The effect of RF unit breakdowns in sensor
communication networks

Tamas Bérczes, Béla Almasi, Janos Sztrik, Attila Kuki

Abstract—In this paper the wireless transmission problem in
sensor networks is investigated. The server (RF unit) is assumed
to be subject to random breakdowns both in busy and idle
states. The sensors of the networks are grouped in two classes.
The first one is the “Emergency” class, which performs the
notification of special emergency situations (eg. fire alarms).
The second one is the ”Normal” class, which measures and
transmits environmental data (eg. temperature). The novelty of
investigations is the inclusion of the non-reliability of the server.
Our main interest is to give the main steady-state performance
measures of the system computed by the help of the MOSEL tool.
Several Figures illustrate the effect of the failure and repair rates
of the server on the mean queue lengths and on the probability
of server’s breakdowns.

I. INTRODUCTION

Wireless sensor networks are widely used to implement low
cost non-attend monitoring of different environments. Baronti
et al. [1] showed that the technology limits are far beyond
the current usage. Chiany [2] represented the wireless sensor
networks as a system containing three main components see
Figure 1. Buchmann [3] showed that the operation mechanisms
depending on the vendor implementations can be totally dif-
ferent, but also common features are observable. For example,
power saving is a standard requirement to achieve long time
operation of the wireless nodes. Similarly, a common feature
that the wireless data transmission can appear as a bottleneck
in the operation.

Retrial queues have been widely investigated and used to
model many problems arising in telephone switching systems,
telecommunication networks, computer networks, optical net-
works and most recently sensor networks, etc. The main
characteristic of a retrial queue is that a customer who finds
the service facility busy upon arrival is obliged to leave the
service area, but some time later he comes back to re-initiate
his demand. Between trials a customer is said to be in orbit.
The literature on retrial queueing systems is very extensive.
For a recent account, readers may refer to the recent books of
Falin and Templeton [4], Artalejo and Gomez-Corral [5] that
summarize the main models and methods. For some recent
results on retrial queues with applications the interested reader
is referred to, for example see papers of Tien Van Do [6] and
references therein.

Using wireless sensor networks, see [7], [8] one of the
biggest problem is the lifetime of the sensor. Most of the
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Fig. 1. Wireless sensor network.

time it is very hard to change or repair the RF Unit of the
sensors. Because these facts, the reliability of the RF Unit
is very important. The lifetime of the sensor determine the
lifetime of the network too.

In this paper we introduce a finite-source retrial queueing
model to investigate the performance characteristics of the
wireless transmission problem in the sensor networks. We
divide the sensors into two classes. The first one is the
”Emergency” class, which performs the notification of special
emergency situations (eg. fire alarms). The second one is the
”Normal” class, which measures and transmits environmental
data (eg. temperature).

The emergency class has priority over the normal class in
the operation. For the performance evaluation of the wire-
less transmission we study and compare two cases: In the
first model the RF transmission possibility will be available
randomly for the sensor nodes (Non-Controlled case). In the
second model the RF transmission requests coming from the
emergency class will access the wireless channel immediately
(Controlled case).

The main purpose of the present paper is to generalize the
sensor network model (see. Bérczes et al. [9], [10]) using a
more realistic case when the RF unit is subject to breakdowns
during its operations. Our aim is to illustrate graphically the
effect of the non-reliability of the RF unit on the steady-state
system measures.

Because of the fact, that the state space of the describing
Markov chain is very large, it is rather difficult to calculate
the system measures in the traditional way of writing down
and solving the underlying steady-state equations. To simplify
this procedure we used the software tool MOSEL (Modeling,
Specification and Evaluation Language), see Begail et al.
[11], to formulate the model and to obtain the performance
measures.

The rest of this paper is organized as follows. In Section
2 we present the corresponding queueing model. Numerical
results and their discussion are provided in Section 3. Finally,
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Fig. 2. A retrial queue with components

Section 4 concludes the paper.

II. SYSTEM MODEL

Let us consider a single server queue with two classes of finite-
sources which represent the sensors. The first class of sensors
correspond to the emergency case (eg. fire alarms), the second
class refers to the normal case (eg. temperature, humidity
measurement). The number of sensors of the first class is
denoted by NN, and the number of sensors of the second class
is denoted by K. Each sensor generates a new service request
(ie. to send the measured value through the radio interface),
according to an exponentially distributed time with parameter
A1 for the emergency sensors and with parameter Ay for the
normal class, respectively.

