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Abstract—Due to the continuous development in hardware-,
radio-, and sensor technologies, and the efforts of standardization
organizations, the Internet of Things is not just a vision anymore,
but it slowly becomes a part of our everyday life. The number of
deployed sensors and actuators in our environment is increasing
day-by-day transforming the physical world into an intelligent
environment enabling context-aware services. To fully support
this transformation we need to adapt the basic principles of
communication. We do not want to know the IP addresses of
individual sensor for example, we would rather like to query
them based on their context. Also, we are often interested in the
information itself, no matter which device provides it.

In this paper we extend our formerly proposed addressing
scheme for RPL networks (CAEsAR) to make it even more
efficient. CAEsARv2 uses RPL trees and aggregates context
information in Bloom-filters (BF) or bit vectors along the tree.
With this addressing scheme the RPL protocol itself is enhanced
to support context-based multicast, service-discovery and data-
centric communication. Compared to our original proposal, in
CAEsARv2 we get shorter update messages, as a result of assign-
ing distinct data structures (Bloom filters or bit vectors) to each of
the context parameters. We also show that by storing IP addresses
also in Bloom filters, similarly to other context parameters,
routing entries become shorter and evenly distributed among the
nodes. Through simulations we demonstrate that the efficiency
of Bloom-filter and bit vector aggregation in CAEsARv2 is not
affected significantly by the radio ranges of the nodes in the
network. Finally, through experimental results we show that, in
case of correlation between geographical proximity and measured
values, CAEsARv2 can adapt more efficiently to context changes
than the centralized publish/subscribe messaging systems.

Index Terms—Internet of Things, RPL routing protocol,
context-awareness, Bloom filters, multicast, service-discovery,
data-centric communication.

I. INTRODUCTION

THE Internet of Things has huge potential and countless
opportunities, as it can revolutionize almost every aspect

of our life. However, there are still some technical-, business-
, and policy challenges that must be tackled before these
systems can widely spread. Focusing on the technical aspects,
most of the IoT devices will be resource-constrained, with
limited memory, battery, and processing capabilities, and they
will communicate mostly through wireless channels that are
noisy. Our task is thus to provide communication standards
and protocols that can operate efficiently even under these
constraints.

The IETF has already standardized protocols like 6loWPAN
[1] and RPL [2] enabling IoT devices with scarce resources to
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get an IPv6 address and connect to the Internet. However, in
order to utilize the full potential of the future IoT infrastructure
and to provide personalized, location-aware, and more gener-
ally context-aware services we need additional communication
features. First, we need a service discovery mechanism [3], as
we need to know what devices are available in a certain area
and what is their current context (e.g., what services they are
able to provide, what is their battery status, their geographic
position, what operating system are they running, etc.) . Also,
we might want to communicate with a set of IoT devices
that share the same context - context-based multicast (e.g.,
we would like to communicate with all the smoke detectors in
a given area that have a battery level above 50%). Lastly, IoT
applications will be rather data-centric than message centric
(i.e., they care about the data itself, and not about how and
from whom it is being delivered).

This paper presents thus an extension of our formerly
proposed Context-Aware Addressing and Routing scheme for
RPL networks (a.k.a., CAEsAR) [4] [5], to efficiently support
these above features: service discovery, context-based multi-
cast and data-centric communication We denote this updated
version by CAEsARv2.

Regarding service discovery in the IoT domain, traditional
solutions [6] use a centralized registry, with which every de-
vice, offering any kind of service, communicates individually.
This means that these devices have to send their registration,
status update and keep-alive messages, possibly through mul-
tiple hops, to the registry. Compared to this, as we explain
it later, CAEsARv2 uses Bloom filters (BFs) and bit vectors
(BVs) to represent the current context of the devices, including
their offered services. These BFs and BVs are aggregated
along the RPL tree to which all these devices are attached.
Changes in the context information of a device (e.g., changes
in its position, battery status, measured value, etc.) may initiate
update messages in the network, similarly to the updates sent
to the centralized registry in traditional solutions. However,
these updates could die out rapidly due to the BF and BV
aggregation process (as explained later). Thus, the signaling
burden in CAEsARv2 is much lower.

