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Abstract—Recently, content-adaptive steganography was mod-
eled by Johnson et al. as a stochastic, two-player, zero-sum
game between a steganographer and a steganalyst [1]. To model
economically rational steganalysts, we generalize this model by
introducing a non-uniform cost of steganalysis. We characterize
the Nash equilibria of our game based on the theory of blocking
games [2], a class of quasi-zero-sum games, which were previously
used to study the attack-resilience of systems and networks.
Finally, we provide efficiently computable linear programs for
finding an equilibrium. To the best of our knowledge, our paper
is not only the first one to solve our generalized model, but it is
also the first one to solve the original model for every possible
combination of the parameter values.

Index Terms—game theory, content-adaptive steganography,
economics of security, information hiding.

I. INTRODUCTION

STEGANOGRAPHY is the practice and study of tech-
niques for hiding messages into cover media in such a

way that the very existence of the messages is concealed [3],
[4], [5]. Even though steganography resembles cryptographic
encryption in many aspects, they are fundamentally different:
the latter uses messages that are meant to be undecipherable
to anyone except the intended recipient, while the former uses
messages that are meant to be “invisible” to anyone except the
recipient. The advantage of steganography over cryptography1

is that, ideally, its practitioners can communicate without
raising suspicion, even if their communication channel is being
observed. This can be useful in many situations, for example,
in countries where encryption itself is illegal.

A considerable portion of the literature on steganography
(e.g., [6]) discusses specific steganographic and steganalytic
methods for hiding and revealing hidden messages in specific
cover media (e.g., JPEG images, MP3 audio files). However, in
order to assess and quantify the security of a general class of
steganographic algorithms, models must abstract away from
the specifics of the carrier medium. These abstract models
can be used to quantify steganographic capacity, regardless of
the specifics of the employed algorithms. One of the most
important common ideas in many recent algorithms is the
concept of content-adaptive steganography. It is based on the
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observation that cover objects are usually heterogeneous in
the sense that different parts have varying predictability (e.g.,
noisy parts of images are harder to predict). In its most basic
form, which is called naı̈ve content-adaptive embedding, the
steganographer always embeds into the most unpredictable
parts since changes are harder to detect there.

Several models – including ours – make use of the game the-
ory nomenclature, and describe information hiding as a game
between a steganographer (the defender) and a steganalyst
(the attacker). Game-theoretic models allow the steganalyst
to employ a strategy that takes the anticipated actions of the
stenographer into consideration, and vice versa. The stegana-
lyst’s goal is either to detect the presence of a hidden message,
or to introduce noise into the covert communication in order
to disrupt it [7]. In this paper, we focus on the first problem
and, consequently, assume that the attacker is passive, i.e., she
does not manipulate the communication, only observes it.

A passive attacker model is described by Orsdemir et al.
in [8], where the steganalyst uses a statistical classifier to
distinguish between benign cover objects and objects with
embedded information. Both the steganographer and the ste-
ganalyst are assumed to be able to choose a sophisticated
or a naı̈ve strategy – in other words, to anticipate or not to
anticipate the other party’s efforts. In [8], it is shown that a
Nash equilibrium does not exist for pure strategies, but it does
exist for mixed strategies, i.e., when both parties select their
pure strategies at random according to distributions chosen by
them beforehand.

In Ker’s model [9], the steganographer is assumed to be
in the possession of a set of cover media, and she is free
to distribute the information to be hidden between the media
arbitrarily. She transmits the – potentially information-bearing
– media, and the steganalyst bases her decision on the pool
of collected media and a detection threshold value. In [9],
it is shown that, somewhat surprisingly, the steganographer’s
best strategy is either to concentrate all information into one
cover or to distribute it evenly between all covers. However, a
Nash equilibrium is shown to exist if the steganographer uses
a mixed strategy (i.e., if she selects her parameter randomly
according to a distribution chosen by her beforehand), but
the steganalyst’s detection threshold is constant; it is also
conjectured that this is the only Nash equilibrium.

Schöttle and Böhme discuss strategic content-adaptive
steganography in [10]. In their model, the steganographer first
hides her message at some position in the cover, and the ste-
ganalyst then inspects a chosen position to detect the presence
of the message. To model content-adaptive steganography,
the steganographer uses a heterogeneity metric to compute
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the probability of hiding at a given position. The authors
demonstrate that there exists a unique Nash equilibrium, and
also show that strategic adaptive steganography is always more
secure than naı̈vely choosing hiding positions starting with the
most heterogeneous and then going to the less heterogeneous.

Johnson et al. describe a model of content-adaptive
steganography, in which a steganalyst tries to infer the posi-
tions where information was hidden by the steganographer [1].
The information uses k hiding positions out of n, and the
steganographer is assumed to select the actual positions ac-
cording to a predictability metric. The steganalyst guesses the
probable cover value for a certain position based on previ-
ously obtained information, and compares it to the observed
value. The authors show that the game has a unique Nash
equilibrium and propose formulas for computing the players’
equilibrium strategies. The model is generalized in [11], where
the steganalyst is allowed to obtain information about every
bit position; however, the authors characterize the equilibrium
strategies only for the special case of hiding a single bit in
cover media of two bits.

Schöttle et al. study a variant of the above model, in which
the steganographer chooses whether to embed in a bit position
independently of the other positions, with the constraint that
the expected number of embedded bits has to be k [12]. The
authors show that the steganalyst’s best-response strategy can
be expressed as a linear aggregation threshold formula, similar
to those used in practical steganalysis.

The main contributions of our paper are the following:

• We generalize the model of Johnson et al. [1] by intro-
ducing a non-uniform cost of steganalysis.

• We provide a solution based on the theory of blocking
games [2] for our general model. To the best of our
knowledge, our solution is the first one in the literature
on steganography that is based on this class of games.
Furthermore, our solution is the first one to solve the
model of [1] for every possible combination of the
parameter values.

• We show that in the special case of embedding one bit
and zero cost of steganalysis, our solution is equivalent
to that of Johnson et al. [1].

The remainder of this paper is organized as follows. First,
we introduce the model of content-adaptive steganography
that is used in this paper in Section II. In Section III, we
summarize those results from the theory of blocking games
that are essential to our analysis. In Section IV, we show how
steganography can be modeled as blocking game, and provide
an efficient solution for the game in Section V. In Section VI,
we discuss the implications of our results. Finally, we provide
concluding remarks in Section VII.

