
Oblivious Transfer with Verification

MARCH 2017 • VOLUME IX • NUMBER 112

INFOCOMMUNICATIONS JOURNAL


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak

Oblivious Transfer with Verification
Subhash Kak


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.

Oblivious Transfer with Verification
INFOCOMMUNICATIONS JOURNAL

MARCH 2017 • VOLUME IX • NUMBER 1 13


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak


Abstract— Although random sequences can be used to generate

probability events, they come with the risk of cheating in an
unsupervised situation. In such cases, the oblivious transfer
protocol may be used and this paper presents a variation to the
DH key-exchange to serve as this protocol. A method to verify the
correctness of the procedure, without revealing the random
numbers used by two or more parties, is also proposed.

Index Terms— Cryptography, network security, multiparty
communication, piggyback protocol

I. INTRODUCTION
The generation of events of specific probability is essential in
many computations and in simulation of physical processes. Of
particular interest is the generation of a random sequence that
can simulate physical noise and be used for cryptographic and
coding purposes. In a random binary (0, 1) random sequence,
where the bits are independent, the probability of each new bit
being 0 (or 1) is 1/2.

If two parties (Alice and Bob) wish to determine who
should play first at a game, they might agree to let Alice play
first if she calls the next bit (or the nth future bit) correctly.
The problem with this method is that if the algorithm
generating the random sequence is known to, say, Alice, she
can run it in advance and, therefore, know the bit in advance.
To thwart such a possibility, one would need to place
constraints on the nature of the random number generator such
as designing it in such a way that it is impossible to emulate it.
But that is not a realistic assumption if the generator is an
algorithm that is implemented on a computer. If it is easy to
generate a pseudo-random sequence, most likely it is
cryptographically weak [1]-[7].

Alternatively, one could imagine that a trusted third party
has a collection of random number generators. Alice now has
to call the ith outcome of the kth random number generator
correctly in order to win the call. If the number of generators is
large and the number i is derived from some step in a
computationally hard number-theoretic problem (such as the
number of prime partitions of a large even number), it will

Manuscript received February 2, 2017. This work was supported by

National Science Foundation grant #1117068.
Subhash Kak is with the Oklahoma State University, Stillwater, OK, USA

(phone: 405-744-6096; e-mail: subhash.kak@okstate.edu).

become well-nigh impossible for cheating to occur. This is
equivalent to the method of puzzles for security [8].

For those who seek mathematical elegance, one might
appeal to quantum theory [9]. The outcome of a superposition
quantum state, such as a|0⟩+b|1⟩ is random, with the
probability of 0 and 1 being |a|2 and |b|2, respectively. All one
needs to do is to start with the state

)10(
2

1


, and measure it along the |0⟩ |1⟩ bases, and the chosen
outcome will have a probability of exactly 1/2. An example of
this are diagonally polarized photons that will be unpredictably
received as horizontally or vertically polarized photons along
these measurement bases.

This approach via physics is the perfect way to generate
random events but it is not easy to implement [10]-[12]. Due
to the Heisenberg’s Uncertainty Principle, one cannot generate
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution
[13]. If there are multiple photons with diagonal polarization,
the pattern of reduction to the bases states will make it difficult
to fix event probabilities. The randomness of collapse is at the
basis of quantum cryptography protocols [14][15]. But due to
the difficulty of generating single photon states, quantum
cryptography itself uses classical random number generators to
guide polarization rotations.

Classical randomness is viewed as an aggregate of countless
quantum processes. One could have a trusted party look at the
thermal noise across a resister at specified future time (so that
the bandwidth of the measurement apparatus can be
discounted) and check if it is greater or less than the zero
threshold. This can serve as an effective method of generating
random events. But this requires a trusted third party to
supervise the event generation process.

The other method to use is the oblivious transfer (OT)
protocol [16][17], where two parties mutually arrive at the
probability event. In the most basic form of OT, the sender
sends a message to the receiver with probability 1/2, while
remaining oblivious as to whether or not the receiver obtained
the message. Other probabilities can also be likewise generated
[18]. These schemes depend on one-way, number-theoretic
functions that are at the basis of public key cryptography [19]
and they require a choice out of two alternatives to be made at
some point in the process.

Oblivious Transfer with Verification
Subhash Kak

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.

We assume that the two parties are authenticated to each
other and the owner of the secret is honest (the recipient has no
reason not being so). To ensure there is no cheating, one could
speak in general either of post-communication audit, or
supervision of the process by a trusted third party. The audit or
verification process should not reveal the random numbers
used by the two parties since that could compromise the
random number generators used and weaken the security of the
process.