Regarding context-based multicast, in theory we might map
application-layer context (subscriber) groups to network-layer
multicast groups [7]. However, traditional IP multicast does
not scale well with lots of small groups, since the multicast
addresses cannot be aggregated, so a separate routing entry
should be stored for each group. Nevertheless, with context-
based group addressing we get exactly in this situation: we
should maintain as many multicast groups as the number of
all possible permutations of the defined parameters (e.g., we
should build and maintain a separate multicast group and tree
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for all the smoke detectors on the third floor with battery above
50 %, one for those on the second floor and battery above 70%,
one for the motion sensors on the ground floor that detected
any movement in the last 5 minutes, and so on. Defining
separate groups for these endless possible cases is clearly
unmanageable for the resource-constrained IoT domain. With
CAEsARv2 we provide a solution for that as well, as no
individual multicast trees have to be maintained. Nodes with
the same subset of context information, which would be
members of a specific multicast group, will be reached easily
via an efficient BF- and BV-based routing scheme over the
RPL tree (as explained later).

Finally, data-centric communication in an IoT domain could
be handled via traditional pub/sub systems. However, we think
that the parties interested in some specific IoT data will
typically not be other IoT devices from the same domain, but
more likely applications that run on remote nodes, connected
to this IoT domain through the traditional Internet. In this
case the centralized and distributed pub/sub systems [8] [7]
are identical in the sense that every report message from
an IoT publisher has to be sent at least until the RPL root.
In CAEsARv2 however these report messages may die out
because of the already mentioned BF- and BV-aggregation
process, representing thus a much smaller signaling burden.

The contributions of this paper are the followings:
• We introduce new design steps that decrease the needed

memory and the length of the update messages for CAE-
sARv2. We make suggestions to separate the different
parameters and to store them in distinct data structures.
We examine what data structure (bit vector or Bloom
filter) is worth to be assigned to each parameter, based
on its type and its value range.

• We propose to store IP addresses in Bloom filters as
well, similarly to other context parameters. We show that
by doing so the routing entries become shorter and are
distributed evenly among the RPL nodes.

• We validate through experiments that CAEsARv2 can
adapt to context changes more efficiently than the cen-
tralized publish/subscribe messaging systems if there is a
correlation between geographical proximity and measured
values. In our former work [5] we only ran simulations
targeting this aspect.

• Through simulations we prove that if the fore mentioned
correlation exists, the efficiency of Bloom filter and bit
vector aggregation in CAEsARv2 is not affected signif-
icantly by the radio ranges in the network, as opposed
to the centralized solutions where shorter radio ranges
means longer routes.

The remainder of this paper is organized as follows: in
section II we review the related work; in section III we
introduce the required background on the RPL protocol and
the operation of CAEsAR. In section IV we introduce several
design steps to improve CAEsAR, while in section V we eval-
uate the extended CAEsARv2 framework through simulations
and experiments. Finally, in section VI we conclude our work.

II. RELATED WORK

AS mentioned before, we propose in this paper an extended
framework for context-based addressing and routing, in

order to efficiently support group addressing, service-discovery
and data-centric communication in IoT networks. In this
section we briefly introduce the general concepts behind the
above services, and compare them with CAEsARv2, which
is based on a different basic principle. In the followings we
assume that the RPL routing protocol is used in the IoT
domain.

A. Service discovery

If we have a networking infrastructure in place, enabling
nodes to communicate with each other, then it is a reasonable
assumption that individual nodes do not have to perform all
the possible tasks and do not have to store all the possible
data by themselves. Instead, they can rely on the services
provided by other nodes. Not all the devices have to have
thus a temperature sensor, or a GPS module, it is enough if
they know how to query another device which can provide
that service to them. However, in order to do so, they need
first a way to discover the services that are available to them
in a given moment, at a given location, through the devices
that are in their radio range for example.

