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Abstract—In this paper, we proposed the use of three orthogo-
nal views of gait signature for view-invariant person identification
system. We also experimented the fusions of classifiers in order
to improve the recognition performance. Two classifiers used
corresponding to two LDA spaces. The first classifier used
for angle classification followed by second classifier for person
identification. The proposed mechanism of selective kNN (s-kNN)
has boosted the recognition performance and found very effective.
We got 97.07% maximum rank-1 angle classification accuracy
and 93% maximum rank-1 person identification accuracy.

Index Terms—Gait Bio-metrics, View-Invariant, Linear Dis-
criminant Analysis.

I. INTRODUCTION

B IO-METRICS is considered as one of the successful
applications of pattern recognition and has been widely

used in several domains, such as authentication in highly
restricted areas, attendance record in office premises, citizen-
ship identification-verification and in the field of forensics.
These bio-metric systems are mostly based on modalities like
fingerprint, iris and face. However, commonly used bio-metric
recognition systems usually operates in constrained acquisition
scenarios and under rigid protocols. This scenario motivates
researchers to explore the development of non-cooperative
systems [1]. In the bio-metrics application which requires
distant data (sample) capture, it becomes almost impossible to
acquire the samples, e.g. fingerprints or iris. Besides popular
bio-metric modalities like fingerprint, face and iris; activity
based biometrics [2] can add the value to the identification
process. Especially, in the case of bio-metric applications
where far distant data capture process is involved. In such
scenario, gait is the useful bio-metric trait. The gait recognition
is based on the activity of person, namely walking. The
gait activity is the composition of motion trajectories and
coordinated movements of the various body parts and mostly
suffer from the co-variate conditions.

There are several advantages of the gait based person
identification over the conventional bio-metrics such as:

1) Most suitable for non-cooperative and unconstrained
bio-metric process.

2) Walking normally happens with subject without de-
manding from it and hence it’s a natural sample.
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3) Unlike face and iris, gait can be captured from multi-
ple angle / views, which makes data acquisition more
informative.

4) Even works well with low quality video data.
5) No fine details are required as in face, iris or fingerprint

based recognition system.
Though, the gait recognition has been researched for long

time, there are challenges such as:
1) In some situations like restaurants, shopping malls walk-

ing doesn’t always happen.
2) In crowded places, walking can be done in restrictive

manner, leading to a change in gait cycle and affecting
bio-metric process negatively.

3) Particular place or situation may have predictable activ-
ity to be happened more frequently and hence can be
exploited e.g. in college / department canteen, shaking
hands and paying bill after taking out wallet can be more
dominant activities.

4) Gait sample may not give accurate shape profiles with
loose clothes.

5) Gait can be affected by various co-variate factors like
speed, cloths, surface of walking, illness, drunkenness,
pregnancy.

6) Viewing angle effect plays vital role in multi view
system.

In the unconstrained environment and distant data capture
based bio-metric system, fingerprint, iris and face recognition
could not be the right choice. Comparatively gait, comprised
of motion trajectories of various body parts, have a poten-
tial to get captured properly from relatively far distance. It
doesn’t need systematic data capture process and only camera
installation is required, where subjects are not necessarily be
informed, which makes the identification process protocol free.

II. LITERATURE OVERVIEW

Gait recognition have attracted researchers in recent years
because of it’s various advantages as discussed earlier. The
gait recognition methods can be broadly categorized as model
free and model based methods. In model free methods, the
features for recognition are directly extracted from the spatial
domain and in model based methods the features are extracted
by modelling the human body by some mathematical means.

a) Model Free Approach: This approach directly extract
features from the spatial domain like [3], [4], which use
Procrustes shape analysis. After extracting silhouette, authors
apply Procrustes shape analysis to obtain mean shape as
gait signature. Whereas in [5], gait energy image obtained
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from the sequence of gait images used for recognition as it
preserves the temporal information. In [6], author use fusion
of multiple gait cycles for recognition. The gait cycle is
estimated by calculating auto correlation. From each gait
cycle, they extract gait energy image and motion silhouette
image for classification and recognition. The wavelet analysis
is also used in gait recognition [7], [8]. In [7], author utilize
the property of radon transform and Haar wavelet transform
to extract horizontal and vertical features. Another wavelet
based approach [8] use time-frequency analysis of extracted
gait cycle. After wavelet decomposition they calculate mean,
standard deviation, skewness and kurtosis of each sub-band. A
simple city block distance measure is used for classification.
Methods based on image geometry transformations have also
been proposed [9], which is independent of view angle. In
[10], author use height and stride length as soft bio-metrics in
a probabilistic framework for gait recognition.

In a recent GEI based method [11], horizontal motion
estimated by computing Shanon entropy of each row of GEI.
Further, group Lasso learning algorithm is used to segment
the motion based vector into blocks of similar motion values.
The body part, which has highest average motion vector value
is selected as a feature vector.

b) Model Based Approach: In this approach, the various
features can be extracted by modelling human body. An initial
model based attempt for gait-based recognition in a spatio-
temporal (XYT) volume is done by Niyogi and Adelson [12].
A 5-stick model is used to generate gait pattern in XYT which
is further used for classification. In [4], Procrustes analysis
is used for static feature extraction and the dynamic features
extracted by modelling the human body by truncated cone for
various body parts and sphere for head. In [13], bulk motion,
shape and articulated motion estimation was done by gait
motion model adaptation. In [14], authors proposed a fusion
based method, in which they divide silhouette into 7 parts and
fit ellipse in those regions. They extract various parameters
of ellipse. All these parameters of 7 regions constitute a novel
feature vector. Whereas, [15] use fusion of several features for
recognition like area, gravity center and orientation of each
body part.

Recent development in model based gait recognition em-
phasizes modelling the multi-view gait sequences by using
view normalization techniques. Worapan et al [16]–[19] use
View Transformation Model (VTM) to normalize probe and
gallery view in the same direction. The method presented in
[16] is SVD based VTM approach and [17] is SVR based.
The problem like data redundancy in their earlier methods is
improved in [18]. Whereas, [19] uses MLP to construct VTM
model for multi-view and cross-view gait recognition.

c) View-Invariant Approach: The view-invariant gait
identification is relatively new research area. The most de-
sirable property of this approach is to identify test subject
walking at any arbitrary view angle. It uses either any one of
two or both approaches as discussed earlier. i. e. model free
or model based. In [20], a viewpoint independent method is
proposed which requires single camera without calibration and
prior knowledge of subject / person pose. The test subject is
identified by projecting the limb motion of subject which is

walking at arbitrary view angle onto the lateral / side-view
plane. First, they do marker less joint estimation followed
by reconstruction method for viewpoint rectification. In [21],
author proposes a joint subspace learning method for view-
invariant gait recognition. First, radon transform based energy
images of sequences extracted and further they perform canon-
ical correlation analysis to get representation coefficients,
which they use as view-invariant features. Next, they obtain
prototypes of various views by using PCA. The samples of
different views represented as linear combination of these
prototypes and then extract the coefficients which further used
for recognition. Whereas in [22], author extracts a gait texture
image which preserves gait information of a particular view
angle. Further, they apply transform invariant low rank textures
to project gait information of arbitrary view on to sagittal
plane. In a recent paper [23], gait flow image extracted by
Lukas-Kanade method as dynamic feature, head and shoulder
mean shape by Procrustes shape analysis as static feature.
In identification phase, they compute view angle or walking
direction of test subject along with the static and dynamic
features. A simple Euclidean distance classifier is used to find
similarity measure between test and gallery images.

In [24], complete canonical correlation analysis is used to
investigate correlation between two gait features considering
normal walking sequences. They randomly select a sample for
training and testing on different view angle. In [25], the authors
extract width of 4 different sub regions of silhouette which
then combined to construct gait signature. They considered all
view angle and 3 normal walking sequences for training and
each view angle taking one view at a time and 3 normal walk-
ing sequences for testing. A robust view invariant approach
is proposed by [26], in which view angle is classified using
entropy of the limb region of GEI and person identification is
done by using multi scale shape analysis.

III. OVERVIEW OF THE PROPOSED METHOD

Gkalelis et. al. decomposes motion in activity as a com-
bination of basic movement patterns, the so-called dynemes,
calculated from fuzzy C-means (FCM) clustering method
as described in [27]. The number of dynemes are decided
from the leave-one-out cross-validation procedure, which is
an extension of the method described in [28]. Their algorithm
combines fuzzy vector quantization (FVQ) of [29] using
posture vectors (column/row wise one-dimensional vector of
binary silhouettes) and Linear Discriminant Analysis (LDA) to
discover the most discriminating dynemes as well as represent
and discriminate the different human movements in terms of
these dynemes. This method was extended in [30], [31] and
[32] for the multi-view videos. The training and testing videos
were captured by multi-view cameras and dynemes were
calculated from all the videos irrespective of their view angles
to make the motion representation and their classification view
independent.

Since, FCM or CM based clustering gives vector quanti-
zation of the posture vector description, it is possible that
discriminative information may loss. This can be overcome
using sparse coding of posture vectors as done in [33]. Hence,
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in this experiment, we use sparse coding of posture vector.
The objective criterion and optimization of sparse coding were
formulated as given in [34] and [35]. The results with mean
and max pooling of feature representation from the sparse
codebook were studied and found that, mean pooling based
representation is most suitable. This approach compared with
the large margin nearest neighbor (LMNN) [36] and found
superior to it.

In this work, we use CASIA multi-view gait databases B
[40] which consists of 124 subjects. Each subject is depicted
in 10 instances (video sequences) with various co-variates like;
normal/slow walking (nm−01 to nm−06), with bag (bg−01,
bg−02), with coat (cl−01, cl−02). The instances are captured
at 11 different viewing angles (0o, ..., 180o). Thus, the database
consists of 124 × 10 × 11 = 13, 640 gait instances (video
sequences). In this experiment, we use 6 instances i.e. normal
and slow walking sequences.

We have experimented gait recognition using LDA with
different number of training (K) and testing (S) sample’s set
(instances/sequences). The performance in form of recognition
accuracy is shown in the Table I. Figure 1 shows it’s graphical
plot. It can be inferred that the reduction in the number of
training samples generates over-fitting issue in the classifier
and hence degrades the performance. Another hypothesis
generated here by experimentation is that, performance with
particular angle gait sequence is dependent on whether that
angle samples are included in the training or not. In uncon-
strained environment, where subject is expected to walk in any
direction yielding gait sequence in any angle, the issue of in-
clusion of particular angle becomes vital with two constraints.
First, having the the number of all angle or regular discrete
angles in the range of 0 to 180 degree in training can load
the system resources like memory and computational power.
Secondly, it can be unmanageable to capture gait sequences
from subjects in all possible angle views. The performance
across the possible angles with different set angles in training
is shown in the Table II and Figure 2 shows it’s plot. It
is observed that, non-inclusion of particular angle-view gait
sequences in training gives abrupt degradation by more than
90% fall in rank-1 accuracy. More recently there are some
attempts as reported in [37], [38], [39] and [2], where classifier
is trained with the set of instances which includes all the view
angle sequences from each subject.