We mention parenthetically that randomness was an
important notion in ancient societies. The gods were taken to
act randomly in a fashion that could not be understood by
reasoning. The idea of Vedic ritual [20], Dionysian mysteries,
the ecstatic trance of the Oracle of Delphi [21],[22], or
shamanic practices of other cultures [23] was to get into a state
where one could somehow connect to the time of the gods. The
oracle’s prophecy was worded ambiguously and what meaning
it might convey could not be known to the oracle.

Here we show that an adaptation of the DH key exchange
protocol will serve as an OT protocol with verification. We
show that the protocol allows Bob to guess Alice’s secret with
the specified probability. Since the secret belongs to Alice, one
can visualize a situation where she cheats so as to reduce
Bob’s guessing probability. We address this possibility and
show how there can be verification of the procedure.

II. THE PROTOCOL FOR TWO PARTIES

Alice and Bob together (or a trusted party) choose and publish
a large prime p and two integers u1 and u2 of large order
modulo p. It may thus be assumed that both parties know that
u1 = k u2.

Step 1. Alice chooses a random integer a, picks one of the
two integers u1 and u2 and computes A = ui

a mod p, where
i = 1 or 2, and sends it to Bob.

Step 2. Bob chooses a random integer b, picks one of the
two integers u1 and u2 and computes B = uj

b mod p, where
j = 1 or 2, and sends it to Alice.

Step 3. Alice takes the received number B and computes
Ba mod p = u j ab mod p as the key to be used in encrypting
a secret file to be sent to Bob.

Step 4. Bob takes the received number A and computes
Ab mod p = u i ab mod p as the key to be used in decrypting
a secret file received from Alice.

This protocol is shown in Figure 1 for the special case

where Alice and Bob have chosen u1 and u2, respectively. The

other cases are where the choice is flipped or where both Alice
and Bob choose the same basis.

Figure 1. The proposed protocol where Alice and Bob
choose different bases

It is assumed that Alice will use the key u2

ab mod p to code
her secret. She does not know whether Bob possesses this key
or u1

ab mod p. The probability that they choose different bases
is ½. Therefore, there is a 0.50 probability that the key
generated by Alice and Bob is identical.

Figure 2. Bob gets the secret, S, if his key is the same as
Alice’s

If Bob fails to decrypt the secret with his key, he cannot use

the knowledge that u1 = k u2, to determine the “correct” key.
His incorrect key is related to the correct one through the
relationship:

ababab kuu 21  mod p (1)

Bob knows b, k, and u1

ab mod p, but that is not sufficient to
obtain the correct key unless he can solve the discrete
logarithm problem.

The eavesdropper also cannot obtain any information about
the final key from her observation of the data exchanged by
Alice and Bob.

Generalization. If in the protocol, there are m bases, u1, u2,…,
um, rather than just two, as in the example above, the
probability that Bob will know the secret is 1/m.

Oblivious Transfer with Verification

MARCH 2017 • VOLUME IX • NUMBER 114

INFOCOMMUNICATIONS JOURNAL

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

Oblivious Transfer with Verification
INFOCOMMUNICATIONS JOURNAL

MARCH 2017 • VOLUME IX • NUMBER 1 15

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

III. POSSIBLE CHEATING BY ALICE

Alice can cheat by not sending u2
ab mod p to Bob over the

public channel, but rather u2
fb mod p, using the exponent f to

build this fake key. This cheating will be evident if both Alice
and Bob choose the same basis, which will happen 50% of the
time. The case of cheating thus corresponds to the use of
different exponents by the two parties.

To prevent cheating, we add the following steps to the
protocol:

Step 5. A random number r, publicly declared in advance,
is used by Alice to generate vn = uj

abr mod p (n=abr). In
the example of Figure 1, vn = u2

abr mod p. The number vn
is sent to Bob.

Step 6. Bob uses the verification sequence G(n) = vn + wn
mod p to establish that there has been no cheating.

If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2)
mod p, where α and β are constants that are easily found. The
verification sequence G(n) is described in the next section.

If Alice were to cheat by using u2
fb mod p as the key, but

sends the correct u2
n mod p, she will be exposed in case Bob

has chosen u2 and finds G(n) =0, while remaining unable to
decrypt the secret.

IV. THE VERIFICATION SEQUENCE

Consider the sequence G(n) = vn + wn mod p. In general we
can write
 pvv kk

k mod 

pww kk
k mod  (2)

Theorem 1

pknGknGnG kk mod)()1()(  (3)

Proof.)(nG = pwv nn mod)(

 =)(kknkkn wwvv  

 =)()(kk
kn

kk
kn wwvv   

 =)()(11 knkn
k

knkn
k wvwv   

 = pknGknG kk mod)()1( 

When k = 2,
 pnGnGnG mod)2()1()(  (4)

This means that the sum of successive powers of v and w
suffices to establish that they have been computed to the same
exponent. All that is required to find the values of α and β is
the solution to equation (2) for k = 2. No knowledge of the

actual value of n is needed while computing equation (4).

Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β,
we solve the equations:

19mod3932  

19mod71172  
We find that α=10 and β=17.

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as
follows: 2, 10, 1, 9, 12, 7, 8 …
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19.
For example, the value 9 is 10×1+17×10 mod 19.

Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β,
we solve the equations:

17mod3932  

17mod5852  
We find that α=8 and β=2.

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 …
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17.
Theorem 1 may be extended to modulo m, if u and v are
relative prime to m. If the exponents in equation (2) are not the
same then the result of Theorem 1 will not be valid.

Since v and w are known, three consecutive G(n) values can
be computed by successive multiplication with the appropriate
bases and it checked if the numbers have the relationship of
equation (3).

V. THREE OR MORE PARTIES

Consider communicating parties Alice, Bob, and Charlie (the
list can be augmented but here for simplicity we only speak of
three) who wish to perform a secure computation, which is the
sharing of random number. The first thing to be done is to
create aliases so that actions within the computation are
protected by the complexity of the computation. Each of these
aliases is a random number. The three also wish to generate a
single number that connects them with the multiparty
computation.

In a centralized system (Figure 3), the trusted authority T
performs the computation on the numbers a, b, c sent
respectively by Alice, Bob, and Charlie. The numbers should
be sent to T in a manner that hides each sender’s identity. This
requires a privacy preserving transformation where this hiding
is accomplished by means of an appropriate one-way function.

Let the transformation carried out by T map the numbers to
the range, R, which is [0, 1]:

),,(cbaTR  (5)

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

R maps to different probabilities pALICE, pBOB, pCHARLIE for the
three communicating parties. This mapping may be done by
assigning non-overlapping one-thirds of the range [0, 1] to the
three parties.

CHARLIEBOBALICE ppp ,, = fi (R) (6)

The difficulty with this centralized procedure is that the users
do not know if the transformation T is good at randomization.
Although there is no way for them to confirm that the output R
has a distribution which is uniform over [0, 1], a strong
hashing function will be considered satisfactory in most cases.
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online
gambling. In these latter applications, the assignment of
probabilities is determined by the nature of the computation
(or game) and the house is also assigned a certain portion of
the take in accordance with law.

In the decentralized system (Figure 3), after the users have
been authenticated by some other protocol, they will send their
random numbers a, b, and c to each other. This procedure is
more than just a pairwise exchange of random numbers as in
the standard DH protocol, since a product of the three must
also be exchanged.

 Figure 3. Centralized system with trusted authority; (right)
decentralized system
In the case of four parties and two bases (u and w), the

following cases will be different:
i. All chosen bases are the same (in which case the keys

would be identical)
ii. Three choose one base and the fourth chooses

another
iii. Two adjacent parties choose one base and the other

two pick a different one
iv. Two non-adjacent parties choose one base and the

other two pick the other

The cases ii, iii, and iv are described by Tables 1, 2, and 3,
respectively.

Table 1.
A B C D
u u u w
wad uab ubc ucd

uacd wabd uabc ubcd

uabcd uabcd wabcd uabcd

Table 2.
A B C D
u u w w
wad uab ubc wcd

wacd wabd uabc ubcd

uabcd wabcd wabcd uabcd

Table 3.
A B C D
u w u w
wad uab wbc ucd

uacd wabd uabc wbcd

wabcd uabcd wabcd uabcd

In case (ii), B and D share the key with A; in case (iii), only D
shares the key with A; and in case (iv), C shares the key with
A. Since the key generation process has three steps
(represented by the three bottom rows of each table), the base
travels one step to the right at each stage, ending up 3
positions to the right which is equivalent to one position to the
left.

In Table 1, the total favorable probability of one of the three
(B, C, D) obtaining the same key as A is 4/9 as shown in Table
4:

Table 4.
A B C D Result
u u u w A, B, and D share key
u u w u A, C, and D share key
u w u u B, C, and D don’t share key

with A
w u u u A, B, and C share key

If sharing of key with A by B, C, and D is represented by 1,
these four cases represent the sequences 101, 010, 000, and
110. The cases of Table 4 map to the sequences 001, 100, 011,
and that of Table 5 to the sequence 010.