There are two main types of service-discovery protocols
[6]: distributed and centralized. In a centralized approach one
or more central registry maintain a list of services provided
by the devices in the network. Any application or user that
wants to use a service in the network has to turn one of
these directories as an intermediary. If a change occurs in that
service, updates should be sent to the registry. On the other
hand, if another node want to discover the available services,
it will query directly the registry. Obviously, the centralized
registry might be a single point of failure, so alternative solu-
tions either distribute the load of the registry into several sub-
registries, building a hierarchical registry structure, or replicate
the entire registry in several nodes. Both of these solutions
have their own drawbacks. In the distributed case devices
interact with each other directly to discover services without
any coordinator entity. It can be done by using broadcast or
multicast, it follows that this kind of solutions generate much
more message overhead in the discovery phase, therefore in
the typical resource-constrained LLN environment it is not a
viable solution.

There were recently some registry-based service discov-
ery solutions proposed specifically for IoT networks (e.g.,
TRENDY [9]). As opposed to these, our CAEsARv2 frame-
work enables IoT nodes to store their context parameters,
including their proposed services (e.g., the possession of a
GPS module or the availability of moisture readings), in
Bloom filters and bit vectors (as explained later). If another
IoT device wants to find a specific service available in the
area, its query will be forwarded rapidly, through a context-
aware routing scheme, to nodes providing the desired service.
No central registry needs to be used, and the signaling burden
of maintaining aggregated context information will be much
lower than the burden of regularly updating a central service
registry.
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individual multicast trees have to be maintained. Nodes with
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parameters and to store them in distinct data structures.
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assumption that individual nodes do not have to perform all
the possible tasks and do not have to store all the possible
data by themselves. Instead, they can rely on the services
provided by other nodes. Not all the devices have to have
thus a temperature sensor, or a GPS module, it is enough if
they know how to query another device which can provide
that service to them. However, in order to do so, they need
first a way to discover the services that are available to them
in a given moment, at a given location, through the devices
that are in their radio range for example.

There are two main types of service-discovery protocols
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by the devices in the network. Any application or user that
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these directories as an intermediary. If a change occurs in that
service, updates should be sent to the registry. On the other
hand, if another node want to discover the available services,
it will query directly the registry. Obviously, the centralized
registry might be a single point of failure, so alternative solu-
tions either distribute the load of the registry into several sub-
registries, building a hierarchical registry structure, or replicate
the entire registry in several nodes. Both of these solutions
have their own drawbacks. In the distributed case devices
interact with each other directly to discover services without
any coordinator entity. It can be done by using broadcast or
multicast, it follows that this kind of solutions generate much
more message overhead in the discovery phase, therefore in
the typical resource-constrained LLN environment it is not a
viable solution.

There were recently some registry-based service discov-
ery solutions proposed specifically for IoT networks (e.g.,
TRENDY [9]). As opposed to these, our CAEsARv2 frame-
work enables IoT nodes to store their context parameters,
including their proposed services (e.g., the possession of a
GPS module or the availability of moisture readings), in
Bloom filters and bit vectors (as explained later). If another
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lower than the burden of regularly updating a central service
registry.
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B. Context-based group addressing

There will be several application scenarios in future IoT
networks when user applications will need to communicate
with a specific set of IoT devices, that have in common one or
a set of context parameters (e.g., let’s imagine a smart building
scenario, where the user wants to close all windows in a given
room, wants to turn off all the lights on a specific corridor, or
wants to know the locations of the dustbins that are full).