IV. PROPOSED METHODOLOGY

The main complexity of the activity based recognition
lies in three components, namely, 1) Dynemes Calculation,
2) Feature Extraction and 3) Classification. Our proposed
approach use three orthogonal views in multi-view capture
and sparse coding of posture vectors. The dynemes were
used to calculate its histogram using distance measure and its
fuzzification as described in [2]. The training features can be
obtained by projecting training instances on the LDA subspace
to maximize the discrimination in inter-class samples and
minimize the intra-class variance. However, in doing so, kNN
training instances with different gait-angles or view angles
can give the enough variation in their features to overlap
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Fig. 1. Plot of Performance with different values of Training Samples -K
(CASIA B)

with space of other classes. To overcome this problem, we
proposed to have two kNN classifiers corresponding to the
two LDA subspaces in series. The first LDA subspace is to
have projection from gait samples for discriminating them in
different view-angle classes irrespective of the subject identity.
The view angle is obtained from the first LDA subspace using
kNN classifier trained by same training samples as used in
dynemes calculation. The second LDA subspace, obtained
with subjects classes irrespective of their view-angles (gait-
angles), is then used to project gait samples for testing and
training. The histogram features extraction and two LDA
subspace construction are shown in Figure 3. While using kNN
classifier on the test samples, test samples are compared only
with the samples corresponding to the view angle obtained
from angle based classifier. Thus, the kNN classifier selects
the kNN samples from training instances based on the angle
of the test gait sequence, as determined from the first classifier.
This method is different from the framework proposed in [2] in
the sense that, former employs the fusion of two classifiers in
parallel, while later one uses two classifiers in series. However,
the upper bound of performance in our approach is limited by
the performance given by first classifier, which outputs the
view-angle class and hence, it becomes critical component in
the recognition system. This classifier is expected to give more
than 95% performance in typical case, additionally its output
decision can be validated by additional strategy. At present,
this validation strategy is kept out of scope of this paper as
angle identification classifier used here is certain to provide
recognition accuracy of more than 97%. The system block
diagram of our approach based on two classifiers in series is
shown in Figure 4. The main contributions of this approach
are,

1) This is most suitable for single-view camera with un-
constrained gait sequence with respect to direction of
walk.

2) The samples considered in person classifier are corre-
sponding to the angle of gait sequence classified by
angle classifier in which person is walking, as opposed
to the all angle view inclusion in the person classifier
before fusing the results as in case of [2].
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from the sequence of gait images used for recognition as it
preserves the temporal information. In [6], author use fusion
of multiple gait cycles for recognition. The gait cycle is
estimated by calculating auto correlation. From each gait
cycle, they extract gait energy image and motion silhouette
image for classification and recognition. The wavelet analysis
is also used in gait recognition [7], [8]. In [7], author utilize
the property of radon transform and Haar wavelet transform
to extract horizontal and vertical features. Another wavelet
based approach [8] use time-frequency analysis of extracted
gait cycle. After wavelet decomposition they calculate mean,
standard deviation, skewness and kurtosis of each sub-band. A
simple city block distance measure is used for classification.
Methods based on image geometry transformations have also
been proposed [9], which is independent of view angle. In
[10], author use height and stride length as soft bio-metrics in
a probabilistic framework for gait recognition.

In a recent GEI based method [11], horizontal motion
estimated by computing Shanon entropy of each row of GEI.
Further, group Lasso learning algorithm is used to segment
the motion based vector into blocks of similar motion values.
The body part, which has highest average motion vector value
is selected as a feature vector.

b) Model Based Approach: In this approach, the various
features can be extracted by modelling human body. An initial
model based attempt for gait-based recognition in a spatio-
temporal (XYT) volume is done by Niyogi and Adelson [12].
A 5-stick model is used to generate gait pattern in XYT which
is further used for classification. In [4], Procrustes analysis
is used for static feature extraction and the dynamic features
extracted by modelling the human body by truncated cone for
various body parts and sphere for head. In [13], bulk motion,
shape and articulated motion estimation was done by gait
motion model adaptation. In [14], authors proposed a fusion
based method, in which they divide silhouette into 7 parts and
fit ellipse in those regions. They extract various parameters
of ellipse. All these parameters of 7 regions constitute a novel
feature vector. Whereas, [15] use fusion of several features for
recognition like area, gravity center and orientation of each
body part.

Recent development in model based gait recognition em-
phasizes modelling the multi-view gait sequences by using
view normalization techniques. Worapan et al [16]–[19] use
View Transformation Model (VTM) to normalize probe and
gallery view in the same direction. The method presented in
[16] is SVD based VTM approach and [17] is SVR based.
The problem like data redundancy in their earlier methods is
improved in [18]. Whereas, [19] uses MLP to construct VTM
model for multi-view and cross-view gait recognition.

c) View-Invariant Approach: The view-invariant gait
identification is relatively new research area. The most de-
sirable property of this approach is to identify test subject
walking at any arbitrary view angle. It uses either any one of
two or both approaches as discussed earlier. i. e. model free
or model based. In [20], a viewpoint independent method is
proposed which requires single camera without calibration and
prior knowledge of subject / person pose. The test subject is
identified by projecting the limb motion of subject which is

walking at arbitrary view angle onto the lateral / side-view
plane. First, they do marker less joint estimation followed
by reconstruction method for viewpoint rectification. In [21],
author proposes a joint subspace learning method for view-
invariant gait recognition. First, radon transform based energy
images of sequences extracted and further they perform canon-
ical correlation analysis to get representation coefficients,
which they use as view-invariant features. Next, they obtain
prototypes of various views by using PCA. The samples of
different views represented as linear combination of these
prototypes and then extract the coefficients which further used
for recognition. Whereas in [22], author extracts a gait texture
image which preserves gait information of a particular view
angle. Further, they apply transform invariant low rank textures
to project gait information of arbitrary view on to sagittal
plane. In a recent paper [23], gait flow image extracted by
Lukas-Kanade method as dynamic feature, head and shoulder
mean shape by Procrustes shape analysis as static feature.
In identification phase, they compute view angle or walking
direction of test subject along with the static and dynamic
features. A simple Euclidean distance classifier is used to find
similarity measure between test and gallery images.

In [24], complete canonical correlation analysis is used to
investigate correlation between two gait features considering
normal walking sequences. They randomly select a sample for
training and testing on different view angle. In [25], the authors
extract width of 4 different sub regions of silhouette which
then combined to construct gait signature. They considered all
view angle and 3 normal walking sequences for training and
each view angle taking one view at a time and 3 normal walk-
ing sequences for testing. A robust view invariant approach
is proposed by [26], in which view angle is classified using
entropy of the limb region of GEI and person identification is
done by using multi scale shape analysis.

III. OVERVIEW OF THE PROPOSED METHOD

Gkalelis et. al. decomposes motion in activity as a com-
bination of basic movement patterns, the so-called dynemes,
calculated from fuzzy C-means (FCM) clustering method
as described in [27]. The number of dynemes are decided
from the leave-one-out cross-validation procedure, which is
an extension of the method described in [28]. Their algorithm
combines fuzzy vector quantization (FVQ) of [29] using
posture vectors (column/row wise one-dimensional vector of
binary silhouettes) and Linear Discriminant Analysis (LDA) to
discover the most discriminating dynemes as well as represent
and discriminate the different human movements in terms of
these dynemes. This method was extended in [30], [31] and
[32] for the multi-view videos. The training and testing videos
were captured by multi-view cameras and dynemes were
calculated from all the videos irrespective of their view angles
to make the motion representation and their classification view
independent.

Since, FCM or CM based clustering gives vector quanti-
zation of the posture vector description, it is possible that
discriminative information may loss. This can be overcome
using sparse coding of posture vectors as done in [33]. Hence,
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in this experiment, we use sparse coding of posture vector.
The objective criterion and optimization of sparse coding were
formulated as given in [34] and [35]. The results with mean
and max pooling of feature representation from the sparse
codebook were studied and found that, mean pooling based
representation is most suitable. This approach compared with
the large margin nearest neighbor (LMNN) [36] and found
superior to it.

In this work, we use CASIA multi-view gait databases B
[40] which consists of 124 subjects. Each subject is depicted
in 10 instances (video sequences) with various co-variates like;
normal/slow walking (nm−01 to nm−06), with bag (bg−01,
bg−02), with coat (cl−01, cl−02). The instances are captured
at 11 different viewing angles (0o, ..., 180o). Thus, the database
consists of 124 × 10 × 11 = 13, 640 gait instances (video
sequences). In this experiment, we use 6 instances i.e. normal
and slow walking sequences.

We have experimented gait recognition using LDA with
different number of training (K) and testing (S) sample’s set
(instances/sequences). The performance in form of recognition
accuracy is shown in the Table I. Figure 1 shows it’s graphical
plot. It can be inferred that the reduction in the number of
training samples generates over-fitting issue in the classifier
and hence degrades the performance. Another hypothesis
generated here by experimentation is that, performance with
particular angle gait sequence is dependent on whether that
angle samples are included in the training or not. In uncon-
strained environment, where subject is expected to walk in any
direction yielding gait sequence in any angle, the issue of in-
clusion of particular angle becomes vital with two constraints.
First, having the the number of all angle or regular discrete
angles in the range of 0 to 180 degree in training can load
the system resources like memory and computational power.
Secondly, it can be unmanageable to capture gait sequences
from subjects in all possible angle views. The performance
across the possible angles with different set angles in training
is shown in the Table II and Figure 2 shows it’s plot. It
is observed that, non-inclusion of particular angle-view gait
sequences in training gives abrupt degradation by more than
90% fall in rank-1 accuracy. More recently there are some
attempts as reported in [37], [38], [39] and [2], where classifier
is trained with the set of instances which includes all the view
angle sequences from each subject.

IV. PROPOSED METHODOLOGY

The main complexity of the activity based recognition
lies in three components, namely, 1) Dynemes Calculation,
2) Feature Extraction and 3) Classification. Our proposed
approach use three orthogonal views in multi-view capture
and sparse coding of posture vectors. The dynemes were
used to calculate its histogram using distance measure and its
fuzzification as described in [2]. The training features can be
obtained by projecting training instances on the LDA subspace
to maximize the discrimination in inter-class samples and
minimize the intra-class variance. However, in doing so, kNN
training instances with different gait-angles or view angles
can give the enough variation in their features to overlap
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Fig. 1. Plot of Performance with different values of Training Samples -K
(CASIA B)

with space of other classes. To overcome this problem, we
proposed to have two kNN classifiers corresponding to the
two LDA subspaces in series. The first LDA subspace is to
have projection from gait samples for discriminating them in
different view-angle classes irrespective of the subject identity.
The view angle is obtained from the first LDA subspace using
kNN classifier trained by same training samples as used in
dynemes calculation. The second LDA subspace, obtained
with subjects classes irrespective of their view-angles (gait-
angles), is then used to project gait samples for testing and
training. The histogram features extraction and two LDA
subspace construction are shown in Figure 3. While using kNN
classifier on the test samples, test samples are compared only
with the samples corresponding to the view angle obtained
from angle based classifier. Thus, the kNN classifier selects
the kNN samples from training instances based on the angle
of the test gait sequence, as determined from the first classifier.
This method is different from the framework proposed in [2] in
the sense that, former employs the fusion of two classifiers in
parallel, while later one uses two classifiers in series. However,
the upper bound of performance in our approach is limited by
the performance given by first classifier, which outputs the
view-angle class and hence, it becomes critical component in
the recognition system. This classifier is expected to give more
than 95% performance in typical case, additionally its output
decision can be validated by additional strategy. At present,
this validation strategy is kept out of scope of this paper as
angle identification classifier used here is certain to provide
recognition accuracy of more than 97%. The system block
diagram of our approach based on two classifiers in series is
shown in Figure 4. The main contributions of this approach
are,

1) This is most suitable for single-view camera with un-
constrained gait sequence with respect to direction of
walk.

2) The samples considered in person classifier are corre-
sponding to the angle of gait sequence classified by
angle classifier in which person is walking, as opposed
to the all angle view inclusion in the person classifier
before fusing the results as in case of [2].
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in this experiment, we use sparse coding of posture vector.
The objective criterion and optimization of sparse coding were
formulated as given in [34] and [35]. The results with mean
and max pooling of feature representation from the sparse
codebook were studied and found that, mean pooling based
representation is most suitable. This approach compared with
the large margin nearest neighbor (LMNN) [36] and found
superior to it.