Notations: Vectors are assumed to be column vectors and
denoted by bold lowercase letters (e.g., x). Vectors of ones
and zeros are denoted by 1 and 0, respectively (their sizes
are not indicated, as they are never ambiguous in this paper).
Matrices are denoted by bold uppercase letters (e.g., Λ).
The prime sign is used to denote transposition (e.g., x′ or
Λ′). Elements of vectors are referred to using subindices
(e.g., x = [x0, . . . , xn−1]′). As an example to using these

notations, consider the equality 1′x =
∑
i xi, which we will

use repeatedly throughout this paper.

II. THE STEGANOGRAPHY GAME

In this section, we first summarize the game-theoretic
model of Johnson et al. [1], to which we will refer as the
basic steganography game, and briefly discuss its previously
proposed solution in Subsection II-A. Then, we generalize the
model by introducing a cost of steganalysis in Subsection II-B.

The strategic interactions between the steganographer,
whom we will call Alice, and the steganalyst, whom we will
call Eve, are modeled as a two-player, zero-sum, one-shot
game. In a nutshell, the game is played as follows. First, Alice
embeds a k-bit hidden message into a randomly drawn cover
object. Then, an unbiased coin is flipped by Nature to decide
whether the original cover object or Alice’s stego object is sent
through the communication channel, which is being observed
by Eve. Finally, Eve chooses one bit position to query, and
uses side information about the most likely value of that bit
to decide whether the observed object is cover or stego. If
Eve’s decision is right, she wins and receives a payoff of 1,
while Alice receives a payoff of −1 (i.e., she loses an amount
of 1). On the other hand, if Eve’s decision is wrong, then
vice versa (Eve receives a payoff of −1, while Alice receives
1). For an illustration of the entire steganographic system, see
Figure 1 (notice that – for the sake of completeness – this
figure also includes the recipient of the message, who is not
part of the game).

It is assumed that both players try to maximize their respec-
tive expected payoffs (or, equivalently, minimize their expected
loss). For a summary of the players’ payoffs depending on
what has actually been sent through the channel and what
Eve’s decision is, see Table I. Note that element-wise positive
affine transformations on the players’ payoff matrices do not
change the equilibria of the game; thus, even though the payoff
values might seem unrealistic for certain situations, the results
apply to a wider range. Also note that this model differs from
the standard model of steganography by allowing Eve to query
some side information directly from the cover (for an elaborate
discussion on this assumption, we refer the reader to [1]).

TABLE I
PAYOFFS FOR EVE AND ALICE

Reality
cover stego

Eve’s decision cover (1,−1) (−1, 1)
stego (−1, 1) (1,−1)

Now, we discuss the model in more detail. Cover and stego
objects – which can represent digital images, audio files, etc.
– are assumed to consist of n bits; hence, each object is a
vector x ∈ {0, 1}n.2 Cover objects are drawn by Nature from
a random source X = [X0, . . . , Xn−1]

′, which is a vector of
n independent Bernoulli random variables3. The probability
that Xi takes its more likely value is given by the function

2In practice, embedding is usually restricted to a subset of the bits; for
example, to the least significant bits in a bitmap image. In this case, we can
simply ignore all other bits and consider this restricted set to be our vector.

3A Bernoulli random variable’s support is the set {0, 1}.
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Fig. 1. Block diagram of the steganographic system.

f(i) : {0, . . . , n − 1} 7→
[

1
2 , 1
]
. To model content-adaptive

steganography, both players are assumed to know f . Without
any loss of generality, let f(i) = P (Xi = 1) for the remainder
of this paper.4

Alice embeds her k-bit message into a randomly drawn
cover object x by flipping the values of x at k different
positions. As she is free to choose the embedding positions,
her pure strategies are k-subsets of the set of positions
{0, . . . , n − 1}, and her pure-strategy set is the set of all k-
subsets, which will be denoted by S. Since always embedding
in the same set of positions is almost never optimal, we allow
Alice to use a mixed strategy. When using a mixed strategy,
Alice first chooses a distribution α over her pure-strategy set
S (i.e., a vector α ∈ R|S|≥0 satisfying 1′α = 1). Then, she
embeds into a k-subset randomly chosen according to the
distribution α.

Unfortunately, Alice’s mixed-strategy space can be very
complex, as her pure-strategy set is exponential in size. More
specifically, the size of her pure-strategy set is the number of
all k-subsets of the set of n positions, which is equal to

(
n
k

)
.

Hence, the natural representations of her mixed strategies are
vectors of length

(
n
k

)
. Consequently, a simpler representation

of her mixed-strategy space, which has the right payoff-
equivalence-class properties, was proposed in [1]. Let ai be
the probability that Alice embeds in position i. The probability
of embedding in position i is equal to the sum probability of
all the k-subsets that contain i; formally,

ai =
∑
S3i

αS , (1)

where S 3 i means that the sum is over all k-subsets which
contain i. It can be shown that Alice’s expected payoff is
the same for any two mixed strategies that have the same
projection a. Furthermore, for every non-negative vector a
that satisfies 1′a = k (i.e., k bits are embedded) and a ≤ 1
(i.e., probabilities can never be higher than 1), there exists a
mixed strategy whose projection is a (for a constructive proof,
see Appendix A). Hence, the set of these vectors can be used
to represent Alice’s mixed-strategy space.

Since Eve’s task would be trivial if only stego objects
were transmitted through the communication channel, Nature
randomly selects – obviously unknown to Eve – either the
original cover object or the stego object, which contains
Alice’s message. The probability of sending the original cover

4Note that the convention f(i) = P (Xi = 1) is indeed without loss of
generality, as we can easily swap the definitions of 0 and 1 in the cover
source.

object is P0, while the probability of sending the stego object
is P1 = 1 − P0. Following the convention of [13], which
requires cover and stego objects to be equally likely, it is
assumed that P0 = P1 = 1

2 .
Eve’s strategy space is rather complex as her pure strategies

consist of two steps: first, selecting a position to query
and, then, deciding if the observed object is cover or stego.
However, once a position has been chosen and its value has
been observed5, Eve’s optimal decision becomes trivial. For
P0 = P1 = 1

2 , it can be shown that Eve’s optimal decision
rule Decision(xi) is

Decision(xi) =

{
cover if xi = 1 ,

stego if xi = 0 .
(2)

Thus, the only strategic choice Eve has to make is to pick
one position, as her decision will then be trivial based on the
above optimal decision rule. Consequently, Eve’s pure-strategy
set can be simplified to the set of positions {0, . . . , n−1}, and
her mixed strategies can be represented by distributions over
the set of positions (i.e., a mixed strategy is a vector β ∈ Rn≥0

satisfying 1′β = 1).

