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Classes of Garbling Schemes
Tommi Meskanen, Valtteri Niemi, Noora Nieminen

Abstract—Bellare, Hoang and Rogaway elevated garbled cir-
cuits from a cryptographic technique to a cryptographic goal by
defining several new security notions for garbled circuits [3].
This paper continues at the same path by extending some of their
results and providing new results about the classes of garbling
schemes defined in [3]. Furthermore, new classes of garbling
schemes are defined and some results concerning them and their
relation to earlier classes are proven.

Index Terms—garbled circuits, garbling schemes, secure mul-
tiparty computations, privacy

I. INTRODUCTION

The history of garbled circuits traces back to A. Yao, who
introduced the technique in [7]. The term garbled circuit was
introduced by Beaver, Micali and Rogaway [2] where they
introduced a way of performing secure multiparty computation
with Yao’s circuit garbling technique. Since then Yao’s garbled
circuits have been used for various purposes even though there
was no formal definition what is meant by garbling. No proof
of security existed either - until Lindell and Pinkas introduced
one for a particular garbled circuit using a protocol assuming
semi-honest adversaries [5], [6]. After this result, also a
proof of security against covert and malicious adversaries has
been published [1], [6]. Again, these results are obtained
for a specific protocol using garbling schemes rather than
considering the security of garbling itself.

The first formal definition of a garbling scheme has recently
been proposed by Bellare, Hoang and Rogaway in [3]. A
garbling scheme is defined as a five-tuple of functions: the
actual garbling procedure Gb, the encryption function En,
the decryption function De, the garbled evaluation function
Ev and the original evaluation function ev. The idea behind
garbling is the following. Let f be a function which is to
be evaluated for different inputs x but in such a way that
neither f nor x can be learnt from the evaluation process.
Therefore, a garbled version F is created and instead of
computing y = ev(f, x) we compute Y = Ev(F,X) where X
is obtained from x by encryption. After this y is obtained from
Y by decryption. Figure 1 illustrates the garbling procedure.

Rogaway et al. define also three security notions for gar-
bling schemes. These notions are expressed via code-based
games which are defined in such a way that they capture the
intuition behind the different notions: privacy, obliviousness
and authenticity are all defined to be reached, if the adversary
has only a negligible advantage for winning a particular
game. Moreover, these notions have two different models,
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Figure 1: Description of the technique behind garbling. The diagram
also illustrates that the result of evaluation with garbling must
coincide with the result obtained without garbling.

either based on indistinguishability or simulation. Roughly
speaking, indistinguishability means that the adversary cannot
distinguish between garblings of two functions. The simulation
type means that an adversary is incapable of distinguishing
garbling of the function of its own choice from another similar
looking function devised by a simulator. Here we refer to the
next section for the formal definitions.

Another seminal achievement in [3] is that relations
between the different security notions have been proven.
Rogaway et al. also provide two concrete garbling schemes,
one of which achieves not only privacy but also obliviousness
and authenticity. This example assures that the defined security
classes are not empty.

This paper consists of three sections. In the first section
we define all the necessary concepts, and give an informal
description of them so that the idea behind the concept would
be more comprehensive to the reader. In the second section we
provide new results about the already known classes: some of
the results are extensions to the results in [3], some inspired
by the results in [3]. The third section provides modified
definitions of the games used to define the different security
notions. In this manner, we obtain new classes of garbling
schemes by minor modifications in the games. Then, we prove
some relations not only between the new and existing classes
but also among the new classes. We also discuss intuition
behind these new classes.

II. DEFINITIONS

In this section, we provide the basic definitions and nota-
tions. As usual, N will be the set of positive integers. A string
is a finite sequence of bits. In addition to the basic strings,
there is a special symbol ⊥. The meaning of this symbol is
explained later where the context of usage will be clearer.

Let A be a finite set. Notation y � A means that an
element is selected uniformly at random from the set A, and
this element is assigned to y. If A denotes an algorithm, then
notation A(x1, . . . , xn) means the output of the algorithm A
on inputs x1, . . . , xn.
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Figure 2: The idea of a code-based game is captured in the above
image.

As usual, we say that a function f : N→ R is negligible if
for every c > 0 there is an integer Nc such that |f(x)| < x−c

for all x > Nc

A. Code-based games

The proofs in this paper are heavily based on code-based
games. Following the terminology presented in [4], a game is
a collection of procedures called oracles. This collection may
contain three types of procedures: INITIALIZE, FINALIZE
and other named oracles. The word may is used, since all the
procedures in a game are optional.

The entity playing a game is called adversary. When the
game is run with an adversary, first the INITIALIZE proce-
dure is called. It possibly provides an input to the adversary,
who in turn may invoke other procedures before feeding its
output to the FINALIZE procedure. The FINALIZE receives
an output of the adversary, and creates a string that tells
the outcome from the game typically consisting of one bit
of information: whether the adversary has won or not. This
description about code-based games is quite informal and gives
only the intuition behind the concept. The Figure 2 serves as
an illustration. For a more formal description, we refer to [4].

B. Garbling schemes

In this section we provide a formal definition of garbling
schemes and their security, and here we follow the guidelines
provided in [3].

Formally, a garbling scheme is a 5-tuple G =
(Gb,En,De,Ev,ev) of algorithms, from which the first is
probabilistic and the rest are deterministic. Let f denote the
string that represents the original function. The last component
in the 5-tuple is the evaluation function ev(f, ·) : {0, 1}n →
{0, 1}m which we want to garble. Here, the values n = f.n
and m = f.m represent the lengths of the input x and the
output y = ev(f, x). They must also be efficiently com-
putable from f . The first component Gb denotes the garbling
algorithm. It takes f and 1k as its inputs, where k ∈ N
is a security parameter, and returns (F, e, d) on this input.
String e describes the encryption algorithm En(e, ·) which
maps an initial input x to a garbled input X = En(e, x).
String F describes the garbled function Ev(F, ·). It returns the
garbled output Y = Ev(F,X). Finally, string d describes the
decryption algorithm De(d, ·) which on a garbled input returns
the final output y = De(d, Y ). Here we refer to Figure 1 to
get an idea of how a garbling scheme works.

