreover, they extended 13 existing face 
recognition techniques, for the first time, to perform 
hyperspectral face recognition [8]. Galbally et al. extracted 25 
features from an image such as peak signal-to-noise ratio and 
structural similarity index to detect subtle image quality [9]. 
Karubgaru et al. solved the feature extracted method by 
"increasing" the data available from the original image using 
several preprocesses, such as, image mirroring, colour and 
edges information [10]. 

B. Move option based methods 
Shervin et al. proposed a multiscale dynamic texture 

descriptor based on binarized statistical image features on 
three orthogonal planes (MBSIF-TOP) that is effective in 
detecting spoofing attacks and showing promising 
performances compared with existing alternatives [11]. Pan et 
al. have conducted live detection by blink actions [12]. 
Santosh T et al. have proposed a classification pipeline 
consisting of DMD, local binary patterns (LBPs), and support 
vector machines (SVMs) with a histogram intersection kernel. 
A unique property of DMD is its ability to conveniently 
represent the temporal information of the entire video as a 
single image with the same dimensions as those images 
contained in the video [13]. W. Yin et al. explored the issue of 
face anti-spoofing with good performance in accuracy by 
utilizing optical flow vector on two types of attacks: photos 
and videos shown on high-resolution electronic screens. The 
key idea is to calculate the displacement of the optical flow 
vector between two successive frames of a face video and 
obtain a displacement sum of a certain number of frames [14]. 
Many scholars were studying video sequences and dynamic 
descriptors that were extracted from video sequences [15-16]. 
Besides, Zhang Yu et al. improved the Piecewise Aggregate 
Approximation (PAA) method, and proposed a Hierarchical 
Clustering technique (HC-PAA) [17].  

C. Texture based methods 
N. Werghi et al. presented a novel approach for fusing 

shape and texture local binary patterns (LBPs) on a mesh for 
3D face recognition. Using a recently proposed framework, 
they computed LBP directly on the face mesh surface, then 
they construct a grid of the regions on the facial surface that 
can accommodate global and partial descriptions [18]. K. 

Patel et al. analyzed the image distortion of the print and 
replay attacks using different: 1) intensity channels (R, G, B, 
and grayscale); 2) image regions (entire image, detected face, 
or facial component between nose and chin); and 3) feature 
descriptors. They developed an efficient face spoof detection 
system on an Android smartphone. Their studies of Android 
face spoof detection system involving 20 participants showed 
that the proposed approach worked very well in real 
application scenarios [19]. Pereira et al. applied a local binary 
pattern (LBP) to the X-Y，X-T and Y-T dimensions to 
analyze the texture of time and space [20]. T. Edmunds et al. 
proposed an  original approach was that the fake face 
detection process occurs after the face identification process. 
Having access to enrollment data of each client, it becomes 
possible to estimate the exposure transformation between a 
test sample and its enrollment counterpart [21]. 
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differ in light reflection and shadow. Photo faces usually 
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in Figure II, the original LBP operator is defined in the 
window of 3x3 pixels. The window’s center pixel is regarded 
as a threshold and is compared with the grey values of eight 
adjacent pixels. If the surrounding pixel value is greater than 

 

A. Image quality analysis based methods 
As an example of image quality analysis method, D. Gong 

et al. proposed a new feature descriptor called common 
encoding model for heterogeneous face recognition, which is 
able to capture common discriminant information, such as the 
large modality gap [5]. I. Kim proposed a novel approach to 
robustly find the spoofing faces using the highlight removal 
effect, which is based on the reflection information. Because 
the spoofed face image is recaptured by a camera, it has 
additional light information [6]. D. Wen et al. proposed an 
efficient and rather robust face spoof detection algorithm 
based on image distortion analysis (IDA). Four different 
features (specular reflection, blurriness, chromatic moment, 
and color diversity) are extracted to form the IDA feature 
vector [7]. M. Uzair et al. proposed a hyperspectral face 
recognition algorithm using a spatiospectral covariance for 
band fusion and partial least square regression for 
classification. Moreover, they extended 13 existing face 
recognition techniques, for the first time, to perform 
hyperspectral face recognition [8]. Galbally et al. extracted 25 
features from an image such as peak signal-to-noise ratio and 
structural similarity index to detect subtle image quality [9]. 
Karubgaru et al. solved the feature extracted method by 
"increasing" the data available from the original image using 
several preprocesses, such as, image mirroring, colour and 
edges information [10]. 

B. Move option based methods 
Shervin et al. proposed a multiscale dynamic texture 

descriptor based on binarized statistical image features on 
three orthogonal planes (MBSIF-TOP) that is effective in 
detecting spoofing attacks and showing promising 
performances compared with existing alternatives [11]. Pan et 
al. have conducted live detection by blink actions [12]. 
Santosh T et al. have proposed a classification pipeline 
consisting of DMD, local binary patterns (LBPs), and support 
vector machines (SVMs) with a histogram intersection kernel. 
A unique property of DMD is its ability to conveniently 
represent the temporal information of the entire video as a 
single image with the same dimensions as those images 
contained in the video [13]. W. Yin et al. explored the issue of 
face anti-spoofing with good performance in accuracy by 
utilizing optical flow vector on two types of attacks: photos 
and videos shown on high-resolution electronic screens. The 
key idea is to calculate the displacement of the optical flow 
vector between two successive frames of a face video and 
obtain a displacement sum of a certain number of frames [14]. 
Many scholars were studying video sequences and dynamic 
descriptors that were extracted from video sequences [15-16]. 
Besides, Zhang Yu et al. improved the Piecewise Aggregate 
Approximation (PAA) method, and proposed a Hierarchical 
Clustering technique (HC-PAA) [17].  

C. Texture based methods 
N. Werghi et al. presented a novel approach for fusing 

shape and texture local binary patterns (LBPs) on a mesh for 
3D face recognition. Using a recently proposed framework, 
they computed LBP directly on the face mesh surface, then 
they construct a grid of the regions on the facial surface that 
can accommodate global and partial descriptions [18]. K. 

Patel et al. analyzed the image distortion of the print and 
replay attacks using different: 1) intensity channels (R, G, B, 
and grayscale); 2) image regions (entire image, detected face, 
or facial component between nose and chin); and 3) feature 
descriptors. They developed an efficient face spoof detection 
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pattern (LBP) to the X-Y，X-T and Y-T dimensions to 
analyze the texture of time and space [20]. T. Edmunds et al. 
proposed an  original approach was that the fake face 
detection process occurs after the face identification process. 
Having access to enrollment data of each client, it becomes 
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Although much work has been directed towards tackling 

issues related to face spoofing detection, there is still 
significant room for improvement for anti-spoofing methods 
in face recognition [22]. Table I shows some advantages and 
disadvantages of the three methods listed in this article. In this 
paper, we proposed live face detection method based on local 
binary pattern and Bandelet. This method doesn’t need users’ 
active cooperation, so it has certain concealment. At the same 
time, the dimensions of extracted features are not high, while 
it reduces the time and the algorithm complexity.  

III. LIVE FACE DETECTION METHOD BASED ON MULTISCALE 
ANALYSIS 

It could be very difficult for us to distinguish the live faces 
in the photos accurately with our eyes, as shown in Figure I. In 
fact, live faces are complicated non-rigid 3D objects, while 
photo faces or video faces are flat rigid objects, so they can 
differ in light reflection and shadow. Photo faces usually 
contain the defects of printing quality, and this difference can 
be detected well by utilizing texture details.  

A. Local Binary Pattern 
Local binary pattern is a kind of operator used to describe 

the local texture features of images. Obviously, its function is 
feature extraction, and the extracted features are the texture 
features of images and they are local texture features. As show 
in Figure II, the original LBP operator is defined in the 
window of 3x3 pixels. The window’s center pixel is regarded 
as a threshold and is compared with the grey values of eight 
adjacent pixels. If the surrounding pixel value is greater than 
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Figure I. Live faces in the CASIA database (a), photo faces (b)  
and video faces (c). 

 
the center pixel value, then the position of this pixel is marked 
as 1, otherwise is marked as 0. In this case, eight points in a 
3x3 window can produce an 8-bit unsigned number, and then 
the LBP value of this window can be obtained to reflect the 
texture information of this area. 