A. A Solution for the Basic Steganography Game

Johnson et al. proposed a solution for – what we call here
– the basic steganography game in [1]. In this paper, we show
that this solution covers the special case of k = 1 (i.e., hiding
only a single bit), but does not always work in the more general
case k ≥ 1 (i.e., hiding an arbitrary number of bits). Here, we
briefly discuss the main ideas of this solution (for a more
detailed discussion, we refer the interested reader to [1]) and
show examples where the solution does not work.

Let Eve’s local advantage at position i be the product of
the probability ai that Alice embeds in position i and the
value f(i) − 1

2 . It can be shown that Eve’s local advantage
is proportional to her expected payoff for querying a given
position (hence the name). Consequently, in a best response,
Eve always queries the position (or positions) where her local
advantage attains its maximum. Since, Alice’s loss is equal to
Eve’s payoff in the basic game, Alice tries to minimize the
maximum of Eve’s local advantage.

Now, assume that there exists a mixed strategy for Alice
such that Eve’s local advantage is uniform over the positions.
Then, it can be shown that this uniform local advantage

5More precisely, Eve observes whether the value is the more likely one or
the other. However, since the more likely value is assumed to be 1 to simplify
our notations, Eve simply observes whether it is 1 or 0.
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strategy is Alice’s unique optimal strategy. For the sake of
contradiction, suppose that this is not true, that is, there
exists an optimal strategy a∗ where Eve’s local advantage is
not uniform. Let I be the set of positions where the local
advantage attains its maximum, and j be a position where it
attains its minimum. However, this leads to a contradiction as
Alice could decrease the maximum of Eve’s local advantage
by decreasing a∗i for every i ∈ I and increasing a∗j at the same
time. Thus, this uniformity constraint is indeed necessary.
Finally, it can also be shown that the constraint is sufficient
as well.

However, in the case of k > 1, the existence of a strategy
satisfying the uniform local advantage constraint is not guar-
anteed. As a simple example, let n = 3, k = 2, f(0) = 5

8 ,
and f(1) = f(2) = 7

8 . Then, even if Alice hides in position 0
with probability 1, the local advantage 1

8 at position 0 is still
less than the average local advantage 3

16 at the other positions;
thus, a strategy with uniform local advantage cannot exist.

More generally, we can show that there exist an infinite
number of counterexamples.

Lemma 1. Let k = 2, f(0) = 1
2 + ε, and f(i) = 1 − ε for

every i > 0, where ε is an arbitrary number in (0, 1
2 ). Then,

no strategy satisfying the uniform local advantage constraint
can exist if n < 1

2ε .

Notice that the threshold for n grows without bound as ε
approaches zero.

Proof. Assume that n < 1
2ε . Then, ε < 1

2n .
To prove that no strategy with a uniform local advantage

can exist, we now show that the local advantage at position
0 is always less than the average. First, consider the extreme
case of a0 = 1. In this case, the local advantage at position
0 is the highest possible value, which is 1 ·

(
1
2 + ε− 1

2

)
= ε.

Since the sum of the probabilities of the remaining positions
is 1 and f is uniform 1− ε over them, the sum of their local
advantages is 1 ·

(
1− ε− 1

2

)
= 1

2 − ε. Hence, the average
local advantage over all positions is

ε+ 1
2 − ε
n

=
1

2n
. (3)

By combining this with ε < 1
2n , we have that the local

advantage at position 0 is strictly less than the average. Finally,
it is obvious that in every strategy that assigns a probability
smaller than 1 to position 0, the local advantage at position 0
is even smaller compared to the average.

B. Cost of Steganalysis

In the basic steganography game, the steganalyst is inter-
ested solely in minimizing her decision error, without any
regard to the cost of her operation. In other words, the
basic steganography game assumes that the steganalyst acts
as if she bears zero cost. However, in practice, the cost of
steganalysis is non-zero: operation and maintenance costs of
the system performing steganalysis, cost of acquiring side
information, cost of implementing detection algorithms against
new steganographic techniques, etc. These costs might seem
negligible at first compared to the payoff for a successful

detection, but as the probability of detection decreases and
the size of the steganalytic system increases, the cost of
steganalysis can exceed the expected payoff. Furthermore, the
cost of steganalysis might be non-uniform over the set of
positions; for example, the cost of acquiring side information
might be different for the EXIF and the image data of a
JPEG file. Consequently, an economically rational player 1)
might use a querying strategy which differs from the optimal
strategy of the zero-cost case or 2) might decide not to perform
steganalysis at all if it is economically infeasible. To model
an economically rational steganalyst, in this subsection, we
generalize the basic steganography game by introducing a cost
of steganalysis.

We assume that querying and predicting a given position i
requires some effort or expenditure from Eve in the amount
of µi ∈ R≥0, where µi can depend on the position i. Thus,
her payoff is 1 − µi when she makes the right decision and
−1− µi when she does not. Note that
• the cost has to be paid by Eve in advance, regardless of

whether she will be successful in detecting Alice or not.
• The cost does not affect Alice’s payoff directly. However,

it might affect her strategy indirectly through changing
Eve’s optimal strategy.

• The cost can depend only on which position is chosen,
but not on the value of the bit at the chosen position.

• The basic steganography game is the special case µ = 0.

III. BLOCKING GAMES

Blocking games are “quasi”-zero-sum6 games that model
the strategic interactions between a defender, who requires a
set of resources to perform her task, and an adversary, who
is capable of carrying out availability (or denial-of-service)
attacks against the resources [2]. The first blocking game
was proposed by Gueye et al. in [14] to study the problem
of designing attack-resilient network topologies. The general
concept of blocking games was introduced in [2] to allow
studying a wider range of security and availability problems.
In this section, we summarize the results of [2], on which
our analysis is built. Note that we will use the blocking
game terminology instead of the steganographic throughout
this section (e.g., defender, adversary, and resources instead
of steganographer, steganalyst, and bit positions), and we will
connect the two in the next section.

A blocking game is a one-shot, two-player game between
a defender and an adversary. The defender has a non-empty
set of resources E available to her. To perform her task, she
has to select a collection of resources S ⊆ E; however, she
cannot choose any collection of resources, only those that are
feasible for her task. This non-empty set of feasible collections
is denoted by S = {S1, . . . , SN}, where each Si ⊆ E; hence,
the defender’s pure-strategy set is S. Meanwhile, the adversary
targets a resource e ∈ E to be attacked in order to disrupt the
task of the defender; hence, the adversary’s pure-strategy set is
E. To successfully carry out her attack against resource e, the
adversary has to spend µe, which is called the cost of attack.