There are two main approaches to support IP based group
communication in the IoT domain. The first one is to maintain
a registry in a device that has relatively more resources
compared to other IoT devices (this is typically the RPL root,
or a node situated in the wired part of the Internet). Every
device that wants to join a multicast group registers itself
in this registry. If someone wants to send a message to the
group, it sends it to the registry, which then forwards it to
the group members. This forwarding can be done either by
sending a copy of the message to group member individually,
or by using the so called explicit multicast [10], where the
unicast IP address of every group member is added to the
IP header of the message, before proceeding with traditional
unicast routing. Supporting group communication by sending
messages individually is a very inefficient solution, especially
in the IoT domain with scarce resources. On the other hand,
increasing the length of the messages by adding several
destination IP addresses to the header is also problematic,
as longer messages require more energy to be sent, and the
chance of interferences or collisions is higher. Moreover, to
keep up to date this central registry we mentioned before, IoT
nodes would be required to send periodic keep-alive messages,
which again consumes energy. In both of the above cases
multicast group addresses are not needed.

The other possibility would be use traditional IP multicast
[11] [12], routing packets along a multicast tree. Such an
approach could be very beneficial for the resource-constrained
IoT devices, since in this way messages are only duplicated
where it is needed, at the branching points of the tree.
However, while traditional multicast could be very efficient
with a few but large groups, it does not scale well with lots of
small groups, as multicast addresses cannot be aggregated. In
practice we have to maintain as many spanning trees as many
groups we want to handle. Thus, such a solution is not viable
for our case, since we want to support a virtually "endless"
number of groups, corresponding to all possible permutations
of all possible context parameters.

However, if we consider IP addresses to be context param-
eters themselves, as explained later, and store them in Bloom
filters as well, as all other parameters in the proposed CAEsAR
framework, then traditional IP multicast and explicit multicast
can be supported efficiently in the extended RPL domain,
both regarding memory usage, message lengths and signaling
overhead. No central registry is needed in this case.

C. Data-centric communication

In several IoT scenarios it can happen that different applica-
tions are interested in the same type of data, but for different

purposes. In such cases it is very inefficient for the resource-
constrained IoT devices to maintain several connections with
these applications and send the same data several times.
These situations can be overcome by using the data-centric
communication paradigm in which we query the network for
some specific content, no matter which device provides it. [13].
In this way the applications can focus on the data itself, rather
than the process of getting it.

Publish/Subscribe messaging systems [8] are based on this
networking principle and are considered to be potentially
one of the best data collection protocols for IoT. Subscribers
register their interest in specific information, the publishers
provide such information, and the pub/sub system takes care
of the information exchange. A pub/sub system can have
centralized or distributed architecture [8]. In the latter case
smart communication primitives (e.g. multicast) are used to
ensure data exchange between the interacting parties. This
typically puts a heavier burden on the participating nodes
- compared to the centralized approach - since managing
those primitives requires more processing power and/or more
memory.

In the centralized approach an intermediary broker is used.
The broker coordinates subscriptions, i.e., it ensures that data
is collected from the publishers and is sent to the subscribers.
Every time a change happens in a publisher’s data, it has
to publish it again through the broker. In a multi-hop net-
work this means that a publish message has to be sent to
the broker, possibly through multiple hops. MQTT-SN [14]
is one such centralized publish-subscribe scheme. It is an
extended version of the traditional MQTT protocol, and is
designed to be as close as possible, in terms of operation, to
the traditional solution, while being optimized for resource-
constrained environments (the SN in its acronym comes from
Sensor Networks).

Our proposed CAEsARv2 framework also can be consid-
ered as a centralized pub/sub system, since the measured val-
ues of the different environmental parameters are represented
in an aggregated way at the RPL root in Bloom filters or in
bit vectors (see section IV.). That means the RPL root has to
manage pub/sub topics (e.g., the moisture readings in the given
RPL domain) and subscriptions. Anytime a change happens in
an aggregate BF or BV - because of the update messages -
the root has to report this to the subscribers. In order to do
that it needs to list the inserted elements in the newly created
aggregate data structure. That means it has to query all the
possible values of the actual parameter on the BF or on the
BV. Since the RPL root has more resources, and querying a
BF or a BV is a very light-weight process, this can be done
easily even when the actual parameter is densely quantized.

