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 
Abstract— Although random sequences can be used to generate 

probability events, they come with the risk of cheating in an 
unsupervised situation. In such cases, the oblivious transfer 
protocol may be used and this paper presents a variation to the 
DH key-exchange to serve as this protocol. A method to verify the 
correctness of the procedure, without revealing the random 
numbers used by two or more parties, is also proposed. 
 

Index Terms— Cryptography, network security, multiparty 
communication, piggyback protocol 
 

I. INTRODUCTION 
The generation of events of specific probability is essential in 
many computations and in simulation of physical processes. Of 
particular interest is the generation of a random sequence that 
can simulate physical noise and be used for cryptographic and 
coding purposes. In a random binary (0, 1) random sequence, 
where the bits are independent, the probability of each new bit 
being 0 (or 1) is 1/2.  

If two parties (Alice and Bob) wish to determine who 
should play first at a game, they might agree to let Alice play 
first if she calls the next bit (or the nth future bit) correctly. 
The problem with this method is that if the algorithm 
generating the random sequence is known to, say, Alice, she 
can run it in advance and, therefore, know the bit in advance. 
To thwart such a possibility, one would need to place 
constraints on the nature of the random number generator such 
as designing it in such a way that it is impossible to emulate it. 
But that is not a realistic assumption if the generator is an 
algorithm that is implemented on a computer. If it is easy to 
generate a pseudo-random sequence, most likely it is 
cryptographically weak [1]-[7]. 

Alternatively, one could imagine that a trusted third party 
has a collection of random number generators. Alice now has 
to call the ith outcome of the kth random number generator 
correctly in order to win the call. If the number of generators is 
large and the number i is derived from some step in a 
computationally hard number-theoretic problem (such as the 
number of prime partitions of a large even number), it will 
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become well-nigh impossible for cheating to occur. This is 
equivalent to the method of puzzles for security [8]. 

For those who seek mathematical elegance, one might 
appeal to quantum theory [9]. The outcome of a superposition 
quantum state, such as a|0⟩+b|1⟩ is random, with the 
probability of 0 and 1 being |a|2 and |b|2, respectively. All one 
needs to do is to start with the state   
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, and measure it along the |0⟩ |1⟩ bases, and the chosen 
outcome will have a probability of exactly 1/2.  An example of 
this are diagonally polarized photons that will be unpredictably 
received as horizontally or vertically polarized photons along 
these measurement bases. 

This approach via physics is the perfect way to generate 
random events but it is not easy to implement [10]-[12]. Due 
to the Heisenberg’s Uncertainty Principle, one cannot generate 
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution 
[13]. If there are multiple photons with diagonal polarization, 
the pattern of reduction to the bases states will make it difficult 
to fix event probabilities. The randomness of collapse is at the 
basis of quantum cryptography protocols [14][15]. But due to 
the difficulty of generating single photon states, quantum 
cryptography itself uses classical random number generators to 
guide polarization rotations. 

Classical randomness is viewed as an aggregate of countless 
quantum processes. One could have a trusted party look at the 
thermal noise across a resister at specified future time (so that 
the bandwidth of the measurement apparatus can be 
discounted) and check if it is greater or less than the zero 
threshold. This can serve as an effective method of generating 
random events. But this requires a trusted third party to 
supervise the event generation process. 

The other method to use is the oblivious transfer (OT) 
protocol [16][17], where two parties mutually arrive at the 
probability event. In the most basic form of OT, the sender 
sends a message to the receiver with probability 1/2, while 
remaining oblivious as to whether or not the receiver obtained 
the message. Other probabilities can also be likewise generated 
[18]. These schemes depend on one-way, number-theoretic 
functions that are at the basis of public key cryptography [19] 
and they require a choice out of two alternatives to be made at 
some point in the process.  
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probability of 0 and 1 being |a|2 and |b|2, respectively. All one 
needs to do is to start with the state   
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, and measure it along the |0⟩ |1⟩ bases, and the chosen 
outcome will have a probability of exactly 1/2.  An example of 
this are diagonally polarized photons that will be unpredictably 
received as horizontally or vertically polarized photons along 
these measurement bases. 

This approach via physics is the perfect way to generate 
random events but it is not easy to implement [10]-[12]. Due 
to the Heisenberg’s Uncertainty Principle, one cannot generate 
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution 
[13]. If there are multiple photons with diagonal polarization, 
the pattern of reduction to the bases states will make it difficult 
to fix event probabilities. The randomness of collapse is at the 
basis of quantum cryptography protocols [14][15]. But due to 
the difficulty of generating single photon states, quantum 
cryptography itself uses classical random number generators to 
guide polarization rotations. 

Classical randomness is viewed as an aggregate of countless 
quantum processes. One could have a trusted party look at the 
thermal noise across a resister at specified future time (so that 
the bandwidth of the measurement apparatus can be 
discounted) and check if it is greater or less than the zero 
threshold. This can serve as an effective method of generating 
random events. But this requires a trusted third party to 
supervise the event generation process. 

The other method to use is the oblivious transfer (OT) 
protocol [16][17], where two parties mutually arrive at the 
probability event. In the most basic form of OT, the sender 
sends a message to the receiver with probability 1/2, while 
remaining oblivious as to whether or not the receiver obtained 
the message. Other probabilities can also be likewise generated 
[18]. These schemes depend on one-way, number-theoretic 
functions that are at the basis of public key cryptography [19] 
and they require a choice out of two alternatives to be made at 
some point in the process.  
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I. INTRODUCTION 
The generation of events of specific probability is essential in 
many computations and in simulation of physical processes. Of 
particular interest is the generation of a random sequence that 
can simulate physical noise and be used for cryptographic and 
coding purposes. In a random binary (0, 1) random sequence, 
where the bits are independent, the probability of each new bit 
being 0 (or 1) is 1/2.  

If two parties (Alice and Bob) wish to determine who 
should play first at a game, they might agree to let Alice play 
first if she calls the next bit (or the nth future bit) correctly. 
The problem with this method is that if the algorithm 
generating the random sequence is known to, say, Alice, she 
can run it in advance and, therefore, know the bit in advance. 
To thwart such a possibility, one would need to place 
constraints on the nature of the random number generator such 
as designing it in such a way that it is impossible to emulate it. 
But that is not a realistic assumption if the generator is an 
algorithm that is implemented on a computer. If it is easy to 
generate a pseudo-random sequence, most likely it is 
cryptographically weak [1]-[7]. 

Alternatively, one could imagine that a trusted third party 
has a collection of random number generators. Alice now has 
to call the ith outcome of the kth random number generator 
correctly in order to win the call. If the number of generators is 
large and the number i is derived from some step in a 
computationally hard number-theoretic problem (such as the 
number of prime partitions of a large even number), it will 
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We assume that the two parties are authenticated to each 
other and the owner of the secret is honest (the recipient has no 
reason not being so). To ensure there is no cheating, one could 
speak in general either of post-communication audit, or 
supervision of the process by a trusted third party. The audit or 
verification process should not reveal the random numbers 
used by the two parties since that could compromise the 
random number generators used and weaken the security of the 
process. 

We mention parenthetically that randomness was an 
important notion in ancient societies. The gods were taken to 
act randomly in a fashion that could not be understood by 
reasoning. The idea of Vedic ritual [20], Dionysian mysteries, 
the ecstatic trance of the Oracle of Delphi [21],[22], or 
shamanic practices of other cultures [23] was to get into a state 
where one could somehow connect to the time of the gods. The 
oracle’s prophecy was worded ambiguously and what meaning 
it might convey could not be known to the oracle. 