6The reason for calling these games quasi-zero-sum will soon be discussed.
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Since sufficiently high costs can make all attacks unprofitable
for the adversary, she also has the option of not attacking.

The players’ payoffs are determined by a loss function
λ(S, e) : S ×E 7→ R≥0. When the defender selects collection
S and the adversary targets resource e, the defender’s payoff
is −λ(S, e) (in other words, her loss is λ(S, e)) and the
adversary’s payoff is λ(S, e)− µe (i.e., the loss caused to the
defender minus the cost of the attack). It is often assumed that
there is no loss when the adversary targets a resource that is
not used by the defender; in other words, the value of the loss
function is zero when e 6∈ S. Notice that the game would be
zero sum if there were no attack costs (i.e., if µ = 0), since the
sum of the players’ payoffs would be −λ(S, e) +λ(S, e) = 0.
The model generalizes zero-sum games by adding an extra
term to one player’s payoff; hence, we call the resulting game
quasi-zero-sum. These games are more amenable to theoretical
analysis than general, non-zero-sum (or – equivalently – non-
constant-sum) games.

As a simple example to illustrate blocking games, consider
a local area network that is attacked by a strategic adversary.
The defender (i.e., the network operator) has to maintain loop-
free connectivity between the network nodes using the set of
available network links E. For this, she selects a spanning
tree S ⊆ E as the communications infrastructure; hence, the
set of feasible collections S is the set of all spanning trees.
A selected spanning tree can be implemented in practice,
for example, as the forwarding table entries of the network
switches. Meanwhile, the adversary targets a link e ∈ E
and pays the cost µe of attacking it. Attacking a link can be
implemented in practice, for example, as physical destruction.
Finally, the loss is λ(S, e) = 1 if the adversary manages
to disconnect the network (i.e., if e ∈ S), and λ(S, e) = 0
otherwise (i.e., if e 6∈ S).

Since pure strategies are almost never optimal in blocking
games, the players are allowed to employ mixed strategies. The
defender can choose a distribution α over the set of feasible
collections S, while the adversary can choose a distribution
β over the set of resources E. Then, the selected collection
S and the targeted resource e are drawn randomly from the
chosen distributions α and β.

The goal of blocking game analysis is to 1) compute the
adversary’s equilibrium payoff and to 2) find optimal defender
and adversarial strategies. The characterization of the Nash
equilibria of blocking games established in [2] builds on the
theory of blocking pairs of polyhedra (BPP). Here, we intro-
duce the concepts of BPP that are essential for understanding
this characterization, and refer the interested reader to [15] for
a more detailed discussion. The polyhedron PΛ of a nonnega-
tive N×m matrix Λ is defined as the vector sum of the convex
hull of the rows λ1, . . . ,λN of Λ and the nonnegative orthant;
formally, PΛ = conv.hull(λ1, . . . ,λN )+Rm≥0. In other words,
the polyhedron PΛ consists of vectors which are the sums of a
convex linear combination of the rows of Λ and a non-negative
vector. The blocker bl(PΛ) of PΛ is defined as

bl(PΛ) =
{
y ∈ Rm≥0

∣∣ ∀x ∈ PΛ : x′y ≥ 1
}
. (4)

Alternatively, the blocker bl(PΛ) can also be defined as the set
of vectors that “block” every row of Λ; formally, bl(PΛ) =

{y ∈ Rm≥0 : Λy ≥ 1}. Note that the blocker of a polyhedron
itself is also a polyhedron.

Now, let Λ be the loss (i.e., negative payoff) matrix of
the defender; formally, ΛS,e = λ(S, e). Using the notation
introduced above, PΛ is the polyhedron associated with Λ, and
bl(PΛ) is the blocker of PΛ. Before characterizing the equilib-
ria of the blocking game using its blocker bl(PΛ), we have to
introduce a few more concepts. First, let Ω = {ω1, . . . ,ωK}
be the set of the extreme points of the blocker bl(PΛ). For a
vector y ∈ bl(PΛ), let the quantity θ(y) be

θ(y) =
1

y′1
(1− y′µ) , (5)

and let θmax = maxy∈bl(PΛ) θ(y). It was shown that the
maximum θmax is attained at an extreme point (or at some
extreme points) of the blocker; that is, maxy∈bl(PΛ) θ(y) =
maxω∈Ω θ(ω). Finally, let Ωmax denote the set of extreme
points for which the maximum is attained; formally, Ωmax =
{ω ∈ Ω | θ(ω) = θmax}.

Theorem 1 (Gueye [2]). For the general blocking game, the
following always hold.

1) If θmax ≤ 0, then not attacking is always optimal for
the adversary.

2) If θmax ≥ 0, then for every probability distribution γ
over Ωmax, the adversary’s strategy β defined by

βe =
∑

ω∈Ωmax

γω
ωe
ω′1

(6)

is in Nash equilibrium with any strategy α of the
defender that satisfies the following properties:{∑

S∈S αSλ(S, e)− µe = θmax, ∀e ∈ E s. t. βe > 0 ,∑
S∈S αSλ(S, e)− µe ≤ θmax, ∀e ∈ E .

Furthermore, there exists at least one such strategy α.
The corresponding payoffs are θmax for the adversary
and

∑
ω∈Ωmax

γω
ω′1 for the defender.

3) If µ = 0, every Nash equilibrium pair of strategies is
of the above type.

For the proof of the theorem, see [2].
Recall that the goal of blocking game analysis is to compute

the adversary’s equilibrium payoff and a pair of equilibrium
strategies. If the defender’s payoff matrix Λ is explicitly given,
this problem can easily be formulated as a linear program,
which can be solved efficiently. However, in most models, the
input of the computational problem is not the payoff matrix
itself, but some implicit definition of it. For example, in the
simple network blocking game used above as an illustration,
the input of the problem is the network graph, and even
the set of feasible collections is only implicitly given as the
set of spanning trees. This can lead to a very challenging
computational problem, as the number of feasible collections
can be exponential in the size of the input. For example, the
number of spanning trees in a complete graph of only 60
network nodes is 6058 ≈ 1.36×10103, which is several orders
of magnitude larger than the number of atoms in the observable
universe.
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Unfortunately, there is no general algorithm for solving
a blocking game in polynomial time given such an implicit
definition of the feasible collections. However, for a number
of models, the game can be solved efficiently using various
tricks (for examples of polynomial-time solutions, see [14],
[16]). In Section V, we will show that this is possible for the
steganography game as well.