If the users are interested in a more specific data, e.g., the
temperature readings in a given room, then they can query all
the temperature sensors in that room (through the very fast
context-aware routing process in the CAEsARv2 framework).
Alternatively, a special RPL objective function (OF) (explained
later) could be used, which allows only those devices to
connect to the RPL DODAG which are situated in that room.

III. CAESAR IN A NUTSHELL
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IN this section we briefly introduce first the RPL routing
protocol on which CAEsAR is built, and then the CAEsAR

addressing scheme itself. We also introduce the different types
of context-parameters.

A. The RPL routing protocol

The RPL routing protocol [2] was designed especially for
low power and lossy networks (LLN), and was standardized
by the IETF in March 2012. It is a distance vector routing
protocol that builds up a Destination Oriented Directed Acyclic
Graph (DODAG) that has a single root. This root is the connec-
tion point, a gateway to other networks. A so called Objective
Function (OF) defines the DODAG formation process, based
on different metrics and constrains that have to be taken into
account. There could be several OFs active in the same IoT
domain; we call them RPL instances.

The RPL protocol defines new ICMPv6 control messages,
such as DIO (DODAG Information Object), DIS (DODAG
Information Solicitation) and DAO (DODAG Destination Ad-
vertisement Object). The DIOs carry information about the
RPL instance and its configuration parameters; therefore, they
are used for building up and maintaining the topology of the
DODAG. A node can solicit DIO messages from other nodes
by sending a DIS message. Finally, the DAOs are used to
build up and maintain downward routes in the DODAG. Nodes
inside the DODAG can operate either in storing-mode or non-
storing mode. In non-storing mode, nodes do not store any
routing entry; messages sent by any IoT device to any other
Iot device are forwarded up to the root, and then directed
downwards again to the destination, via source routing. In
storing mode, the DAO messages sent by child nodes to their
parents generate routing entries which can be used later to
route packets inside the domain.

B. CAEsAR

In the CAEsAR [5] framework the context parameter values
of the IoT nodes are hashed into Bloom filters (BF) [15] and
aggregated upwards along the DODAG.

A Bloom filter is a space-efficient probabilistic data struc-
ture for representing a set of elements [16]. It is a bit array with
a predefined length and hash functions. Each hash function
hashes an element to a bit position. Inserting an element is
done by hashing it with all the hash functions and setting to
"1" all the resulting bit positions. Checking the membership of
an element in a BF is achieved by the same hashing method.

False positives may occurs in BFs, as all the bit positions
that correspond to a specific element may be set to "1" - by
other elements - , even if this element does not belong to the
set. This probabilistic nature is the price of space efficiency.
If we choose the parameters properly, this probability can be
kept reasonably low, so the space savings are often worth this
tradeoff.

The question is thus how to store efficiently the context
of an individual node, or the aggregated context of an entire
sub-graph, in a BF. Context parameters can have continuous
and discrete value ranges. (The measured temperature is an
example for the former one, while the type of an IoT device is

H

BF: { F, (I + L + M + N), (H + K)}

BF: {H, K}

F

L M N

BF: {I, L, M, N}

BF: {N}BF: {M}BF: {L}

I

K

BF: {K}

Fig. 1: Aggregating BFs - and the corresponding context
parameter values - in a sub-graph of the DODAG

an example for the latter one.) For parameters with continuous
value ranges a limited number of discrete intervals have to be
set, to quantize their values. As a result, we can hash every
context parameter easily into a BF. It is assumed that every
node in the RPL tree uses a BF with predefined length and
structure, and a set of predefined hash functions, specified
and propagated along the tree by the root node. The RPL
root has to specify these parameters according to the possible
maximum number of context-parameters in the network and
the maximum acceptable false positive rate in the aggregate
BF(s) stored at the root node.