In this work, we use CASIA multi-view gait databases B
[40] which consists of 124 subjects. Each subject is depicted
in 10 instances (video sequences) with various co-variates like;
normal/slow walking (nm−01 to nm−06), with bag (bg−01,
bg−02), with coat (cl−01, cl−02). The instances are captured
at 11 different viewing angles (0o, ..., 180o). Thus, the database
consists of 124 × 10 × 11 = 13, 640 gait instances (video
sequences). In this experiment, we use 6 instances i.e. normal
and slow walking sequences.

We have experimented gait recognition using LDA with
different number of training (K) and testing (S) sample’s set
(instances/sequences). The performance in form of recognition
accuracy is shown in the Table I. Figure 1 shows it’s graphical
plot. It can be inferred that the reduction in the number of
training samples generates over-fitting issue in the classifier
and hence degrades the performance. Another hypothesis
generated here by experimentation is that, performance with
particular angle gait sequence is dependent on whether that
angle samples are included in the training or not. In uncon-
strained environment, where subject is expected to walk in any
direction yielding gait sequence in any angle, the issue of in-
clusion of particular angle becomes vital with two constraints.
First, having the the number of all angle or regular discrete
angles in the range of 0 to 180 degree in training can load
the system resources like memory and computational power.
Secondly, it can be unmanageable to capture gait sequences
from subjects in all possible angle views. The performance
across the possible angles with different set angles in training
is shown in the Table II and Figure 2 shows it’s plot. It
is observed that, non-inclusion of particular angle-view gait
sequences in training gives abrupt degradation by more than
90% fall in rank-1 accuracy. More recently there are some
attempts as reported in [37], [38], [39] and [2], where classifier
is trained with the set of instances which includes all the view
angle sequences from each subject.

IV. PROPOSED METHODOLOGY

The main complexity of the activity based recognition
lies in three components, namely, 1) Dynemes Calculation,
2) Feature Extraction and 3) Classification. Our proposed
approach use three orthogonal views in multi-view capture
and sparse coding of posture vectors. The dynemes were
used to calculate its histogram using distance measure and its
fuzzification as described in [2]. The training features can be
obtained by projecting training instances on the LDA subspace
to maximize the discrimination in inter-class samples and
minimize the intra-class variance. However, in doing so, kNN
training instances with different gait-angles or view angles
can give the enough variation in their features to overlap
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with space of other classes. To overcome this problem, we
proposed to have two kNN classifiers corresponding to the
two LDA subspaces in series. The first LDA subspace is to
have projection from gait samples for discriminating them in
different view-angle classes irrespective of the subject identity.
The view angle is obtained from the first LDA subspace using
kNN classifier trained by same training samples as used in
dynemes calculation. The second LDA subspace, obtained
with subjects classes irrespective of their view-angles (gait-
angles), is then used to project gait samples for testing and
training. The histogram features extraction and two LDA
subspace construction are shown in Figure 3. While using kNN
classifier on the test samples, test samples are compared only
with the samples corresponding to the view angle obtained
from angle based classifier. Thus, the kNN classifier selects
the kNN samples from training instances based on the angle
of the test gait sequence, as determined from the first classifier.
This method is different from the framework proposed in [2] in
the sense that, former employs the fusion of two classifiers in
parallel, while later one uses two classifiers in series. However,
the upper bound of performance in our approach is limited by
the performance given by first classifier, which outputs the
view-angle class and hence, it becomes critical component in
the recognition system. This classifier is expected to give more
than 95% performance in typical case, additionally its output
decision can be validated by additional strategy. At present,
this validation strategy is kept out of scope of this paper as
angle identification classifier used here is certain to provide
recognition accuracy of more than 97%. The system block
diagram of our approach based on two classifiers in series is
shown in Figure 4. The main contributions of this approach
are,

1) This is most suitable for single-view camera with un-
constrained gait sequence with respect to direction of
walk.

2) The samples considered in person classifier are corre-
sponding to the angle of gait sequence classified by
angle classifier in which person is walking, as opposed
to the all angle view inclusion in the person classifier
before fusing the results as in case of [2].
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in this experiment, we use sparse coding of posture vector.
The objective criterion and optimization of sparse coding were
formulated as given in [34] and [35]. The results with mean
and max pooling of feature representation from the sparse
codebook were studied and found that, mean pooling based
representation is most suitable. This approach compared with
the large margin nearest neighbor (LMNN) [36] and found
superior to it.

In this work, we use CASIA multi-view gait databases B
[40] which consists of 124 subjects. Each subject is depicted
in 10 instances (video sequences) with various co-variates like;
normal/slow walking (nm−01 to nm−06), with bag (bg−01,
bg−02), with coat (cl−01, cl−02). The instances are captured
at 11 different viewing angles (0o, ..., 180o). Thus, the database
consists of 124 × 10 × 11 = 13, 640 gait instances (video
sequences). In this experiment, we use 6 instances i.e. normal
and slow walking sequences.

We have experimented gait recognition using LDA with
different number of training (K) and testing (S) sample’s set
(instances/sequences). The performance in form of recognition
accuracy is shown in the Table I. Figure 1 shows it’s graphical
plot. It can be inferred that the reduction in the number of
training samples generates over-fitting issue in the classifier
and hence degrades the performance. Another hypothesis
generated here by experimentation is that, performance with
particular angle gait sequence is dependent on whether that
angle samples are included in the training or not. In uncon-
strained environment, where subject is expected to walk in any
direction yielding gait sequence in any angle, the issue of in-
clusion of particular angle becomes vital with two constraints.
First, having the the number of all angle or regular discrete
angles in the range of 0 to 180 degree in training can load
the system resources like memory and computational power.
Secondly, it can be unmanageable to capture gait sequences
from subjects in all possible angle views. The performance
across the possible angles with different set angles in training
is shown in the Table II and Figure 2 shows it’s plot. It
is observed that, non-inclusion of particular angle-view gait
sequences in training gives abrupt degradation by more than
90% fall in rank-1 accuracy. More recently there are some
attempts as reported in [37], [38], [39] and [2], where classifier
is trained with the set of instances which includes all the view
angle sequences from each subject.

IV. PROPOSED METHODOLOGY

The main complexity of the activity based recognition
lies in three components, namely, 1) Dynemes Calculation,
2) Feature Extraction and 3) Classification. Our proposed
approach use three orthogonal views in multi-view capture
and sparse coding of posture vectors. The dynemes were
used to calculate its histogram using distance measure and its
fuzzification as described in [2]. The training features can be
obtained by projecting training instances on the LDA subspace
to maximize the discrimination in inter-class samples and
minimize the intra-class variance. However, in doing so, kNN
training instances with different gait-angles or view angles
can give the enough variation in their features to overlap
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with space of other classes. To overcome this problem, we
proposed to have two kNN classifiers corresponding to the
two LDA subspaces in series. The first LDA subspace is to
have projection from gait samples for discriminating them in
different view-angle classes irrespective of the subject identity.
The view angle is obtained from the first LDA subspace using
kNN classifier trained by same training samples as used in
dynemes calculation. The second LDA subspace, obtained
with subjects classes irrespective of their view-angles (gait-
angles), is then used to project gait samples for testing and
training. The histogram features extraction and two LDA
subspace construction are shown in Figure 3. While using kNN
classifier on the test samples, test samples are compared only
with the samples corresponding to the view angle obtained
from angle based classifier. Thus, the kNN classifier selects
the kNN samples from training instances based on the angle
of the test gait sequence, as determined from the first classifier.
This method is different from the framework proposed in [2] in
the sense that, former employs the fusion of two classifiers in
parallel, while later one uses two classifiers in series. However,
the upper bound of performance in our approach is limited by
the performance given by first classifier, which outputs the
view-angle class and hence, it becomes critical component in
the recognition system. This classifier is expected to give more
than 95% performance in typical case, additionally its output
decision can be validated by additional strategy. At present,
this validation strategy is kept out of scope of this paper as
angle identification classifier used here is certain to provide
recognition accuracy of more than 97%. The system block
diagram of our approach based on two classifiers in series is
shown in Figure 4. The main contributions of this approach
are,

1) This is most suitable for single-view camera with un-
constrained gait sequence with respect to direction of
walk.

2) The samples considered in person classifier are corre-
sponding to the angle of gait sequence classified by
angle classifier in which person is walking, as opposed
to the all angle view inclusion in the person classifier
before fusing the results as in case of [2].
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the large margin nearest neighbor (LMNN) [36] and found
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at 11 different viewing angles (0o, ..., 180o). Thus, the database
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different number of training (K) and testing (S) sample’s set
(instances/sequences). The performance in form of recognition
accuracy is shown in the Table I. Figure 1 shows it’s graphical
plot. It can be inferred that the reduction in the number of
training samples generates over-fitting issue in the classifier
and hence degrades the performance. Another hypothesis
generated here by experimentation is that, performance with
particular angle gait sequence is dependent on whether that
angle samples are included in the training or not. In uncon-
strained environment, where subject is expected to walk in any
direction yielding gait sequence in any angle, the issue of in-
clusion of particular angle becomes vital with two constraints.
First, having the the number of all angle or regular discrete
angles in the range of 0 to 180 degree in training can load
the system resources like memory and computational power.
Secondly, it can be unmanageable to capture gait sequences
from subjects in all possible angle views. The performance
across the possible angles with different set angles in training
is shown in the Table II and Figure 2 shows it’s plot. It
is observed that, non-inclusion of particular angle-view gait
sequences in training gives abrupt degradation by more than
90% fall in rank-1 accuracy. More recently there are some
attempts as reported in [37], [38], [39] and [2], where classifier
is trained with the set of instances which includes all the view
angle sequences from each subject.

IV. PROPOSED METHODOLOGY

The main complexity of the activity based recognition
lies in three components, namely, 1) Dynemes Calculation,
2) Feature Extraction and 3) Classification. Our proposed
approach use three orthogonal views in multi-view capture
and sparse coding of posture vectors. The dynemes were
used to calculate its histogram using distance measure and its
fuzzification as described in [2]. The training features can be
obtained by projecting training instances on the LDA subspace
to maximize the discrimination in inter-class samples and
minimize the intra-class variance. However, in doing so, kNN
training instances with different gait-angles or view angles
can give the enough variation in their features to overlap
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with space of other classes. To overcome this problem, we
proposed to have two kNN classifiers corresponding to the
two LDA subspaces in series. The first LDA subspace is to
have projection from gait samples for discriminating them in
different view-angle classes irrespective of the subject identity.
The view angle is obtained from the first LDA subspace using
kNN classifier trained by same training samples as used in
dynemes calculation. The second LDA subspace, obtained
with subjects classes irrespective of their view-angles (gait-
angles), is then used to project gait samples for testing and
training. The histogram features extraction and two LDA
subspace construction are shown in Figure 3. While using kNN
classifier on the test samples, test samples are compared only
with the samples corresponding to the view angle obtained
from angle based classifier. Thus, the kNN classifier selects
the kNN samples from training instances based on the angle
of the test gait sequence, as determined from the first classifier.
This method is different from the framework proposed in [2] in
the sense that, former employs the fusion of two classifiers in
parallel, while later one uses two classifiers in series. However,
the upper bound of performance in our approach is limited by
the performance given by first classifier, which outputs the
view-angle class and hence, it becomes critical component in
the recognition system. This classifier is expected to give more
than 95% performance in typical case, additionally its output
decision can be validated by additional strategy. At present,
this validation strategy is kept out of scope of this paper as
angle identification classifier used here is certain to provide
recognition accuracy of more than 97%. The system block
diagram of our approach based on two classifiers in series is
shown in Figure 4. The main contributions of this approach
are,

1) This is most suitable for single-view camera with un-
constrained gait sequence with respect to direction of
walk.