IV. MODELING STEGANOGRAPHY AS A BLOCKING GAME

In this section, we show that the steganography game can be
formulated as a blocking game, and provide a characterization
of the game’s blocker bl(PΛ). This formulation will allow us
to solve the game not only for the general case (arbitrary k)
of the basic steganography game (zero cost of steganalysis
µ = 0), but also for our generalized model (arbitrary cost of
steganalysis µ ≥ 0).

First, to simplify our formulas, we introduce the bias
function

f̃(i) = 2f(i)− 1 . (7)

Since f(i) was defined as the probability of the more likely
outcome of bit i, the bias function f̃ can be interpreted as the
predictability of bit i. If f̃(i) = 0, then f(i) = 1

2 ; hence, bit i
is an unbiased coin flip. On the other hand, if f̃(i) = 1, then
f(i) = 1, which means that bit i is completely deterministic
(always takes its more likely value).

Before we can formulate steganography as a blocking game,
we have to prove the following lemma.

Lemma 2. If Alice embeds in subset S and Eve queries
position i, Alice’s expected payoff is{

0 if i 6∈ S ,

−f̃(i) if i ∈ S .
(8)

Proof. We prove the two cases separately.
• i 6∈ S: Recall that Eve’s optimal decision rule is to guess

cover when bit i takes its more likely value (xi = 1), and
to guess stego when it takes its less likely value (xi = 0).
Consequently, when a cover object is transmitted, Eve’s
decision will be right iff bit xi = 1; thus, her chance of
winning is f(i) in this case. On the other hand, when a
stego object is transmitted, Eve’s decision will be right
iff xi = 0; thus, her chance of winning is 1 − f(i) in
this case. By combining the two cases, we have that the
probability of Eve winning is

1

2
f(i) +

1

2
(1− f(i)) =

1

2
. (9)

Since Alice’s payoff is −1 if Eve’s decision is right and
1 if it is not, Alice’s payoff is 1

2 · (−1) + 1
2 · 1 = 0.

• i ∈ S: When a cover object is transmitted, the probability
that Eve’s decision will be right is f(i) for the same
reasons as in the previous case. However, when a stego
object is transmitted, bit i has been flipped by Alice.
Consequently, Eve will make the right decision iff the
bit had taken its more likely value before being flipped;
thus, her probability of winning is f(i). By combining

these two cases, we have that the probability of Eve’s
decision being right is

1

2
f(i) +

1

2
f(i) = f(i) . (10)

Therefore, Alice’s payoff is f(i) · (−1) + (1− f(i)) · 1 =
1− 2f(i) = −f̃(i).

We can now formulate steganography as a blocking game
as follows.
• First, let the set of resources E be the set of bits
{0, . . . , n− 1}.

• Let the role of the defender be played by Alice, the
steganographer. Let selecting a collection S of the re-
sources represent embedding into the subset S of bits.
Since Alice always embeds into k bits, the set of feasible
resource collections S is the set of all k-subsets.

• Let the role of the adversary be played by Eve, the
steganalyst. Let targeting one of the resources represent
querying the corresponding bit (and deciding whether she
sees a stego or a cover object).

• Finally, let the cost of attack µi be the cost of steganalysis
introduced in Subsection II-B.

In contrast to conventional blocking games, the payoff for
a given pure-strategy profile (S, i) in the steganography game
is a random variable, not a constant value. However, since
both players try to maximize their expected payoffs, we can
define the value of the loss function λ(S, i) using the expected
payoffs for a given strategy profile (S, i). Thus, based on
Lemma 2, we have that the loss function of the steganography
game is

λ(S, i) =

{
0 if i 6∈ S ,

f̃(i) if i ∈ S .
(11)

To apply Theorem 1, we have to characterize the blocker
bl(PΛ) of the steganography game.

Theorem 2. The blocker bl(PΛ) of the steganography game
can be characterized as

bl(PΛ) =
{
y ∈ Rn≥0

∣∣∣ ∃K ∈ R≥0, z ∈ Rn≥0 :

kK − 1′z ≥ 1 ∧ ∀i
(
K ≤ zi + f̃(i)yi

)}
. (12)

Proof. We prove Equation (12) in two steps.
• Righ-hand side (RHS) of Equation (12) ⊆ bl(PΛ): We

have to show that every element of the RHS of Equa-
tion (12) is also an element of the blocker bl(PΛ) (i.e.,
“blocks” every vector in the polyhedron PΛ). Consider an
arbitrary element y of the RHS of Equation (12). Since
every vector of the polyhedron PΛ is a linear combination
of the rows of Λ (plus a non-negative vector), it suffices
to show that y “blocks” every row of Λ to prove that y
“blocks” every vector of the polyhedron PΛ. Formally,
it suffices to show that, for every row λS of Λ, it
holds that λ′Sy ≥ 1. Equivalently, we have to show that
minλS

λ′Sy ≥ 1.
Now, consider an arbitrary row λS of Λ. Let the vector
a ∈ {0, 1}n be such that ai = 0 if the ith element of
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λS is zero, and ai = 1 otherwise (i.e., a is an “indicator
vector” of the non-zero elements of λS). By definition,
we have that the ith element of λS is f̃(i) if i ∈ S, and
it is 0 otherwise. Consequently, since S is a k-subset, it
holds that 1′a = k.
Now, because there exists such a vector a for every row
λS , we have that minλS

λ′Sy is greater than or equal to
the value of the following integer linear program:

Minimize
∑
i

aif̃(i)yi (13)

subject to

1′a = k , (14)

where a ∈ {0, 1}n. Thus, it suffices to show that the
value of this integer program is at least 1.
By relaxing some constraints of a minimization problem,
its value can only decrease, but never increase. Conse-
quently, the value of the following relaxed linear program
is a lower bound of the above program:

Minimize
∑
i

aif̃(i)yi (15)

subject to

1′a ≥ k (16)
a ≤ 1 , (17)

where a ∈ Rn≥0 (notice that the variables are non-integer
in the relaxed program).
Finally, the dual of the above relaxed linear program is
the following:

Maximize kK − 1′z (18)

subject to

∀i : K ≤ zi + f̃(i)yi , (19)

where K ∈ R≥0 and z ∈ Rn≥0. As y satisfies the RHS
of Equation (12), there exists a K ∈ R≥0 and z ∈ Rn≥0

that satisfy ∀i
(
K ≤ zi + f̃(i)yi

)
and kK − 1′z ≥ 1.