Clearly, such analysis can be extended to more general
cases. The protocol for three parties begins with a pairwise
exchange of random numbers and then the product of the
three:

Step 1. Alice and Bob share uab mod p, Bob and Charlie
share ubc mod p, and Charlie and Alice share uac mod p.
(Figure 4)

Step 2. Bob sends uab mod p to Charlie, who sends
ubc mod p to Alice, who sends uac mod p to Bob.

Oblivious Transfer with Verification

MARCH 2017 • VOLUME IX • NUMBER 116

INFOCOMMUNICATIONS JOURNAL

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

events using classical and quantum techniques. It then
presented a variation of the DH key exchange protocol to serve
as an oblivious transfer protocol that can easily generate a
probability event of 1/m, where m is 2 or higher integer. A
verification procedure was presented that can catch attempts
by Alice at cheating. This method was also extended to three
or more parties and the specific protocol together with the
verification algorithm was presented for three parties.

REFERENCES
[1] A Kolmogorov, Three approaches to the quantitative definition of

information. Problems of Information Transmission. 1:1-17 (1965)
[2] S. Kak, Classification of random binary sequences using Walsh-Fourier

analysis. IEEE Trans. on Electromagnetic Compatibility, EMC-13: 74-77
(1971)

[3] G. Chaitin, Randomness and mathematical proof. Scientific American.
232(5): 47-52 (1975)

[4] S. Kak and A. Chatterjee, On decimal sequences. IEEE Trans. on
Information Theory IT-27: 647 – 652 (1981)

[5] G. Marsaglia, A current view of random number generators, in Computer
Science and Statistics: The Interface. 3-10. Elsevier Science (1985)

[6] S. Kak, Encryption and error-correction coding using D sequences. IEEE
Trans. on Computers C-34: 803-809 (1985)

[7] G. Marsaglia and L.H. Tsay, Matrices and the structure of random number
sequences. Linear Algebra Appl. 67: 147-156 (1985)

[8] R. Merkle, Secure communications over insecure channels. Comm. Of the
ACM 21(4): 294-299 (1978)

[9] R. Feynman, QED: The Strange Theory of Light and Matter. Princeton
Univ Press (1985)

[10] R. Landauer, The physical nature of information. Phys. Lett. A 217: 188-
193 (1996)

[11] S. Kak, The initialization problem in quantum computing. Foundations of
Physics, 29: 267-279 (1999)

[12] S Kak, Quantum information and entropy. Int. Journal of Theo. Phys. 46:
860-876 (2007)

[13] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V.
Makarov, Full-field implementation of a perfect eavesdropper on a
quantum cryptography system. Nat. Commun. 2: 349 (2011)

[14] C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution
and coin tossing. Proceeding of the IEEE International Conference on
Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–
179, IEEE, New York (1984)

[15] S. Kak, A three-stage quantum cryptography protocol. Foundations of
Physics Letters 19: 293-296 (2006)

[16] M. Rabin, Digitalized signatures and public key functions as intractable as
factoring. Tech. Rep. MIT/LCS/TR-212, MIT (1979)

[17] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing
contracts. Comm. of the ACM 28: 637-647 (1985)

[18] S. Kak, The cubic public-key transformation. Circuits Systems Signal
Processing 26: 353-359 (2007)

[19] S. Singh, The Code Book: the Secret History of Codes and Code-breaking.
FourthEstate, London (1999)

[20] S. Kak, The Loom of Time. DKPrintworld, New Delhi (2016)
[21] R. Stoneman, The Ancient Oracles. Yale University Press (2011)
[22] A.R. Burn, Herodotus: The Histories. Penguin Classics (1972)
[23] E. Evans-Pritchard, Witchcraft, Oracle, and Magic Among the Azande.

Oxford University Press (1976)

Subhash Kak is Regents Professor in the School of
Electrical and Computer Engineering at Oklahoma
State University at Stillwater. He is the author of
twenty books that include The Nature of Physical
Reality (3rd edition Mississauga, Mt. Meru, 2016),
The Architecture of Knowledge (New Delhi,
Motilal Banarsidass, 2004), and Matter and Mind
(Mississauga, Mt. Meru, 2016). His areas of
interest include data security, quantum computing,
information theory, neural networks, and history of

science. Professor Kak’s awards include British Council Fellow (1976),
Science Academy Medal of the Indian National Science Academy (1977),
Kothari Prize (1977), UNDP Tokten Award (1986), Goyal Prize (1998),
National Fellow of the Indian Institute of Advanced Study (2001), and
Distinguished Alumnus of IIT Delhi (2002).