2) The samples considered in person classifier are corre-
sponding to the angle of gait sequence classified by
angle classifier in which person is walking, as opposed
to the all angle view inclusion in the person classifier
before fusing the results as in case of [2].
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is shown in the Table II and Figure 2 shows it’s plot. It
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sequences in training gives abrupt degradation by more than
90% fall in rank-1 accuracy. More recently there are some
attempts as reported in [37], [38], [39] and [2], where classifier
is trained with the set of instances which includes all the view
angle sequences from each subject.

IV. PROPOSED METHODOLOGY

The main complexity of the activity based recognition
lies in three components, namely, 1) Dynemes Calculation,
2) Feature Extraction and 3) Classification. Our proposed
approach use three orthogonal views in multi-view capture
and sparse coding of posture vectors. The dynemes were
used to calculate its histogram using distance measure and its
fuzzification as described in [2]. The training features can be
obtained by projecting training instances on the LDA subspace
to maximize the discrimination in inter-class samples and
minimize the intra-class variance. However, in doing so, kNN
training instances with different gait-angles or view angles
can give the enough variation in their features to overlap
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with space of other classes. To overcome this problem, we
proposed to have two kNN classifiers corresponding to the
two LDA subspaces in series. The first LDA subspace is to
have projection from gait samples for discriminating them in
different view-angle classes irrespective of the subject identity.
The view angle is obtained from the first LDA subspace using
kNN classifier trained by same training samples as used in
dynemes calculation. The second LDA subspace, obtained
with subjects classes irrespective of their view-angles (gait-
angles), is then used to project gait samples for testing and
training. The histogram features extraction and two LDA
subspace construction are shown in Figure 3. While using kNN
classifier on the test samples, test samples are compared only
with the samples corresponding to the view angle obtained
from angle based classifier. Thus, the kNN classifier selects
the kNN samples from training instances based on the angle
of the test gait sequence, as determined from the first classifier.
This method is different from the framework proposed in [2] in
the sense that, former employs the fusion of two classifiers in
parallel, while later one uses two classifiers in series. However,
the upper bound of performance in our approach is limited by
the performance given by first classifier, which outputs the
view-angle class and hence, it becomes critical component in
the recognition system. This classifier is expected to give more
than 95% performance in typical case, additionally its output
decision can be validated by additional strategy. At present,
this validation strategy is kept out of scope of this paper as
angle identification classifier used here is certain to provide
recognition accuracy of more than 97%. The system block
diagram of our approach based on two classifiers in series is
shown in Figure 4. The main contributions of this approach
are,

1) This is most suitable for single-view camera with un-
constrained gait sequence with respect to direction of
walk.

2) The samples considered in person classifier are corre-
sponding to the angle of gait sequence classified by
angle classifier in which person is walking, as opposed
to the all angle view inclusion in the person classifier
before fusing the results as in case of [2].
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Training Samples Testing Samples kNN with Centroid kNN without Centroid
K S Rank-1 Accuracy(%) Avg. Accuracy(%) Rank-1 Accuracy(%) Avg. Accuracy(%)

[1,3,5,6] [2,4] 98.59 97.65 98.59 97.65
[1,2,3,4] [5,6] 96.72 97.65 96.72 97.65
[1,2,3] [5,6] 94.85 96.37 95.32 96.49
[2,3,4] [5,6] 96.72 96.37 96.26 96.49
[1,2,4] [5,6] 96.72 96.37 97.19 96.49
[1,3,4] [5,6] 97.19 96.37 97.19 96.49
[1,2] [5,6] 94.39 96.37 94.39 96.49
[1,3] [5,6] 94.39 96.37 95.32 96.49
[1,4] [5,6] 97.19 95.32 97.19 95.47
[2,3] [5,6] 94.85 95.32 94.39 95.37
[2,4] [5,6] 95.79 95.32 95.79 95.47
[3,4] [5,6] 95.32 95.32 95.79 95.47
[1] [5,6] 87.85 90.18 87.85 90.18
[2] [5,6] 90.18 90.18 90.18 90.18
[3] [5,6] 88.78 90.18 88.78 90.18
[4] [5,6] 93.92 90.18 93.92 90.18

TABLE I
PERFORMANCE WITH DIFFERENT TRAINING / TESTING SAMPLES SET OF CASIA B

Training % Testing Accuracy with S=[1, 2, 3, 4, 5, 6] with view angle as follows Testing with
with Non-Ortho.

K=[1, View with
3, 5, 6] S=[1to6]

View Angle 00 180 360 540 720 900 1080 1260 1440 1620 1800 Avg. Accu.(%) Avg. Accu.(%)
A=0 97.44 6.45 4.43 2.28 1.47 0.80 0.80 1.74 1.74 1.61 8.06 11.32 2.2
B=90 1.61 0.80 1.07 5.10 36.29 94.35 27.82 7.79 2.41 0.80 1.34 16.37 10.5

C=180 5.64 2.41 1.47 0.80 1.74 1.61 1.61 1.07 0.80 5.10 97.44 10.71 1.74
A+B+C 51.34 3.36 1.61 2.95 11.02 38.02 6.58 3.36 1.74 3.2 68.14 17.39 4.23

Min(A,B,C) 96.37 6.18 3.49 2.95 32.52 92.87 27.28 3.89 0.94 1.34 83.46 31.94 9.82

TABLE II
PERFORMANCE WITH ORTHOGONAL VIEW ANGLES 00 , 900 & 1800 TRAINING (CASIA B)

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

View Angle

R
ec

og
ni

tio
n

A
cc

ur
ac

y
in

%

Frontal View Training
Lateral View Training
Back View Training
Fusion Sum Score
Fusion Min Score
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Fig. 3. Histogram Features Extraction and Two LDA Subspaces

3) The proposed mechanism of selective kNN (s-kNN)
classifier improves the person identification result.

4) Significant results for non-orthogonal view angles.
The system with s-kNN i.e. rank-N s-kNN classifier is

shown in Figure 5.

Fig. 4. S-kNN Classifier

V. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments performed considering normal and fast walk-
ing instances. Initially we performed experiment consider-
ing orthogonal angles 00, 900 & 1800 in training instances
{1, 3, 5, 6} excluding instances {2, 4}. Results in terms of
testing accuracy considering testing instances {1, 2, 3, 4, 5, 6}
is shwon in Table II. It is found that, the recognition accu-
racy infers when particular angle instance is not included in
training. The average recognition accuracy for non-orthogonal
view angles is also shown in Table II.

Experimentally it is found that, the orthogonal views of
angles 180, 1080 and 1620 are useful for training efficiently
as reported in [37]. As the dyneme representation is resilient

Fig. 5. Rank-N S-kNN Classifier

Fig. 6. Dynemes Poses

to noise, the set of 340 & 500 dynemes are calculated from
training instances, {1, 3, 5, 6} of 124 subjects with orthogonal
view angles 18o, 108o and 162o excluding instances {2, 4}.
Figure 6 shows 500 dynemes for instances {1, 3, 5, 6}. The
overall and across angle recognition accuracies are presented
in Table III. The experiments were performed with LDA using
kNN and s-kNN classifiers. Significant results obtained for
non orthogonal view angles considering all instances by our
method. Where, pID is person identification and VA is view
angle accuracy.

The further improvement in the performance of system is
achieved by rank-N s-kNN classifier. The results with different
training set are shown in Table IV. It can be observed that, the
rank-1 angle classification accuracy and pID rank-1 accuracy
improves significantly with increased number of instances in
training.

A. Comparative Work

In [37], the strategy was proposed to determine the least
number of viewing angles from available maximum number
of views to be used in training so that recognition with
different gait angle sequences can be maximized. It is the
optimization problem and training set with views from 18o,
108o and 162o is experimentally found to be the best solution.
We implemented our approach with these training set and
compared with results obtained with their approach as reported
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[2,3] [5,6] 94.85 95.32 94.39 95.37
[2,4] [5,6] 95.79 95.32 95.79 95.47
[3,4] [5,6] 95.32 95.32 95.79 95.47
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Fig. 3. Histogram Features Extraction and Two LDA Subspaces

3) The proposed mechanism of selective kNN (s-kNN)
classifier improves the person identification result.

4) Significant results for non-orthogonal view angles.
The system with s-kNN i.e. rank-N s-kNN classifier is

shown in Figure 5.

Fig. 4. S-kNN Classifier

V. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments performed considering normal and fast walk-
ing instances. Initially we performed experiment consider-
ing orthogonal angles 00, 900 & 1800 in training instances
{1, 3, 5, 6} excluding instances {2, 4}. Results in terms of
testing accuracy considering testing instances {1, 2, 3, 4, 5, 6}
is shwon in Table II. It is found that, the recognition accu-
racy infers when particular angle instance is not included in
training. The average recognition accuracy for non-orthogonal
view angles is also shown in Table II.

Experimentally it is found that, the orthogonal views of
angles 180, 1080 and 1620 are useful for training efficiently
as reported in [37]. As the dyneme representation is resilient

Fig. 5. Rank-N S-kNN Classifier

Fig. 6. Dynemes Poses

to noise, the set of 340 & 500 dynemes are calculated from
training instances, {1, 3, 5, 6} of 124 subjects with orthogonal
view angles 18o, 108o and 162o excluding instances {2, 4}.
Figure 6 shows 500 dynemes for instances {1, 3, 5, 6}. The
overall and across angle recognition accuracies are presented
in Table III. The experiments were performed with LDA using
kNN and s-kNN classifiers. Significant results obtained for
non orthogonal view angles considering all instances by our
method. Where, pID is person identification and VA is view
angle accuracy.

The further improvement in the performance of system is
achieved by rank-N s-kNN classifier. The results with different
training set are shown in Table IV. It can be observed that, the
rank-1 angle classification accuracy and pID rank-1 accuracy
improves significantly with increased number of instances in
training.

A. Comparative Work

In [37], the strategy was proposed to determine the least
number of viewing angles from available maximum number
of views to be used in training so that recognition with
different gait angle sequences can be maximized. It is the
optimization problem and training set with views from 18o,
108o and 162o is experimentally found to be the best solution.
We implemented our approach with these training set and
compared with results obtained with their approach as reported
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[2,3] [5,6] 94.85 95.32 94.39 95.37
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[2] [5,6] 90.18 90.18 90.18 90.18
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with Non-Ortho.
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3, 5, 6] S=[1to6]

View Angle 00 180 360 540 720 900 1080 1260 1440 1620 1800 Avg. Accu.(%) Avg. Accu.(%)
A=0 97.44 6.45 4.43 2.28 1.47 0.80 0.80 1.74 1.74 1.61 8.06 11.32 2.2
B=90 1.61 0.80 1.07 5.10 36.29 94.35 27.82 7.79 2.41 0.80 1.34 16.37 10.5

C=180 5.64 2.41 1.47 0.80 1.74 1.61 1.61 1.07 0.80 5.10 97.44 10.71 1.74
A+B+C 51.34 3.36 1.61 2.95 11.02 38.02 6.58 3.36 1.74 3.2 68.14 17.39 4.23
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Training Testing % Accuracy with S=[1, 2, 3, 4, 5, 6] with view angles as follows Testing
with with

K=[1, 3, Non-Ortho.
5, 6] with Views with
124 Sub. S=[1 to 6]

00 180 360 540 720 900 1080 1260 1440 1620 1800 Avg.%
340-LDA- 95.83 96.23 95.56 94.62 87.76 85.61 87.09 92.33 93.81 93.27 95.56 92.52

kNN
500-LDA- 95.16 96.37 96.63 95.29 88.97 85.88 89.65 94.48 94.48 93.95 96.10 93.36

kNN
340-LDA- 97.58 97.31 96.10 96.63 94.62 89.65 91.66 95.43 94.48 93.27 96.77 94.85-pID