NOTE: Occasionally, we use a specific evaluation function
evcirc as ev in the 6-tuple. For it, we first define a con-
ventional circuit by a 6-tuple f = (n,m, q,A,B,G). The
first component denotes the number of input wires (n ≥ 2),
the second is the number of output wires (m ≥ 1), and the
third component represents the number of gates (q ≥ 1) in
the circuit. The function A identifies the first incoming wire,
whereas B identifies the second incoming wire of each gate.
The remaining component G is a function identifying the
functionality of each gate. For a more specific definition of a
circuit, see [3]. Finally, the circuit evaluation function evcirc

is the usual canonical evaluation function:

proc evcirc(f, x)
(n,m, q,A,B,G)← f
for g ← n + 1 to n + q do a← A(g), b← B(g), xg ← Gg(xa, xb)
return xn+q−m+1 · · ·xn+q

There are some additional requirements that garbling
schemes must fulfill. These are length, non-degeneracy and
correctness conditions. The length condition means that the
lengths of F, e, d may only depend on the security parameter
k, the values f.n, f.m and the length of the string f. Non-
degeneracy condition means the following: if f.n = g.n,
f.m = g.m, |f | = |g|, (F, e, d) = Gb(1k, f ; r) and
(G, e′, d′) = Gb(1k, g; r) where r represents random coins
of Gb, then e = e′ and d = d′. Correctness requires that
De(d,Ev(F,En(e, x))) will always give the same result as
ev(f, x).

By the concept of a side-information function, we capture
the information revealed about f by the garbling process. In
the case of circuits and evcirc, this might be the size of the
circuit that was garbled, the topology of it or something else
- even the whole initial circuit. Formally, a side-information
function Φ deterministically maps string f to string Φ(f).
Let f = (n,m, q,A,B,G) be a circuit. Then, we define
Φsize(f) = (n,m, q), which is the side-information function
revealing the size of the garbled circuit. Other side-information
functions are Φcirc(f) = f which thus reveals the entire
circuit, and Φtopo which reveals the topology of the initial
circuit, i.e. Φtopo = (n,m, q,A,B).

C. The security notions of garbling schemes

There are three types of security: privacy, obliviousness
and authenticity. The first two types also have two distinct
models: one based on indistinguishability and another based on
simulation. In all cases, the security is defined through a code-
based game consisting of a procedure named GARBLE and
finalization procedure FINALIZE. The procedure GARBLE
is not to be confused with the garbling function Gb : the
garbling function Gb is a component of a garbling scheme G,
whose security the adversary tries to break via the procedure
GARBLE.

Before the game starts, the garbling scheme G and the
side-information function Φ are fixed in the games based
on indistinguishability model. In simulation model, also the
simulator S is fixed although details of it are not assumed to
be known to the adversary. The GARBLE procedure gives the
challenge of the game to the adversary and the FINALIZE
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procedure determines whether the adversary wins the game or
not. The adversary is assigned a certain advantage depending
on the probability of winning the game. This advantage in turn
determines whether the garbling scheme is secure or not.

Table 1 gives the different GARBLE procedures needed in
the games to define different security notions. Note that in this
first formal description we use the subscripts, but after that,
we omit them if they are clear from the context. For example,
we will write PrvSim game instead of PrvSimG,Φ,S .

Let G = (Gb,En,De,Ev,ev) be a garbling scheme, k ∈ N
a security parameter and Φ a side-information function. The
following definitions are informal, and they are mentioned to
capture the idea behind the security notions. For a more formal
treatment, see [3].
PRIVACY: Privacy has two types of notions, and hence

there are two different games with distinct GARBLE proce-
dures, PrvIndG,Φ and PrvSimG,Φ,S . The biggest difference
between these two is that the latter requires an auxiliary
algorithm to be defined, namely the simulator S.

The game PrvInd consists of a GARBLE procedure, which
is called by the adversary exactly once during one game,
and a FINALIZE procedure. Informally the game goes as
follows: the adversary calls the GARBLE procedure having
two appropriate functions and their inputs as the feed. The
procedure returns a garbled version of one of the functions and
its input, and the adversary guesses which of the functions got
garbled. The FINALIZE procedure takes two inputs, value of
parameter b from GARBLE and adversary’s guess b′, and tells
whether the answer given by the adversary was correct or not,
and this will then be the outcome of the game.

The game PrvSim has also two procedures, its own
GARBLE and FINALIZE, from which the latter has the same
functionality as in PrvInd game. The difference in GARBLE
procedure is, that now the other function, from which the
function f is to be distinguished, is devised by the simulator.
The adversary must tell the difference between an actual
function and a ”fake” function.

We define the advantage of an adversary A in game PrvInd
as follows:

Advprv.ind,Φ
G (A, k) = 2 · Pr

[
PrvIndAG,Φ(k)

]
− 1.

If the advantage function Advprv.ind,ΦG (A, ·) is negligible
for all PT adversaries A then we say that the garbling
scheme G is prv.ind secure over Φ. Similarly, we define
the advantage of an adversary B in game PrvSim as
Advprv.sim,Φ,S

G (B, k) = 2 · Pr
[
PrvSimBG,Φ,S(k)

]
− 1. Then,

we define that a garbling scheme G is prv.sim secure over Φ
if for every PT adversary there exists a PT simulator S such
that Advprv.sim,Φ,S

G (B, k) is negligible.
OBLIVIOUSNESS: At first sight, the games for oblivious-

ness seem similar to the privacy games. The difference is
that the decryption algorithm d is not given to the adversary,
and hence the adversary cannot compute the final output
y = De(d,Ev(F,X)). Informally, the adversary is asked to
distinguish two functions and their inputs from each other
without knowing the result of evaluation.