Bloom filters - with the same size and same hash functions
- can be aggregated by performing a bitwise OR operation
on them, which is a lightweight operation and suits well the
resource-constrained IoT devices. In CAEsAR every node has
to store a BF for representing its own context, and as many
other BFs as many children it has, as it can be seen in Fig. 1.
Every node in the RPL instance aggregates its stored BFs and
sends this aggregate BF to its parent node, which stores this as
the BF assigned to that particular child. If the topology of the
DODAG is reconfigured, it may initiate new BF aggregation
messages. Similarly, if a context parameter of a node changes
(e.g., the measured temperature value), it has to re-create its
own BF, aggregate all of its stored BFs, and if this currently
created aggregate BF is different from the former one, this has
to be sent to its parent node. The handling of the stored BFs
in the RPL network is discussed in a more detailed way in
our former paper [5].

The aggregate BFs can be used for two different purposes.
On the one hand the aggregate BFs stored at the root represent
the values of the context parameters that are available currently
in the RPL domain. On the other hand the aggregate BFs inside
the network can be used for context-based routing. This means
that we can send a message to a device that has a specific
context, without knowing its address. As each node inside the
RPL tree aggregates in a separate BF the context parameters
of each of its "child subtrees", it can be checked very rapidly if
the desired context corresponds to any node included in a child
subtree, or not. Then, the message will be forwarded only to
the subtree(s) where a match was found. This process is then
repeated until the message reaches one or more devices with
the desired context. With this kind of routing we can support
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service-discovery and context-based group communication in
the RPL domain.

IV. CAESAR 2.0

IN this section we introduce several new design steps in
order to extend CAEsAR and make it more efficient.

First we make a suggestion to separate the different types of
parameters and store them in distinct data structures. In this
way, if the value of a parameter changes, only its assigned
data structure needs to be propagated upwards in the RPL
tree, not the entire context; thus, the update messages become
shorter. We also make a suggestion to store IP addresses in
Bloom filters as a context parameter, and examine its possible
advantages.

A. Separation of static and dynamic context parameters

In the previous paragraph we differentiated context pa-
rameters based on whether their value ranges are continuous
or discrete. Another way to differentiate them is based on
whether they are static or dynamic. Static parameters do not
change in time (e.g., the type of the device), while dynamic
parameters do (e.g., the current temperature reading). In our
original CAEsAR proposal every parameter was hashed to
one "standard" BF and this BF was aggregated upward along
the DODAG. This means that anytime a change happened
in a context parameter of a device, it had to hash all of
its context parameters into a new BF, calculate the new
aggregated BF from all the BFs it stores (its own, and that of
its child subtrees), and then initiate the sending of a BF update
message upward along the DODAG, if needed. However, it
can be more efficient if we could handle the different types of
parameters in different ways. We suggest thus to separate the
static parameters from every dynamic parameter, by assigning
them individual BFs. . The length of the given BF should
be set according to the expected number of elements in the
BF and the maximum false positive rate at the root after the
aggregation process. For a given false positive probability p
and the number of inserted elements n the required number of
bits m for a BF is [17]:

m =
−n ∗ ln(p)
(ln(2))2 (1)

However, even though Bloom filters are a very space-efficient
way of storing context information, the false positives that are
due to their probabilistic nature are sometimes not acceptable.
Another way to store context information would be to use bit
vectors (BVs). Every bit position in a BV represents a context
category. For example, if a node has a solar panel attached,
the corresponding bit is set to 1; if not, it is set to 0. On the
other hand, if the state of the battery is quantized into three
intervals (low, middle, high), then three bit positions in the
vector are allocated to represent the node’s battery state, and
only one of them could be set to 1. Using BVs is obviously
more resource-hungry than using BFs, but there are no false
positives. The problem is thus to decide when to use BFs and
when to use BVs.

The number of bits m needed in a BV to store a given
context parameter is equal to the number of elements in the

complete value set of this parameter, nmax . This means the
BF is more efficient than a BV if nmax >

−ninser ted∗ln(p)
(ln(2))2 . Let

us examine what does this mean from our point of view.
Regarding the static parameters, assume that k nodes will

join the RPL DODAG (that can be the maximum number of
routing entries in the root).
• Let’s call context parameters of type 1 those that cor-

respond to mutually exclusive choices, from which only
one can be valid for a device at a given moment (e.g., the
type of object). Regarding the values of such a parameter,
we can say that at most k different values will be present
in the network, out of the j possible values that form the
complete value set of that parameter.