Here we show that an adaptation of the DH key exchange 
protocol will serve as an OT protocol with verification. We 
show that the protocol allows Bob to guess Alice’s secret with 
the specified probability. Since the secret belongs to Alice, one 
can visualize a situation where she cheats so as to reduce 
Bob’s guessing probability. We address this possibility and 
show how there can be verification of the procedure. 

II. THE PROTOCOL FOR TWO PARTIES 

Alice and Bob together (or a trusted party) choose and publish 
a large prime p and two integers u1 and u2 of large order 
modulo p. It may thus be assumed that both parties know that 
u1 = k u2. 
 

Step 1.  Alice chooses a random integer a, picks one of the 
two integers u1 and u2 and computes A = ui

a mod p, where 
i = 1 or 2, and sends it to Bob. 
 
Step 2. Bob chooses a random integer b, picks one of the 
two integers u1 and u2 and computes B = uj

b mod p, where 
j = 1 or 2, and sends it to Alice. 
 
Step 3. Alice takes the received number B and computes 
Ba mod p = u j ab mod p as the key to be used in encrypting 
a secret file to be sent to Bob. 
 
Step 4. Bob takes the received number A and computes  
Ab mod p = u i ab mod p as the key to be used in decrypting 
a secret file received from Alice. 

 
This protocol is shown in Figure 1 for the special case 

where Alice and Bob have chosen u1 and u2, respectively. The 

other cases are where the choice is flipped or where both Alice 
and Bob choose the same basis. 

 

 
Figure 1. The proposed protocol where Alice and Bob 
choose different bases 

 
It is assumed that Alice will use the key u2

ab mod p to code 
her secret. She does not know whether Bob possesses this key 
or u1

ab mod p. The probability that they choose different bases 
is ½. Therefore, there is a 0.50 probability that the key 
generated by Alice and Bob is identical.  

 
Figure 2. Bob gets the secret, S, if his key is the same as 
Alice’s 

 
If Bob fails to decrypt the secret with his key, he cannot use 

the knowledge that u1 = k u2, to determine the “correct” key. 
His incorrect key is related to the correct one through the 
relationship: 
 

ababab kuu 21  mod p          (1) 
 
Bob knows b, k, and u1

ab mod p, but that is not sufficient to 
obtain the correct key unless he can solve the discrete 
logarithm problem. 

The eavesdropper also cannot obtain any information about 
the final key from her observation of the data exchanged by 
Alice and Bob. 
 
Generalization. If in the protocol, there are m bases, u1, u2,…, 
um, rather than just two, as in the example above, the 
probability that Bob will know the secret is 1/m. 
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algorithm that is implemented on a computer. If it is easy to 
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cryptographically weak [1]-[7]. 

Alternatively, one could imagine that a trusted third party 
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to call the ith outcome of the kth random number generator 
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large and the number i is derived from some step in a 
computationally hard number-theoretic problem (such as the 
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, and measure it along the |0⟩ |1⟩ bases, and the chosen 
outcome will have a probability of exactly 1/2.  An example of 
this are diagonally polarized photons that will be unpredictably 
received as horizontally or vertically polarized photons along 
these measurement bases. 

This approach via physics is the perfect way to generate 
random events but it is not easy to implement [10]-[12]. Due 
to the Heisenberg’s Uncertainty Principle, one cannot generate 
single quantum states at specified time instants. Indeed, a low-
power laser will generate photons with a Poisson distribution 
[13]. If there are multiple photons with diagonal polarization, 
the pattern of reduction to the bases states will make it difficult 
to fix event probabilities. The randomness of collapse is at the 
basis of quantum cryptography protocols [14][15]. But due to 
the difficulty of generating single photon states, quantum 
cryptography itself uses classical random number generators to 
guide polarization rotations. 

Classical randomness is viewed as an aggregate of countless 
quantum processes. One could have a trusted party look at the 
thermal noise across a resister at specified future time (so that 
the bandwidth of the measurement apparatus can be 
discounted) and check if it is greater or less than the zero 
threshold. This can serve as an effective method of generating 
random events. But this requires a trusted third party to 
supervise the event generation process. 

The other method to use is the oblivious transfer (OT) 
protocol [16][17], where two parties mutually arrive at the 
probability event. In the most basic form of OT, the sender 
sends a message to the receiver with probability 1/2, while 
remaining oblivious as to whether or not the receiver obtained 
the message. Other probabilities can also be likewise generated 
[18]. These schemes depend on one-way, number-theoretic 
functions that are at the basis of public key cryptography [19] 
and they require a choice out of two alternatives to be made at 
some point in the process.  
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We assume that the two parties are authenticated to each 
other and the owner of the secret is honest (the recipient has no 
reason not being so). To ensure there is no cheating, one could 
speak in general either of post-communication audit, or 
supervision of the process by a trusted third party. The audit or 
verification process should not reveal the random numbers 
used by the two parties since that could compromise the 
random number generators used and weaken the security of the 
process. 

We mention parenthetically that randomness was an 
important notion in ancient societies. The gods were taken to 
act randomly in a fashion that could not be understood by 
reasoning. The idea of Vedic ritual [20], Dionysian mysteries, 
the ecstatic trance of the Oracle of Delphi [21],[22], or 
shamanic practices of other cultures [23] was to get into a state 
where one could somehow connect to the time of the gods. The 
oracle’s prophecy was worded ambiguously and what meaning 
it might convey could not be known to the oracle. 

Here we show that an adaptation of the DH key exchange 
protocol will serve as an OT protocol with verification. We 
show that the protocol allows Bob to guess Alice’s secret with 
the specified probability. Since the secret belongs to Alice, one 
can visualize a situation where she cheats so as to reduce 
Bob’s guessing probability. We address this possibility and 
show how there can be verification of the procedure. 

II. THE PROTOCOL FOR TWO PARTIES 

Alice and Bob together (or a trusted party) choose and publish 
a large prime p and two integers u1 and u2 of large order 
modulo p. It may thus be assumed that both parties know that 
u1 = k u2. 
 

Step 1.  Alice chooses a random integer a, picks one of the 
two integers u1 and u2 and computes A = ui

a mod p, where 
i = 1 or 2, and sends it to Bob. 
 
Step 2. Bob chooses a random integer b, picks one of the 
two integers u1 and u2 and computes B = uj

b mod p, where 
j = 1 or 2, and sends it to Alice. 
 
Step 3. Alice takes the received number B and computes 
Ba mod p = u j ab mod p as the key to be used in encrypting 
a secret file to be sent to Bob. 
 
Step 4. Bob takes the received number A and computes  
Ab mod p = u i ab mod p as the key to be used in decrypting 
a secret file received from Alice. 

 
This protocol is shown in Figure 1 for the special case 

where Alice and Bob have chosen u1 and u2, respectively. The 

other cases are where the choice is flipped or where both Alice 
and Bob choose the same basis. 

 

 
Figure 1. The proposed protocol where Alice and Bob 
choose different bases 

 
It is assumed that Alice will use the key u2

ab mod p to code 
her secret. She does not know whether Bob possesses this key 
or u1

ab mod p. The probability that they choose different bases 
is ½. Therefore, there is a 0.50 probability that the key 
generated by Alice and Bob is identical.  