The adversary has an advantage which is calculated as in
the privacy model. The obv.ind and the obv.sim security of a
garbling scheme G are defined similarly as in the correspond-
ing Prv-games.
AUTHENTICITY: Here the FINALIZE procedure is a

little more complex than in the two cases above. The final-
ization procedure of a game checks whether the adversary
is able to produce a valid garbled output Y different to
Ev(F,X) or not. Also the advantage function is slightly
different: Advaut

G (A, k) = Pr
[
AutAG (k)

]
. Again, a garbling

scheme is aut-secure, if for all polynomial time adversaries A
the advantage function Advaut

G (A, ·) is negligible.
We denote GS(xxx,Φ) to be the set of all garbling

schemes that are xxx−secure over the side-information func-
tion Φ, where xxx denotes the type of security: prv.ind,
prv.sim, obv.ind, obv.sim, mod.ind, mod.sim, mod.ind2
or mod.sim2. The notion GS(aut) means the set of all
aut−secure garbling schemes. GS(ev) means the class of
garbling schemes which use the evaluation function ev.

III. RESULTS ABOUT ESTABLISHED CLASSES OF
GARBLING SCHEMES

In this section we provide results concerning the security
classes prv.ind, prv.sim, obv.ind, obv.sim defined in section 2.
The first two theorems consider the effect of different side-
information functions to the sets of garbling schemes. The
following two theorems provide extensions to the existing
results in [3] – the non-inclusions are obtained for any side-
information function Φ instead of restricting it to Φtopo. Then
we continue with two results that provide parallel results to
[3]. Finally, the last two theorems in this section provide
new results about the established security classes of garbling
schemes.

Theorem 1: Suppose that two different side-information
functions Φa and Φb satisfy the condition

Φa(f0) = Φa(f1)⇒ Φb(f0) = Φb(f1). (Condition (∗))

Then we have the inclusion GS(prv.ind,Φb) ⊆
GS(prv.ind,Φa). If we additionally assume that there exists
a polynomial time function g such that g(Φa(f)) = Φb(f)
then we also have GS(prv.sim,Φb) ⊆ GS(prv.sim,Φa).

Proof: Let G = (Gb,En,De,Ev,ev) ∈ GS(prv.ind,Φb).
Suppose now that A is an arbitrary adversary playing the
PrvIndΦa

game and let us construct B as an adversary
playing the PrvIndΦb

game and using A as a subroutine.
The latter adversary B tells the first adversary A to start the
game. Adversary A chooses its input (f0, f1, x0, x1) which
it wants to send to GARBLE procedure, which now in fact
the adversary B pretends to be. Adversary B forwards the
input from A to GARBLE procedure in PrvIndΦb

game.
Adversary B receives an output (F,X, d) or ⊥ from GARBLE.
Now, if Φb(f0) 6= Φb(f1), adversary B sends ⊥ to A.
This is the normal answer: According to our assumption,
Φb(f0) 6= Φb(f1) ⇒ Φa(f0) 6= Φa(f1) and hence adversary
A should receive ⊥ also from its genuine GARBLE pro-
cedure. Otherwise, adversary B forwards the response from
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proc GARBLE(f0, f1, x0, x1) Game PrvIndG,Φ proc GARBLE(f, x) Game PrvSimG,Φ,S
b � {0, 1} b � {0, 1}
if Φ(f0) 6= Φ(f1) then return ⊥ if x /∈ {0, 1}f.n then return ⊥
if {x0, x1} 6⊆ {0, 1}f0.n then return⊥ if b = 1 then (F, e, d)← Gb(1k, f); X ← En(e, x)
if ev(f0, x0) 6= ev(f1, x1) then return ⊥ else y ← ev(f, x); (F,X, d)← S(1k, y,Φ(f))
(F, e, d)← Gb(1k, fb); X ← En(e, xb); return (F,X, d)
return (F,X, d)
proc GARBLE(f0, f1, x0, x1) Game ObvIndG,Φ proc GARBLE(f, x) Game ObvSimG,Φ,S
b � {0, 1} ; b � {0, 1}
if Φ(f0) 6= Φ(f1) then return ⊥ if x /∈ {0, 1}f.n then return ⊥
if {x0, x1} 6⊆ {0, 1}f0.n then return⊥ if b = 1 then (F, e, d)← Gb(1k, f); X ← En(e, x)
(F, e, d)← Gb(1k, fb); X ← En(e, xb); else (F,X)← S(1k,Φ(f))
return (F,X) return (F,X)
proc FINALIZE(b, b′) Game PrvIndG,Φ, Game PrvSimG,Φ,S , Game ObvIndG,Φ, Game ObvSimG,Φ,S
return b = b′

proc GARBLE(f, x) Game AutG proc FINALIZE(Y) Game AutG
(F, e, d)← Gb(1k, f); x← En(e, x) return De(d, Y ) 6= ⊥ and Y 6= Ev(F,X)
return (F,X)

Table I: The games defining the different security notions

its GARBLE to A, who then sends its answer b′ to B. The
adversary B answers the same b′ in its PrvIndΦb

game.
Let us now consider the winning probabilities and advan-

tages of both adversaries in their games. The behavior of
adversariesA and B are the same at every step of the game: the
inputs are the same, and the answers are the same. Therefore
the probability of the answer b′ being the correct one must
be the same in both games. Hence the advantages of both
adversaries are also equal. Because G ∈ GS(prv.ind,Φb) the
advantage of B in PrvIndΦb

game is negligible. Thus, the
advantage of A is also negligible, and G ∈ GS(prv.ind,Φa),
which proves the claim.