After the original LBP was brought up, researchers 
increasingly proposed various improvements and 
optimizations to get an LBP operator where there are P 
sampling points in the circular area with R in radius: LBP 

uniform pattern, LBP rotation invariant pattern, LBP 
equivalent pattern, etc. 
  

 
Figure II. The processing of LBP 

Apparently, the above extracted LBP operator can get an 
LBP code in each pixel. Then, the obtained original LBP 
features are still an image after extracting the original LBP 
operator from an image. However, the objects in this image 
have been converted to secondary features, which cannot be 
directly applied to the discriminant analysis. We can see that 
this feature is closely relevant to the position information 
from the above analysis. So it can have a considerable 
deviation due to non-aligned positions if we directly conduct 
discriminant analysis on this feature of two images. Later, the 
researchers found that an image can be divided into several 
sub areas and LBP features are extracted from each pixel in 
each sub area, and then, statistical histograms of LBP features 
are established in each sub area. In this way, each sub area can 
be described by a statistical histogram. The whole image is 
composed of several statistical histograms. For example, an 
image with 100x100 pixels is divided into 100 sub areas with 
10x10 pixels, and the size of each sub area is 10x10 pixels. 
LBP features are extracted from each pixel in each sub area, 
and then, statistical histograms are established. In this way, 
the image has 10x10 sub areas and 10x10 statistical 
histograms. This image can be described by these 10x10 
statistical histograms. After that, we can judge the similarity 
between two images by various similarity measure functions. 

At present, the LBP local texture extraction operator has 
been successfully applied to fingerprint recognition, character 
recognition, face recognition, license plate recognition and 
other fields. 

B. Bandelet Decomposition 
The main idea of constructing Bandelet transform [23] is to 

define geometric features in images as a vector field, rather 
than a set of common edges. And the vector field denotes the 
local regularity direction of gray value variations in an image 
spatial structure. Bandelet base is not predetermined, and it is 
chosen according to the optimization of final application 
results. A. Lutz et al. proposed the quick search method of the 
optimal base in Bandelet variation. 

For geometric regularity images, geometric flows are 
parallel within a local scope. The wavelet transform is 
essentially the convolution of wavelet function and the 
original image, and the wavelet function can be regarded as 
the fuzzy kernel in this sense, so wavelet transform has a 
smoothing effect on the original image. This smoothing effect 
makes the image to has the regularity of direction that is 
vertical with the geometric flow, and it makes that the 
positioning of geometric flow doesn’t need to be strictly 
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accurate, being allowed to have a certain deviation. In view of 
the difficulties of accurate positioning of image edge line, this 
regularity makes it convenient to position geometric flow 
rapidly. 

Image segmentation adopts the binary segmentation 
method which Donoho adopted in wedgelet. Firstly, a square 
image is equally divided into 4 sub areas, and then, each sub 
area is equally divided into 4 sub areas in the next layer of 
segmentation, until the size of sub areas at the bottom layer 
reaches the minimum preset. The segmentation result can be 
shown by quadtree; each sub area corresponds to one node of 
the quadtree, as shown in Figure III. When the width of an 
image is 1, and  the width of the sub area is (1/2)-n, the depth of 
the quadtree node corresponding to the sub area is n. 
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Figure III.  Binary tree decomposition diagram 
 
 

C. The Proposed Live Face Detection Method 
As for texture feature detection, this paper proposes a live 

face detection method based on LBP and Bandelet to solve 
this problem. The flowchart of this method is shown in Figure  
IV. 

Step 1 Convert the face image to be detected into a 
grayscale image, remove the redundant color information and 
keep the texture information. 

Step 2 Extract the local binary pattern features and 
statistical features of high-frequency coefficients in Bandelet 
transform from the converted grayscale image. 

 
The process of getting local binary pattern features is: 

1) Divide the detected window into several sub areas (for 
example, the size of every sub area is 16x16 pixels). 
2) Compare every pixel in the sub areas with its eight 
neighborhood pixels (upper left, left middle, lower left, upper 
right, etc.), which can be carried out in accordance with the 
clockwise or counter-clockwise order. 
3) If the surrounding pixel value is greater than the center 
pixel value, then the position of this pixel is marked as 1, 
otherwise, is marked as 0. In this case, an 8-bit binary number 
is obtained and converted to a decimal number to be as the 
feature of this area. 
4) Establish histograms for every sub area. 
5) At this time, the histograms can be normalized. 
6) Have all the histograms of sub areas connected in series, 
and then the features of the detected window are obtained. 

The detected face 
image

Converted into grayscale 
image

Grayscale compression Bandelet decomposition

Extract LBP features Extract  high-frequency 
coefficients

Features  fusion

ELM cassification 
detection

Whether Live Face
 

 
Figure IV. Flowchart of live face detection method based on LBP and 

Bandelet. 
 

The process of getting statistical features of high-frequency 
coefficients in Bandelet transform is: 
1) Input: grayscale image, quantization threshold T. 
2) Conduct 2D wavelet transform on the image, orthogonal 

and biorthogonal wavelet transform can be used. 
3) Establish quadtree segmentation for each sub band 

respectively, and get the best geometric flow directions 
of segmentation areas. 

4) Conduct Bandelet transforms on each Bandelet area and 
get Bandelet coefficients.  

5) Arrange Bandelet coefficients into matrix form 
according to a particular way. 

6) Output: quadtree, the best geometric flow direction, 
Bandelet coefficients. 
 

D. Extreme Learning Machine 
We have conducted a statistical analysis and classification 

of the above two kinds of features. In this paper, basic ELM is 
adopted as the classifier. ELM, proposed by Guangbin Huang 
[24], is an algorithm to solve the single hidden layer neural 
networks. Under the condition of ensuring learning accuracy, 
the most obvious feature of ELM is to run faster than 
traditional learning algorithms for the traditional neural 
networks, especially for single-hidden layer feed forward 
neural networks (SLFN). ELM is a new type of fast learning 
algorithm, for the single-hidden layer neural network, and it 
can initialize the input weights and bias randomly to get the 
corresponded output weights. 

For a single hidden layer neural network (as shown in Fig. 
3), assume that there are N random samples ),( i itX , 

where   mT
imiii

nT
niiii RttttRwxxX  ,,,,],,,[ 21,2,1,  . n is the 

dimension of each feature vector X and m is the length of 
output vector t(m is 1 here because face detection is a binary 

 

accurate, being allowed to have a certain deviation. In view of 
the difficulties of accurate positioning of image edge line, this 
regularity makes it convenient to position geometric flow 
rapidly. 

Image segmentation adopts the binary segmentation 
method which Donoho adopted in wedgelet. Firstly, a square 
image is equally divided into 4 sub areas, and then, each sub 
area is equally divided into 4 sub areas in the next layer of 
segmentation, until the size of sub areas at the bottom layer 
reaches the minimum preset. The segmentation result can be 
shown by quadtree; each sub area corresponds to one node of 
the quadtree, as shown in Figure III. When the width of an 
image is 1, and  the width of the sub area is (1/2)-n, the depth of 
the quadtree node corresponding to the sub area is n. 
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Figure III.  Binary tree decomposition diagram 
 
 

C. The Proposed Live Face Detection Method 
As for texture feature detection, this paper proposes a live 

face detection method based on LBP and Bandelet to solve 
this problem. The flowchart of this method is shown in Figure  
IV. 

Step 1 Convert the face image to be detected into a 
grayscale image, remove the redundant color information and 
keep the texture information. 
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statistical features of high-frequency coefficients in Bandelet 
transform from the converted grayscale image. 
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1) Divide the detected window into several sub areas (for 
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right, etc.), which can be carried out in accordance with the 
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3) If the surrounding pixel value is greater than the center 
pixel value, then the position of this pixel is marked as 1, 
otherwise, is marked as 0. In this case, an 8-bit binary number 
is obtained and converted to a decimal number to be as the 
feature of this area. 
4) Establish histograms for every sub area. 
5) At this time, the histograms can be normalized. 
6) Have all the histograms of sub areas connected in series, 
and then the features of the detected window are obtained. 
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The process of getting statistical features of high-frequency 
coefficients in Bandelet transform is: 
1) Input: grayscale image, quantization threshold T. 
2) Conduct 2D wavelet transform on the image, orthogonal 

and biorthogonal wavelet transform can be used. 
3) Establish quadtree segmentation for each sub band 

respectively, and get the best geometric flow directions 
of segmentation areas. 