 
Figure 2. Bob gets the secret, S, if his key is the same as 
Alice’s 

 
If Bob fails to decrypt the secret with his key, he cannot use 

the knowledge that u1 = k u2, to determine the “correct” key. 
His incorrect key is related to the correct one through the 
relationship: 
 

ababab kuu 21  mod p          (1) 
 
Bob knows b, k, and u1

ab mod p, but that is not sufficient to 
obtain the correct key unless he can solve the discrete 
logarithm problem. 

The eavesdropper also cannot obtain any information about 
the final key from her observation of the data exchanged by 
Alice and Bob. 
 
Generalization. If in the protocol, there are m bases, u1, u2,…, 
um, rather than just two, as in the example above, the 
probability that Bob will know the secret is 1/m. 
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oracle’s prophecy was worded ambiguously and what meaning 
it might convey could not be known to the oracle. 

Here we show that an adaptation of the DH key exchange 
protocol will serve as an OT protocol with verification. We 
show that the protocol allows Bob to guess Alice’s secret with 
the specified probability. Since the secret belongs to Alice, one 
can visualize a situation where she cheats so as to reduce 
Bob’s guessing probability. We address this possibility and 
show how there can be verification of the procedure. 

II. THE PROTOCOL FOR TWO PARTIES 

Alice and Bob together (or a trusted party) choose and publish 
a large prime p and two integers u1 and u2 of large order 
modulo p. It may thus be assumed that both parties know that 
u1 = k u2. 
 

Step 1.  Alice chooses a random integer a, picks one of the 
two integers u1 and u2 and computes A = ui

a mod p, where 
i = 1 or 2, and sends it to Bob. 
 
Step 2. Bob chooses a random integer b, picks one of the 
two integers u1 and u2 and computes B = uj

b mod p, where 
j = 1 or 2, and sends it to Alice. 
 
Step 3. Alice takes the received number B and computes 
Ba mod p = u j ab mod p as the key to be used in encrypting 
a secret file to be sent to Bob. 
 
Step 4. Bob takes the received number A and computes  
Ab mod p = u i ab mod p as the key to be used in decrypting 
a secret file received from Alice. 

 
This protocol is shown in Figure 1 for the special case 

where Alice and Bob have chosen u1 and u2, respectively. The 

other cases are where the choice is flipped or where both Alice 
and Bob choose the same basis. 

 

 
Figure 1. The proposed protocol where Alice and Bob 
choose different bases 

 
It is assumed that Alice will use the key u2

ab mod p to code 
her secret. She does not know whether Bob possesses this key 
or u1

ab mod p. The probability that they choose different bases 
is ½. Therefore, there is a 0.50 probability that the key 
generated by Alice and Bob is identical.  

 
Figure 2. Bob gets the secret, S, if his key is the same as 
Alice’s 

 
If Bob fails to decrypt the secret with his key, he cannot use 

the knowledge that u1 = k u2, to determine the “correct” key. 
His incorrect key is related to the correct one through the 
relationship: 
 

ababab kuu 21  mod p          (1) 
 
Bob knows b, k, and u1

ab mod p, but that is not sufficient to 
obtain the correct key unless he can solve the discrete 
logarithm problem. 

The eavesdropper also cannot obtain any information about 
the final key from her observation of the data exchanged by 
Alice and Bob. 
 
Generalization. If in the protocol, there are m bases, u1, u2,…, 
um, rather than just two, as in the example above, the 
probability that Bob will know the secret is 1/m. 
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III. POSSIBLE CHEATING BY ALICE 

Alice can cheat by not sending u2
ab mod p to Bob over the 

public channel, but rather u2
fb mod p, using the exponent f to 

build this fake key. This cheating will be evident if both Alice 
and Bob choose the same basis, which will happen 50% of the 
time. The case of cheating thus corresponds to the use of 
different exponents by the two parties. 

To prevent cheating, we add the following steps to the 
protocol: 
 

Step 5. A random number r, publicly declared in advance, 
is used by Alice to generate vn = uj

abr mod p (n=abr). In 
the example of Figure 1, vn = u2

abr mod p. The number vn 
is sent to Bob. 
 
Step 6. Bob uses the verification sequence G(n) = vn + wn 
mod p to establish that there has been no cheating. 

 
If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2) 
mod p, where α and β are constants that are easily found. The 
verification sequence G(n) is described in the next section.  

If Alice were to cheat by using u2
fb mod p as the key, but 

sends the correct u2
n mod p, she will be exposed in case Bob 

has chosen u2 and finds G(n) =0, while remaining unable to 
decrypt the secret. 

IV. THE VERIFICATION SEQUENCE  

Consider the sequence G(n) = vn + wn mod p. In general we 
can write 
  pvv kk

k mod   
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When k = 2, 
          pnGnGnG mod)2()1()(    (4) 

 
This means that the sum of successive powers of v and w 
suffices to establish that they have been computed to the same 
exponent. All that is required to find the values of α and β is 
the solution to equation (2) for k = 2. No knowledge of the 

actual value of n is needed while computing equation (4). 
 
Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β, 
we solve the equations: 

19mod3932    

19mod71172    
We find that α=10 and β=17. 

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as 
follows:  2, 10, 1, 9, 12, 7, 8 … 
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19. 
For example, the value 9 is 10×1+17×10 mod 19. 
 
Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β, 
we solve the equations: 

17mod3932    

17mod5852    
We find that α=8 and β=2.  

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as 
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 … 
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17. 
Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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R maps to different probabilities pALICE, pBOB, pCHARLIE for the 
three communicating parties. This mapping may be done by 
assigning non-overlapping one-thirds of the range [0, 1] to the 
three parties. 
 

CHARLIEBOBALICE ppp ,, = fi (R)     (6) 

 
The difficulty with this centralized procedure is that the users 
do not know if the transformation T is good at randomization. 
Although there is no way for them to confirm that the output R 
has a distribution which is uniform over [0, 1], a strong 
hashing function will be considered satisfactory in most cases. 
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online 
gambling. In these latter applications, the assignment of 
probabilities is determined by the nature of the computation 
(or game) and the house is also assigned a certain portion of 
the take in accordance with law. 

In the decentralized system (Figure 3), after the users have 
been authenticated by some other protocol, they will send their 
random numbers a, b, and c to each other. This procedure is 
more than just a pairwise exchange of random numbers as in 
the standard DH protocol, since a product of the three must 
also be exchanged.  
 
 

       
 Figure 3. Centralized system with trusted authority; (right)   
decentralized system 
In the case of four parties and two bases (u and w), the 

following cases will be different: 
i. All chosen bases are the same (in which case the keys 

would be identical) 
ii. Three  choose one base and the fourth chooses 

another 
iii. Two adjacent parties choose one base and the other 

two pick a different one 
iv. Two non-adjacent parties choose one base and the 

other two pick the other 
 

The cases ii, iii, and iv are described by Tables 1, 2, and 3, 
respectively. 

 

Table 1. 
A B C D 
u u u w 
wad uab ubc ucd 

uacd wabd uabc ubcd 

uabcd uabcd wabcd uabcd 
 

Table 2. 
A B C D 
u u w w 
wad uab ubc wcd 

wacd wabd uabc ubcd 

uabcd wabcd wabcd uabcd 
 

Table 3. 
A B C D 
u w u w 
wad uab wbc ucd 

uacd wabd uabc wbcd 

wabcd uabcd wabcd uabcd 
 
In case (ii), B and D share the key with A; in case (iii), only D 
shares the key with A; and in case (iv), C shares the key with 
A. Since the key generation process has three steps 
(represented by the three bottom rows of each table), the base 
travels one step to the right at each stage, ending up 3 
positions to the right which is equivalent to one position to the 
left.  