For the second part, let us assume that there exists an
efficient conversion g from the side-information function Φa

into Φb. Our objective is to prove under these assumptions
that GS(prv.sim,Φb) ⊆ GS(prv.sim,Φa).

To do this, assume that G ∈ GS(prv.sim,Φb). This means
that for every polynomial time adversary A′ there exists a
simulator S such that the advantage of A′ is negligible in
PrvSimG,Φb,S game.

Let A be an arbitrary adversary playing PrvSimG,Φa,S
games. Similarly to the first part of the proof, let B be
an adversary who plays PrvSimG,Φb,S games by emulating
A, i.e. behaving just like A would behave in corresponding
PrvSimG,Φa,S games. More precisely, by emulation of A we
mean the following. First, adversary B tells A to start its
game. Adversary B receives the GARBLE input (f, x) from
A, after which B forwards this input to its own GARBLE.
This procedure returns (F,X, d) or ⊥ to B, who now consults
adversary A by giving this output to him. Now, A returns b′

to B, who chooses the same b′ as its own return value.
The assumption G ∈ GS(prv.sim,Φb) implies that there ex-

ists a simulator Shard such that the advantage of B is negligi-
ble in PrvSimG,Φb,Shard

game. Now, we define another simu-
lator S ′hard by S ′hard(1k, y,Φa(f)) = Shard(1k, y, g(Φa(f))).
First of all, S ′hard is polynomial time, because the conversion
g is efficient and Shard is a polynomial time simulator. Sec-
ondly, the win probability of B in its own PrvSimG,Φb,Shard

game is the same as the win probability that A has in the
PrvSimG,Φa,S′

hard
game, which implies equal advantages. By

assumption, the advantage of B was negligible, and so is the
advantage of A by the above argument. Now we have found
a simulator against which A has a negligible advantage. �

NOTE: For example, Φa = Φtopo and Φb = Φsize satisfy
the condition (∗).

Theorem 2: Let Φa and Φb be two different side-information
functions satisfying the above condition (∗). Then the follow-
ing inclusion holds: GS(obv.ind,Φb) ⊆ GS(obv.ind,Φa). If
we additionally assume that there exists a polynomial time
function g such that g(Φa(f)) = Φb(f) then we have also
GS(obv.sim,Φb) ⊆ GS(obv.sim,Φa).

Proof: The proof is similar to that of the previous theorem.
�

The next four theorems consider non-inclusions of the form
A * B between sets of garbling schemes. In all cases we make
an assumption that the set A is non-empty. The following two
propositions provide a generalization to Propositions 5 and 7
in paper [3].

Theorem 3: For all Φ and for ev = evcirc, we have
GS(obv.sim,Φ)

⋂
GS(ev) * GS(prv.ind,Φ).

Proof: Let G = (Gb,En,De,Ev,ev) ∈
GS(obv.sim,Φ)

⋂
GS(ev). Let us construct another

garbling scheme G′ = (Gb′,En,De′,Ev,ev) such that
G′ ∈ GS(obv.sim,Φ)

⋂
GS(ev) but G′ /∈ GS(prv.ind,Φ).

The construction is as follows: The function Gb′(1k, f)
picks (F, e, d) ← Gb(1k, f) and returns (F, e, d||e). Let
De′(d||e, Y ) = De(d, Y ). Including e in the description
of the decoding function does not harm obv.sim security,
because the adversary is given only (F,X) by the GARBLE
procedure in the obv.sim game. Thus G′ inherits the obv.sim
security from G.

On the other hand, G′ is not prv.ind secure. Adversary
A makes a query (f0, f1, x0, x1), where f0 = f1 = AND
and x0 = 00, x1 = 01. This choice is fine for the PrvInd
game, since ev(f0, x0) = 0 = ev(f1, x1). Now, the adversary
computes X0 = En(e, x0) and X1 = En(e, x1), which must
be different because of the non-degeneracy condition (see
Section 2). Then he/she compares these two with the garbled
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input X received from GARBLE. This comparison now reveals
which of the inputs, x0 or x1, was used. �

Theorem 4: For all Φ and for ev = evcirc, we have
GS(aut)

⋂
GS(ev) * GS(prv.ind,Φ)

⋃
GS(obv.ind,Φ).

Proof: Let G = (Gb,En,De,Ev,ev) ∈ GS(aut)
⋂
GS(ev).

Let us construct a garbling scheme G′ =
(Gb,En′,De,Ev′,ev) such that G′ ∈ GS(aut,Φ)

⋂
GS(ev)

but G′ /∈ GS(prv.ind,Φ)
⋃
GS(obv.ind,Φ). The construction

is as follows: We define that Ev′(F,X||x)) = Ev(F,X),
En′(e, x) = En(e, x)||x = X||x.

The new encoding function En′ and evaluation function Ev′

do not harm aut−security, since the adversary has chosen the
function f and its input x. On the other hand, appending x
to the encoding harms both obliviousness and privacy: In both
games the adversary chooses the function f in such a way that
ev(f, ·) is not injective. This is possible because it is assumed
that ev = evcirc.

In both PrvInd and ObvInd game the adversary chooses
inputs x0, x1 such that x0 6= x1 and ev(f, x0) = ev(f, x1).
Now, the encoding X||xb reveals which of the inputs was used.
�

The following two results provide parallel results compared
to Propositions 8 and 9 in [3].