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

events using classical and quantum techniques. It then
presented a variation of the DH key exchange protocol to serve
as an oblivious transfer protocol that can easily generate a
probability event of 1/m, where m is 2 or higher integer. A
verification procedure was presented that can catch attempts
by Alice at cheating. This method was also extended to three
or more parties and the specific protocol together with the
verification algorithm was presented for three parties.

REFERENCES
[1] A Kolmogorov, Three approaches to the quantitative definition of

information. Problems of Information Transmission. 1:1-17 (1965)
[2] S. Kak, Classification of random binary sequences using Walsh-Fourier

analysis. IEEE Trans. on Electromagnetic Compatibility, EMC-13: 74-77
(1971)

[3] G. Chaitin, Randomness and mathematical proof. Scientific American.
232(5): 47-52 (1975)

[4] S. Kak and A. Chatterjee, On decimal sequences. IEEE Trans. on
Information Theory IT-27: 647 – 652 (1981)

[5] G. Marsaglia, A current view of random number generators, in Computer
Science and Statistics: The Interface. 3-10. Elsevier Science (1985)

[6] S. Kak, Encryption and error-correction coding using D sequences. IEEE
Trans. on Computers C-34: 803-809 (1985)

[7] G. Marsaglia and L.H. Tsay, Matrices and the structure of random number
sequences. Linear Algebra Appl. 67: 147-156 (1985)

[8] R. Merkle, Secure communications over insecure channels. Comm. Of the
ACM 21(4): 294-299 (1978)

[9] R. Feynman, QED: The Strange Theory of Light and Matter. Princeton
Univ Press (1985)

[10] R. Landauer, The physical nature of information. Phys. Lett. A 217: 188-
193 (1996)

[11] S. Kak, The initialization problem in quantum computing. Foundations of
Physics, 29: 267-279 (1999)

[12] S Kak, Quantum information and entropy. Int. Journal of Theo. Phys. 46:
860-876 (2007)

[13] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V.
Makarov, Full-field implementation of a perfect eavesdropper on a
quantum cryptography system. Nat. Commun. 2: 349 (2011)

[14] C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution
and coin tossing. Proceeding of the IEEE International Conference on
Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–
179, IEEE, New York (1984)

[15] S. Kak, A three-stage quantum cryptography protocol. Foundations of
Physics Letters 19: 293-296 (2006)

[16] M. Rabin, Digitalized signatures and public key functions as intractable as
factoring. Tech. Rep. MIT/LCS/TR-212, MIT (1979)

[17] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing
contracts. Comm. of the ACM 28: 637-647 (1985)

[18] S. Kak, The cubic public-key transformation. Circuits Systems Signal
Processing 26: 353-359 (2007)

[19] S. Singh, The Code Book: the Secret History of Codes and Code-breaking.
FourthEstate, London (1999)

[20] S. Kak, The Loom of Time. DKPrintworld, New Delhi (2016)
[21] R. Stoneman, The Ancient Oracles. Yale University Press (2011)
[22] A.R. Burn, Herodotus: The Histories. Penguin Classics (1972)
[23] E. Evans-Pritchard, Witchcraft, Oracle, and Magic Among the Azande.

Oxford University Press (1976)

Subhash Kak is Regents Professor in the School of
Electrical and Computer Engineering at Oklahoma
State University at Stillwater. He is the author of
twenty books that include The Nature of Physical
Reality (3rd edition Mississauga, Mt. Meru, 2016),
The Architecture of Knowledge (New Delhi,
Motilal Banarsidass, 2004), and Matter and Mind
(Mississauga, Mt. Meru, 2016). His areas of
interest include data security, quantum computing,
information theory, neural networks, and history of

science. Professor Kak’s awards include British Council Fellow (1976),
Science Academy Medal of the Indian National Science Academy (1977),
Kothari Prize (1977), UNDP Tokten Award (1986), Goyal Prize (1998),
National Fellow of the Indian Institute of Advanced Study (2001), and
Distinguished Alumnus of IIT Delhi (2002).

Oblivious Transfer with Verification
INFOCOMMUNICATIONS JOURNAL

MARCH 2017 • VOLUME IX • NUMBER 1 17

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

events using classical and quantum techniques. It then
presented a variation of the DH key exchange protocol to serve
as an oblivious transfer protocol that can easily generate a
probability event of 1/m, where m is 2 or higher integer. A
verification procedure was presented that can catch attempts
by Alice at cheating. This method was also extended to three
or more parties and the specific protocol together with the
verification algorithm was presented for three parties.