Since there exists a solution k,z for which the objective
function attains 1, the value of the above dual program
and, hence, all former linear programs is at least 1.
Therefore, any element y of the RHS is also an element
of the blocker, and RHS of Equation (12) ⊆ bl(PΛ) has
to hold.

• bl(PΛ) ⊆ RHS of Equation (12): We have to show that
every element of the blocker bl(PΛ) is also an element of
the RHS of Equation (12). For the sake of contradiction,
suppose that the claim bl(PΛ) ⊆ RHS of Equation (12)
does not hold. In other words, suppose that there is an
element y ∈ bl(PΛ) for which no K ∈ R≥0 and z ∈
Rn≥0 can exist that satisfy the constraints of the RHS of
Equation (12) with y. Then, consider the following linear
program:

Maximize kK − 1′z (20)

subject to

∀i : K ≤ zi + f̃(i)yi , (21)

where K ∈ R≥0 and z ∈ Rn≥0. It is easy to see that the
value of the above linear program has to be less than 1.
If this were not true, then a solution (i.e., some K and z)
which attained a value of 1 would exist. But this solution
would satisfy the constraints of the RHS of Equation (12)
with y, which would lead to a contradiction with our
initial supposition. Thus, the value of the above linear
program has to be strictly less than 1.
Next, consider the dual of the above linear program:

Minimize
∑
i

aif̃(i)yi (22)

subject to

1′a ≥ k (23)
a ≤ 1 , (24)

where a ∈ Rn≥0. Since the value of this linear program
is less than 1, we have that

∑
i aif̃(i)yi < 1 for every

optimal solution a.
Now, let a∗ be an optimal solution for which 1′a∗ = k
holds (since the dual is a minimization problem and the
sign of a is positive in the objective function, there al-
ways exists at least one such solution). Notice that a∗ is a
mixed strategy for Alice (see Section II). Finally, let α be
a distribution corresponding to a∗; that is, let α be such
that a∗i =

∑
S3i αS . Then, the vector

∑
S αSλS is an

element of the polyhedron PΛ by definition, but it is not
blocked by y, since (

∑
S αSλS)

′
y =

∑
i aif̃(i)yi < 1.

However, this leads to contradiction with our initial sup-
position that y ∈ bl(PΛ). Therefore, the claim bl(PΛ) ⊆
RHS of Equation (12) has to hold.

Finally, from RHS of Eq. (12) ⊆ bl(PΛ) and bl(PΛ) ⊆ RHS
of Eq. (12), it follows readily that there has to be an equality
between these two sets.

V. SOLVING THE GAME EFFICIENTLY

In the previous section, we gave a characterization of the
blocker of the steganography game. In theory, this characteri-
zation combined with Theorem 1 can be used to compute an
equilibrium for a given instance (n,f) of the game. However,
performing this computation in polynomial time, which is the
criterion for feasibly computable according to the Cobham-
Edmonds thesis, is not straightforward due to the exponential
size of Alice’s strategy set.

First, applying Theorem 1 directly by finding the maximum
of the function θ(ω) over the set of all extreme points ω is not
feasible, as the number of extreme points to be enumerated is
generally exponential. Second, solving the game in the more
conventional way of finding optimal strategies using linear
programs is also infeasible. Even though linear programs can
be solved in polynomial time, in the case of the steganography
game, the input of the problem is not the payoff matrix, but
the description of the cover source (n,f). As Alice’s strategy
set is exponential in the size of this input and it has to appear
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either as a set of constraints or as a set of variables, the size of
the resulting linear program is also exponential. Consequently,
the running time of this approach is generally exponential.

As an example of how infeasible this is in practice, consider
the problem of hiding messages of k = 20 bits into covers of
n = 200 bits. The number of possible embeddings and, hence,
the number of variables (or constraints) is

(
n
k

)
=
(

200
20

)
≈

1.6 × 1027. Solving linear programs of this size would be a
very challenging problem to say the least.

Therefore, in this section, we provide linear programs of
polynomial size for efficiently computing 1) Eve’s equilibrium
payoff and 2) a pair of equilibrium strategies for Alice and
Eve. To formulate our linear programs, we build on both
the general description of the equilibria of blocking games
(Theorem 1) and our characterization of the blocker of the
steganography game (Theorem 2).

Theorem 3. Given an instance (n,f) of the steganography
game, Eve’s equilibrium payoff and a pair of equilibrium
strategies (a ∈ Rn≥0,β ∈ Rn≥0) for Alice and Eve can be
computed in polynomial time.

Proof. We begin with computing Eve’s equilibrium payoff.
According to Theorem 1, her equilibrium payoff is θmax =
maxy∈bl(PΛ) θ(y). Our goal is to formulate this problem
as a linear program of polynomial size. First, observe that
we already have the constraints of our linear program from
Theorem 2, which characterizes bl(PΛ) using a set of linear
constraints:

y ∈ bl(PΛ) (25)

iff

kK − z′1 ≥ 1 (26)

∀i : K ≤ zi + f̃(i)yi , (27)

where K ∈ R≥0 and z ∈ Rn≥0.
Unfortunately, the desired objective function θ(y) =

1
1′y (1− µ′y) cannot be expressed as a linear function in y
because of the division by 1′y. Therefore, we have to “scale”
our variables. First, we introduce a new variable φ, which
will be equal to 1

1′y . Then, we divide the existing variables
(K, z, and y) and inequalities by 1′y; that is, we multiply
them by φ. We will denote the scaled versions of K and z
with the same letters, but we will denote y

1′y by β.7 Using
these scaled variables, our problem can be formulated as the
following linear program:

Maximize φ− µ′β (28)

subject to

1′β = 1 (29)
kK − z′1 ≥ φ (30)

∀i : K ≤ zi + f̃(i)βi , (31)

where K,φ ∈ R≥0 and β, z ∈ Rn≥0. First, observe that,
as expected, the objective function is φ − µ′β = 1

1′y −

7The reason for denoting the scaled version of y with β will be revealed
soon.

µ′
(

1
1′yy

)
= 1

1′y (1− µ′y) = θ(y). Second, notice that
the constant 1 in the first constraint is replaced by φ due to
the scaling. Finally, notice that we have to introduce a new
constraint to ensure that 1′β = 1′ y1′y = 1 holds.