4) Conduct Bandelet transforms on each Bandelet area and 
get Bandelet coefficients.  

5) Arrange Bandelet coefficients into matrix form 
according to a particular way. 

6) Output: quadtree, the best geometric flow direction, 
Bandelet coefficients. 
 

D. Extreme Learning Machine 
We have conducted a statistical analysis and classification 

of the above two kinds of features. In this paper, basic ELM is 
adopted as the classifier. ELM, proposed by Guangbin Huang 
[24], is an algorithm to solve the single hidden layer neural 
networks. Under the condition of ensuring learning accuracy, 
the most obvious feature of ELM is to run faster than 
traditional learning algorithms for the traditional neural 
networks, especially for single-hidden layer feed forward 
neural networks (SLFN). ELM is a new type of fast learning 
algorithm, for the single-hidden layer neural network, and it 
can initialize the input weights and bias randomly to get the 
corresponded output weights. 

For a single hidden layer neural network (as shown in Fig. 
3), assume that there are N random samples ),( i itX , 
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image is equally divided into 4 sub areas, and then, each sub 
area is equally divided into 4 sub areas in the next layer of 
segmentation, until the size of sub areas at the bottom layer 
reaches the minimum preset. The segmentation result can be 
shown by quadtree; each sub area corresponds to one node of 
the quadtree, as shown in Figure III. When the width of an 
image is 1, and  the width of the sub area is (1/2)-n, the depth of 
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C. The Proposed Live Face Detection Method 
As for texture feature detection, this paper proposes a live 

face detection method based on LBP and Bandelet to solve 
this problem. The flowchart of this method is shown in Figure  
IV. 
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keep the texture information. 
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5) At this time, the histograms can be normalized. 
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2) Conduct 2D wavelet transform on the image, orthogonal 

and biorthogonal wavelet transform can be used. 
3) Establish quadtree segmentation for each sub band 

respectively, and get the best geometric flow directions 
of segmentation areas. 

4) Conduct Bandelet transforms on each Bandelet area and 
get Bandelet coefficients.  

5) Arrange Bandelet coefficients into matrix form 
according to a particular way. 

6) Output: quadtree, the best geometric flow direction, 
Bandelet coefficients. 
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We have conducted a statistical analysis and classification 

of the above two kinds of features. In this paper, basic ELM is 
adopted as the classifier. ELM, proposed by Guangbin Huang 
[24], is an algorithm to solve the single hidden layer neural 
networks. Under the condition of ensuring learning accuracy, 
the most obvious feature of ELM is to run faster than 
traditional learning algorithms for the traditional neural 
networks, especially for single-hidden layer feed forward 
neural networks (SLFN). ELM is a new type of fast learning 
algorithm, for the single-hidden layer neural network, and it 
can initialize the input weights and bias randomly to get the 
corresponded output weights. 
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the difficulties of accurate positioning of image edge line, this 
regularity makes it convenient to position geometric flow 
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Image segmentation adopts the binary segmentation 
method which Donoho adopted in wedgelet. Firstly, a square 
image is equally divided into 4 sub areas, and then, each sub 
area is equally divided into 4 sub areas in the next layer of 
segmentation, until the size of sub areas at the bottom layer 
reaches the minimum preset. The segmentation result can be 
shown by quadtree; each sub area corresponds to one node of 
the quadtree, as shown in Figure III. When the width of an 
image is 1, and  the width of the sub area is (1/2)-n, the depth of 
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Figure III.  Binary tree decomposition diagram 
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As for texture feature detection, this paper proposes a live 

face detection method based on LBP and Bandelet to solve 
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Figure IV. Flowchart of live face detection method based on LBP and 
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2) Conduct 2D wavelet transform on the image, orthogonal 

and biorthogonal wavelet transform can be used. 
3) Establish quadtree segmentation for each sub band 

respectively, and get the best geometric flow directions 
of segmentation areas. 

4) Conduct Bandelet transforms on each Bandelet area and 
get Bandelet coefficients.  

5) Arrange Bandelet coefficients into matrix form 
according to a particular way. 

6) Output: quadtree, the best geometric flow direction, 
Bandelet coefficients. 
 

D. Extreme Learning Machine 
We have conducted a statistical analysis and classification 

of the above two kinds of features. In this paper, basic ELM is 
adopted as the classifier. ELM, proposed by Guangbin Huang 
[24], is an algorithm to solve the single hidden layer neural 
networks. Under the condition of ensuring learning accuracy, 
the most obvious feature of ELM is to run faster than 
traditional learning algorithms for the traditional neural 
networks, especially for single-hidden layer feed forward 
neural networks (SLFN). ELM is a new type of fast learning 
algorithm, for the single-hidden layer neural network, and it 
can initialize the input weights and bias randomly to get the 
corresponded output weights. 
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accurate, being allowed to have a certain deviation. In view of 
the difficulties of accurate positioning of image edge line, this 
regularity makes it convenient to position geometric flow 
rapidly. 

Image segmentation adopts the binary segmentation 
method which Donoho adopted in wedgelet. Firstly, a square 
image is equally divided into 4 sub areas, and then, each sub 
area is equally divided into 4 sub areas in the next layer of 
segmentation, until the size of sub areas at the bottom layer 
reaches the minimum preset. The segmentation result can be 
shown by quadtree; each sub area corresponds to one node of 
the quadtree, as shown in Figure III. When the width of an 
image is 1, and  the width of the sub area is (1/2)-n, the depth of 
the quadtree node corresponding to the sub area is n. 
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Figure III.  Binary tree decomposition diagram 
 
 

C. The Proposed Live Face Detection Method 
As for texture feature detection, this paper proposes a live 

face detection method based on LBP and Bandelet to solve 
this problem. The flowchart of this method is shown in Figure  
IV. 

Step 1 Convert the face image to be detected into a 
grayscale image, remove the redundant color information and 
keep the texture information. 

Step 2 Extract the local binary pattern features and 
statistical features of high-frequency coefficients in Bandelet 
transform from the converted grayscale image. 

 
The process of getting local binary pattern features is: 

1) Divide the detected window into several sub areas (for 
example, the size of every sub area is 16x16 pixels). 
2) Compare every pixel in the sub areas with its eight 
neighborhood pixels (upper left, left middle, lower left, upper 
right, etc.), which can be carried out in accordance with the 
clockwise or counter-clockwise order. 
3) If the surrounding pixel value is greater than the center 
pixel value, then the position of this pixel is marked as 1, 
otherwise, is marked as 0. In this case, an 8-bit binary number 
is obtained and converted to a decimal number to be as the 
feature of this area. 
4) Establish histograms for every sub area. 
5) At this time, the histograms can be normalized. 
6) Have all the histograms of sub areas connected in series, 
and then the features of the detected window are obtained. 
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Figure IV. Flowchart of live face detection method based on LBP and 

Bandelet. 
 

The process of getting statistical features of high-frequency 
coefficients in Bandelet transform is: 
1) Input: grayscale image, quantization threshold T. 
2) Conduct 2D wavelet transform on the image, orthogonal 

and biorthogonal wavelet transform can be used. 
3) Establish quadtree segmentation for each sub band 

respectively, and get the best geometric flow directions 
of segmentation areas. 

4) Conduct Bandelet transforms on each Bandelet area and 
get Bandelet coefficients.  

5) Arrange Bandelet coefficients into matrix form 
according to a particular way. 

6) Output: quadtree, the best geometric flow direction, 
Bandelet coefficients. 
 