• Let’s call context parameters of type 2 those parameters
that correspond to multiple non-exclusive choices. (e.g.,
what kind of sensors has a given device). This means
that all the values of such a parameter can be represented
in the network, and this is independent from the number
of the currently connected devices to the RPL tree, since
even only one device can possess all the possible values of
such a parameter. Let’s denote the number of all possible
values of a given parameter as l.

If we want to represent these parameters in a bit vector (BV),
we need to set its length to: m = l + j, while for a BF
it is: m =

−(l+k )∗ln(p)
(ln(2))2 . In a BV every additional element

(i.e., a new context parameter, or a new value of an already
included parameter) adds one more bit position to the length.
In a BF every "inserted element" means −ln(p)

(ln(2))2 additional
bit positions. Therefore, as a novelty of the CAEsARv2
framework, we propose to store type 1 parameters in BF if
j > −k∗ln(p)

(ln(2))2 , and use a bit vector otherwise. We will store
type 2 parameters always in BVs.

Dynamic parameters can be considered type 1 parameters.
However, for a given parameter its possible values depend on
its quantization density. Let’s denote by qi the quantization
density of parameter i For example, if we represent battery
state in three intervals - low, middle, high - then qi = 3; if we
quantize the temperature by Celsius degrees and readings can
be values between 0 and 100, then qi = 100). We propose to
store the values of parameter i in a BF if: qi >

−k∗ln(p)
(ln(2))2 .

To summarize our reasoning, we proposed to separate the
static parameters on one hand, and every dynamic parameter
on the other hand, where separation means to store them in dis-
tinct data structures. We gave conditions to decide which data
structure should be used in which case, in order to decrease
the needed memory and message length in the network. With
this separation, when a dynamic parameter changes, only its
assigned data structure needs to be propagated upward along
the DODAG.

B. Handling IP addresses as context parameters

In this section we examine why could it be worth to handle
IP addresses as context parameters as well, and why should
we store them also in BFs. We examine the scaling of routing
entries, the compressing of DAO messages, and the way this
solution can be used for traditional- and explicit multicast.
The BFs might include false positives, which in case of
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B. Context-based group addressing

There will be several application scenarios in future IoT
networks when user applications will need to communicate
with a specific set of IoT devices, that have in common one or
a set of context parameters (e.g., let’s imagine a smart building
scenario, where the user wants to close all windows in a given
room, wants to turn off all the lights on a specific corridor, or
wants to know the locations of the dustbins that are full).

There are two main approaches to support IP based group
communication in the IoT domain. The first one is to maintain
a registry in a device that has relatively more resources
compared to other IoT devices (this is typically the RPL root,
or a node situated in the wired part of the Internet). Every
device that wants to join a multicast group registers itself
in this registry. If someone wants to send a message to the
group, it sends it to the registry, which then forwards it to
the group members. This forwarding can be done either by
sending a copy of the message to group member individually,
or by using the so called explicit multicast [10], where the
unicast IP address of every group member is added to the
IP header of the message, before proceeding with traditional
unicast routing. Supporting group communication by sending
messages individually is a very inefficient solution, especially
in the IoT domain with scarce resources. On the other hand,
increasing the length of the messages by adding several
destination IP addresses to the header is also problematic,
as longer messages require more energy to be sent, and the
chance of interferences or collisions is higher. Moreover, to
keep up to date this central registry we mentioned before, IoT
nodes would be required to send periodic keep-alive messages,
which again consumes energy. In both of the above cases
multicast group addresses are not needed.