S-kNN
340-LDA- 97.84 98.25 97.44 97.17 97.71 97.58 6.10 96.50 94.75 94.35 97.58 96.84-VA

S-kNN
500-LDA- 97.17 97.58 96.50 96.77 94.22 89.51 93.01 95.56 94.35 93.95 97.74 95.06-pID

S-kNN
500-LDA- 97.84 98.92 97.17 97.04 97.84 97.98 96.23 96.50 94.75 94.35 97.71 95.94-VA

S-kNN

TABLE III
PERFORMANCE WITH LDA USING KNN AND S-KNN CLASSIFIERS WITH NO. OF DYNEMES 340 AND 500 TRAINED BY ORTHOGONAL VIEW ANGLES

180 , 1080 & 1620 (CASIA B)

Training and Rank-1 Angle Person ID-Rank - 1 Accuracy(%) with Different
Testing Sets Classification S and K with Rank - N Classification
124 Subjects Accuracy where N is as follows

K and S Testing Rank-1 1 2 3 4 5 6 7 8 9 10 11
Sets Sample Angle

Accu. %
K=[1], 6660 6366 64.09 64.09 64.81 64.86 64.83 64.87 64.90 64.89 64.87 64.86 64.81

S=[2, 3, 4, 5, 6] (95.58)
K=[1, 3] 5321 5118 78.81 78.18 79.57 79.64 79.74 79.75 79.75 79.79 79.81 79.39 79.92

S=[2, 4, 5, 6] (96.18)
K=[1, 3, 5] 3991 3861 87.59 87.59 88.37 88.49 88.62 88.67 88.79 88.82 88.79 88.82 88.84
S=[2, 4, 6] (96.73)

K=[1, 3, 5, 6], 2675 2592 91.25 91.25 92.07 92.26 92.29 92.33 92.37 92.33 92.33 92.33 92.29
S=[2, 4], /2341 (96.89) /92.39 /92.39 /92.95 /92.99 93.03 93.07 /93.07 93.07 /93.07 /93.07 93.07
124/104 /2287
Subjects (97.68)

K=[1, 2, 3, 1329 1290 93.00 93.00 93.22 93.52 93.60 93.82 93.82 93.90 93.90 93.90 93.90
5, 6],S=[4] (97.07)

TABLE IV
RANK-1 ACCURACY OF PERSON IDENTIFICATION WITH DIFFERENT SETS OF K AND S WITH RANK-N CLASSIFIER FOR ORTHOGONAL VIEWS 180 , 1080

& 1620 (CASIA B)

Fig. 7. Testing Accuracy of Angle Classifier for angle 1800

in the Table V. It can be seen that, our approach gives slightly
improved performance over this method.

In [39], the correlation motion analysis for each point in
GEI is done across the views and the sparse regression is
carried out with the help of correlation coefficient. Once the
regression GEI features across any view-angle is obtained, the
view classifier estimates the angle of test gait sequence walked

in any direction. This classifier is based on the GEI features
projected on the PCA and later PCA transformed features
are used in constructing LDA subspace. Using projection of
training images in LDA subspace to compare with that of
test images, angle is estimated. This step is similar to angle
based classifier used in our algorithm, with only difference
of using dynemes histogram as a features in place of GEI
features and using LDA subspace directly instead in PCA
transformed space. In this approach, sparse regressive GEI
data corresponding to the estimated angle refined by ROI
selection based on motion correlation is used in classifier after
projecting it on PCA. The Euclidean distance as a similarity
measure, is used in the classifier for identifying the person. We
have compared our approach with this method reported in [39].
To be fair with comparison, we used first 24 classes to make
the dynemes model and remaining 100 classes used for view-
angle classification and person identification as specified in
their work. Figure 7 shows testing accuracy of angle classifier
for angle 1800. From the results it can be seen that, our
approach outperforms almost at every place. The variant of this

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 7

Training Testing Testing Accuracy(%) with S=[2, 4] with view angle as follows
with Accuracy

K=[1, 3, with
5, 6] with (S=[2, 4])
124 Sub.

Correct % Accu. 00 180 360 540 720 900 1080 1260 1440 1620 1800

Method [37] - 90.72 87.9 96.37 94.35 87.1 84.68 91.94 97.18 88.31 87.9 97.18 85.08
Proposed Method 2425 91.25 94.67 95.93 92.68 95.49 86.53 73.06 84.08 95.85 95.78 92.85 97.13

TABLE V
COMPARISON WITH METHOD [37]

Training Testing Testing Accuracy(%) with S=[2, 4] with view angle as follows Avg. Accu.(%)
with Accuracy

K=[1, 3, with
5, 6] with (S=[2, 4])
124 Sub.

Correct % Accu. 00 180 360 540 720 900 1080 1260 1440 1620 1800

Method [39] - 90.5 88 95 88 91 90.5-pID
90 91 91 98 99 91 93 94 92 93 91 94-VA

Proposed 1971 92.22 91.41 94.94 95.45 95.91 92.38 77.15 85.27 95.87 96.82 93.26 95.91 92.22-pID
Method

98.86 98.98 96.96 95.42 98.98 94.41 94.41 100 97.35 94.81 98.46 97.22-VA

TABLE VI
COMPARISON WITH METHOD [39]

work is also presented in [38] using different type of regression
method to select the optimized feature representation.

In [2], authors proposed the framework for person identifi-
cation based on various activities like; jump in place, wave one
hand, jump forward, run, walk (gait). Although, we focused
on gait activity only. The features extracted in [2] are the
histogram of dynemes (centroid of clusters) calculated and
accumulated from each of the frame throughout the video
sequence. This algorithm doesn’t need to calculate the gait
cycle and thus it is shift invariant in time. Two subspaces
are created using LDA from the dynemes histogram features.
One for subject class and another for view-angle. The kNN
classifier with centroid is applied to each of the view of probe
subject to decide its view angle and its subject class. These two
labels obtained from N camera views are fed to the Bayesian
Framework to obtain final output in terms of person class. It is
important to mention here that our feature extraction method
is very much adopted from this work because of its shift-
invariant property. It can also be used for continuous person
identification. However, the classification strategy used in our
approach is hard than the one used in [2]. We compared
our algorithm with the results provided in this paper. The
experiment includes the 5 sample instances as training and
testing is done on remaining one instance as mentioned in [2].
The recognition accuracy is reported in this paper is 93.27%,
while our approach gives the accuracy of 94.19%. This shows
the slight improvement can be gained with our approach.

VI. CONCLUSION

We have explored the view-invariant gait recognition sys-
tem which use three orthogonal views of gait signature for
the person identification. It is observed that, training with
orthogonal views becomes very effective in multi-view gait
recognition. Another proposed mechanism of selective kNN

(s-kNN) to fuse the two classifiers have been successful in im-
proving the gait recognition accuracy. Initially, we performed
experiment considering orthogonal angles 00, 90 and 1800. It
is observed that, the recognition accuracy decreases abruptly
if test instance of a particular view angle not included in
training. The testing accuracy for non-orthogonal view angle
was also infer. Next, we use optimized view angle framework
with orthogonal view angles 180,1080 and 1620 for training.
Various experiments were performed considering 340 and 500
dynemes for kNN and s-kNN classifier. We got significantly
improved results even for non-orthogonal view angles. We
report 97.07% maximum rank-1 angle classification accuracy
and 93% maximum rank-1 person identification with different
sets of K and S for rank N s-kNN classification. It is observed
that s-kNN perform better than kNN in pID (person identifi-
cation) and VA (view angle accuracy).
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S=[2, 4], /2341 (96.89) /92.39 /92.39 /92.95 /92.99 93.03 93.07 /93.07 93.07 /93.07 /93.07 93.07
124/104 /2287
Subjects (97.68)
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in the Table V. It can be seen that, our approach gives slightly
improved performance over this method.

In [39], the correlation motion analysis for each point in
GEI is done across the views and the sparse regression is
carried out with the help of correlation coefficient. Once the
regression GEI features across any view-angle is obtained, the
view classifier estimates the angle of test gait sequence walked

in any direction. This classifier is based on the GEI features
projected on the PCA and later PCA transformed features
are used in constructing LDA subspace. Using projection of
training images in LDA subspace to compare with that of
test images, angle is estimated. This step is similar to angle
based classifier used in our algorithm, with only difference
of using dynemes histogram as a features in place of GEI
features and using LDA subspace directly instead in PCA
transformed space. In this approach, sparse regressive GEI
data corresponding to the estimated angle refined by ROI
selection based on motion correlation is used in classifier after
projecting it on PCA. The Euclidean distance as a similarity
measure, is used in the classifier for identifying the person. We
have compared our approach with this method reported in [39].
To be fair with comparison, we used first 24 classes to make
the dynemes model and remaining 100 classes used for view-
angle classification and person identification as specified in
their work. Figure 7 shows testing accuracy of angle classifier
for angle 1800. From the results it can be seen that, our
approach outperforms almost at every place. The variant of this
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in the Table V. It can be seen that, our approach gives slightly
improved performance over this method.

In [39], the correlation motion analysis for each point in
GEI is done across the views and the sparse regression is
carried out with the help of correlation coefficient. Once the
regression GEI features across any view-angle is obtained, the
view classifier estimates the angle of test gait sequence walked

in any direction. This classifier is based on the GEI features
projected on the PCA and later PCA transformed features
are used in constructing LDA subspace. Using projection of
training images in LDA subspace to compare with that of
test images, angle is estimated. This step is similar to angle
based classifier used in our algorithm, with only difference
of using dynemes histogram as a features in place of GEI
features and using LDA subspace directly instead in PCA
transformed space. In this approach, sparse regressive GEI
data corresponding to the estimated angle refined by ROI
selection based on motion correlation is used in classifier after
projecting it on PCA. The Euclidean distance as a similarity
measure, is used in the classifier for identifying the person. We
have compared our approach with this method reported in [39].
To be fair with comparison, we used first 24 classes to make
the dynemes model and remaining 100 classes used for view-
angle classification and person identification as specified in
their work. Figure 7 shows testing accuracy of angle classifier
for angle 1800. From the results it can be seen that, our
approach outperforms almost at every place. The variant of this
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in the Table V. It can be seen that, our approach gives slightly
improved performance over this method.

In [39], the correlation motion analysis for each point in
GEI is done across the views and the sparse regression is
carried out with the help of correlation coefficient. Once the
regression GEI features across any view-angle is obtained, the
view classifier estimates the angle of test gait sequence walked

in any direction. This classifier is based on the GEI features
projected on the PCA and later PCA transformed features
are used in constructing LDA subspace. Using projection of
training images in LDA subspace to compare with that of
test images, angle is estimated. This step is similar to angle
based classifier used in our algorithm, with only difference
of using dynemes histogram as a features in place of GEI
features and using LDA subspace directly instead in PCA
transformed space. In this approach, sparse regressive GEI
data corresponding to the estimated angle refined by ROI
selection based on motion correlation is used in classifier after
projecting it on PCA. The Euclidean distance as a similarity
measure, is used in the classifier for identifying the person. We
have compared our approach with this method reported in [39].
To be fair with comparison, we used first 24 classes to make
the dynemes model and remaining 100 classes used for view-
angle classification and person identification as specified in
their work. Figure 7 shows testing accuracy of angle classifier
for angle 1800. From the results it can be seen that, our
approach outperforms almost at every place. The variant of this

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 7

Training Testing Testing Accuracy(%) with S=[2, 4] with view angle as follows
with Accuracy

K=[1, 3, with
5, 6] with (S=[2, 4])
124 Sub.