In Table 1, the total favorable probability of one of the three 
(B, C, D) obtaining the same key as A is 4/9 as shown in Table 
4: 

Table 4. 
A B C D Result 
u u u w A, B, and D share key  
u u w u A, C, and D share key 
u w  u u B, C, and D don’t share key 

with A 
w u u u A, B, and C share key 

 
If sharing of key with A by B, C, and D is represented by 1, 
these four cases represent the sequences 101, 010, 000, and 
110. The cases of Table 4 map to the sequences 001, 100, 011, 
and that of Table 5 to the sequence 010. 

Clearly, such analysis can be extended to more general 
cases. The protocol for three parties begins with a pairwise 
exchange of random numbers and then the product of the 
three: 

Step 1. Alice and Bob share uab mod p, Bob and Charlie 
share ubc mod p, and Charlie and Alice share uac mod p. 
(Figure 4) 

 
Step 2. Bob sends uab mod p to Charlie, who sends          
ubc mod p to Alice, who sends uac mod p to Bob. 

                           

 
 

 

III. POSSIBLE CHEATING BY ALICE 

Alice can cheat by not sending u2
ab mod p to Bob over the 

public channel, but rather u2
fb mod p, using the exponent f to 

build this fake key. This cheating will be evident if both Alice 
and Bob choose the same basis, which will happen 50% of the 
time. The case of cheating thus corresponds to the use of 
different exponents by the two parties. 

To prevent cheating, we add the following steps to the 
protocol: 
 

Step 5. A random number r, publicly declared in advance, 
is used by Alice to generate vn = uj

abr mod p (n=abr). In 
the example of Figure 1, vn = u2

abr mod p. The number vn 
is sent to Bob. 
 
Step 6. Bob uses the verification sequence G(n) = vn + wn 
mod p to establish that there has been no cheating. 

 
If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2) 
mod p, where α and β are constants that are easily found. The 
verification sequence G(n) is described in the next section.  

If Alice were to cheat by using u2
fb mod p as the key, but 

sends the correct u2
n mod p, she will be exposed in case Bob 

has chosen u2 and finds G(n) =0, while remaining unable to 
decrypt the secret. 

IV. THE VERIFICATION SEQUENCE  

Consider the sequence G(n) = vn + wn mod p. In general we 
can write 
  pvv kk
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When k = 2, 
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This means that the sum of successive powers of v and w 
suffices to establish that they have been computed to the same 
exponent. All that is required to find the values of α and β is 
the solution to equation (2) for k = 2. No knowledge of the 

actual value of n is needed while computing equation (4). 
 
Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β, 
we solve the equations: 

19mod3932    

19mod71172    
We find that α=10 and β=17. 

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as 
follows:  2, 10, 1, 9, 12, 7, 8 … 
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19. 
For example, the value 9 is 10×1+17×10 mod 19. 
 
Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β, 
we solve the equations: 

17mod3932    

17mod5852    
We find that α=8 and β=2.  

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as 
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 … 
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17. 
Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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III. POSSIBLE CHEATING BY ALICE 

Alice can cheat by not sending u2
ab mod p to Bob over the 

public channel, but rather u2
fb mod p, using the exponent f to 

build this fake key. This cheating will be evident if both Alice 
and Bob choose the same basis, which will happen 50% of the 
time. The case of cheating thus corresponds to the use of 
different exponents by the two parties. 

To prevent cheating, we add the following steps to the 
protocol: 
 

Step 5. A random number r, publicly declared in advance, 
is used by Alice to generate vn = uj

abr mod p (n=abr). In 
the example of Figure 1, vn = u2

abr mod p. The number vn 
is sent to Bob. 
 
Step 6. Bob uses the verification sequence G(n) = vn + wn 
mod p to establish that there has been no cheating. 

 
If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2) 
mod p, where α and β are constants that are easily found. The 
verification sequence G(n) is described in the next section.  

If Alice were to cheat by using u2
fb mod p as the key, but 

sends the correct u2
n mod p, she will be exposed in case Bob 

has chosen u2 and finds G(n) =0, while remaining unable to 
decrypt the secret. 

IV. THE VERIFICATION SEQUENCE  

Consider the sequence G(n) = vn + wn mod p. In general we 
can write 
  pvv kk

k mod   
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This means that the sum of successive powers of v and w 
suffices to establish that they have been computed to the same 
exponent. All that is required to find the values of α and β is 
the solution to equation (2) for k = 2. No knowledge of the 

actual value of n is needed while computing equation (4). 
 
Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β, 
we solve the equations: 

19mod3932    

19mod71172    
We find that α=10 and β=17. 

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as 
follows:  2, 10, 1, 9, 12, 7, 8 … 
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19. 
For example, the value 9 is 10×1+17×10 mod 19. 
 
Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β, 
we solve the equations: 

17mod3932    

17mod5852    
We find that α=8 and β=2.  

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as 
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 … 
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17. 
Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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III. POSSIBLE CHEATING BY ALICE 

Alice can cheat by not sending u2
ab mod p to Bob over the 

public channel, but rather u2
fb mod p, using the exponent f to 

build this fake key. This cheating will be evident if both Alice 
and Bob choose the same basis, which will happen 50% of the 
time. The case of cheating thus corresponds to the use of 
different exponents by the two parties. 

To prevent cheating, we add the following steps to the 
protocol: 
 

Step 5. A random number r, publicly declared in advance, 
is used by Alice to generate vn = uj

abr mod p (n=abr). In 
the example of Figure 1, vn = u2

abr mod p. The number vn 
is sent to Bob. 
 
Step 6. Bob uses the verification sequence G(n) = vn + wn 
mod p to establish that there has been no cheating. 

 
If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2) 
mod p, where α and β are constants that are easily found. The 
verification sequence G(n) is described in the next section.  

If Alice were to cheat by using u2
fb mod p as the key, but 

sends the correct u2
n mod p, she will be exposed in case Bob 

has chosen u2 and finds G(n) =0, while remaining unable to 
decrypt the secret. 

IV. THE VERIFICATION SEQUENCE  

Consider the sequence G(n) = vn + wn mod p. In general we 
can write 
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This means that the sum of successive powers of v and w 
suffices to establish that they have been computed to the same 
exponent. All that is required to find the values of α and β is 
the solution to equation (2) for k = 2. No knowledge of the 

actual value of n is needed while computing equation (4). 
 
Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β, 
we solve the equations: 

19mod3932    

19mod71172    
We find that α=10 and β=17. 

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as 
follows:  2, 10, 1, 9, 12, 7, 8 … 
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19. 
For example, the value 9 is 10×1+17×10 mod 19. 
 
Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β, 
we solve the equations: 

17mod3932    

17mod5852    
We find that α=8 and β=2.  

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as 
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 … 
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17. 
Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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III. POSSIBLE CHEATING BY ALICE 

Alice can cheat by not sending u2
ab mod p to Bob over the 

public channel, but rather u2
fb mod p, using the exponent f to 

build this fake key. This cheating will be evident if both Alice 
and Bob choose the same basis, which will happen 50% of the 
time. The case of cheating thus corresponds to the use of 
different exponents by the two parties. 