D. Extreme Learning Machine 
We have conducted a statistical analysis and classification 

of the above two kinds of features. In this paper, basic ELM is 
adopted as the classifier. ELM, proposed by Guangbin Huang 
[24], is an algorithm to solve the single hidden layer neural 
networks. Under the condition of ensuring learning accuracy, 
the most obvious feature of ELM is to run faster than 
traditional learning algorithms for the traditional neural 
networks, especially for single-hidden layer feed forward 
neural networks (SLFN). ELM is a new type of fast learning 
algorithm, for the single-hidden layer neural network, and it 
can initialize the input weights and bias randomly to get the 
corresponded output weights. 

For a single hidden layer neural network (as shown in Fig. 
3), assume that there are N random samples ),( i itX , 
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accurate, being allowed to have a certain deviation. In view of 
the difficulties of accurate positioning of image edge line, this 
regularity makes it convenient to position geometric flow 
rapidly. 

Image segmentation adopts the binary segmentation 
method which Donoho adopted in wedgelet. Firstly, a square 
image is equally divided into 4 sub areas, and then, each sub 
area is equally divided into 4 sub areas in the next layer of 
segmentation, until the size of sub areas at the bottom layer 
reaches the minimum preset. The segmentation result can be 
shown by quadtree; each sub area corresponds to one node of 
the quadtree, as shown in Figure III. When the width of an 
image is 1, and  the width of the sub area is (1/2)-n, the depth of 
the quadtree node corresponding to the sub area is n. 
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Figure III.  Binary tree decomposition diagram 
 
 

C. The Proposed Live Face Detection Method 
As for texture feature detection, this paper proposes a live 

face detection method based on LBP and Bandelet to solve 
this problem. The flowchart of this method is shown in Figure  
IV. 

Step 1 Convert the face image to be detected into a 
grayscale image, remove the redundant color information and 
keep the texture information. 

Step 2 Extract the local binary pattern features and 
statistical features of high-frequency coefficients in Bandelet 
transform from the converted grayscale image. 

 
The process of getting local binary pattern features is: 

1) Divide the detected window into several sub areas (for 
example, the size of every sub area is 16x16 pixels). 
2) Compare every pixel in the sub areas with its eight 
neighborhood pixels (upper left, left middle, lower left, upper 
right, etc.), which can be carried out in accordance with the 
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3) If the surrounding pixel value is greater than the center 
pixel value, then the position of this pixel is marked as 1, 
otherwise, is marked as 0. In this case, an 8-bit binary number 
is obtained and converted to a decimal number to be as the 
feature of this area. 
4) Establish histograms for every sub area. 
5) At this time, the histograms can be normalized. 
6) Have all the histograms of sub areas connected in series, 
and then the features of the detected window are obtained. 
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Figure IV. Flowchart of live face detection method based on LBP and 

Bandelet. 
 

The process of getting statistical features of high-frequency 
coefficients in Bandelet transform is: 
1) Input: grayscale image, quantization threshold T. 
2) Conduct 2D wavelet transform on the image, orthogonal 

and biorthogonal wavelet transform can be used. 
3) Establish quadtree segmentation for each sub band 

respectively, and get the best geometric flow directions 
of segmentation areas. 

4) Conduct Bandelet transforms on each Bandelet area and 
get Bandelet coefficients.  

5) Arrange Bandelet coefficients into matrix form 
according to a particular way. 

6) Output: quadtree, the best geometric flow direction, 
Bandelet coefficients. 
 

D. Extreme Learning Machine 
We have conducted a statistical analysis and classification 

of the above two kinds of features. In this paper, basic ELM is 
adopted as the classifier. ELM, proposed by Guangbin Huang 
[24], is an algorithm to solve the single hidden layer neural 
networks. Under the condition of ensuring learning accuracy, 
the most obvious feature of ELM is to run faster than 
traditional learning algorithms for the traditional neural 
networks, especially for single-hidden layer feed forward 
neural networks (SLFN). ELM is a new type of fast learning 
algorithm, for the single-hidden layer neural network, and it 
can initialize the input weights and bias randomly to get the 
corresponded output weights. 

For a single hidden layer neural network (as shown in Fig. 
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accurate, being allowed to have a certain deviation. In view of 
the difficulties of accurate positioning of image edge line, this 
regularity makes it convenient to position geometric flow 
rapidly. 

Image segmentation adopts the binary segmentation 
method which Donoho adopted in wedgelet. Firstly, a square 
image is equally divided into 4 sub areas, and then, each sub 
area is equally divided into 4 sub areas in the next layer of 
segmentation, until the size of sub areas at the bottom layer 
reaches the minimum preset. The segmentation result can be 
shown by quadtree; each sub area corresponds to one node of 
the quadtree, as shown in Figure III. When the width of an 
image is 1, and  the width of the sub area is (1/2)-n, the depth of 
the quadtree node corresponding to the sub area is n. 
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Figure III.  Binary tree decomposition diagram 
 
 

C. The Proposed Live Face Detection Method 
As for texture feature detection, this paper proposes a live 

face detection method based on LBP and Bandelet to solve 
this problem. The flowchart of this method is shown in Figure  
IV. 

Step 1 Convert the face image to be detected into a 
grayscale image, remove the redundant color information and 
keep the texture information. 

Step 2 Extract the local binary pattern features and 
statistical features of high-frequency coefficients in Bandelet 
transform from the converted grayscale image. 

 
The process of getting local binary pattern features is: 

1) Divide the detected window into several sub areas (for 
example, the size of every sub area is 16x16 pixels). 
2) Compare every pixel in the sub areas with its eight 
neighborhood pixels (upper left, left middle, lower left, upper 
right, etc.), which can be carried out in accordance with the 
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3) If the surrounding pixel value is greater than the center 
pixel value, then the position of this pixel is marked as 1, 
otherwise, is marked as 0. In this case, an 8-bit binary number 
is obtained and converted to a decimal number to be as the 
feature of this area. 
4) Establish histograms for every sub area. 
5) At this time, the histograms can be normalized. 
6) Have all the histograms of sub areas connected in series, 
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Figure IV. Flowchart of live face detection method based on LBP and 

Bandelet. 
 

The process of getting statistical features of high-frequency 
coefficients in Bandelet transform is: 
1) Input: grayscale image, quantization threshold T. 
2) Conduct 2D wavelet transform on the image, orthogonal 

and biorthogonal wavelet transform can be used. 
3) Establish quadtree segmentation for each sub band 

respectively, and get the best geometric flow directions 
of segmentation areas. 

4) Conduct Bandelet transforms on each Bandelet area and 
get Bandelet coefficients.  

5) Arrange Bandelet coefficients into matrix form 
according to a particular way. 

6) Output: quadtree, the best geometric flow direction, 
Bandelet coefficients. 
 

D. Extreme Learning Machine 
We have conducted a statistical analysis and classification 

of the above two kinds of features. In this paper, basic ELM is 
adopted as the classifier. ELM, proposed by Guangbin Huang 
[24], is an algorithm to solve the single hidden layer neural 
networks. Under the condition of ensuring learning accuracy, 
the most obvious feature of ELM is to run faster than 
traditional learning algorithms for the traditional neural 
networks, especially for single-hidden layer feed forward 
neural networks (SLFN). ELM is a new type of fast learning 
algorithm, for the single-hidden layer neural network, and it 
can initialize the input weights and bias randomly to get the 
corresponded output weights. 

For a single hidden layer neural network (as shown in Fig. 
3), assume that there are N random samples ),( i itX , 
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 For geometric regularity images, geometric flows are 
parallel within a local scope. The wavelet transform is 
essentially the convolution of wavelet function and the original 
image, and the wavelet function can be regarded as the fuzzy 
kernel in this sense, so wavelet transform has a smoothing 
effect on the original image. This smoothing effect makes the 
image to has the regularity of direction that is vertical with the 
geometric flow, and it makes that the positioning of geometric 
flow doesn’t need to be strictly accurate, being allowed to 
have a certain deviation. In view of the difficulties of accurate 
positioning of image edge line, this regularity makes it 
convenient to position geometric flow rapidly.