Correct % Accu. 00 180 360 540 720 900 1080 1260 1440 1620 1800

Method [37] - 90.72 87.9 96.37 94.35 87.1 84.68 91.94 97.18 88.31 87.9 97.18 85.08
Proposed Method 2425 91.25 94.67 95.93 92.68 95.49 86.53 73.06 84.08 95.85 95.78 92.85 97.13

TABLE V
COMPARISON WITH METHOD [37]

Training Testing Testing Accuracy(%) with S=[2, 4] with view angle as follows Avg. Accu.(%)
with Accuracy

K=[1, 3, with
5, 6] with (S=[2, 4])
124 Sub.

Correct % Accu. 00 180 360 540 720 900 1080 1260 1440 1620 1800

Method [39] - 90.5 88 95 88 91 90.5-pID
90 91 91 98 99 91 93 94 92 93 91 94-VA

Proposed 1971 92.22 91.41 94.94 95.45 95.91 92.38 77.15 85.27 95.87 96.82 93.26 95.91 92.22-pID
Method

98.86 98.98 96.96 95.42 98.98 94.41 94.41 100 97.35 94.81 98.46 97.22-VA

TABLE VI
COMPARISON WITH METHOD [39]

work is also presented in [38] using different type of regression
method to select the optimized feature representation.

In [2], authors proposed the framework for person identifi-
cation based on various activities like; jump in place, wave one
hand, jump forward, run, walk (gait). Although, we focused
on gait activity only. The features extracted in [2] are the
histogram of dynemes (centroid of clusters) calculated and
accumulated from each of the frame throughout the video
sequence. This algorithm doesn’t need to calculate the gait
cycle and thus it is shift invariant in time. Two subspaces
are created using LDA from the dynemes histogram features.
One for subject class and another for view-angle. The kNN
classifier with centroid is applied to each of the view of probe
subject to decide its view angle and its subject class. These two
labels obtained from N camera views are fed to the Bayesian
Framework to obtain final output in terms of person class. It is
important to mention here that our feature extraction method
is very much adopted from this work because of its shift-
invariant property. It can also be used for continuous person
identification. However, the classification strategy used in our
approach is hard than the one used in [2]. We compared
our algorithm with the results provided in this paper. The
experiment includes the 5 sample instances as training and
testing is done on remaining one instance as mentioned in [2].
The recognition accuracy is reported in this paper is 93.27%,
while our approach gives the accuracy of 94.19%. This shows
the slight improvement can be gained with our approach.

VI. CONCLUSION

We have explored the view-invariant gait recognition sys-
tem which use three orthogonal views of gait signature for
the person identification. It is observed that, training with
orthogonal views becomes very effective in multi-view gait
recognition. Another proposed mechanism of selective kNN

(s-kNN) to fuse the two classifiers have been successful in im-
proving the gait recognition accuracy. Initially, we performed
experiment considering orthogonal angles 00, 90 and 1800. It
is observed that, the recognition accuracy decreases abruptly
if test instance of a particular view angle not included in
training. The testing accuracy for non-orthogonal view angle
was also infer. Next, we use optimized view angle framework
with orthogonal view angles 180,1080 and 1620 for training.
Various experiments were performed considering 340 and 500
dynemes for kNN and s-kNN classifier. We got significantly
improved results even for non-orthogonal view angles. We
report 97.07% maximum rank-1 angle classification accuracy
and 93% maximum rank-1 person identification with different
sets of K and S for rank N s-kNN classification. It is observed
that s-kNN perform better than kNN in pID (person identifi-
cation) and VA (view angle accuracy).
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cycle and thus it is shift invariant in time. Two subspaces
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Training Testing % Accuracy with S=[1, 2, 3, 4, 5, 6] with view angles as follows Testing
with with

K=[1, 3, Non-Ortho.
5, 6] with Views with
124 Sub. S=[1 to 6]
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180 , 1080 & 1620 (CASIA B)
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Testing Sets Classification S and K with Rank - N Classification
124 Subjects Accuracy where N is as follows
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Sets Sample Angle
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K=[1], 6660 6366 64.09 64.09 64.81 64.86 64.83 64.87 64.90 64.89 64.87 64.86 64.81
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S=[2, 4, 5, 6] (96.18)
K=[1, 3, 5] 3991 3861 87.59 87.59 88.37 88.49 88.62 88.67 88.79 88.82 88.79 88.82 88.84
S=[2, 4, 6] (96.73)

K=[1, 3, 5, 6], 2675 2592 91.25 91.25 92.07 92.26 92.29 92.33 92.37 92.33 92.33 92.33 92.29
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in the Table V. It can be seen that, our approach gives slightly
improved performance over this method.

In [39], the correlation motion analysis for each point in
GEI is done across the views and the sparse regression is
carried out with the help of correlation coefficient. Once the
regression GEI features across any view-angle is obtained, the
view classifier estimates the angle of test gait sequence walked

in any direction. This classifier is based on the GEI features
projected on the PCA and later PCA transformed features
are used in constructing LDA subspace. Using projection of
training images in LDA subspace to compare with that of
test images, angle is estimated. This step is similar to angle
based classifier used in our algorithm, with only difference
of using dynemes histogram as a features in place of GEI
features and using LDA subspace directly instead in PCA
transformed space. In this approach, sparse regressive GEI
data corresponding to the estimated angle refined by ROI
selection based on motion correlation is used in classifier after
projecting it on PCA. The Euclidean distance as a similarity
measure, is used in the classifier for identifying the person. We
have compared our approach with this method reported in [39].
To be fair with comparison, we used first 24 classes to make
the dynemes model and remaining 100 classes used for view-
angle classification and person identification as specified in
their work. Figure 7 shows testing accuracy of angle classifier
for angle 1800. From the results it can be seen that, our
approach outperforms almost at every place. The variant of this
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S=[2, 4, 5, 6] (96.18)
K=[1, 3, 5] 3991 3861 87.59 87.59 88.37 88.49 88.62 88.67 88.79 88.82 88.79 88.82 88.84
S=[2, 4, 6] (96.73)

K=[1, 3, 5, 6], 2675 2592 91.25 91.25 92.07 92.26 92.29 92.33 92.37 92.33 92.33 92.33 92.29
S=[2, 4], /2341 (96.89) /92.39 /92.39 /92.95 /92.99 93.03 93.07 /93.07 93.07 /93.07 /93.07 93.07
124/104 /2287
Subjects (97.68)

K=[1, 2, 3, 1329 1290 93.00 93.00 93.22 93.52 93.60 93.82 93.82 93.90 93.90 93.90 93.90
5, 6],S=[4] (97.07)
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in the Table V. It can be seen that, our approach gives slightly
improved performance over this method.

In [39], the correlation motion analysis for each point in
GEI is done across the views and the sparse regression is
carried out with the help of correlation coefficient. Once the
regression GEI features across any view-angle is obtained, the
view classifier estimates the angle of test gait sequence walked

in any direction. This classifier is based on the GEI features
projected on the PCA and later PCA transformed features
are used in constructing LDA subspace. Using projection of
training images in LDA subspace to compare with that of
test images, angle is estimated. This step is similar to angle
based classifier used in our algorithm, with only difference
of using dynemes histogram as a features in place of GEI
features and using LDA subspace directly instead in PCA
transformed space. In this approach, sparse regressive GEI
data corresponding to the estimated angle refined by ROI
selection based on motion correlation is used in classifier after
projecting it on PCA. The Euclidean distance as a similarity
measure, is used in the classifier for identifying the person. We
have compared our approach with this method reported in [39].
To be fair with comparison, we used first 24 classes to make
the dynemes model and remaining 100 classes used for view-
angle classification and person identification as specified in
their work. Figure 7 shows testing accuracy of angle classifier
for angle 1800. From the results it can be seen that, our
approach outperforms almost at every place. The variant of this
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Training Testing % Accuracy with S=[1, 2, 3, 4, 5, 6] with view angles as follows Testing
with with

K=[1, 3, Non-Ortho.
5, 6] with Views with
124 Sub. S=[1 to 6]

00 180 360 540 720 900 1080 1260 1440 1620 1800 Avg.%
340-LDA- 95.83 96.23 95.56 94.62 87.76 85.61 87.09 92.33 93.81 93.27 95.56 92.52

kNN
500-LDA- 95.16 96.37 96.63 95.29 88.97 85.88 89.65 94.48 94.48 93.95 96.10 93.36

kNN
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S-kNN
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S-kNN
500-LDA- 97.17 97.58 96.50 96.77 94.22 89.51 93.01 95.56 94.35 93.95 97.74 95.06-pID

S-kNN
500-LDA- 97.84 98.92 97.17 97.04 97.84 97.98 96.23 96.50 94.75 94.35 97.71 95.94-VA

S-kNN

TABLE III
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180 , 1080 & 1620 (CASIA B)
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124 Subjects Accuracy where N is as follows

K and S Testing Rank-1 1 2 3 4 5 6 7 8 9 10 11
Sets Sample Angle

Accu. %
K=[1], 6660 6366 64.09 64.09 64.81 64.86 64.83 64.87 64.90 64.89 64.87 64.86 64.81
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in the Table V. It can be seen that, our approach gives slightly
improved performance over this method.

In [39], the correlation motion analysis for each point in
GEI is done across the views and the sparse regression is
carried out with the help of correlation coefficient. Once the
regression GEI features across any view-angle is obtained, the
view classifier estimates the angle of test gait sequence walked

in any direction. This classifier is based on the GEI features
projected on the PCA and later PCA transformed features
are used in constructing LDA subspace. Using projection of
training images in LDA subspace to compare with that of
test images, angle is estimated. This step is similar to angle
based classifier used in our algorithm, with only difference
of using dynemes histogram as a features in place of GEI
features and using LDA subspace directly instead in PCA
transformed space. In this approach, sparse regressive GEI
data corresponding to the estimated angle refined by ROI
selection based on motion correlation is used in classifier after
projecting it on PCA. The Euclidean distance as a similarity
measure, is used in the classifier for identifying the person. We
have compared our approach with this method reported in [39].
To be fair with comparison, we used first 24 classes to make
the dynemes model and remaining 100 classes used for view-
angle classification and person identification as specified in
their work. Figure 7 shows testing accuracy of angle classifier
for angle 1800. From the results it can be seen that, our
approach outperforms almost at every place. The variant of this
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Training Testing Testing Accuracy(%) with S=[2, 4] with view angle as follows
with Accuracy

K=[1, 3, with
5, 6] with (S=[2, 4])
124 Sub.

Correct % Accu. 00 180 360 540 720 900 1080 1260 1440 1620 1800

Method [37] - 90.72 87.9 96.37 94.35 87.1 84.68 91.94 97.18 88.31 87.9 97.18 85.08
Proposed Method 2425 91.25 94.67 95.93 92.68 95.49 86.53 73.06 84.08 95.85 95.78 92.85 97.13

TABLE V
COMPARISON WITH METHOD [37]

Training Testing Testing Accuracy(%) with S=[2, 4] with view angle as follows Avg. Accu.(%)
with Accuracy

K=[1, 3, with
5, 6] with (S=[2, 4])
124 Sub.

Correct % Accu. 00 180 360 540 720 900 1080 1260 1440 1620 1800

Method [39] - 90.5 88 95 88 91 90.5-pID
90 91 91 98 99 91 93 94 92 93 91 94-VA

Proposed 1971 92.22 91.41 94.94 95.45 95.91 92.38 77.15 85.27 95.87 96.82 93.26 95.91 92.22-pID
Method

98.86 98.98 96.96 95.42 98.98 94.41 94.41 100 97.35 94.81 98.46 97.22-VA

TABLE VI
COMPARISON WITH METHOD [39]

work is also presented in [38] using different type of regression
method to select the optimized feature representation.