Theorem 5: Let P be a one-way permutation in the set of
all functions f . Then, for ΦP (f) = P (f) and for any ev,
GS(obv.ind,ΦP )

⋂
GS(ev) * GS(obv.sim,ΦP ).

Proof: Let G = (Gb,En,De,Ev,ev) ∈
GS(obv.ind,ΦP )

⋂
GS(ev). We construct a new

garbling scheme G′ = (Gb′,En,De,Ev′,ev) such that
G′ ∈ GS(obv.ind,ΦP )

⋂
GS(ev) but G′ /∈ GS(obv.sim,ΦP ).

The construction is the following. The algorithm Gb′(1k, f)
picks (F, e, d) ← Gb(1k, f) and returns (F ||f, e, d). Let
Ev′(F ||f,X) return Ev(F,X). First of all, we claim that
the constructed garbling scheme is obv.ind secure over ΦP .
The reasoning goes as follows. The adversary A sends
(f0, f1, x0, x1) to its GARBLE. For the answer not being ⊥
it must be that ΦP (f0) = ΦP (f1), and hence P (f0) = P (f1)
by the definition of ΦP . Since P is a one-way permutation,
f0 = f1 must hold. Thus prepending f to the description of
F does not harm obv.ind security.

However, G′ is not obv.sim secure over ΦP . We introduce
an adversary B that breaks the obv.sim security with respect
to any PT simulator. The adversary chooses (f, x) to be sent
to the GARBLE procedure in ObvSim game. Now, if the
challenge bit b in the game is 0, the simulator S is called
to produce (F ||f,X) from (1k,ΦP (f)). However, the PT
simulator manages to produce exactly the right function f
with negligible probability, because ΦP = P is a one-way
permutation. In other words, this means that the adversary B
will almost always detect from the parameter F ||f whether
the simulator was used or not. �

Theorem 6: Let P be a one-way permutation in the set
of all functions f and let ΦP (f) = P (f) while ev is
arbitrary. Assume that there exist x and y for which ΦP (f) =
P (f) is one-way even when restricted to functions f such

that y = ev(f, x). Then GS(prv.ind,ΦP )
⋂
GS(ev) *

GS(prv.sim,ΦP ).

Proof: Let G = (Gb,En,De,Ev,ev) ∈
GS(prv.ind,ΦP )

⋂
GS(ev). We construct a new

garbling scheme G′ = (Gb′,En,De,Ev′,ev) such that
G′ ∈ GS(prv.ind,ΦP )

⋂
GS(ev) but G′ /∈ GS(prv.sim,ΦP ).

The construction is similar to that of the previous proof. The
algorithm Gb′(1k, f) picks (F, e, d)← Gb(1k, f) and returns
(F ||f, e, d). Let Ev′(F ||f,X) return Ev(F,X). First of all,
the constructed garbling scheme is prv.ind secure over ΦP

by exactly the same reasoning as in the previous proof.
However, G′ is not prv.sim secure over ΦP . We prove

this by introducing an adversary B having a non-negligible
advantage in the PrvSimΦP

game. By the assumption, there
exist x and y such that ΦP (f) is still one-way, when restricted
to f such that y = ev(f, x). Thus the adversary B can
choose (f, x) satisfying y = ev(f, x) to be sent to the
GARBLE procedure. Now, if the challenge bit b in the game
is 0, the simulator S is called to produce (F ||f,X, d) from
(1k, y,ΦP (f)), where y = ev(f, x). However, the polynomial
time simulator manages to produce exactly the right function
f with negligible probability, because ΦP = P is an injec-
tive one-way function. In other words, this means that the
adversary B will almost always detect from F ||f whether the
simulator was used or not. �

The following two propositions provide new results for
garbling scheme classes in [3].

Theorem 7: If the function h : (f, x) 7→ (Φ(f),ev(f, x))
is injective, then GS(ev) ⊆ GS(prv.ind,Φ).

Proof: Let G = (Gb,En,De,Ev,ev) be an arbitrary gar-
bling scheme over side-information function Φ. Let B be an
adversary playing the PrvIndΦ game. The adversary sends
(f0, f1, x0, x1) to the GARBLE procedure of this game. For
the output not being ⊥ it must be that

Φ(f0) = Φ(f1),ev(f0, x0) = ev(f1, x1).

But by injectivity of h this implies

h(f0, x0) = (Φ(f0),ev(f0, x0))

= (Φ(f1),ev(f1, x1)) = h(f1, x1)

⇒ (f0, x0) = (f1, x1).

This in turn is equivalent to f0 = f1 and x0 = x1, meaning
that the advantage of the adversary B in this game will be
equal to 0. This completes the proof. �

Theorem 8: If the function ev is injective and efficiently
invertible (i.e. given y = ev(f ′, x′), f and x such that
ev(f, x) = y can be found in polynomial time), then
GS(ev) ⊆ GS(prv.sim,Φ).

Proof: Let G = (Gb,En,De,Ev,ev) be an arbitrary gar-
bling scheme over side-information function Φ. Let B be an
adversary playing the PrvSimΦ game. The adversary sends
(f, x) to the GARBLE procedure of this game. But now, if
the challenge bit b = 0, the simulator can always find the
right f and x to be garbled because y = ev(f, x) can
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be inverted efficiently and ev(f, x) = ev(f ′, x′) guarantees
f = f ′, x = x′. This means that no matter what the challenge
bit was, in both cases, b = 0 or b = 1, the pair (f, x) becomes
garbled correctly because the simulator that knows f and x is
able to use the normal garbling method. This means that the
advantage of the adversary B in this game equals 0, proving
the inclusion GS(ev) ⊆ GS(prv.sim,Φ)

⋂
GS(ev). �

IV. NEW CLASSES OF GARBLING SCHEMES

In [3], the definitions and relations between different
security types were, at least to some extent, based on intuition
about what is meant by a garbling scheme that achieves
privacy, obliviousness or authenticity, and the intuition was
modeled as a game. In this section we consider the games
defined in paper [3] from another point of view; we consider
them purely as games, and try to achieve new results by mod-
ifying the existing game definitions in certain ways explained
later.