Live face detection method based on  
local binary pattern and bandelet

 

accurate, being allowed to have a certain deviation. In view of 
the difficulties of accurate positioning of image edge line, this 
regularity makes it convenient to position geometric flow 
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Image segmentation adopts the binary segmentation 
method which Donoho adopted in wedgelet. Firstly, a square 
image is equally divided into 4 sub areas, and then, each sub 
area is equally divided into 4 sub areas in the next layer of 
segmentation, until the size of sub areas at the bottom layer 
reaches the minimum preset. The segmentation result can be 
shown by quadtree; each sub area corresponds to one node of 
the quadtree, as shown in Figure III. When the width of an 
image is 1, and  the width of the sub area is (1/2)-n, the depth of 
the quadtree node corresponding to the sub area is n. 
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Figure III.  Binary tree decomposition diagram 
 
 

C. The Proposed Live Face Detection Method 
As for texture feature detection, this paper proposes a live 

face detection method based on LBP and Bandelet to solve 
this problem. The flowchart of this method is shown in Figure  
IV. 

Step 1 Convert the face image to be detected into a 
grayscale image, remove the redundant color information and 
keep the texture information. 

Step 2 Extract the local binary pattern features and 
statistical features of high-frequency coefficients in Bandelet 
transform from the converted grayscale image. 

 
The process of getting local binary pattern features is: 

1) Divide the detected window into several sub areas (for 
example, the size of every sub area is 16x16 pixels). 
2) Compare every pixel in the sub areas with its eight 
neighborhood pixels (upper left, left middle, lower left, upper 
right, etc.), which can be carried out in accordance with the 
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3) If the surrounding pixel value is greater than the center 
pixel value, then the position of this pixel is marked as 1, 
otherwise, is marked as 0. In this case, an 8-bit binary number 
is obtained and converted to a decimal number to be as the 
feature of this area. 
4) Establish histograms for every sub area. 
5) At this time, the histograms can be normalized. 
6) Have all the histograms of sub areas connected in series, 
and then the features of the detected window are obtained. 
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Figure IV. Flowchart of live face detection method based on LBP and 

Bandelet. 
 

The process of getting statistical features of high-frequency 
coefficients in Bandelet transform is: 
1) Input: grayscale image, quantization threshold T. 
2) Conduct 2D wavelet transform on the image, orthogonal 

and biorthogonal wavelet transform can be used. 
3) Establish quadtree segmentation for each sub band 

respectively, and get the best geometric flow directions 
of segmentation areas. 

4) Conduct Bandelet transforms on each Bandelet area and 
get Bandelet coefficients.  

5) Arrange Bandelet coefficients into matrix form 
according to a particular way. 

6) Output: quadtree, the best geometric flow direction, 
Bandelet coefficients. 
 

D. Extreme Learning Machine 
We have conducted a statistical analysis and classification 
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Figure III.  Binary tree decomposition diagram 
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Some traditional algorithms based on gradient descent 
methods can be used to solve this problem, but the basic 
learning algorithm based on gradient needs to adjust all the 
parameters in the process of iteration. As opposed to this, in 
the ELM algorithm, once the input weights and hidden layer 

bias are randomly determined, the output matrix H of hidden 
layer is only determined. Training a single hidden layer neural 
network can be transformed into solving a linear system and 
the output weights can be determined. 

IV. EXPERIMENTAL RESULTS 
In order to test the algorithm's ability to identify live faces 

and fake faces, we use the public face database 
CASIA_FASD, print-attack and replay attack to test.  

A. Print-attack Dataset 
The print-attack dataset contains a short video of valid 

access and spoof attacks to 50 different identities. The spoof 
attack that is emphasized in this dataset is print attack only, 
whereby an impostor presents a printed photograph of the 
targeted identity in order to falsify the access to a face 
biometric authentication system. This dataset includes two 
different scenarios: (i) controlled background (the 
background is uniform) and (ii) adverse background (a 
non-uniform background). These scenarios provide a valid 
simulation of the attack environment. Table II shows the 
number of video in the print-attack dataset. 
 

Table II. Number of videos in the print-attack dataset 
Type Train Develop Test Total 
Real-access 60 60 80 200 
Phone-attack 90+90 90+90 120+120 200+200 
Table-attack 240 240 320 800 

 

B. Replay-Attack Dataset 
The replay-attack dataset consists of 200 videos of valid 

access (with 375 frames each), and 1000 videos of attack 
attempts (with 240 frames each). As shown in Table III, the 
dataset is divided into three partitions, namely development, 
training and testing set. The development set is used for 
estimating the threshold value and training set is used for 
estimating any model parameters.  

 
Table III Number of videos in the replay-attack dataset 

Type Train Develop Test Total 
Live 60 60 80 200 
Print-attack 30+30 30+30 40+40 100+100 
Phone-attack 60+60 60+60 80+80 200+200 
Table-attack 60+60 60+60 80+80 200+200 
Table-attack 360 360 480 1200 
 

Each of these sets is generated by a video gallery of 15 
clients for development and training, and 20 clients for testing. 
This means that the training and testing sets are disjoint and 
completely independent of each other. 

C. CASIA-FASD dataset 
Compared to other live face detection databases, CASIA- 

FASD database contains more abundant real face and fake 
face sample types. As shown in Table IV, there were a total of 
50 people registered in the database. Each registered person 
corresponded to 12 face video sequences, including three real 
face videos and nine fake face videos. Three real face videos 
were collected by a low-quality USB webcam, a high-quality 
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Some traditional algorithms based on gradient descent 
methods can be used to solve this problem, but the basic 
learning algorithm based on gradient needs to adjust all the 
parameters in the process of iteration. As opposed to this, in 
the ELM algorithm, once the input weights and hidden layer 

bias are randomly determined, the output matrix H of hidden 
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network can be transformed into solving a linear system and 
the output weights can be determined. 

IV. EXPERIMENTAL RESULTS 
In order to test the algorithm's ability to identify live faces 
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CASIA_FASD, print-attack and replay attack to test.  

A. Print-attack Dataset 
The print-attack dataset contains a short video of valid 

access and spoof attacks to 50 different identities. The spoof 
attack that is emphasized in this dataset is print attack only, 
whereby an impostor presents a printed photograph of the 
targeted identity in order to falsify the access to a face 
biometric authentication system. This dataset includes two 
different scenarios: (i) controlled background (the 
background is uniform) and (ii) adverse background (a 
non-uniform background). These scenarios provide a valid 
simulation of the attack environment. Table II shows the 
number of video in the print-attack dataset. 
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The replay-attack dataset consists of 200 videos of valid 
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attempts (with 240 frames each). As shown in Table III, the 
dataset is divided into three partitions, namely development, 
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estimating the threshold value and training set is used for 
estimating any model parameters.  
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This means that the training and testing sets are disjoint and 
completely independent of each other. 

C. CASIA-FASD dataset 
Compared to other live face detection databases, CASIA- 

FASD database contains more abundant real face and fake 
face sample types. As shown in Table IV, there were a total of 
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corresponded to 12 face video sequences, including three real 
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in this formulation,  xf  is active function, 

 Tniiii wwwW ,2,1, ,,,   is the weight of  the input, 
i  is the 

weight of the output, ib  is the bias of the ith transient node. 

ji XW    represents the inner-product of iW  and 
jX . 

The target of Single layer neural network is to minimize the 
error of the output, which can be represented as 
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which can be represented by a matrix 
                          TH   ,                                   (4) 
where H is the output of the transient node, βis the weight 

of output, and T is the expected value of output. 
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In order to train  a single transient layer network, ii bW ˆ,ˆ   
and

î    
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where, L,,1i  . The inference process above can be 
summarized as the following minimize loss function. 
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Some traditional algorithms based on gradient descent 
methods can be used to solve this problem, but the basic 
learning algorithm based on gradient needs to adjust all the 
parameters in the process of iteration. As opposed to this, in 
the ELM algorithm, once the input weights and hidden layer 

bias are randomly determined, the output matrix H of hidden 
layer is only determined. Training a single hidden layer neural 
network can be transformed into solving a linear system and 
the output weights can be determined. 

IV. EXPERIMENTAL RESULTS 
In order to test the algorithm's ability to identify live faces 

and fake faces, we use the public face database 
CASIA_FASD, print-attack and replay attack to test.  