REFERENCES
[1] A Kolmogorov, Three approaches to the quantitative definition of

information. Problems of Information Transmission. 1:1-17 (1965)
[2] S. Kak, Classification of random binary sequences using Walsh-Fourier

analysis. IEEE Trans. on Electromagnetic Compatibility, EMC-13: 74-77
(1971)

[3] G. Chaitin, Randomness and mathematical proof. Scientific American.
232(5): 47-52 (1975)

[4] S. Kak and A. Chatterjee, On decimal sequences. IEEE Trans. on
Information Theory IT-27: 647 – 652 (1981)

[5] G. Marsaglia, A current view of random number generators, in Computer
Science and Statistics: The Interface. 3-10. Elsevier Science (1985)

[6] S. Kak, Encryption and error-correction coding using D sequences. IEEE
Trans. on Computers C-34: 803-809 (1985)

[7] G. Marsaglia and L.H. Tsay, Matrices and the structure of random number
sequences. Linear Algebra Appl. 67: 147-156 (1985)

[8] R. Merkle, Secure communications over insecure channels. Comm. Of the
ACM 21(4): 294-299 (1978)

[9] R. Feynman, QED: The Strange Theory of Light and Matter. Princeton
Univ Press (1985)

[10] R. Landauer, The physical nature of information. Phys. Lett. A 217: 188-
193 (1996)

[11] S. Kak, The initialization problem in quantum computing. Foundations of
Physics, 29: 267-279 (1999)

[12] S Kak, Quantum information and entropy. Int. Journal of Theo. Phys. 46:
860-876 (2007)

[13] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V.
Makarov, Full-field implementation of a perfect eavesdropper on a
quantum cryptography system. Nat. Commun. 2: 349 (2011)

[14] C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution
and coin tossing. Proceeding of the IEEE International Conference on
Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–
179, IEEE, New York (1984)

[15] S. Kak, A three-stage quantum cryptography protocol. Foundations of
Physics Letters 19: 293-296 (2006)

[16] M. Rabin, Digitalized signatures and public key functions as intractable as
factoring. Tech. Rep. MIT/LCS/TR-212, MIT (1979)

[17] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing
contracts. Comm. of the ACM 28: 637-647 (1985)

[18] S. Kak, The cubic public-key transformation. Circuits Systems Signal
Processing 26: 353-359 (2007)

[19] S. Singh, The Code Book: the Secret History of Codes and Code-breaking.
FourthEstate, London (1999)

[20] S. Kak, The Loom of Time. DKPrintworld, New Delhi (2016)
[21] R. Stoneman, The Ancient Oracles. Yale University Press (2011)
[22] A.R. Burn, Herodotus: The Histories. Penguin Classics (1972)
[23] E. Evans-Pritchard, Witchcraft, Oracle, and Magic Among the Azande.

Oxford University Press (1976)

Subhash Kak is Regents Professor in the School of
Electrical and Computer Engineering at Oklahoma
State University at Stillwater. He is the author of
twenty books that include The Nature of Physical
Reality (3rd edition Mississauga, Mt. Meru, 2016),
The Architecture of Knowledge (New Delhi,
Motilal Banarsidass, 2004), and Matter and Mind
(Mississauga, Mt. Meru, 2016). His areas of
interest include data security, quantum computing,
information theory, neural networks, and history of

science. Professor Kak’s awards include British Council Fellow (1976),
Science Academy Medal of the Indian National Science Academy (1977),
Kothari Prize (1977), UNDP Tokten Award (1986), Goyal Prize (1998),
National Fellow of the Indian Institute of Advanced Study (2001), and
Distinguished Alumnus of IIT Delhi (2002).

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

Step 3. Using their secret numbers, each is now able to
compute the same key to be shared amongst them which is
uabc mod p. (Figure 5)

Figure 4. Pairwise exchange of random numbers

 Figure 5. Generation of the single key uabc mod p

As is clear from the working of this protocol as shown in
Figures 4 and 5, the pairwise sharing of numbers as well as the
final generation of a single number can be generalized to any
number of parties.

If one wished to use this protocol to generate oblivious
transfer then the parties should randomly choose between a set
of potential bases as in Step 4.

Step 4. The three parties choose from different public
numbers of larger order mod p. We will call these u, v,
and w (if there are three such numbers).

Now consider that the base integers used by the three are

two in number and let’s call them u and v. If the secrets are
exchanged in pairs then the probability that any two of them
will share mutual secrets is ¼.

On the other hand, if there is a single secret that is coded by
Alice using uabc mod p, then there is a ¼ probability that both
Bob and Charlie will receive it.

VI. VERIFICATION PROCESS FOR THREE BASE
INTEGERS

Now consider that there are three base integers, u, v, and w. To
forestall cheating by any party, one would need to develop a
verification sequence by using a previously announced random

number r that is used as an exponent on the respective raw
keys.