The first modification we make is that in the indistin-
guishability model, the PrvInd game will be modified to the
direction of ObvInd game by removing the decryption key
d from the return value (F,X, d). The same end result can
be obtained by tightening the ObvInd game by adding the
evaluation test ev(f0, x0)

?
= ev(f1, x1) in it. In the absence

of a better name we call the new class ModInd. The second
modification concerns the PrvSim game, in which we again
ease the requirements by removing the decryption key d from
the return value (F,X, d). In ObvSim game, adding y to the
input of the simulator S will lead to the same intermediate
form as above. The new class shall be named ModSim.

Another modification is obtained by relaxing the PrvInd
game by removing the evaluation test. This can also be
achieved by adding d to the output (F,X) in ObvInd game.
A similar modification in Sim side is to leave y out from the
input of the simulator in PrvSim game, or add d to (F,X)
in ObvSim game. The former modification is called ModInd2
and the latter is called ModSim2.

The finalization procedure is not modified in any of these
games.

A. Applications

Before proceeding to the descriptions of our modifications,
it is convenient to discuss the possible applications that could
utilize garbling schemes and more specifically, our modified
security models. One typical example is outsourcing of a
complex computation to a service in the cloud. In many
cases the input data or the algorithm (or both of them) is
privacy-sensitive data and should not be revealed to the party
running the cloud service. With garbling schemes achieving
different types of security, we can hide different amount of this
information. In order to have an idea which type of security
is most appropriate in different situations, let us take a closer
look at which kind of information is revealed by a garbling
scheme belonging to a specific security class.

Let the function f represent the algorithm, x represents the
privacy-sensitive input data and f(x) = y represents the output

of the algorithm. These are all garbled with some garbling
scheme, and the garbled function and garbled input are given
to the server, which computes the garbled output. It depends
on the garbling scheme how much the server is allowed to
know about f, x and f(x). It is worth noting that whatever
the model of security is, the original function f is not known
for the server, only the side-information function Φ(f) is.
The following list provides the central differences between
the models.

• obv.sim: Garbling does not reveal x, f or f(x) to the
server.

• prv.sim: The server is allowed to get f(x) but not x or
f .

• mod.sim: When computing y1 = f(x1) and y2 = f(x2),
the server is allowed to find out whether y1 = y2 or not.

There are situations in which the output data is not sensitive
and can be revealed to the party maintaining the cloud service.
According to the list above, a prv.sim secure garbling scheme
is then appropriate. Also garbling schemes of the two other
types may fit the situation except if the server needs the
output in further computations. The issue is that the output will
remain garbled in the cloud. Of course, further computations
could also be garbled but this arrangement would significantly
and unnecessarily add the total complexity of computation.

If the output is sensitive data, an obv.sim secure scheme
suits. Our modified model mod.sim is suitable as well except
in some cases where the number and/or distribution of different
output values may reveal too much information. On the other
hand, mod.sim can actually be modified to apply to these
cases as well. Instead of considering inputs x, the modified
scheme would take inputs x||i where i is for example an ever-
increasing counter. The procedure then returns ev(f, x)||i as
the output. The counter at the end of the evaluation result
will now make sure that each output appears only once.
According to the previous discussion, mod.sim secure garbling
schemes can be used in the same applications as prv.sim or
obv.sim secure schemes. In the following section we will
prove that it is at least as easy to find a mod.sim secure
scheme as it is to find an obv.sim or a prv.sim secure scheme.
In conclusion, the modified security model mod.sim covers
almost all applications except some esoteric cases.

B. Definitions and results

Next we give the formal definition of ModInd and ModSim
games. Then we continue by proving some results concerning
the new classes of garbling schemes that are secure with
respect to these games.

The following proposition shows that mod.ind security is at
least as easy to reach as prv.ind security or obv.ind security.

Theorem 9: GS(prv.ind,Φ)
⋃
GS(obv.ind,Φ) ⊆

GS(mod.ind,Φ).

Proof: First suppose that G is a prv.ind secure garbling
scheme. Dropping the decryption key d out of the output of
GARBLE procedure does not increase the winning chances of
any adversary.
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proc GARBLE(f0, f1, x0, x1) ModIndG,Φ proc GARBLE(f, x) ModSimG,Φ,S
b � {0, 1} b � {0, 1}
if Φ(f0) 6= Φ(f1) then return ⊥ if x /∈ {0, 1}f.n then return ⊥
if {x0, x1} 6⊂ {0, 1}f0.n then return ⊥ if b = 1 then (F, e, d)← Gb(1k, f);X ← En(e, x)
if ev(f0, x0) 6= ev(f1, x1) then return ⊥ else y ← ev(f, x); (F,X)← S(1k, y,Φ(f))
(F, e, d)← Gb(1k, fb); X ← En(e, xb) return (F,X)
return (F,X)

Table II: The modified GARBLE procedures in Ind and Sim games

Secondly, suppose that G is an obv.ind secure scheme. Now,
following the specification of ModInd GARBLE procedure,
the adversary receives ⊥ on all inputs whose evaluations
ev(f0, x0) and ev(f1, x1) are not equal. However, this evalu-
ation equality test is not a part of ObvInd game. Hence, even
though GARBLE procedure in ObvInd game returns an output
different from ⊥, the corresponding procedure in ModInd
game might return ⊥. Otherwise the games are identical.
Adversaries of both games are able to find out beforehand
whether the GARBLE procedure returns ⊥ and therefore the
adversary in ModInd game does not receive . Therefore, the
advantage of adversary playing the ModInd game cannot be
better than the advantage of a corresponding adversary in
ObvInd game. According to the assumption, the advantage
in the ObvInd game is negligible, and thus the advantage in
ModInd game must also be negligible. �

Theorem 10: GS(prv.sim,Φ)
⋃
GS(obv.sim,Φ) ⊆

GS(mod.sim,Φ).