To prevent cheating, we add the following steps to the 
protocol: 
 

Step 5. A random number r, publicly declared in advance, 
is used by Alice to generate vn = uj

abr mod p (n=abr). In 
the example of Figure 1, vn = u2

abr mod p. The number vn 
is sent to Bob. 
 
Step 6. Bob uses the verification sequence G(n) = vn + wn 
mod p to establish that there has been no cheating. 

 
If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2) 
mod p, where α and β are constants that are easily found. The 
verification sequence G(n) is described in the next section.  

If Alice were to cheat by using u2
fb mod p as the key, but 

sends the correct u2
n mod p, she will be exposed in case Bob 

has chosen u2 and finds G(n) =0, while remaining unable to 
decrypt the secret. 

IV. THE VERIFICATION SEQUENCE  

Consider the sequence G(n) = vn + wn mod p. In general we 
can write 
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This means that the sum of successive powers of v and w 
suffices to establish that they have been computed to the same 
exponent. All that is required to find the values of α and β is 
the solution to equation (2) for k = 2. No knowledge of the 

actual value of n is needed while computing equation (4). 
 
Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β, 
we solve the equations: 

19mod3932    

19mod71172    
We find that α=10 and β=17. 

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as 
follows:  2, 10, 1, 9, 12, 7, 8 … 
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19. 
For example, the value 9 is 10×1+17×10 mod 19. 
 
Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β, 
we solve the equations: 
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17mod5852    
We find that α=8 and β=2.  

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as 
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 … 
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17. 
Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
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list can be augmented but here for simplicity we only speak of 
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sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
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In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
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is accomplished by means of an appropriate one-way function. 
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and Bob choose the same basis, which will happen 50% of the 
time. The case of cheating thus corresponds to the use of 
different exponents by the two parties. 

To prevent cheating, we add the following steps to the 
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Step 5. A random number r, publicly declared in advance, 
is used by Alice to generate vn = uj

abr mod p (n=abr). In 
the example of Figure 1, vn = u2

abr mod p. The number vn 
is sent to Bob. 
 
Step 6. Bob uses the verification sequence G(n) = vn + wn 
mod p to establish that there has been no cheating. 
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mod p, where α and β are constants that are easily found. The 
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This means that the sum of successive powers of v and w 
suffices to establish that they have been computed to the same 
exponent. All that is required to find the values of α and β is 
the solution to equation (2) for k = 2. No knowledge of the 

actual value of n is needed while computing equation (4). 
 
Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β, 
we solve the equations: 

19mod3932    

19mod71172    
We find that α=10 and β=17. 

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as 
follows:  2, 10, 1, 9, 12, 7, 8 … 
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19. 
For example, the value 9 is 10×1+17×10 mod 19. 
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for which each nth element is 8 G(n-1)+2 G(n-2) mod 17. 
Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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and Bob choose the same basis, which will happen 50% of the 
time. The case of cheating thus corresponds to the use of 
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the example of Figure 1, vn = u2

abr mod p. The number vn 
is sent to Bob. 
 
Step 6. Bob uses the verification sequence G(n) = vn + wn 
mod p to establish that there has been no cheating. 

 
If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2) 
mod p, where α and β are constants that are easily found. The 
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suffices to establish that they have been computed to the same 
exponent. All that is required to find the values of α and β is 
the solution to equation (2) for k = 2. No knowledge of the 

actual value of n is needed while computing equation (4). 
 
Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β, 
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19mod3932    
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We find that α=10 and β=17. 

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as 
follows:  2, 10, 1, 9, 12, 7, 8 … 
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19. 
For example, the value 9 is 10×1+17×10 mod 19. 
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We find that α=8 and β=2.  
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follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 … 
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17. 
Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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R maps to different probabilities pALICE, pBOB, pCHARLIE for the 
three communicating parties. This mapping may be done by 
assigning non-overlapping one-thirds of the range [0, 1] to the 
three parties. 
 

CHARLIEBOBALICE ppp ,, = fi (R)     (6) 

 
The difficulty with this centralized procedure is that the users 
do not know if the transformation T is good at randomization. 
Although there is no way for them to confirm that the output R 
has a distribution which is uniform over [0, 1], a strong 
hashing function will be considered satisfactory in most cases. 
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online 
gambling. In these latter applications, the assignment of 
probabilities is determined by the nature of the computation 
(or game) and the house is also assigned a certain portion of 
the take in accordance with law. 

In the decentralized system (Figure 3), after the users have 
been authenticated by some other protocol, they will send their 
random numbers a, b, and c to each other. This procedure is 
more than just a pairwise exchange of random numbers as in 
the standard DH protocol, since a product of the three must 
also be exchanged.  
 
 

       
 Figure 3. Centralized system with trusted authority; (right)   
decentralized system 
In the case of four parties and two bases (u and w), the 

following cases will be different: 
i. All chosen bases are the same (in which case the keys 

would be identical) 
ii. Three  choose one base and the fourth chooses 

another 
iii. Two adjacent parties choose one base and the other 

two pick a different one 
iv. Two non-adjacent parties choose one base and the 

other two pick the other 
 

The cases ii, iii, and iv are described by Tables 1, 2, and 3, 
respectively. 

 

Table 1. 
A B C D 
u u u w 
wad uab ubc ucd 

uacd wabd uabc ubcd 

uabcd uabcd wabcd uabcd 
 

Table 2. 
A B C D 
u u w w 
wad uab ubc wcd 

wacd wabd uabc ubcd 

uabcd wabcd wabcd uabcd 
 

Table 3. 
A B C D 
u w u w 
wad uab wbc ucd 

uacd wabd uabc wbcd 

wabcd uabcd wabcd uabcd 
 
In case (ii), B and D share the key with A; in case (iii), only D 
shares the key with A; and in case (iv), C shares the key with 
A. Since the key generation process has three steps 
(represented by the three bottom rows of each table), the base 
travels one step to the right at each stage, ending up 3 
positions to the right which is equivalent to one position to the 
left.  

In Table 1, the total favorable probability of one of the three 
(B, C, D) obtaining the same key as A is 4/9 as shown in Table 
4: 

Table 4. 
A B C D Result 
u u u w A, B, and D share key  
u u w u A, C, and D share key 
u w  u u B, C, and D don’t share key 

with A 
w u u u A, B, and C share key 

 
If sharing of key with A by B, C, and D is represented by 1, 
these four cases represent the sequences 101, 010, 000, and 
110. The cases of Table 4 map to the sequences 001, 100, 011, 
and that of Table 5 to the sequence 010. 

Clearly, such analysis can be extended to more general 
cases. The protocol for three parties begins with a pairwise 
exchange of random numbers and then the product of the 
three: 

Step 1. Alice and Bob share uab mod p, Bob and Charlie 
share ubc mod p, and Charlie and Alice share uac mod p. 
(Figure 4) 

 
Step 2. Bob sends uab mod p to Charlie, who sends          
ubc mod p to Alice, who sends uac mod p to Bob. 
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Clearly, such analysis can be extended to more general 
cases. The protocol for three parties begins with a pairwise 
exchange of random numbers and then the product of the 
three: 

Step 1. Alice and Bob share uab mod p, Bob and Charlie 
share ubc mod p, and Charlie and Alice share uac mod p. 
(Figure 4) 

 
Step 2. Bob sends uab mod p to Charlie, who sends          
ubc mod p to Alice, who sends uac mod p to Bob. 
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III. POSSIBLE CHEATING BY ALICE 

Alice can cheat by not sending u2
ab mod p to Bob over the 

public channel, but rather u2
fb mod p, using the exponent f to 

build this fake key. This cheating will be evident if both Alice 
and Bob choose the same basis, which will happen 50% of the 
time. The case of cheating thus corresponds to the use of 
different exponents by the two parties. 