The server, which refers to the radio transmission in the
model, can be in three states:

o available(idle) state: If the server is available it can start
serving the arriving requests.

o sleeping state: The server can be in sleeping state (for
power saving purposes).

o failed state: If the server is in failed state, it can not start
serving any arriving requests until it is repaired.

The server is busy, when the server is in available state and
at least one requests are in the service area. The server is idle,
when the server is in available state and there is no requests
in the service area.

The server can fail during the interval (¢,t + dt) with
probability ddt + o(dt) if it is in idle or in busy state. If the
server is in sleeping state it can not be failed. If the server fails
in a busy state, the interrupted request returns to the sources.
The repair time is assumed to be exponentially distributed with
a finite mean 1/7. If the server is failed, two different cases can
be treated. The first one is blocked sources case when all the
operations are stopped, that is no new calls are generated. The
second one is the unblocked sources case, when only service
is interrupted but all the other operations are continued. In this
paper we investigate only the unblocked sources case.

The server starts with a listening period. The time of this
listening period is assumed to be exponentially distributed
with parameter «. If no customer arrives during this period,

the server will enter into the sleeping state. The time of the
sleeping period is supposed to exponentially distributed with
parameter /3.

When the sleeping period is terminated, then the server
wakes up. If there are emergency requests waiting in the queue
the server begins to serve them. In the opposite case, when
there is no emergency request waiting in the queue, the server
remains in the available state, it will start a listening period.

Until the listening period finished, the requests arriving to
the server can access to its service. If the listening period
expires without any arrivals the server will enter into the
sleeping mode.

A request of the emergency class goes directly to a FIFO
queue waiting to be served (ie. transmitted through the radio
interface).

If an emergency request arrives to the server we consider
four operation possibilities:

o If the server is available, it starts the service of the
emergency request.

« If the server is busy, the emergency request goes to the
FIFO queue, waiting to be served.

« If the server is in sleeping state the request wakes up the
server, which will start the service after an exponentially
distributed initialization time with parameter -y.

o If the server is failed, the emergency request goes to the
FIFO queue.

If a request from the second class finds the server busy or
in sleeping state or the server is failed then the requests goes
to the orbit. These requests waiting in the orbit retry to find
the server idle according to a Poisson flow with retrial rate
v. We assume that emergency requests have non-preemptive
priority over normal requests.

The service times for each request coming from both classes
are assumed to be exponentially distributed with parameter .

The operational dynamics of the system can be seen in the
corresponding queueing model, see Fig. 2.

We introduce the following notations (see the summary of
the model parameters in Table I):

o ki(t) is the number of active sensors in the emergency
source at time ¢,

e ko(t) is the number of active sensors in the normal source
at time ¢,

e ¢(t) denotes the number of emergency requests in the
queue at time ¢,

 0(t) is the number of jobs in the orbit at time ¢.

e y(t) = 0 if there is no job in the server and the server
is available, y(t) = 1 if the server is busy with a job
coming from the emergency class, y(t) = 2 when the
server is busy with a job coming from the normal sensor
class, y(t) = 3 if the server is in sleeping state at time ¢
and y(t) = 4 if the server is failed at time ¢

e ¢(t) = 1 when the server is in sleeping state at time ¢
and one emergency request has started the initialization
procedure, ¢(t) = 0 in the other cases.



It is ease to see that:

K+ N —q(t) — o), y(t) =04
ki(t)+ka(t) = K+ N —q(t)—o(t) =1,  y(t)=1,2
K+ N = qlt) - oft) — e(t), y(t) =3
TABLE I
OVERVIEW OF MODEL PARAMETERS
Parameter Maximum Value at ¢
Active imergency sensors N (population size) k1(t)
Active normal sensors K (population size) ko (t)
Emergency generation rate A1
Normal generation rate Ao
Total gen. rate MN + XK Ak1(t) + A2ka(t)
Requests in queue N q(t)
Service rate o
Busy servers 1 (number of servers)  c¢(t)

Cust. in service area
Requests in Orbit o
Retrial rate v
Server’s failure rate 1
Server’s repair rate T

N+1 c(t)+aq(t)
K (orbit size) (t)

To maintain theoretical manageability, the distributions of
inter-event times (i.e., request generation time, service time,
retrial time, available state time, sleeping state time, failed
state time) presented in the network are by assumption ex-
ponential and totally independent. The state of the network
at a time ¢ corresponds to a Continuous Time Markov Chain
(CTMC) with 4 dimensions:

The steady-state distributions are denoted by

P(y;c,q,0) = lim P(y(t) = y,c(t) = ¢, q(t) = g,0(t) = 0)

Note, that the state space of this Continuous Time Marko-
vian Chain is finite, so the steady-state probabilities surely
exist. For computing the steady-state probabilities and the
system characteristics, we use the MOSEL software tool in this
paper. These computations are described in papers of Bolch
and Wiichner et al. [12], [13].