Consider G(n) = un + vn + wn mod p. To relate the three
variables amongst each other, we need a quadratic expansion
of the kind below:

 puuu mod23  

pvvv mod23  

pwww mod23   (7)

This may be written down as the matrix equation:






















































1
1
1

2

2

2

3

3

3

ww
vv
uu

w
v
u

The solution of this equation is easily found to be:
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 (8)

Theorem 2.

pnGnGnGnG mod)3()2()1()(  (9)

Proof.)(nG = pwvu nnn mod)(

 = pwwvvuu nnn mod)(333333  

=)()(2323    vvvuuu nn

 pwwwn mod)(23   
 = pnGnGnG mod)3()2()1( 

The sum of successive powers of v and w suffices to
establish that they have been computed to the same exponent.
All that is required to find the values of α and β is the solution
to equation (7) for k = 2. No knowledge of the actual value of
n is needed while computing equation (9).

Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and
γ, we use equation (7), obtaining:

17mod 13 ;3 ;10  

The series 17mod532)(nnnnG  , for n = 0, 1, 2, 3… is as
follows: 3, 10, 4, 7, 8, 0, 13 …
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3)
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod
17.

VII. DISCUSSION

This paper reviewed the problem of generation of random

events using classical and quantum techniques. It then
presented a variation of the DH key exchange protocol to serve
as an oblivious transfer protocol that can easily generate a
probability event of 1/m, where m is 2 or higher integer. A
verification procedure was presented that can catch attempts
by Alice at cheating. This method was also extended to three
or more parties and the specific protocol together with the
verification algorithm was presented for three parties.

REFERENCES

[1] A Kolmogorov, Three approaches to the quantitative definition of
information. Problems of Information Transmission. 1:1-17 (1965)

[2] S. Kak, Classification of random binary sequences using Walsh-Fourier
analysis. IEEE Trans. on Electromagnetic Compatibility, EMC-13: 74-77
(1971)

[3] G. Chaitin, Randomness and mathematical proof. Scientific American.
232(5): 47-52 (1975)

[4] S. Kak and A. Chatterjee, On decimal sequences. IEEE Trans. on
Information Theory IT-27: 647 – 652 (1981)

[5] G. Marsaglia, A current view of random number generators, in Computer
Science and Statistics: The Interface. 3-10. Elsevier Science (1985)

[6] S. Kak, Encryption and error-correction coding using D sequences. IEEE
Trans. on Computers C-34: 803-809 (1985)

[7] G. Marsaglia and L.H. Tsay, Matrices and the structure of random number
sequences. Linear Algebra Appl. 67: 147-156 (1985)

[8] R. Merkle, Secure communications over insecure channels. Comm. Of the
ACM 21(4): 294-299 (1978)

[9] R. Feynman, QED: The Strange Theory of Light and Matter. Princeton
Univ Press (1985)

[10] R. Landauer, The physical nature of information. Phys. Lett. A 217: 188-
193 (1996)

[11] S. Kak, The initialization problem in quantum computing. Foundations of
Physics, 29: 267-279 (1999)

[12] S Kak, Quantum information and entropy. Int. Journal of Theo. Phys. 46:
860-876 (2007)

[13] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V.
Makarov, Full-field implementation of a perfect eavesdropper on a
quantum cryptography system. Nat. Commun. 2: 349 (2011)

[14] C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution
and coin tossing. Proceeding of the IEEE International Conference on
Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–
179, IEEE, New York (1984)

[15] S. Kak, A three-stage quantum cryptography protocol. Foundations of
Physics Letters 19: 293-296 (2006)

[16] M. Rabin, Digitalized signatures and public key functions as intractable as
factoring. Tech. Rep. MIT/LCS/TR-212, MIT (1979)

[17] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing
contracts. Comm. of the ACM 28: 637-647 (1985)

[18] S. Kak, The cubic public-key transformation. Circuits Systems Signal
Processing 26: 353-359 (2007)

[19] S. Singh, The Code Book: the Secret History of Codes and Code-breaking.
FourthEstate, London (1999)

[20] S. Kak, The Loom of Time. DKPrintworld, New Delhi (2016)
[21] R. Stoneman, The Ancient Oracles. Yale University Press (2011)
[22] A.R. Burn, Herodotus: The Histories. Penguin Classics (1972)
[23] E. Evans-Pritchard, Witchcraft, Oracle, and Magic Among the Azande.