To prevent cheating, we add the following steps to the 
protocol: 
 

Step 5. A random number r, publicly declared in advance, 
is used by Alice to generate vn = uj

abr mod p (n=abr). In 
the example of Figure 1, vn = u2

abr mod p. The number vn 
is sent to Bob. 
 
Step 6. Bob uses the verification sequence G(n) = vn + wn 
mod p to establish that there has been no cheating. 

 
If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2) 
mod p, where α and β are constants that are easily found. The 
verification sequence G(n) is described in the next section.  

If Alice were to cheat by using u2
fb mod p as the key, but 

sends the correct u2
n mod p, she will be exposed in case Bob 

has chosen u2 and finds G(n) =0, while remaining unable to 
decrypt the secret. 

IV. THE VERIFICATION SEQUENCE  

Consider the sequence G(n) = vn + wn mod p. In general we 
can write 
  pvv kk

k mod   

pww kk
k mod             (2) 

 
Theorem 1 
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When k = 2, 
          pnGnGnG mod)2()1()(    (4) 

 
This means that the sum of successive powers of v and w 
suffices to establish that they have been computed to the same 
exponent. All that is required to find the values of α and β is 
the solution to equation (2) for k = 2. No knowledge of the 

actual value of n is needed while computing equation (4). 
 
Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β, 
we solve the equations: 

19mod3932    

19mod71172    
We find that α=10 and β=17. 

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as 
follows:  2, 10, 1, 9, 12, 7, 8 … 
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19. 
For example, the value 9 is 10×1+17×10 mod 19. 
 
Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β, 
we solve the equations: 

17mod3932    

17mod5852    
We find that α=8 and β=2.  

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as 
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 … 
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17. 
Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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R maps to different probabilities pALICE, pBOB, pCHARLIE for the 
three communicating parties. This mapping may be done by 
assigning non-overlapping one-thirds of the range [0, 1] to the 
three parties. 
 

CHARLIEBOBALICE ppp ,, = fi (R)     (6) 

 
The difficulty with this centralized procedure is that the users 
do not know if the transformation T is good at randomization. 
Although there is no way for them to confirm that the output R 
has a distribution which is uniform over [0, 1], a strong 
hashing function will be considered satisfactory in most cases. 
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online 
gambling. In these latter applications, the assignment of 
probabilities is determined by the nature of the computation 
(or game) and the house is also assigned a certain portion of 
the take in accordance with law. 

In the decentralized system (Figure 3), after the users have 
been authenticated by some other protocol, they will send their 
random numbers a, b, and c to each other. This procedure is 
more than just a pairwise exchange of random numbers as in 
the standard DH protocol, since a product of the three must 
also be exchanged.  
 
 

       
 Figure 3. Centralized system with trusted authority; (right)   
decentralized system 
In the case of four parties and two bases (u and w), the 

following cases will be different: 
i. All chosen bases are the same (in which case the keys 

would be identical) 
ii. Three  choose one base and the fourth chooses 

another 
iii. Two adjacent parties choose one base and the other 

two pick a different one 
iv. Two non-adjacent parties choose one base and the 

other two pick the other 
 

The cases ii, iii, and iv are described by Tables 1, 2, and 3, 
respectively. 

 

Table 1. 
A B C D 
u u u w 
wad uab ubc ucd 

uacd wabd uabc ubcd 

uabcd uabcd wabcd uabcd 
 

Table 2. 
A B C D 
u u w w 
wad uab ubc wcd 

wacd wabd uabc ubcd 

uabcd wabcd wabcd uabcd 
 

Table 3. 
A B C D 
u w u w 
wad uab wbc ucd 

uacd wabd uabc wbcd 

wabcd uabcd wabcd uabcd 
 
In case (ii), B and D share the key with A; in case (iii), only D 
shares the key with A; and in case (iv), C shares the key with 
A. Since the key generation process has three steps 
(represented by the three bottom rows of each table), the base 
travels one step to the right at each stage, ending up 3 
positions to the right which is equivalent to one position to the 
left.  

In Table 1, the total favorable probability of one of the three 
(B, C, D) obtaining the same key as A is 4/9 as shown in Table 
4: 

Table 4. 
A B C D Result 
u u u w A, B, and D share key  
u u w u A, C, and D share key 
u w  u u B, C, and D don’t share key 

with A 
w u u u A, B, and C share key 

 
If sharing of key with A by B, C, and D is represented by 1, 
these four cases represent the sequences 101, 010, 000, and 
110. The cases of Table 4 map to the sequences 001, 100, 011, 
and that of Table 5 to the sequence 010. 

Clearly, such analysis can be extended to more general 
cases. The protocol for three parties begins with a pairwise 
exchange of random numbers and then the product of the 
three: 

Step 1. Alice and Bob share uab mod p, Bob and Charlie 
share ubc mod p, and Charlie and Alice share uac mod p. 
(Figure 4) 

 
Step 2. Bob sends uab mod p to Charlie, who sends          
ubc mod p to Alice, who sends uac mod p to Bob. 
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gambling. In these latter applications, the assignment of 
probabilities is determined by the nature of the computation 
(or game) and the house is also assigned a certain portion of 
the take in accordance with law. 

In the decentralized system (Figure 3), after the users have 
been authenticated by some other protocol, they will send their 
random numbers a, b, and c to each other. This procedure is 
more than just a pairwise exchange of random numbers as in 
the standard DH protocol, since a product of the three must 
also be exchanged.  
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In case (ii), B and D share the key with A; in case (iii), only D 
shares the key with A; and in case (iv), C shares the key with 
A. Since the key generation process has three steps 
(represented by the three bottom rows of each table), the base 
travels one step to the right at each stage, ending up 3 
positions to the right which is equivalent to one position to the 
left.  

In Table 1, the total favorable probability of one of the three 
(B, C, D) obtaining the same key as A is 4/9 as shown in Table 
4: 

Table 4. 
A B C D Result 
u u u w A, B, and D share key  
u u w u A, C, and D share key 
u w  u u B, C, and D don’t share key 

with A 
w u u u A, B, and C share key 

 
If sharing of key with A by B, C, and D is represented by 1, 
these four cases represent the sequences 101, 010, 000, and 
110. The cases of Table 4 map to the sequences 001, 100, 011, 
and that of Table 5 to the sequence 010. 

Clearly, such analysis can be extended to more general 
cases. The protocol for three parties begins with a pairwise 
exchange of random numbers and then the product of the 
three: 

Step 1. Alice and Bob share uab mod p, Bob and Charlie 
share ubc mod p, and Charlie and Alice share uac mod p. 
(Figure 4) 

 
Step 2. Bob sends uab mod p to Charlie, who sends          
ubc mod p to Alice, who sends uac mod p to Bob. 

                           

 
 

 

III. POSSIBLE CHEATING BY ALICE 

Alice can cheat by not sending u2
ab mod p to Bob over the 

public channel, but rather u2
fb mod p, using the exponent f to 

build this fake key. This cheating will be evident if both Alice 
and Bob choose the same basis, which will happen 50% of the 
time. The case of cheating thus corresponds to the use of 
different exponents by the two parties. 