Let β∗, φ∗, K∗, and z∗ be an optimal solution to the above
linear program. Since the linear program has a polynomial
number of variables and constraints in the size of the input,
we can compute Eve’s equilibrium payoff θmax = φ∗−µ′β∗
efficiently using any standard linear program solver.

Next, we show how to find a pair of equilibrium strategies.
Since an optimal solution β∗ is a non-negative vector of length
n that sums up to 1, it can be interpreted as a probability
distribution over the set of positions. We now show that β∗

is actually an equilibrium strategy for Eve. If Eve employs
β∗ as her strategy, then Alice’s expected loss for embedding
in position i is f̃βi. Thus, Alice’s best response is a mixed
strategy a that minimizes

∑
i f̃(i)βiai. We can formulate the

problem of finding a best response as the following linear
program:

Minimize
∑
i

f̃(i)β∗i ai (32)

subject to

1′a = k (33)
a ≤ 1 , (34)

where a ∈ Rn≥0. The dual of the above linear program is:

Maximize kK − 1′z (35)

subject to

∀i : K ≤ zi + f̃(i)β∗i , (36)

where K ∈ R≥0 and z ∈ Rn≥0. Since the objective function for
the solution K∗ and z∗ is φ∗, the value of the linear program
is at least φ∗, which means that Alice’s loss is at least φ∗

regardless of her strategy. Thus, if Eve uses the strategy β∗, her
payoff is at least the equilibrium payoff φ∗−µ′β∗ regardless
of Alice’s strategy.

Finally, we show how to find an equilibrium strategy for
Alice. Consider the following linear program:

Minimize L (37)

subject to

1′a = k (38)
a ≤ 1 (39)

∀i : f̃(i)ai ≤ L+ µi , (40)

where L ∈ R≥0 and a ∈ Rn≥0. Let a∗ be an optimal solution
to the above linear program. Using linear programming duality
in the same way as before, it can be shown that if Alice
employs a∗ as her strategy, her loss is at most φopt regardless
of Eve’s strategy. Consequently, as the number of variables
and constraints in the above program is polynomial in the size
of the input, we can compute an equilibrium strategy a∗ for
Alice in polynomial time.
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A. Special Case: Basic Steganography Game

Johnson et al. proposed a solution in [1] for – what we call
here – the basic steganography game, which is the special case
of µ = 0 (i.e., zero cost of steganalysis). In Subsection II-A,
we have shown that this solution does not always work for
arbitrary k ≥ 1. Here, we show that for the special case of
k = 1, this solution is equivalent to ours.8

Recall from Subsection II-A that the solution proposed by
Johnson et al. is based on the idea of uniform local advantage.
From this criterion, they derive closed-form formulas for both
players’ equilibrium strategies. Quite surprisingly, the formu-
las for Alice’s and Eve’s equilibrium strategies are almost
identical (and identical for k = 1):

ai =

k
f̃(i)∑
j

1
f̃(j)

and βi =

1
f̃(i)∑
j

1
f̃(j)

. (41)

Now, we solve our linear programs for the special case of
k = 1 and µ = 0. By substituting k for 1 and µ for 0,
the linear program for finding an equilibrium strategy for Eve
simplifies to:

Maximize φ (42)

subject to

1′β = 1 (43)
K − z′1 ≥ φ (44)

∀i : K ≤ zi + f̃(i)βi , (45)

where K,φ ∈ R≥0 and β, z ∈ Rn≥0. Notice that, in an optimal
solution, it always holds that φ = K − z′1. Thus, we can
eliminate φ and reformulate the program as:

Maximize K − z′1 (46)

subject to

1′β = 1 (47)

∀i : K ≤ zi + f̃(i)βi , (48)

where K ∈ R≥0 and β, z ∈ Rn≥0. Next, we show that there
always exists an optimal solution where z = 0. Let K∗ and
z∗ be an optimal solution (with some β∗). Then, consider
the solution K̂ = K∗ − maxi z

∗
i and ẑ = 0 (with the same

β∗). First, it is easy to see that the value of the objective
function for K̂ and ẑ is at least as high as for K∗ and z∗

(strictly higher if there are multiple non-zero elements in z∗).
Second, the solution K̂ and ẑ (with β∗) does not violate the
constraints, as we decrease the left-hand side of Equation (48)
by at least as much as its right-hand side. Thus, there always
exists an optimal solution to the linear program where z = 0.
Consequently, we can reformulate the program as:

Maximize K (49)

subject to

1′β = 1 (50)

∀i : K ≤ f̃(i)βi , (51)

8Note that, in this subsection, we restrict ourselves to µ = 0 (i.e., the basic
steganography game), since the solution of [1] was devised for this model.

where K ∈ R≥0 and β ∈ Rn≥0. Finally, the above linear
program is obviously equivalent to the problem of maximizing
mini f̃(i)βi subject to 1′β = 1.

We now show that the optimal solution to the above maxi-
mization problem is the same as the solution to Equation (41).
First, in an optimal solution, f̃(i)βi has to be uniform over
the positions. Otherwise, decreasing βi where f̃(i)βi attains its
maximum and increasing βi where f̃(i)βi attains its minimum
would increase the value of the objective function mini f̃(i)βi
while still satisfying the constraint 1′β = 1. Thus, we have
that f̃(0)β0 = . . . = f̃(n − 1)βn−1. Consequently, there has
to exist a constant C ∈ R≥0 such that, for every i, we have
βi = C

f̃(i)
and

∑
i βi = 1. It is easy to see that C = 1∑

i
1

f̃(i)

is the only solution satisfying these constraints. Therefore, the
optimal solution to our linear program is equal to the solution
of Equation (41). Moreover, using a similar argument, it can
be shown that Alice’s equilibrium strategy is also equal to the
solution of Equation (41).

However, in the more general case of k > 1, the solution
of Equation (41) may differ from the solutions of our linear
programs. In these cases, the former solution assigns proba-
bilities that are greater than 1 to some of the positions. For
examples of such instances, see Subsection II-A.