A. Print-attack Dataset 
The print-attack dataset contains a short video of valid 

access and spoof attacks to 50 different identities. The spoof 
attack that is emphasized in this dataset is print attack only, 
whereby an impostor presents a printed photograph of the 
targeted identity in order to falsify the access to a face 
biometric authentication system. This dataset includes two 
different scenarios: (i) controlled background (the 
background is uniform) and (ii) adverse background (a 
non-uniform background). These scenarios provide a valid 
simulation of the attack environment. Table II shows the 
number of video in the print-attack dataset. 
 

Table II. Number of videos in the print-attack dataset 
Type Train Develop Test Total 
Real-access 60 60 80 200 
Phone-attack 90+90 90+90 120+120 200+200 
Table-attack 240 240 320 800 

 

B. Replay-Attack Dataset 
The replay-attack dataset consists of 200 videos of valid 

access (with 375 frames each), and 1000 videos of attack 
attempts (with 240 frames each). As shown in Table III, the 
dataset is divided into three partitions, namely development, 
training and testing set. The development set is used for 
estimating the threshold value and training set is used for 
estimating any model parameters.  

 
Table III Number of videos in the replay-attack dataset 

Type Train Develop Test Total 
Live 60 60 80 200 
Print-attack 30+30 30+30 40+40 100+100 
Phone-attack 60+60 60+60 80+80 200+200 
Table-attack 60+60 60+60 80+80 200+200 
Table-attack 360 360 480 1200 
 

Each of these sets is generated by a video gallery of 15 
clients for development and training, and 20 clients for testing. 
This means that the training and testing sets are disjoint and 
completely independent of each other. 

C. CASIA-FASD dataset 
Compared to other live face detection databases, CASIA- 

FASD database contains more abundant real face and fake 
face sample types. As shown in Table IV, there were a total of 
50 people registered in the database. Each registered person 
corresponded to 12 face video sequences, including three real 
face videos and nine fake face videos. Three real face videos 
were collected by a low-quality USB webcam, a high-quality 
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USB webcam and a webcam of model Sony NEX-5
respectively.  

All the videos in the database were collected in an 
uncontrolled environment, and the background areas were 
complex and changeable. In order to fully consider different 
ways of attack, fake face sample types were more abundant 
in the database. First, high-resolution images of each target 
face were displayed on different media, including common 
A4 printing papers, glossy photo papers, and a 
high-resolution display frequency. After that, the face eye 
area printed on A4 papers was removed to simulate the blink 
attack method. The database was divided into training set 
and testing set, where the training set is composed of 240 
video sequences from 20 targets and the test set is composed 
of 360 video sequences from other 30 targets. Take the rest 
samples which never participated in the training as the test 
set and the image numbers of train set and test set are shown 
in Tab. 1. We took the remaining samples, which never 
participated in the tarining, as the test set. The details of the 
test set and the training set are shown in Table IV. 

Table IV Face images of train set and test set in CASIA database 

In order to test the validity of the algorithm, this paper 
extracts LBP features of real and fake faces and wavelet 
features to classify and train ELM. Its detection accuracy is 
shown in Table V. This paper also adds the Bandelet features 
to LBP features and tests its detection accuracy for real and 
fake faces, as also shown in Table V. 

From Table V, we can see that with the local binary pattern 
as the basic features, combined with Bandelet analysis, has an 
effect on the detection accuracy on CASIA dataset. It is 
noticed that using Bandelet analysis increases the feature 
dimension, which leads to improvement in the detection 
accuracy of the system significantly, from 93.87% to 97.97%; 
although the basic LBP features are easy to compute, its 
feature dimension 59 is greater than 12 under the analysis of 
LBP in comparison with Bandelet, which increases the system 
cost. The detection accuracy of LBP features which adds 
Bandelet analysis is 97.97%, and it is significantly greater 
than the detection accuracy of basic LBP features at 93.87%. 

Table V. Comparison of LBP in combination with Bandelet features and 
other features 

Where TP denotes the detection accuracy of positive samples and TN 
denotes the detection accuracy of negative samples. 

Compared with ALL LBPV and Uniform LBPV, LBP 
features under the analysis of Bandelet have obvious 
advantages. It reduces the feature dimensions and complexity 
of the algorithm, and at the same time it improves the 
detection accuracy. The detection accuracy of the proposed 
method declines, but the algorithm complexity reduces 
significantly compared with gray-level co-occurrence matrix 
and wavelet features. Therefore, reducing the algorithm 
complexity, while maintaining the detection accuracy, will be 
our future research focus. 

Also, we compare the other method in Table V, Gray-level 
co-occurrence matrix and DOG methods has also been widely 
used in the extraction of image texture. Compared with the 
text algorithm, the size of DOG is too large and the 
computational complexity is large. Although the dimensions 
of co-occurrence gray matrix are small, the accuracy is not 
high. 

Next, we compare the performance of LBP, Bandelet and 
Bandelet-LBP on three datasets. The images in Fig.8 show the 
ROC curves of Bandelet-LBP, LBP and Bandelet. The 
performance of proposed algorithm is better than the base 
LBP and Bandelet on three dataset. Figure VIa shows the 
overall performance when trained and tested on CASIA 
dataset. Figure VIb shows the overall performance when 
trained and tested on print-attack dataset. Figure VIc shows 
the performance on replay-attack dataset. In these three 
datasets, the Bandelet-LBP features perform the best, and our 
method is more robust on three datasets than LBP and 
Bandelet features.  
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with Bandelet
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in the database. First, high-resolution images of each target 
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A4 printing papers, glossy photo papers, and a 
high-resolution display frequency. After that, the face eye 
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in Tab. 1. We took the remaining samples, which never 
participated in the tarining, as the test set. The details of the 
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features to classify and train ELM. Its detection accuracy is 
shown in Table V. This paper also adds the Bandelet features 
to LBP features and tests its detection accuracy for real and 
fake faces, as also shown in Table V. 

From Table V, we can see that with the local binary pattern 
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effect on the detection accuracy on CASIA dataset. It is 
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features under the analysis of Bandelet have obvious 
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of the algorithm, and at the same time it improves the 
detection accuracy. The detection accuracy of the proposed 
method declines, but the algorithm complexity reduces 
significantly compared with gray-level co-occurrence matrix 
and wavelet features. Therefore, reducing the algorithm 
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Also, we compare the other method in Table V, Gray-level 
co-occurrence matrix and DOG methods has also been widely 
used in the extraction of image texture. Compared with the 
text algorithm, the size of DOG is too large and the 
computational complexity is large. Although the dimensions 
of co-occurrence gray matrix are small, the accuracy is not 
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Next, we compare the performance of LBP, Bandelet and 
Bandelet-LBP on three datasets. The images in Fig.8 show the 
ROC curves of Bandelet-LBP, LBP and Bandelet. The 
performance of proposed algorithm is better than the base 
LBP and Bandelet on three dataset. Figure VIa shows the 
overall performance when trained and tested on CASIA 
dataset. Figure VIb shows the overall performance when 
trained and tested on print-attack dataset. Figure VIc shows 
the performance on replay-attack dataset. In these three 
datasets, the Bandelet-LBP features perform the best, and our 
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Figure VI Comparison of ROC curves of different algorithm on three 
datasets. (a) print-attack dataset (b) CASIA dataset (c) replay-attack dataset. 

V. CONCLUSION

This paper proposed a live face detection method based on 
Bandelet analysis under the analysis of texture feature 
differences among live faces, photo faces, and video faces. 
This method conducts a Bandelet analysis on grayscale 
images of faces and extracts local binary pattern features 
based on the Bandelet analysis. The feature of the image is 
obtained by divided into 100 blocks and set the weight value, 
which can enhance the important characteristics of the image 

and reduce the noise impact. Finally, the characteristics of the 
two algorithms are fused, and the learning and classification 
are entered into ELM. Experimental results show that the 
algorithm can reduce the computational complexity and 
improve the detection accuracy. But in practical applications, 
there are many interference factors to be considered, such as 
the influence of illumination condition and high-resolution 
cameras which are used to shoot face photos and videos. This 
will be in the focus of our future research. 
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From Table V, we can see that with the local binary pattern as 
the basic features, combined with Bandelet analysis, has an 
effect on the detection accuracy on CASIA dataset. It is noticed 
that using Bandelet analysis increases the feature dimension, 
which leads to improvement in the detection accuracy of the 
system significantly, from 93.87% to 97.97%; although the 
basic LBP features are easy to compute, its feature dimension 
59 is greater than 12 under the analysis of LBP in comparison 
with Bandelet, which increases the system cost. The detection 
accuracy of LBP features which adds Bandelet analysis is 
97.97%, and it is significantly greater than the detection 
accuracy of basic LBP features at 93.87%.