In [2], authors proposed the framework for person identifi-
cation based on various activities like; jump in place, wave one
hand, jump forward, run, walk (gait). Although, we focused
on gait activity only. The features extracted in [2] are the
histogram of dynemes (centroid of clusters) calculated and
accumulated from each of the frame throughout the video
sequence. This algorithm doesn’t need to calculate the gait
cycle and thus it is shift invariant in time. Two subspaces
are created using LDA from the dynemes histogram features.
One for subject class and another for view-angle. The kNN
classifier with centroid is applied to each of the view of probe
subject to decide its view angle and its subject class. These two
labels obtained from N camera views are fed to the Bayesian
Framework to obtain final output in terms of person class. It is
important to mention here that our feature extraction method
is very much adopted from this work because of its shift-
invariant property. It can also be used for continuous person
identification. However, the classification strategy used in our
approach is hard than the one used in [2]. We compared
our algorithm with the results provided in this paper. The
experiment includes the 5 sample instances as training and
testing is done on remaining one instance as mentioned in [2].
The recognition accuracy is reported in this paper is 93.27%,
while our approach gives the accuracy of 94.19%. This shows
the slight improvement can be gained with our approach.

VI. CONCLUSION

We have explored the view-invariant gait recognition sys-
tem which use three orthogonal views of gait signature for
the person identification. It is observed that, training with
orthogonal views becomes very effective in multi-view gait
recognition. Another proposed mechanism of selective kNN

(s-kNN) to fuse the two classifiers have been successful in im-
proving the gait recognition accuracy. Initially, we performed
experiment considering orthogonal angles 00, 90 and 1800. It
is observed that, the recognition accuracy decreases abruptly
if test instance of a particular view angle not included in
training. The testing accuracy for non-orthogonal view angle
was also infer. Next, we use optimized view angle framework
with orthogonal view angles 180,1080 and 1620 for training.
Various experiments were performed considering 340 and 500
dynemes for kNN and s-kNN classifier. We got significantly
improved results even for non-orthogonal view angles. We
report 97.07% maximum rank-1 angle classification accuracy
and 93% maximum rank-1 person identification with different
sets of K and S for rank N s-kNN classification. It is observed
that s-kNN perform better than kNN in pID (person identifi-
cation) and VA (view angle accuracy).

ACKNOWLEDGMENT

Portions of the research in this paper use the CASIA
Gait Database collected by Institute of Automation, Chinese
Academy of Sciences. The authors are grateful to anonymous
reviewers for their critical suggestions and comments which
greatly helped in improving the quality and presentation of
the paper. Authors are also grateful to Prof. Yogesh Ratnakar
Vispute for proof reading of the paper.

REFERENCES

[1] M. Savvides, K. Ricanek, D. L. Woodard, and G. Dozier, “Unconstrained
Biometric Identification: Emerging Technologies,” Computer, vol. 43,
pp. 56–62, 2010.

[2] A. Iosifidis, A. Tefas, and I. Pitas, “Activity-Based Person Identification
using Fuzzy Representation and Discriminant Learning,” IEEE Transac-
tions on Information Forensics and Security, vol. 7, no. 2, pp. 530–542,
2012.

[3] Liang Wang, Tieniu Tan, Weiming Hu, and Huazhong Ning, “Automatic
Gait Recognition Based on Statistical Shape Analysis,” IEEE Transac-
tions on Image Processing, vol. 12, no. 9, pp. 1120–1131, 2003.



View-Invariant Person Identification by Orthogonal
View Gait Signature and Fusion of Classifiers

SEPTEMBER 2017 • VOLUME IX • NUMBER 316

INFOCOMMUNICATIONS JOURNAL

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 8

[4] L. Wang, H. Ning, T. Tan, and W. Hu, “Fusion of Static and Dynamic
Body Biometrics for Gait Recognition,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 14, no. 2, pp. 149–158, 2004.

[5] J. Han and B. Bhanu, “Individual Recognition using Gait Energy Im-
age.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 2, pp. 316–322, 2006.

[6] S. H. S. Hong, H. L. H. Lee, and E. K. E. Kim, “Fusion of Multiple Gait
Cycles for Human Identification,” 2009 ICCAS-SICE, pp. 3171–3175,
2009.

[7] H. Z. H. Zhang and Z. L. Z. Liu, “Gait Representation and Recogni-
tion Using Haar Wavelet and Radon Transform,” WASE International
Conference on Information Engineering, vol. 1, pp. 83–86, 2009.

[8] T. Amin and D. Hatzinakos, “Wavelet Analysis of Cyclic Human Gait
For Recognition,” Sixteenth International Conference on Digital Signal
Processing, pp. 1–6, 2009.

[9] H. Su and G. Y. Chen, “A New Method of Gait Recognition Independent
of View Angle,” International Conference on Machine Learning and
Cybernetics, ICMLC, vol. 6, pp. 3091–3096, 2010.

[10] K. Moustakas, D. Tzovaras, and G. Stavropoulos, “Gait Recognition
Using Geometric Features and Soft Biometrics,” IEEE Signal Processing
Letters, vol. 17, no. 4, pp. 367–370, 2010.

[11] G. M. Imad Rida, Xudong Jiang, “Human Body Part Selection by
Group Lasso of MotionforModel-FreeGaitRecognition ,” IEEE Signal
Processing Letters, vol. 23, no. 1, pp. 154–158, 2016.

[12] S. A. Niyogi and E. H. Adelson, “Analyzing and Recognizing Walking
Figures in XYT,” Conference on Computer Vision and Pattern Recog-
nition, CVPR, pp. 469–474, 1994.

[13] D. K. Wagg and M. S. Nixon, “On Automated Model-based Extraction
and Analysis of Gait,” Sixth IEEE International Conference on Auto-
matic Face and Gesture Recognition, pp. 11–16, 2004.

[14] L. Lee and W. E. L. Grimson, “Gait Analysis for Recognition and
Classification,” Proceedings of Fifth IEEE International Conference on
Automatic Face Gesture Recognition, pp. 734–742, 2002.

[15] N. V. Boulgouris, “Model-based Human Gait Recognition using Fusion
of Features,” IEEE International Conference on Acoustics Speech and
Signal Processing (2009), pp. 1469–1472, 2009.

[16] H. L. Worapan Kusakunniran, Qiang Wu and J. Zhang1, “Multiple Views
Gait Recognition using View Transformation Model Based on Optimized
Gait Energy Image ,” In Proc. 12th IEEE International Conference on
Computer Vision, pp. 1058–1064, 2009.

[17] ——, “Support Vector Regression for Multi-View Gait Recognition
based on Local Motion Feature Selection ,” In Proc. IEEE Conference
on Computer Vision and pattern Recognition, pp. 974–981, 2010.

[18] ——, “Gait Recognition Under Various Viewing Angles Based on
Correlated Motion Regression ,” IEEE Transaction on Circuits and
Systems for Video Technology, vol. 22, no. 6, pp. 966–980, 2012.

[19] H. L. Worapan Kusakunniran, Qiang Wu and J. Zhang, “Cross-view
and Multi-view Gait Recognitions based on View Transformation Model
using Multi-Layer Perceptron ,” Pattern Recognition Letters, vol. 33,
no. 7, pp. 882–889, 2012.

[20] M. Goffredo, I. Bouchrika, J. N. Carter, and M. S. Nixon, “Self-
Calibrating View-Invariant Gait Biometrics.” IEEE Transactions on
Systems Man and Cybernetics: Part B Cybernetics, vol. 40, no. 4, pp.
997–1008, 2010.

[21] N. Liu, J. Lu, and Y. P. Tan, “Joint Subspace Learning for View-Invariant
Gait Recognition,” IEEE Signal Processing Letters, vol. 18, no. 7, pp.
431–434, 2011.

[22] W. Kusakunniran, Q. Wu, J. Zhang, and H. Li, “A New View-Invariant
Feature for Cross-View Gait Recognition,” IEEE Transaction on Infor-
mation Forensic and Security, vol. 8, no. 10, pp. 1642–1653, 2013.

[23] S. Jia, L. Wang, and X. Li, “View-Invariant Gait Authentication Based on
Silhouette Contours Analysis and View Estimation,” IEEE/CAA Journal
of Autometica Sinica, vol. 2, no. 2, pp. 226–232, 2015.

[24] T. Y. Z. L. Xianglei Xing, Kejun Wang, “Complete Canonical Correla-
tion Analysis With Application to Multi-View Gait Recognition,” Pattern
Recognition, Elsevier B. V., no. 50, pp. 107–117, 2016.

[25] W. Zeng and C. Wang, “View- Invariant Gait Recognition Via Determin-
istic Learning,” Neurocomputing, Elsevier B.V., no. 175, pp. 324–335,
2016.

[26] T. T. Sruti Das Choudhury, “Robust View-Invariant Multiscale Gait
Recognition ,” Pattern Recognition Letters, vol. 48, no. 3, pp. 798–811,
2015.

[27] N. Gkalelis, A. Tefas, and I. Pitas, “Combining Fuzzy Vector Quan-
tization with Linear Discriminant Analysis for Continuous Human
Movement Recognition,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 18, no. 11, pp. 1511–1521, 2008.

[28] M. Zhu and A. Martinez, “Subclass Discriminant Analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28,
no. 8, pp. 1274 –1286, 2006.

[29] N. Karayiannis and P.-I. Pai, “Fuzzy Vector Quantization Algorithms
and Their Application in Image Compression,” IEEE Transactions on
Image Processing, vol. 4, no. 9, pp. 1193 –1201, 1995.

[30] A. Iosifidis, N. Nikolaidis, and I. Pitas, “Movement Recognition Ex-
ploiting Multi-View Information,” IEEE International Workshop on
Multimedia Signal Processing (MMSP), 2010, pp. 427 –431, 2010.

[31] A. Iosifidis, A. Tefas, and I. Pitas, “Person Specific Activity Recognition
using Fuzzy Learning and Discriminant Analysis,” Euripean Signal
Processing Conference (EUSIPCO), 2011.

[32] A. Iosifidis, A. Tefas, N. Nikolaidis, and I. Pitas, “Multi-view Human
Movement Recognition based on Fuzzy Distances and Linear Discrim-
inant Analysis,” Computer Vision and Image Understanding, vol. 116,
no. 3, pp. 347 – 360, 2012.

[33] J. Lu, J. Hu, X. Zhou, and Y. Shang, “Activity-based Person Identifi-
cation using Sparse Coding and Discriminative Metric Learning,” 20th
ACM international conference on Multimedia, pp. 1061–1064, 2012.

[34] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear Spatial Pyramid Match-
ing using Sparse Coding for Image Classification,” IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 1794–1801, 2009.

[35] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient Sparse Coding
Algorithms,” Advances in Neural Information Processing Systems, pp.
801–808, 2007.

[36] N. Gkalelis, A. Tefas, and I. Pitas, “Human Identification from Human
Movements,” 16th IEEE International Conference on Image Processing
(ICIP), 2009, pp. 2585 –2588, 2009.

[37] N. Liu and Y.-P. Tan, “View Invariant Gait Recognition,” IEEE Interna-
tional Conference on Acoustics Speech and Signal Processing (ICASSP),
pp. 1410–1413, 2010.

[38] S. Zheng, J. Zhang, K. Huang, R. He, and T. Tan, “Robust View
Transformation Model for Gait Recognition,” 18th IEEE International
Conference on Image Processing (ICIP), pp. 2073–2076, 2011.

[39] W. Kusakunniran, Q. Wu, J. Zhang, and H. Li, “Gait Recognition Under
Various Viewing Angles Based on Correlated Motion Regression,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 22,
no. 6, pp. 966–980, 2012.

[40] S. Zheng, J. Zhang, K. Huang, R. He, and T. Tan, “Robust View
Transformation Model for Gait Recognition,” International Conference
on Image Processing(ICIP), 2011.