To prevent cheating, we add the following steps to the 
protocol: 
 

Step 5. A random number r, publicly declared in advance, 
is used by Alice to generate vn = uj

abr mod p (n=abr). In 
the example of Figure 1, vn = u2

abr mod p. The number vn 
is sent to Bob. 
 
Step 6. Bob uses the verification sequence G(n) = vn + wn 
mod p to establish that there has been no cheating. 

 
If v = w, G(n) =0. When v ≠ w, G(n) = αG(n-1) + βG(n-2) 
mod p, where α and β are constants that are easily found. The 
verification sequence G(n) is described in the next section.  

If Alice were to cheat by using u2
fb mod p as the key, but 

sends the correct u2
n mod p, she will be exposed in case Bob 

has chosen u2 and finds G(n) =0, while remaining unable to 
decrypt the secret. 

IV. THE VERIFICATION SEQUENCE  

Consider the sequence G(n) = vn + wn mod p. In general we 
can write 
  pvv kk

k mod   

pww kk
k mod             (2) 

 
Theorem 1 
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When k = 2, 
          pnGnGnG mod)2()1()(    (4) 

 
This means that the sum of successive powers of v and w 
suffices to establish that they have been computed to the same 
exponent. All that is required to find the values of α and β is 
the solution to equation (2) for k = 2. No knowledge of the 

actual value of n is needed while computing equation (4). 
 
Example 1. Let k=2, v=3, and w=7 mod 19. To find α and β, 
we solve the equations: 

19mod3932    

19mod71172    
We find that α=10 and β=17. 

The series G(n) = 3n + 7n mod 19, for n = 0, 1, 2, 3 … is as 
follows:  2, 10, 1, 9, 12, 7, 8 … 
for which each nth element is 10 G(n-1)+17 G(n-2) mod 19. 
For example, the value 9 is 10×1+17×10 mod 19. 
 
Example 2. Let k=2, v=3, and w=5 mod 17. To find α and β, 
we solve the equations: 

17mod3932    

17mod5852    
We find that α=8 and β=2.  

The series G(n) = 3n + 5n mod 17, for n=0, 1, 2, 3… is as 
follows: 2, 8, 0, 16, 9, 2, 0, 4, 15, 9 … 
for which each nth element is 8 G(n-1)+2 G(n-2) mod 17. 
Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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mod p, where α and β are constants that are easily found. The 
verification sequence G(n) is described in the next section.  

If Alice were to cheat by using u2
fb mod p as the key, but 

sends the correct u2
n mod p, she will be exposed in case Bob 

has chosen u2 and finds G(n) =0, while remaining unable to 
decrypt the secret. 

IV. THE VERIFICATION SEQUENCE  

Consider the sequence G(n) = vn + wn mod p. In general we 
can write 
  pvv kk

k mod   

pww kk
k mod             (2) 

 
Theorem 1 

pknGknGnG kk mod)()1()(      (3)    

Proof. )(nG = pwv nn mod)(   

  = )( kknkkn wwvv     

  = )()( kk
kn

kk
kn wwvv      

        = )()( 11 knkn
k

knkn
k wvwv     

  = pknGknG kk mod)()1(    

 
When k = 2, 
          pnGnGnG mod)2()1()(    (4) 

 
This means that the sum of successive powers of v and w 
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the solution to equation (2) for k = 2. No knowledge of the 
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Theorem 1 may be extended to modulo m, if u and v are 
relative prime to m. If the exponents in equation (2) are not the 
same then the result of Theorem 1 will not be valid. 

Since v and w are known, three consecutive G(n) values can 
be computed by successive multiplication with the appropriate 
bases and it checked if the numbers have the relationship of 
equation (3). 
 

V. THREE OR MORE PARTIES 

Consider communicating parties Alice, Bob, and Charlie (the 
list can be augmented but here for simplicity we only speak of 
three) who wish to perform a secure computation, which is the 
sharing of random number.  The first thing to be done is to 
create aliases so that actions within the computation are 
protected by the complexity of the computation. Each of these 
aliases is a random number. The three also wish to generate a 
single number that connects them with the multiparty 
computation. 

In a centralized system (Figure 3), the trusted authority T 
performs the computation on the numbers a, b, c sent 
respectively by Alice, Bob, and Charlie. The numbers should 
be sent to T in a manner that hides each sender’s identity. This 
requires a privacy preserving transformation where this hiding 
is accomplished by means of an appropriate one-way function. 

Let the transformation carried out by T map the numbers to 
the range, R, which is [0, 1]: 
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R maps to different probabilities pALICE, pBOB, pCHARLIE for the 
three communicating parties. This mapping may be done by 
assigning non-overlapping one-thirds of the range [0, 1] to the 
three parties. 
 

CHARLIEBOBALICE ppp ,, = fi (R)     (6) 

 
The difficulty with this centralized procedure is that the users 
do not know if the transformation T is good at randomization. 
Although there is no way for them to confirm that the output R 
has a distribution which is uniform over [0, 1], a strong 
hashing function will be considered satisfactory in most cases. 
Centralized procedures are implemented in many computer-
controlled applications like the ones in a casino or in online 
gambling. In these latter applications, the assignment of 
probabilities is determined by the nature of the computation 
(or game) and the house is also assigned a certain portion of 
the take in accordance with law. 

In the decentralized system (Figure 3), after the users have 
been authenticated by some other protocol, they will send their 
random numbers a, b, and c to each other. This procedure is 
more than just a pairwise exchange of random numbers as in 
the standard DH protocol, since a product of the three must 
also be exchanged.  
 
 

       
 Figure 3. Centralized system with trusted authority; (right)   
decentralized system 
In the case of four parties and two bases (u and w), the 

following cases will be different: 
i. All chosen bases are the same (in which case the keys 

would be identical) 
ii. Three  choose one base and the fourth chooses 

another 
iii. Two adjacent parties choose one base and the other 

two pick a different one 
iv. Two non-adjacent parties choose one base and the 

other two pick the other 
 

The cases ii, iii, and iv are described by Tables 1, 2, and 3, 
respectively. 

 

Table 1. 
A B C D 
u u u w 
wad uab ubc ucd 

uacd wabd uabc ubcd 

uabcd uabcd wabcd uabcd 
 

Table 2. 
A B C D 
u u w w 
wad uab ubc wcd 

wacd wabd uabc ubcd 

uabcd wabcd wabcd uabcd 
 

Table 3. 
A B C D 
u w u w 
wad uab wbc ucd 

uacd wabd uabc wbcd 

wabcd uabcd wabcd uabcd 
 
In case (ii), B and D share the key with A; in case (iii), only D 
shares the key with A; and in case (iv), C shares the key with 
A. Since the key generation process has three steps 
(represented by the three bottom rows of each table), the base 
travels one step to the right at each stage, ending up 3 
positions to the right which is equivalent to one position to the 
left.  

In Table 1, the total favorable probability of one of the three 
(B, C, D) obtaining the same key as A is 4/9 as shown in Table 
4: 

Table 4. 
A B C D Result 
u u u w A, B, and D share key  
u u w u A, C, and D share key 
u w  u u B, C, and D don’t share key 

with A 
w u u u A, B, and C share key 

 
If sharing of key with A by B, C, and D is represented by 1, 
these four cases represent the sequences 101, 010, 000, and 
110. The cases of Table 4 map to the sequences 001, 100, 011, 
and that of Table 5 to the sequence 010. 