Compared with ALL LBPV and Uniform LBPV, LBP features 
under the analysis of Bandelet have obvious advantages. It 
reduces the feature dimensions and complexity of the algorithm, 
and at the same time it improves the detection accuracy. The 
detection accuracy of the proposed method declines, but the 
algorithm complexity reduces significantly compared with gray-
level co-occurrence matrix and wavelet features. Therefore, 
reducing the algorithm complexity, while maintaining the 
detection accuracy, will be our future research focus.
 Also, we compare the other method in Table V, Gray-level 
co-occurrence matrix and DOG methods has also been widely 
used in the extraction of image texture. Compared with the text 
algorithm, the size of DOG is too large and the computational 
complexity is large. Although the dimensions of co-occurrence 
gray matrix are small, the accuracy is not high.
 Next, we compare the performance of LBP, Bandelet and 
Bandelet-LBP on three datasets. The images in Fig.8 show 
the ROC curves of Bandelet-LBP, LBP and Bandelet. The 
performance of proposed algorithm is better than the base LBP 
and Bandelet on three dataset. Figure VIa shows the overall 
performance when trained and tested on CASIA dataset. Figure 
VIb shows the overall performance when trained and tested 
on print-attack dataset. Figure VIc shows the performance on 
replay-attack dataset. In these three datasets, the Bandelet-
LBP features perform the best, and our method is more robust 
on three datasets than LBP and Bandelet features.
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 Each of these sets is generated by a video gallery of 15 
clients for development and training, and 20 clients for testing.
This means that the training and testing sets are disjoint and 
completely independent of each other.

   C. CASIA-FASD dataset
 Compared to other live face detection databases, CASIA-
FASD database contains more abundant real face and fake 
face sample types. As shown in Table IV, there were a total of 
50 people registered in the database. Each registered person 
corresponded to 12 face video sequences, including three real 
face videos and nine fake face videos. Three real face videos 
were collected by a low-quality USB webcam, a high-quality 
USB webcam and a webcam of model Sony NEX-5 respectively.
 All the videos in the database were collected in an 
uncontrolled environment, and the background areas were 
complex and changeable. In order to fully consider different 
ways of attack, fake face sample types were more abundant 
in the database. First, high-resolution images of each target 
face were displayed on different media, including common 
A4 printing papers, glossy photo papers, and a high-resolution 
display frequency. After that, the face eye area printed on A4 
papers was removed to simulate the blink attack method. The 
database was divided into training set and testing set, where the 
training set is composed of 240 video sequences from 20 targets 
and the test set is composed of 360 video sequences from other 
30 targets. Take the rest samples which never participated in the 
training as the test set and the image numbers of train set and test 
set are shown in Tab. 1. We took the remaining samples, which 
never participated in the tarining, as the test set. The details of 
the test set and the training set are shown in Table IV.

 In order to test the validity of the algorithm, this paper 
extracts LBP features of real and fake faces and wavelet 
features to classify and train ELM. Its detection accuracy is 
shown in Table V. This paper also adds the Bandelet features to 
LBP features and tests its detection accuracy for real and fake 
faces, as also shown in Table V.
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in Tab. 1. We took the remaining samples, which never 
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In order to test the validity of the algorithm, this paper 
extracts LBP features of real and fake faces and wavelet 
features to classify and train ELM. Its detection accuracy is 
shown in Table V. This paper also adds the Bandelet features 
to LBP features and tests its detection accuracy for real and 
fake faces, as also shown in Table V. 

From Table V, we can see that with the local binary pattern 
as the basic features, combined with Bandelet analysis, has an 
effect on the detection accuracy on CASIA dataset. It is 
noticed that using Bandelet analysis increases the feature 
dimension, which leads to improvement in the detection 
accuracy of the system significantly, from 93.87% to 97.97%; 
although the basic LBP features are easy to compute, its 
feature dimension 59 is greater than 12 under the analysis of 
LBP in comparison with Bandelet, which increases the system 
cost. The detection accuracy of LBP features which adds 
Bandelet analysis is 97.97%, and it is significantly greater 
than the detection accuracy of basic LBP features at 93.87%. 

Table V. Comparison of LBP in combination with Bandelet features and 
other features 

Where TP denotes the detection accuracy of positive samples and TN 
denotes the detection accuracy of negative samples. 

Compared with ALL LBPV and Uniform LBPV, LBP 
features under the analysis of Bandelet have obvious 
advantages. It reduces the feature dimensions and complexity 
of the algorithm, and at the same time it improves the 
detection accuracy. The detection accuracy of the proposed 
method declines, but the algorithm complexity reduces 
significantly compared with gray-level co-occurrence matrix 
and wavelet features. Therefore, reducing the algorithm 
complexity, while maintaining the detection accuracy, will be 
our future research focus. 

Also, we compare the other method in Table V, Gray-level 
co-occurrence matrix and DOG methods has also been widely 
used in the extraction of image texture. Compared with the 
text algorithm, the size of DOG is too large and the 
computational complexity is large. Although the dimensions 
of co-occurrence gray matrix are small, the accuracy is not 
high. 

Next, we compare the performance of LBP, Bandelet and 
Bandelet-LBP on three datasets. The images in Fig.8 show the 
ROC curves of Bandelet-LBP, LBP and Bandelet. The 
performance of proposed algorithm is better than the base 
LBP and Bandelet on three dataset. Figure VIa shows the 
overall performance when trained and tested on CASIA 
dataset. Figure VIb shows the overall performance when 
trained and tested on print-attack dataset. Figure VIc shows 
the performance on replay-attack dataset. In these three 
datasets, the Bandelet-LBP features perform the best, and our 
method is more robust on three datasets than LBP and 
Bandelet features.  
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Figure VI Comparison of ROC curves of different algorithm on three 
datasets. (a) print-attack dataset (b) CASIA dataset (c) replay-attack dataset. 

V. CONCLUSION

This paper proposed a live face detection method based on 
Bandelet analysis under the analysis of texture feature 
differences among live faces, photo faces, and video faces. 
This method conducts a Bandelet analysis on grayscale 
images of faces and extracts local binary pattern features 
based on the Bandelet analysis. The feature of the image is 
obtained by divided into 100 blocks and set the weight value, 
which can enhance the important characteristics of the image 

and reduce the noise impact. Finally, the characteristics of the 
two algorithms are fused, and the learning and classification 
are entered into ELM. Experimental results show that the 
algorithm can reduce the computational complexity and 
improve the detection accuracy. But in practical applications, 
there are many interference factors to be considered, such as 
the influence of illumination condition and high-resolution 
cameras which are used to shoot face photos and videos. This 
will be in the focus of our future research. 
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100 blocks and set the weight value, which can enhance the 
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fused, and the learning and classification are entered into ELM. 
Experimental results show that the algorithm can reduce the 
computational complexity and improve the detection accuracy. 
But in practical applications, there are many interference factors 
to be considered, such as the influence of illumination condition 
and high-resolution cameras which are used to shoot face photos 
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Extension of RFID Based Indoor Localization
Systems With Smart Tags

Tamás Helfenbein, Roland Király, Márton Törőcsik, Emil Tóth and Sándor Király

Abstract—The indoor localization problem is a method of iden-
tifying and finding position (co-ordinates) of requested objects
in a well defined area of interest (AoI) in buildings. Beside
identification, localization is an important task in several com-
plex industrial environments. Assigning unique Radio Frequency
IDentifier (RFID) tags to the objects both the identification and
the localization problem can be solved.