Sagar Arun More was born in Maharashtra, India.
He received B.E. degree in Electronics from the
North Maharashtra University, Jalgaon, India, in
2000 and the M. E. degree in Electronics from Sant
Gadage Baba Amravati University, Amravati, India,
in 2008. He is currently pursuing Ph.D. from North
Maharashtra University Jalgaon. He current research
interests include image and video processing, bio-
metrics.

Pramod Jagan Deore was born in Maharashtra,
India. He received the B. E. degree in Electronics
from the North Maharashtra University, Jalgaon,
India, in 1997.He received the M. E. and Ph.D.
degrees from SGGS Institute of Engineering and
Technology, Swami Ramanand Teerth Marathwada
University, Nanded, in 1999 and 2007 respectively.
He is Professor of Electronics and Telecommunica-
tion Department at the R. C. Patel Institute of Tech-
nology, Shirpur, India. His research interests include
Interval arithmetic operations applications in robust

control, Image processing, and Bio-medical signal processing, Microwave
circuits and antennas etc. He has published 40 papers in National/International
Conferences/Journals and he has Co-authored two books. He is life member
of ISTE.

Sagar Arun More was born in Maharashtra, India. 
He received B.E. degree in Electronics from the 
North Maharashtra University, Jalgaon, India, in 
2000 and the M. E. degree in Electronics from Sant 
Gadage Baba Amravati University, Amravati, India, 
in 2008. He is currently pursuing Ph.D. from North 
Maharashtra University Jalgaon. He current research 
interests include image and video processing, 
biometrics.

Pramod Jagan Deore was born in Maharashtra, 
India. He received the B. E. degree in Electronics 
from the North Maharashtra University, Jalgaon, 
India, in 1997.He received the M. E. and Ph.D. 
degrees from SGGS Institute of Engineering and 
Technology, Swami Ramanand Teerth Marathwada 
University, Nanded, in 1999 and 2007 respectively.
He is Professor of Electronics and Telecommunication 
Department at the R. C. Patel Institute of Technology, 
Shirpur, India. His research interests include Interval 
arithmetic operations applications in robust control, 

Image processing, and Bio-medical signal processing, Microwave circuits 
and antennas etc. He has published 40 papers in National/International 
Conferences/Journals and he has Co-authored two books. He is life member 
of ISTE.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JANUARY 8

[4] L. Wang, H. Ning, T. Tan, and W. Hu, “Fusion of Static and Dynamic
Body Biometrics for Gait Recognition,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 14, no. 2, pp. 149–158, 2004.

[5] J. Han and B. Bhanu, “Individual Recognition using Gait Energy Im-
age.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 2, pp. 316–322, 2006.

[6] S. H. S. Hong, H. L. H. Lee, and E. K. E. Kim, “Fusion of Multiple Gait
Cycles for Human Identification,” 2009 ICCAS-SICE, pp. 3171–3175,
2009.

[7] H. Z. H. Zhang and Z. L. Z. Liu, “Gait Representation and Recogni-
tion Using Haar Wavelet and Radon Transform,” WASE International
Conference on Information Engineering, vol. 1, pp. 83–86, 2009.

[8] T. Amin and D. Hatzinakos, “Wavelet Analysis of Cyclic Human Gait
For Recognition,” Sixteenth International Conference on Digital Signal
Processing, pp. 1–6, 2009.

[9] H. Su and G. Y. Chen, “A New Method of Gait Recognition Independent
of View Angle,” International Conference on Machine Learning and
Cybernetics, ICMLC, vol. 6, pp. 3091–3096, 2010.

[10] K. Moustakas, D. Tzovaras, and G. Stavropoulos, “Gait Recognition
Using Geometric Features and Soft Biometrics,” IEEE Signal Processing
Letters, vol. 17, no. 4, pp. 367–370, 2010.

[11] G. M. Imad Rida, Xudong Jiang, “Human Body Part Selection by
Group Lasso of MotionforModel-FreeGaitRecognition ,” IEEE Signal
Processing Letters, vol. 23, no. 1, pp. 154–158, 2016.

[12] S. A. Niyogi and E. H. Adelson, “Analyzing and Recognizing Walking
Figures in XYT,” Conference on Computer Vision and Pattern Recog-
nition, CVPR, pp. 469–474, 1994.

[13] D. K. Wagg and M. S. Nixon, “On Automated Model-based Extraction
and Analysis of Gait,” Sixth IEEE International Conference on Auto-
matic Face and Gesture Recognition, pp. 11–16, 2004.

[14] L. Lee and W. E. L. Grimson, “Gait Analysis for Recognition and
Classification,” Proceedings of Fifth IEEE International Conference on
Automatic Face Gesture Recognition, pp. 734–742, 2002.

[15] N. V. Boulgouris, “Model-based Human Gait Recognition using Fusion
of Features,” IEEE International Conference on Acoustics Speech and
Signal Processing (2009), pp. 1469–1472, 2009.

[16] H. L. Worapan Kusakunniran, Qiang Wu and J. Zhang1, “Multiple Views
Gait Recognition using View Transformation Model Based on Optimized
Gait Energy Image ,” In Proc. 12th IEEE International Conference on
Computer Vision, pp. 1058–1064, 2009.

[17] ——, “Support Vector Regression for Multi-View Gait Recognition
based on Local Motion Feature Selection ,” In Proc. IEEE Conference
on Computer Vision and pattern Recognition, pp. 974–981, 2010.

[18] ——, “Gait Recognition Under Various Viewing Angles Based on
Correlated Motion Regression ,” IEEE Transaction on Circuits and
Systems for Video Technology, vol. 22, no. 6, pp. 966–980, 2012.

[19] H. L. Worapan Kusakunniran, Qiang Wu and J. Zhang, “Cross-view
and Multi-view Gait Recognitions based on View Transformation Model
using Multi-Layer Perceptron ,” Pattern Recognition Letters, vol. 33,
no. 7, pp. 882–889, 2012.

[20] M. Goffredo, I. Bouchrika, J. N. Carter, and M. S. Nixon, “Self-
Calibrating View-Invariant Gait Biometrics.” IEEE Transactions on
Systems Man and Cybernetics: Part B Cybernetics, vol. 40, no. 4, pp.
997–1008, 2010.

[21] N. Liu, J. Lu, and Y. P. Tan, “Joint Subspace Learning for View-Invariant
Gait Recognition,” IEEE Signal Processing Letters, vol. 18, no. 7, pp.
431–434, 2011.

[22] W. Kusakunniran, Q. Wu, J. Zhang, and H. Li, “A New View-Invariant
Feature for Cross-View Gait Recognition,” IEEE Transaction on Infor-
mation Forensic and Security, vol. 8, no. 10, pp. 1642–1653, 2013.

[23] S. Jia, L. Wang, and X. Li, “View-Invariant Gait Authentication Based on
Silhouette Contours Analysis and View Estimation,” IEEE/CAA Journal
of Autometica Sinica, vol. 2, no. 2, pp. 226–232, 2015.

[24] T. Y. Z. L. Xianglei Xing, Kejun Wang, “Complete Canonical Correla-
tion Analysis With Application to Multi-View Gait Recognition,” Pattern
Recognition, Elsevier B. V., no. 50, pp. 107–117, 2016.

[25] W. Zeng and C. Wang, “View- Invariant Gait Recognition Via Determin-
istic Learning,” Neurocomputing, Elsevier B.V., no. 175, pp. 324–335,
2016.

[26] T. T. Sruti Das Choudhury, “Robust View-Invariant Multiscale Gait
Recognition ,” Pattern Recognition Letters, vol. 48, no. 3, pp. 798–811,
2015.

[27] N. Gkalelis, A. Tefas, and I. Pitas, “Combining Fuzzy Vector Quan-
tization with Linear Discriminant Analysis for Continuous Human
Movement Recognition,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 18, no. 11, pp. 1511–1521, 2008.

[28] M. Zhu and A. Martinez, “Subclass Discriminant Analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28,
no. 8, pp. 1274 –1286, 2006.

[29] N. Karayiannis and P.-I. Pai, “Fuzzy Vector Quantization Algorithms
and Their Application in Image Compression,” IEEE Transactions on
Image Processing, vol. 4, no. 9, pp. 1193 –1201, 1995.

[30] A. Iosifidis, N. Nikolaidis, and I. Pitas, “Movement Recognition Ex-
ploiting Multi-View Information,” IEEE International Workshop on
Multimedia Signal Processing (MMSP), 2010, pp. 427 –431, 2010.

[31] A. Iosifidis, A. Tefas, and I. Pitas, “Person Specific Activity Recognition
using Fuzzy Learning and Discriminant Analysis,” Euripean Signal
Processing Conference (EUSIPCO), 2011.

[32] A. Iosifidis, A. Tefas, N. Nikolaidis, and I. Pitas, “Multi-view Human
Movement Recognition based on Fuzzy Distances and Linear Discrim-
inant Analysis,” Computer Vision and Image Understanding, vol. 116,
no. 3, pp. 347 – 360, 2012.

[33] J. Lu, J. Hu, X. Zhou, and Y. Shang, “Activity-based Person Identifi-
cation using Sparse Coding and Discriminative Metric Learning,” 20th
ACM international conference on Multimedia, pp. 1061–1064, 2012.

[34] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear Spatial Pyramid Match-
ing using Sparse Coding for Image Classification,” IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 1794–1801, 2009.

[35] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient Sparse Coding
Algorithms,” Advances in Neural Information Processing Systems, pp.
801–808, 2007.

[36] N. Gkalelis, A. Tefas, and I. Pitas, “Human Identification from Human
Movements,” 16th IEEE International Conference on Image Processing
(ICIP), 2009, pp. 2585 –2588, 2009.

[37] N. Liu and Y.-P. Tan, “View Invariant Gait Recognition,” IEEE Interna-
tional Conference on Acoustics Speech and Signal Processing (ICASSP),
pp. 1410–1413, 2010.

[38] S. Zheng, J. Zhang, K. Huang, R. He, and T. Tan, “Robust View
Transformation Model for Gait Recognition,” 18th IEEE International
Conference on Image Processing (ICIP), pp. 2073–2076, 2011.

[39] W. Kusakunniran, Q. Wu, J. Zhang, and H. Li, “Gait Recognition Under
Various Viewing Angles Based on Correlated Motion Regression,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 22,
no. 6, pp. 966–980, 2012.

[40] S. Zheng, J. Zhang, K. Huang, R. He, and T. Tan, “Robust View
Transformation Model for Gait Recognition,” International Conference
on Image Processing(ICIP), 2011.

Sagar Arun More was born in Maharashtra, India.
He received B.E. degree in Electronics from the
North Maharashtra University, Jalgaon, India, in
2000 and the M. E. degree in Electronics from Sant
Gadage Baba Amravati University, Amravati, India,
in 2008. He is currently pursuing Ph.D. from North
Maharashtra University Jalgaon. He current research
interests include image and video processing, bio-
metrics.

Pramod Jagan Deore was born in Maharashtra,
India. He received the B. E. degree in Electronics
from the North Maharashtra University, Jalgaon,
India, in 1997.He received the M. E. and Ph.D.
degrees from SGGS Institute of Engineering and
Technology, Swami Ramanand Teerth Marathwada
University, Nanded, in 1999 and 2007 respectively.
He is Professor of Electronics and Telecommunica-
tion Department at the R. C. Patel Institute of Tech-
nology, Shirpur, India. His research interests include
Interval arithmetic operations applications in robust

control, Image processing, and Bio-medical signal processing, Microwave
circuits and antennas etc. He has published 40 papers in National/International
Conferences/Journals and he has Co-authored two books. He is life member
of ISTE.