VI. DISCUSSION

The solution proposed by Johnson et al. has an interesting
implication. Observe that the “shapes” of the players’ optimal
strategies do not change as the number of embedded bits k
increases, only the steganographer’s strategy is “scaled up”
linearly. Consequently, steganalyst’s payoff (i.e., success rate)
increases linearly with the number of embedded bits [1].
This rule deviates from the square root law of steganographic
capacity, which predicts asymptotically quadratic advantage,
even for homogeneous covers [17]. However, based on our
solution proposed in this paper, we can refine the above rule
as follows. First, for smaller numbers of embedded bits (that is,
when our solution coincides with that of [1]), the steganalyst’s
success rate increases linearly indeed. For larger numbers,
however, the success rate can increase superlinearly, as the
steganographer has to deviate from the strategy described by
Equation (41) (since she can longer find a strategy satisfying
the uniform local advantage constraint).

Our generalization introducing a potentially non-uniform
and non-zero cost of steganalysis has two important impli-
cations. First, if θmax < 0, then not performing steganalysis
is the only optimal strategy for the attacker. In other words, if
the expected cost of steganalysis (see Section II-B) is always
higher than the expected reward for successful detections, an
economically rational attacker should choose not to perform
steganalysis. While this might seem counter-intuitive at first,
the operation and maintenance costs can actually be very high
when looking for a “needle in a haystack”, and the would-
be steganalyst should look for other means of catching the
steganographer.

Second, if the cost of one (or some) of the positions is
relatively high compared to the costs of the other positions,
then it can be optimal for the steganalyst to never query that (or
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those) position(s) but query others. As a very simple example,
consider the game of hiding k = 2 bits in covers of n = 3
bits, where the predictability is uniform f̃ ≡ 1

2 , and the costs
are µ0 = 1 and µ1 = µ2 = 0. By solving our linear program,
we can compute that the steganalyst’s mixed-strategy is β =[
0, 1

2 ,
1
2

]′
. In other words, she should never query the first

position.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a generalization of the basic
steganography game [1]: to model an economically rational
steganalyst, we have introduced a potentially non-uniform
and non-zero cost of steganalysis. We have proposed a novel
solution for the generalized model based on the theory of
blocking games, and have shown how an equilibrium can be
computed efficiently using linear programs. Finally, we have
compared our solution with the solution of Johnson et al. [1].

Our research can be extended into multiple directions. The
limitation of the discussed model (and solution) is the as-
sumption that the steganalyst can query only a single position.
This constraint can be justified by arguing that the steganalyst
is budget- or resource-constrained. However, as the cost of
steganalysis may be non-uniform, even a budget-constrained
steganalyst might be able to query multiple low-cost positions
instead of one high-cost position. Thus, the model (and its
solution) could be extended to the general case of querying
multiple positions.
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APPENDIX

A. Algorithm for Computing a Mixed-Strategy from Embed-
ding Probabilities

Theorem 4. For every vector a of embedding probabilities
satisfying

∑
i ai = k, there exists a mixed strategy α for Alice

(i.e., a distribution over k-subsets) such that the projection
of α is a.

We provide a constructive proof, which is based on a
polynomial-time algorithm. It is noteworthy that the mixed
strategy output by the algorithm is a fairly simple one: its
support consist of at most n sets.

Proof. We prove the theorem by providing an algorithm
that can compute a mixed strategy α from any vector of
probabilities a satisfying

∑
i ai = k.

1) For every k-subset I , let αI = 0.
2) Let I be a k-subset consisting of the positions with the

k highest ai (if there are multiple such subsets, select
an arbitrary one).

3) Let p be the maximum value subject to
• for every i ∈ I , ai − p ≥ 0 and
• for every i 6∈ I , ai satisfies the MaxProb constraint

(for the definition of this constraint, see below).
4) Increase αI by p and, for every i ∈ I , decrease ai by p.
5) If there is an ai > 0, then continue from Step 2.
Now, we introduce the MaxProb constraint. First, notice

that a non-negative vector a has to satisfy two necessary
constraints to be a mixed strategy over k-subsets:

∑
i ai = k

and, for every i, ai ≤ 1. It is easy to see that a vector
cannot be a mixed strategy over k-subsets if it violates one
of the constraints. Similarly, at any step of the algorithm’s
execution, it has to hold that ai ≤ k′ for every i, where
k′ =

∑
i ai/k. From this, we can formulate the MaxProb

constraint as p ≤
∑
j aj/k − ai. Finally, we call a vector

a proper if, for every i, ai ≥ 0 and ai ≤ k′. Obviously, we
have that the input vector is proper.

Next, we prove the correctness of the algorithm. First, it is
easy to see that the vector a stays non-negative (first constraint
of Step 3). Second, we can show that the vector a stays
proper. Every element i ∈ I is decreased by p, but the sum
is decreased by k · p; thus, if the elements of I satisfied
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ai ≤
∑
j aj/k before the decrease, they still satisfy it after

the decrease. As for the non-elements i 6∈ I , the MaxProb
constraint ensures that the vector stays proper. Third, it is easy
to see that if a vector is proper and non-zero, then it has at
least k positive elements (as no element can be higher than
the sum over k). Fourth, it can be shown that if there are k
positive elements, then the maximum p of Step 3 has to be
positive (as there are at most k elements for which the equality
ai =

∑
j aj/k holds; hence, p =

∑
j aj/k− ai does not hold

for p = 0 and i 6∈ I).
Note that, at this point, we already have that the algorithm

starts with a proper non-zero vector, it decreases the elements
(possibly an infinite number of times) keeping the vector
proper and non-negative, and finally decreases the last k
positive elements to zero at once. It remains to show that
the algorithm terminates after a finite number of iterations.
However, we can do much better than that. Let M be the set
of elements i for which the equality ai =

∑
j aj/k holds (i.e.,

the set of maximal elements), let Z be the set of zero elements,
and let O be the set of elements neither in M nor in Z. First,
if an element belongs to Z, then it obviously remains there
after a decrease. Second, if an element belongs to M , then it
remains there after a decrease (as any element of M has to be
a member of I). Third, in every iteration, at least one element
of O is moved to either M or Z (as one of the constraints of
Step 3 has to be an equality for at least one element for the
maximum p). Fourth, |O| ≤ N trivially. Therefore, there are at
most N iterations, as we remove an element from the set O in
every iteration and |O| is at most N initially. Notice that this
also implies that the cardinality of the resulting distribution’s
support (the number of k-subsets with non-zero probability)
is also at most N .

Finally, we have to show that the resulting α is indeed
a distribution, but this is very easy. First,

∑
I αI = 1, as∑

i ai = k initially and we decrease it by k · p when we
assign p probability to one of the subsets. Second, for every i,∑
I3i αI = ai, as we increase the probability of a containing

subset by p when we decrease the value of ai by p.
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