In this paper, RFID based indoor localization systems, meth-
ods, and protocols are analysed. A novel Smart Tag platform
called Blackforest with integrated self localization capabilities is
introduced. This device can be in either transmitter or receiver
role to ensure fast prototyping of localization environments.
Higher temporal positioning possibilities and sensor fusion tech-
niques are introduced using the BlackForest nodes. The radio-
frequency (RF) characteristcs of the device were analyzed and
a localization system was built using Blackforrest nodes. The
localization architecture, methods and system configurations are
described. After calibration, the suitable accuracy of RFID
indoor localization using BlackForest Smart Tags is proven in
an indoor office scenario.

A hierarchical localization protocol stack is introduced in
order to extend existing indoor RFID localization systems using
intelligent and co-operative antenna systems with novel Smart-
Tags.

Index Terms—Indoor localization, Self Localization, Smart
Tag, RFID

I. INTRODUCTION

Radio Frequency IDentification (RFID) is an advanced
and emerging technology to identify objects based on radio
frequency signal transmission and/or reception. Therefore,
RFID systems are frequently used to help information systems
manage objects in difficult and/or large environments. Besides
identification of the tagged object, determining the location is
one of the most important and also the most challenging tasks.
RFID systems typically consist of readers with antennas and
RFID transponders. The reader-antenna pairs and the tags can
be fixed (deployed) or mobile. We are focusing on systems

T. Helfenbein is with Research Lab, Chebio Ltd., e-mail:
tamas.helfenbein@chebio.net
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of TÁMOP-4.2.2.C-11/1/KONV-2012-0014.

that have an infrastructure consisting of fixed reader-antenna
pairs and mobile tags on the objects that need to be localized.
Mobile readers are not excluded from the system, but are not
necessarily parts of the infrastructure. In our research, three
types of system architectures can be distinguished, namely
Smart Reader Network (SRN), Smart Tag (ST) and Hybrid
architectures.

The SRN architecture consists of intelligent reader-antenna
pairs connected to a network or a computer server and inexpen-
sive (e.g. passive UHF RFID) tags. In this system architecture,
localization is made by the intelligent infrastructure (ambient
intelligence) and location information is generated on the
infrastructure side. In the ST system, intelligent, active RFID
tags are used with (almost) traditional reader-antenna pairs. In
this case, self-localization has to be done by the tag and the
(self) location information is generated on the tag side. In the
hybrid solution, concept SRN and ST are combined.

In conclusion, the article details our practical results in
RFID based localization solutions. The prototype of a new
generation of Smart Transponder is described in Section III,
that is capable of self-localization based on information ob-
tained from RFID antennas. Our ideas on hybrid applications
and the combination of RFID systems with other technologies
are also detailed. The self-localizing transponder and thecon-
nected middleware resting on mathematical foundations can be
used with significantly greater precision for indoor localization
than current devices.

In the following section, we analyse the RFID based
localization methods, systems and our previous works in
Section II. Introducing the novel self localization concept is
followed by the description of hardware prototype of Smart
Tag called BlackForest and localization methods in Section
III. The results and measurements are demonstrated in office
environments in Section IV.

Localization methods are based on principles, models, mea-
surements, and evaluation methods. A principle is a plan that
determines what parameters to model, measure, and evaluate.
[1][2] In case of multilateration (or trilateration) we have
to determine distances using measurements and models, thus
the position can be estimated from the best candidates for
intersection of spheres or circles. In case of triangulation we
have to determine angles and estimate position using the best
candidates for intersection of directions given by the angles.
We can also calculate position from distance differences using
the best candidates for intersection of paraboloids.

Modelling is an important part of a localization system.
Based on the principle, the environment and the given hard-
ware devices we can assume different types of antenna models,
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tained from RFID antennas. Our ideas on hybrid applications
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nected middleware resting on mathematical foundations can be
used with significantly greater precision for indoor localization
than current devices.
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have to determine angles and estimate position using the best
candidates for intersection of directions given by the angles.
We can also calculate position from distance differences using
the best candidates for intersection of paraboloids.

Modelling is an important part of a localization system.
Based on the principle, the environment and the given hard-
ware devices we can assume different types of antenna models,
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Extension of RFID Based Indoor Localization
Systems With Smart Tags

Tamás Helfenbein, Roland Király, Márton Törőcsik, Emil Tóth and Sándor Király

Abstract—The indoor localization problem is a method of iden-
tifying and finding position (co-ordinates) of requested objects
in a well defined area of interest (AoI) in buildings. Beside
identification, localization is an important task in several com-
plex industrial environments. Assigning unique Radio Frequency
IDentifier (RFID) tags to the objects both the identification and
the localization problem can be solved.

In this paper, RFID based indoor localization systems, meth-
ods, and protocols are analysed. A novel Smart Tag platform
called Blackforest with integrated self localization capabilities is
introduced. This device can be in either transmitter or receiver
role to ensure fast prototyping of localization environments.
Higher temporal positioning possibilities and sensor fusion tech-
niques are introduced using the BlackForest nodes. The radio-
frequency (RF) characteristcs of the device were analyzed and
a localization system was built using Blackforrest nodes. The
localization architecture, methods and system configurations are
described. After calibration, the suitable accuracy of RFID
indoor localization using BlackForest Smart Tags is proven in
an indoor office scenario.

A hierarchical localization protocol stack is introduced in
order to extend existing indoor RFID localization systems using
intelligent and co-operative antenna systems with novel Smart-
Tags.

Index Terms—Indoor localization, Self Localization, Smart
Tag, RFID

I. INTRODUCTION

Radio Frequency IDentification (RFID) is an advanced
and emerging technology to identify objects based on radio
frequency signal transmission and/or reception. Therefore,
RFID systems are frequently used to help information systems
manage objects in difficult and/or large environments. Besides
identification of the tagged object, determining the location is
one of the most important and also the most challenging tasks.
RFID systems typically consist of readers with antennas and
RFID transponders. The reader-antenna pairs and the tags can
be fixed (deployed) or mobile. We are focusing on systems
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E. Tóth is with the Institute for Infocommunication Technologies, Bay
Zoltán Nonprofit Ltd. For Applied Research, e-mail: emil.toth@bayzoltan.hu
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that have an infrastructure consisting of fixed reader-antenna
pairs and mobile tags on the objects that need to be localized.
Mobile readers are not excluded from the system, but are not
necessarily parts of the infrastructure. In our research, three
types of system architectures can be distinguished, namely
Smart Reader Network (SRN), Smart Tag (ST) and Hybrid
architectures.

The SRN architecture consists of intelligent reader-antenna
pairs connected to a network or a computer server and inexpen-
sive (e.g. passive UHF RFID) tags. In this system architecture,
localization is made by the intelligent infrastructure (ambient
intelligence) and location information is generated on the
infrastructure side. In the ST system, intelligent, active RFID
tags are used with (almost) traditional reader-antenna pairs. In
this case, self-localization has to be done by the tag and the
(self) location information is generated on the tag side. In the
hybrid solution, concept SRN and ST are combined.

In conclusion, the article details our practical results in
RFID based localization solutions. The prototype of a new
generation of Smart Transponder is described in Section III,
that is capable of self-localization based on information ob-
tained from RFID antennas. Our ideas on hybrid applications
and the combination of RFID systems with other technologies
are also detailed. The self-localizing transponder and thecon-
nected middleware resting on mathematical foundations can be
used with significantly greater precision for indoor localization
than current devices.

In the following section, we analyse the RFID based
localization methods, systems and our previous works in
Section II. Introducing the novel self localization concept is
followed by the description of hardware prototype of Smart
Tag called BlackForest and localization methods in Section
III. The results and measurements are demonstrated in office
environments in Section IV.

Localization methods are based on principles, models, mea-
surements, and evaluation methods. A principle is a plan that
determines what parameters to model, measure, and evaluate.
[1][2] In case of multilateration (or trilateration) we have
to determine distances using measurements and models, thus
the position can be estimated from the best candidates for
intersection of spheres or circles. In case of triangulation we
have to determine angles and estimate position using the best
candidates for intersection of directions given by the angles.
We can also calculate position from distance differences using
the best candidates for intersection of paraboloids.

Modelling is an important part of a localization system.
Based on the principle, the environment and the given hard-
ware devices we can assume different types of antenna models,