Proof: First, suppose that garbling scheme G is prv.sim
secure. As in the PrvInd case, omitting the decryption key
d from (F,X, d) does not increase the winning probability of
an adversary playing the modified game.

Secondly, suppose that the garbling scheme G belongs to
the set of ObvSim secure schemes. In the ModSim game,
the simulator’s additional input y cannot make its work of
producing a good output (F,X) more difficult. Let us explain
in more details why this is the case.

Let A be an arbitrary adversary playing the ModSim game.
Let A′ be the corresponding adversary playing the ObvSim
game: adversary A′ behaves in ObvSim game exactly in the
same way as A behaves in ModSim game. According to our
assumption, there is a simulator S ′ such that the advantage
of A′ is negligible. Now, we construct a simulator S for
the ModSim game. The simulator S will totally omit the
additional input y and call simulator S ′ to produce an output
to the adversary A. Now, this simulator makes the advantage
of adversary A negligible, because the adversary A behaves
just like A′ and also the simulators in both games behave
identically. This completes the proof. �

As mentioned in the introductory part of this section, we
have created four modifications to the prv.ind and prv.sim
models in total, of which we have now covered two. In the
rest of this section, we first give the descriptions of the two
other modified games and provide some results concerning
them. Finally, we give a diagram including the new models
and their relations.

After these two definitions, we will now provide a result
about mod.ind2 and mod.sim2.

Theorem 11: Assume that the following condition holds:

(∀f0, f1) (∀x0, x1) : (Condition (∗∗))
Φ(f0) = Φ(f1)⇒ ev(f0, x0) = ev(f1, x1).

Then GS(mod.ind2,Φ) = GS(prv.ind,Φ). Otherwise
GS(mod.ind2,Φ) = ∅.

Proof: Suppose first that (∗∗) does not hold. Then the
adversary can choose f0, f1, x0, x1 such that ev(f0, x0) 6=
ev(f1, x1) but still Φ(f0) = Φ(f1) holds. In this case, the
adversary will always win the game, because b = 0 if and
only if ev(f0, x0) = De(d,Ev(F,X)), and thus the advantage
would not satisfy the negligibility condition, and no garbling
scheme is secure.

Now assume that (∗∗) holds. Then the the adversary
in the ModInd2 game has no choice other than choosing
f0, f1, x0, x1 such that Φ(f0) = Φ(f1) for not receiving ⊥
which now implies that ev(f0, x0) = ev(f1, x1) must hold.
It follows that the sets of PrvInd secure garbling schemes
and ModInd2 secure garbling schemes must be equal. This
completes the proof. �

Theorem 12: For any Φ, the inclusion GS(mod.sim2,Φ) ⊆
GS(prv.sim,Φ) holds. If (∗∗) holds, and Φ is efficiently
invertible (i.e. given φ = Φ(f ′), a function f can be found
in polynomial time such that Φ(f) = φ), then the equality
GS(mod.sim2,Φ) = GS(prv.sim,Φ) holds. Finally, if (∗∗)
does not hold, then GS(mod.sim2,Φ) = ∅.

Proof: The difference between the ModSim2 and PrvSim
games is, that in PrvSim game the simulator gets y = ev(f, x)
as input, whereas the simulator in ModSim2 game does not.
This means that simulator’s task of creating a good output
(F,X, d) in PrvSim game is not harder than the task of the
simulator in the other game. Therefore, the advantage of an
adversary in PrvSim game cannot be better than in ModSim2
game. This proves the first claim.

For the second part, suppose that (∗∗) holds and Φ is
efficiently invertible. Even though y is not provided to the
simulator, it still is able to produce (F ′, X ′, d′) such that the
adversary has no better chances than guessing to win the
ModSim2 game. Namely, the simulator creates from Φ(f)
such a function f ′ that Φ(f) = Φ(f ′), and it then creates
any suitable input x′ to the function f ′. Now, because of the
condition (∗∗), the equality ev(f, x) = ev(f ′, x′) must hold
and hence the simulator always learns the right y. This means
that the setting in this new, modified game actually is exactly
the same as in PrvSim game.

Finally suppose that (∗∗) does not hold. In the modified
game, the adversary can choose f and x such that there
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proc GARBLE(f0, f1, x0, x1) ModInd2G,Φ proc GARBLE(f, x) ModSim2G,Φ,S
b � {0, 1} b � {0, 1}
if Φ(f0) 6= Φ(f1) then return ⊥ if x /∈ {0, 1}f.n then return ⊥
if {x0, x1} 6⊂ {0, 1}f0.n then return ⊥ if b = 1 then (F, e, d)← Gb(1k, f);X ← En(e, x)
(F, e, d)← Gb(1k, fb); X ← En(e, xb) else(F,X, d)← S(1k,Φ(f))
return (F,X, d) return (F,X, d)

Table III: Another modification of GARBLE procedure in Ind and Sim games

exists a function f ′ satisfying f ′ 6= f, Φ(f) = Φ(f ′) and
ev(f, x) 6= ev(f ′, x′) for some x′. Now the simulator has
at most 50% chance to guess the correct f. If the guess was
incorrect, distinguishing the simulated version from the actual
garbled output is easy since the adversary is able to check
if ev(f, x) = De(d,Ev(F,X)). Thus, no garbling scheme is
ModSim2 secure. �

Corollary 1: The following inclusion holds:
GS(mod.sim2,Φ) ⊆ GS(mod.ind2,Φ).