Clearly, such analysis can be extended to more general 
cases. The protocol for three parties begins with a pairwise 
exchange of random numbers and then the product of the 
three: 

Step 1. Alice and Bob share uab mod p, Bob and Charlie 
share ubc mod p, and Charlie and Alice share uac mod p. 
(Figure 4) 

 
Step 2. Bob sends uab mod p to Charlie, who sends          
ubc mod p to Alice, who sends uac mod p to Bob. 

                           

 
 

 

 
R maps to different probabilities pALICE, pBOB, pCHARLIE for the 
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Although there is no way for them to confirm that the output R 
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Step 3. Using their secret numbers, each is now able to 
compute the same key to be shared amongst them which is 
uabc mod p. (Figure 5) 
 

 
Figure 4. Pairwise exchange of random numbers 
 

 
        Figure 5. Generation of the single key uabc mod p 
 
As is clear from the working of this protocol as shown in 
Figures 4 and 5, the pairwise sharing of numbers as well as the 
final generation of a single number can be generalized to any 
number of parties. 

If one wished to use this protocol to generate oblivious 
transfer then the parties should randomly choose between a set 
of potential bases as in Step 4. 
 

Step 4. The three parties choose from different public 
numbers of larger order mod p. We will call these u, v, 
and w (if there are three such numbers).  

 
Now consider that the base integers used by the three are 

two in number and let’s call them u and v.  If the secrets are 
exchanged in pairs then the probability that any two of them 
will share mutual secrets is ¼. 

On the other hand, if there is a single secret that is coded by 
Alice using uabc mod p, then there is a ¼ probability that both 
Bob and Charlie will receive it. 
 

VI. VERIFICATION PROCESS FOR THREE BASE 
INTEGERS 

Now consider that there are three base integers, u, v, and w. To 
forestall cheating by any party, one would need to develop a 
verification sequence by using a previously announced random 

number r that is used as an exponent on the respective raw 
keys. 

Consider G(n) = un + vn + wn mod p. To relate the three 
variables amongst each other, we need a quadratic expansion 
of the kind below: 
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The solution of this equation is easily found to be: 
 
























































3

3

3

2222

2222

2222

))()((
1

w
v
u

uvvuwuvu
wuuwwuuw
vwwvuwwv

vuuwwv




 

                     (8) 
 
Theorem 2. 

pnGnGnGnG mod)3()2()1()(       (9) 

Proof. )(nG = pwvu nnn mod)(   

  = pwwvvuu nnn mod)( 333333     

= )()( 2323    vvvuuu nn          

   pwwwn mod)( 23     
  = pnGnGnG mod)3()2()1(    

The sum of successive powers of v and w suffices to 
establish that they have been computed to the same exponent. 
All that is required to find the values of α and β is the solution 
to equation (7) for k = 2. No knowledge of the actual value of 
n is needed while computing equation (9). 
 
Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and 
γ, we use equation (7), obtaining: 

17mod 13 ;3 ;10    

The series 17mod532)( nnnnG  , for n = 0, 1, 2, 3… is as 
follows: 3, 10, 4, 7, 8, 0, 13 … 
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3) 
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod 
17. 

VII. DISCUSSION 

This paper reviewed the problem of generation of random 

                           

 
 

 

events using classical and quantum techniques. It then 
presented a variation of the DH key exchange protocol to serve 
as an oblivious transfer protocol that can easily generate a 
probability event of 1/m, where m is 2 or higher integer. A 
verification procedure was presented that can catch attempts 
by Alice at cheating. This method was also extended to three 
or more parties and the specific protocol together with the 
verification algorithm was presented for three parties.  
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The sum of successive powers of v and w suffices to 
establish that they have been computed to the same exponent. 
All that is required to find the values of α and β is the solution 
to equation (7) for k = 2. No knowledge of the actual value of 
n is needed while computing equation (9). 
 
Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and 
γ, we use equation (7), obtaining: 

17mod 13 ;3 ;10    

The series 17mod532)( nnnnG  , for n = 0, 1, 2, 3… is as 
follows: 3, 10, 4, 7, 8, 0, 13 … 
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3) 
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod 
17. 
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VII. DISCUSSION 

This paper reviewed the problem of generation of random 

                           

 
 

 

events using classical and quantum techniques. It then 
presented a variation of the DH key exchange protocol to serve 
as an oblivious transfer protocol that can easily generate a 
probability event of 1/m, where m is 2 or higher integer. A 
verification procedure was presented that can catch attempts 
by Alice at cheating. This method was also extended to three 
or more parties and the specific protocol together with the 
verification algorithm was presented for three parties.  
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Step 3. Using their secret numbers, each is now able to 
compute the same key to be shared amongst them which is 
uabc mod p. (Figure 5) 
 

 
Figure 4. Pairwise exchange of random numbers 
 

 
        Figure 5. Generation of the single key uabc mod p 
 
As is clear from the working of this protocol as shown in 
Figures 4 and 5, the pairwise sharing of numbers as well as the 
final generation of a single number can be generalized to any 
number of parties. 

If one wished to use this protocol to generate oblivious 
transfer then the parties should randomly choose between a set 
of potential bases as in Step 4. 
 

Step 4. The three parties choose from different public 
numbers of larger order mod p. We will call these u, v, 
and w (if there are three such numbers).  

 
Now consider that the base integers used by the three are 

two in number and let’s call them u and v.  If the secrets are 
exchanged in pairs then the probability that any two of them 
will share mutual secrets is ¼. 

On the other hand, if there is a single secret that is coded by 
Alice using uabc mod p, then there is a ¼ probability that both 
Bob and Charlie will receive it. 
 

VI. VERIFICATION PROCESS FOR THREE BASE 
INTEGERS 

Now consider that there are three base integers, u, v, and w. To 
forestall cheating by any party, one would need to develop a 
verification sequence by using a previously announced random 

number r that is used as an exponent on the respective raw 
keys. 

Consider G(n) = un + vn + wn mod p. To relate the three 
variables amongst each other, we need a quadratic expansion 
of the kind below: 
 
   puuu mod23    

pvvv mod23    

pwww mod23          (7) 

This may be written down as the matrix equation: 
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The solution of this equation is easily found to be: 
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Theorem 2. 
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The sum of successive powers of v and w suffices to 
establish that they have been computed to the same exponent. 
All that is required to find the values of α and β is the solution 
to equation (7) for k = 2. No knowledge of the actual value of 
n is needed while computing equation (9). 
 
Example 3. Let u=2, v=3, and w=5 mod 17. To find α, β, and 
γ, we use equation (7), obtaining: 

17mod 13 ;3 ;10    

The series 17mod532)( nnnnG  , for n = 0, 1, 2, 3… is as 
follows: 3, 10, 4, 7, 8, 0, 13 … 
for which each nth element is 10 G(n-1) +3G(n-2) +13G(n-3) 
mod 17. For example, the value 13 is 10×0+3×8+13×7 mod 
17. 

VII. DISCUSSION 

This paper reviewed the problem of generation of random 
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VII. DISCUSSION 

This paper reviewed the problem of generation of random 

                    

events using classical and quantum techniques. It then 
presented a variation of the DH key exchange protocol to serve 
as an oblivious transfer protocol that can easily generate a 
probability event of 1/m, where m is 2 or higher integer. A 
verification procedure was presented that can catch attempts 
by Alice at cheating. This method was also extended to three 
or more parties and the specific protocol together with the 
verification algorithm was presented for three parties.  
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