As soon as we have calculated the distributions defined
above, the most important steady-state system characteristics
can be obtained in the following way:

o Utilization of the server

N K
US:ZZZP(yaovqao)

y=1 q=0 0=0

o Availability of the server

o Average number of jobs in the orbit
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o Average generation rate of emergency sensors:
A= MAL
o Average generation rate of normal sensors:
A2 = Aoy
III. NUMERICAL RESULTS

In this section, we present some numerical results in order
to illustrate graphically the effect of the server’s breakdown
on some of the most important measures in sensor networks.
The corresponding parameters are summarized in Table II.
numerous interactions of parameters were investigated. The
most interesting results are displayed in the following figures.
In each Figure the blue lines (dotted with circles) represent the
case when A = 0.5 and the red lines (dotted with triangles)
represent the case when A = 2.5.

In Figure 3 one can see the effect of the server’s failure rate
on the mean queue length of emergency request in the FIFO.
The length is increasing in both cases, but at higher generation
rate this increase is faster.



Figure 4 shows how orbit fills up at different failure rates
and request generation rates. It can be seen, that at high value
of the generation rates the server’s failure rate has almost no
effect on the orbit size. At lower generation rate the orbit size
significantly increases when the failure rate has large values.

Figure 5 illustrates the probability of the idle state of the
server. In natural way, this idle state probability is much higher
at large generation rates than at low ones. If we investigate the
effect of the failure rate of the radio unit, a decrease of this
probability can be observed. The speed of this decrease is
much faster at the low generation rates.

In Figure 6 the probability of the failed state of the server
is calculated, where the server initially was in idle state. It
means, that there is no loss of requests here. Requests arriving
during this failed period will be forwarded to queue or to orbit,
depending on their priorities.

At low request generation rates the idle periods are longer
than at higher rates, so the failed periods are more likely. With
higher failure rates the probability of down periods increases,
faster at low load and lower at high load of requests.

Figure 7 shows the same probability, but in this case the
server breakdown occurs in busy state, ie. there was a request
under servicing. The service terminates and the request is
transmitted to the source. In the physical environment it means,
that the signal of the sensor has been lost. Important result,
because at relatively high failure rate the probability of lost
request is significantly high, and it hardly depends on the
generation rate.

It should be underlined that because the terminated requests
under servicing return to the source without service, there is
no sense to investigate response and waiting times.

Figure 8 illustrates the probability that the server fails in
an idle state as a function of repair rates. It means, that there
is no loss of requests in this case. As one can see increasing
the repair rate, the probability of the failure decreases. For
all repair rates we get smaller probabilities by using higher
generation rate.

Figure 9 shows the probability that the server’s breakdown
occurs in busy state, ie. there is a request under servicing.
The service terminates and the request returns to the source
without service. In this case using higher generation rate we
get higher probabilities because the server’s busy periods last
longer than using smaller generation rate.

IV. CONCLUSION

In this paper we have investigated a finite-source retrial
queueing model with non-preemptive priorities and repeated
vacations with non-reliable server. The MOSEL tool was used
to formulate and solve the problem, and the main perfor-
mance and reliability measures were derived and illustrated
graphically. The main goal of the evaluation of the proposed
system was to show how the of server’s failure rate influences
the performance of the system. To the best knowledge of the
authors, this is the first proposal for the use of the theory of
retrial queues to model sensor networks with priority finite-
source with orbit, state dependent vacation times and a non-
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TABLE 11
NUMERICAL VALUES OF MODEL PARAMETERS

Parameter Symbol Value
Overall generation rate A 0.5,2.5
Emergency generation rate A1 = % [0.05,0.25]
Normal generation rate Ao = %)\ [0.45,2.25]
Number of Emergency sensors [NV 50
Number of Normal sensors K 50

Retrial rate v 2

Service rate o 20
Server’s failure rate ) [0.001..0.01]
Server’s repair rate T [0.01..0.21]
Initialization rate ¥ 10

Mean time of sleeping period % 2.5

Mean time of listening period é 1.5

reliable server. In the future work we would like to investigate
more complex sensor models by using finite-source queueing
models.
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