Proof: The claim follows from Theorem 11 and Theorem
12 and Proposition 2 in [3]. �

NOTE: In practice, condition (∗∗) does not usually hold.
Therefore, it is hard to imagine an application in which our
second modification would have practical significance because
of the above result.

The next theorem provides a relation between the modified
simulation type and the modified indistinguishability type
garbling schemes under our first modification.

Theorem 13: The following inclusion holds:
GS(mod.sim,Φ) ⊆ GS(mod.ind,Φ).

Proof: Let G = (Gb,En,De,Ev,ev) ∈ GS(mod.sim,Φ).
We need to prove that G ∈ GS(mod.ind,Φ). Let A be the
PT adversary playing the ModInd game. We construct a PT
ModSim adversary B as follows. Let B run A as a subroutine.
The latter makes its query f0, f1, x0, x1. Adversary B returns
⊥ to A if Φ(f0) 6= Φ(f1) or {x0, x1} 6⊆ {0, 1}f0.n or
ev(f0, x0) 6= ev(f1, x1).

Regardless of whether B returned ⊥ to A or not, adversary
B picks c ∈ {0, 1} at random and makes its query to
GARBLE with input fc, xc getting back (F,X) which is sent
to adversary A in case ⊥ was not sent earlier. In any case,
adversary A returns a bit b′ to adversary B. The latter adver-
sary now returns 1 if Φ(f0) = Φ(f1), {x0, x1} ⊆ {0, 1}f0.n ,
ev(f0, x0) = ev(f1, x1) and b′ = c and 0 otherwise. Let S
be any PT algorithm representing the simulator. Then there
are two possible outcomes of the game:

1) If Φ(f0) = Φ(f1), {x0, x1} ⊆ {0, 1}f0.n and
ev(f0, x0) = ev(f1, x1), then the input to the simulator
S is the same regardless of c, or

2) Φ(f0) 6= Φ(f1), {x0, x1} 6⊂ {0, 1}f0.n or ev(f0, x0) 6=
ev(f1, x1) then adversary B always answers 0 regard-
less of b′ received from adversary A.

Let’s analyze the win probabilities of both adversaries. First
consider the case 2. Adversary B always answers 0, and there
is 50% chance of it being the right answer, and hence the win
probability of B is one half. The win probability of adversary
A is the same: A does not get any information linked to the

challenge bit, and thus its answer is as good as guessing but
there is always 50% chance of answering right.

Next consider case 1. Now, there are two possibilities for
challenge bit b. Suppose first that b = 1. In this case, adversary
B wins if and only if A wins. On the other hand, if the
challenge bit b equals 0, adversary A does not have any
information because it is getting the same input regardless of c,
so its answer is no better than a guess. Thus the win probability
equals 1

2 . Furthermore, the adversary A wins if and only if
adversary B loses, therefore Pr [B wins] = Pr [A loses] = 1

2 .
This case analysis above shows that in all cases

Pr [B wins] = Pr [A wins] . Now continuing with
Pr [A wins] we obtain

Pr [A wins] =
1

2
Pr [A wins|b = 1] +

1

2
Pr [A wins|b = 0]

=
1

2
·
(

1

2
+

1

2
· AdvA

)
+

1

2
· 1

2

=
1

2
+

1

4
· AdvA.

By the definition of advantage of adversary B we have
Pr [B wins] = 1

2 ·AdvB+ 1
2 and therefore we obtain AdvA =

2 ·AdvB. Now, since the AdvA is negligible according to the
assumption, AdvB is also negligible. �

For our last theorem, we introduce a new condition:

The decryption key d can be efficiently computed from the
tuple (F,X). (Condition (∗ ∗ ∗))

Theorem 14: The following inclusions hold:
GS(mod.ind2,Φ) ⊆ GS(obv.ind,Φ) and
GS(mod.sim2,Φ) ⊆ GS(obv.sim,Φ). If condition (∗ ∗ ∗)
holds, then the classes are equal.

Proof: The difference between ModInd2 and ObvInd
(respectively ModSim2 and ObvSim) is that in ModInd2
game (in ModSim2 respectively) the adversary receives the
decryption key d as an output from GARBLE together with
F and X. This auxiliary output does not make the advantage
smaller to the adversary in the modified games. The claim
follows from this observation. �

These results complete the considerations about the possible
relations between the new and old classes of garbling schemes.
Results are collected into Figure 3.

If in addition to (∗∗∗) we require that (Φ,ev) is efficiently
invertible (i.e. given y = ev(f ′, x′) and φ = Φ(f ′), f and
x such that y = ev(f, x) and Φ(f) = φ can be found in
polynomial time) and condition (∗∗) also holds, then all the
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Figure 3: Inclusions between classes of garbling schemes

sets in the diagram collapse into one point: a garbling scheme
that belongs to one security class will be secure also with
respect to any other security model.

V. CONCLUSIONS

In this paper, we have considered different security classes
of garbling schemes. Some of our results are obtained for the
classes defined by Bellare, Hoang and Rogaway in [3]. We
have also introduced new security classes and described their
relation to the earlier classes. From these new classes, we see
that the new classes GS(mod.ind,Φ) and GS(mod.sim,Φ)
would be promising targets for future research - at least, it
seems that these classes would have practical applications.
Namely, our results show that all garbling schemes in the
old obv-classes belong also to the new mod-classes, and
therefore it is at least as easy to find a garbling scheme that
is mod-secure. Moreover, it seems to be harder to find an
application which would require obv-security but where mod-
security would not suffice. The second new class sets too hard
requirements for a secure garbling scheme and this class is
practically always empty.
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