Oxford University Press (1976)

Subhash Kak is Regents Professor in the School of
Electrical and Computer Engineering at Oklahoma
State University at Stillwater. He is the author of
twenty books that include The Nature of Physical
Reality (3rd edition Mississauga, Mt. Meru, 2016),
The Architecture of Knowledge (New Delhi,
Motilal Banarsidass, 2004), and Matter and Mind
(Mississauga, Mt. Meru, 2016). His areas of
interest include data security, quantum computing,
information theory, neural networks, and history of

science. Professor Kak’s awards include British Council Fellow (1976),
Science Academy Medal of the Indian National Science Academy (1977),
Kothari Prize (1977), UNDP Tokten Award (1986), Goyal Prize (1998),
National Fellow of the Indian Institute of Advanced Study (2001), and
Distinguished Alumnus of IIT Delhi (2002).

events using classical and quantum techniques. It then
presented a variation of the DH key exchange protocol to serve
as an oblivious transfer protocol that can easily generate a
probability event of 1/m, where m is 2 or higher integer. A
verification procedure was presented that can catch attempts
by Alice at cheating. This method was also extended to three
or more parties and the specific protocol together with the
verification algorithm was presented for three parties.

REFERENCES
[1] A Kolmogorov, Three approaches to the quantitative definition of

information. Problems of Information Transmission. 1:1-17 (1965)
[2] S. Kak, Classification of random binary sequences using Walsh-Fourier

analysis. IEEE Trans. on Electromagnetic Compatibility, EMC-13: 74-77
(1971)

[3] G. Chaitin, Randomness and mathematical proof. Scientific American.
232(5): 47-52 (1975)

[4] S. Kak and A. Chatterjee, On decimal sequences. IEEE Trans. on
Information Theory IT-27: 647 – 652 (1981)

[5] G. Marsaglia, A current view of random number generators, in Computer
Science and Statistics: The Interface. 3-10. Elsevier Science (1985)

[6] S. Kak, Encryption and error-correction coding using D sequences. IEEE
Trans. on Computers C-34: 803-809 (1985)

[7] G. Marsaglia and L.H. Tsay, Matrices and the structure of random number
sequences. Linear Algebra Appl. 67: 147-156 (1985)

[8] R. Merkle, Secure communications over insecure channels. Comm. Of the
ACM 21(4): 294-299 (1978)

[9] R. Feynman, QED: The Strange Theory of Light and Matter. Princeton
Univ Press (1985)

[10] R. Landauer, The physical nature of information. Phys. Lett. A 217: 188-
193 (1996)

[11] S. Kak, The initialization problem in quantum computing. Foundations of
Physics, 29: 267-279 (1999)

[12] S Kak, Quantum information and entropy. Int. Journal of Theo. Phys. 46:
860-876 (2007)

[13] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V.
Makarov, Full-field implementation of a perfect eavesdropper on a
quantum cryptography system. Nat. Commun. 2: 349 (2011)

[14] C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution
and coin tossing. Proceeding of the IEEE International Conference on
Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–
179, IEEE, New York (1984)

[15] S. Kak, A three-stage quantum cryptography protocol. Foundations of
Physics Letters 19: 293-296 (2006)

[16] M. Rabin, Digitalized signatures and public key functions as intractable as
factoring. Tech. Rep. MIT/LCS/TR-212, MIT (1979)

[17] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing
contracts. Comm. of the ACM 28: 637-647 (1985)

[18] S. Kak, The cubic public-key transformation. Circuits Systems Signal
Processing 26: 353-359 (2007)

[19] S. Singh, The Code Book: the Secret History of Codes and Code-breaking.
FourthEstate, London (1999)

[20] S. Kak, The Loom of Time. DKPrintworld, New Delhi (2016)
[21] R. Stoneman, The Ancient Oracles. Yale University Press (2011)
[22] A.R. Burn, Herodotus: The Histories. Penguin Classics (1972)
[23] E. Evans-Pritchard, Witchcraft, Oracle, and Magic Among the Azande.

Oxford University Press (1976)

Subhash Kak is Regents Professor in the School of
Electrical and Computer Engineering at Oklahoma
State University at Stillwater. He is the author of
twenty books that include The Nature of Physical
Reality (3rd edition Mississauga, Mt. Meru, 2016),
The Architecture of Knowledge (New Delhi,
Motilal Banarsidass, 2004), and Matter and Mind
(Mississauga, Mt. Meru, 2016). His areas of
interest include data security, quantum computing,
information theory, neural networks, and history of

science. Professor Kak’s awards include British Council Fellow (1976),
Science Academy Medal of the Indian National Science Academy (1977),
Kothari Prize (1977), UNDP Tokten Award (1986), Goyal Prize (1998),
National Fellow of the Indian Institute of Advanced Study (2001), and
Distinguished Alumnus of IIT Delhi (2002).