The other possibility would be use traditional IP multicast
[11] [12], routing packets along a multicast tree. Such an
approach could be very beneficial for the resource-constrained
IoT devices, since in this way messages are only duplicated
where it is needed, at the branching points of the tree.
However, while traditional multicast could be very efficient
with a few but large groups, it does not scale well with lots of
small groups, as multicast addresses cannot be aggregated. In
practice we have to maintain as many spanning trees as many
groups we want to handle. Thus, such a solution is not viable
for our case, since we want to support a virtually "endless"
number of groups, corresponding to all possible permutations
of all possible context parameters.

However, if we consider IP addresses to be context param-
eters themselves, as explained later, and store them in Bloom
filters as well, as all other parameters in the proposed CAEsAR
framework, then traditional IP multicast and explicit multicast
can be supported efficiently in the extended RPL domain,
both regarding memory usage, message lengths and signaling
overhead. No central registry is needed in this case.

C. Data-centric communication

In several IoT scenarios it can happen that different applica-
tions are interested in the same type of data, but for different

purposes. In such cases it is very inefficient for the resource-
constrained IoT devices to maintain several connections with
these applications and send the same data several times.
These situations can be overcome by using the data-centric
communication paradigm in which we query the network for
some specific content, no matter which device provides it. [13].
In this way the applications can focus on the data itself, rather
than the process of getting it.

Publish/Subscribe messaging systems [8] are based on this
networking principle and are considered to be potentially
one of the best data collection protocols for IoT. Subscribers
register their interest in specific information, the publishers
provide such information, and the pub/sub system takes care
of the information exchange. A pub/sub system can have
centralized or distributed architecture [8]. In the latter case
smart communication primitives (e.g. multicast) are used to
ensure data exchange between the interacting parties. This
typically puts a heavier burden on the participating nodes
- compared to the centralized approach - since managing
those primitives requires more processing power and/or more
memory.

In the centralized approach an intermediary broker is used.
The broker coordinates subscriptions, i.e., it ensures that data
is collected from the publishers and is sent to the subscribers.
Every time a change happens in a publisher’s data, it has
to publish it again through the broker. In a multi-hop net-
work this means that a publish message has to be sent to
the broker, possibly through multiple hops. MQTT-SN [14]
is one such centralized publish-subscribe scheme. It is an
extended version of the traditional MQTT protocol, and is
designed to be as close as possible, in terms of operation, to
the traditional solution, while being optimized for resource-
constrained environments (the SN in its acronym comes from
Sensor Networks).

Our proposed CAEsARv2 framework also can be consid-
ered as a centralized pub/sub system, since the measured val-
ues of the different environmental parameters are represented
in an aggregated way at the RPL root in Bloom filters or in
bit vectors (see section IV.). That means the RPL root has to
manage pub/sub topics (e.g., the moisture readings in the given
RPL domain) and subscriptions. Anytime a change happens in
an aggregate BF or BV - because of the update messages -
the root has to report this to the subscribers. In order to do
that it needs to list the inserted elements in the newly created
aggregate data structure. That means it has to query all the
possible values of the actual parameter on the BF or on the
BV. Since the RPL root has more resources, and querying a
BF or a BV is a very light-weight process, this can be done
easily even when the actual parameter is densely quantized.

If the users are interested in a more specific data, e.g., the
temperature readings in a given room, then they can query all
the temperature sensors in that room (through the very fast
context-aware routing process in the CAEsARv2 framework).
Alternatively, a special RPL objective function (OF) (explained
later) could be used, which allows only those devices to
connect to the RPL DODAG which are situated in that room.

III. CAESAR IN A NUTSHELL
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IN this section we briefly introduce first the RPL routing
protocol on which CAEsAR is built, and then the CAEsAR

addressing scheme itself. We also introduce the different types
of context-parameters.

A. The RPL routing protocol

The RPL routing protocol [2] was designed especially for
low power and lossy networks (LLN), and was standardized
by the IETF in March 2012. It is a distance vector routing
protocol that builds up a Destination Oriented Directed Acyclic
Graph (DODAG) that has a single root. This root is the connec-
tion point, a gateway to other networks. A so called Objective
Function (OF) defines the DODAG formation process, based
on different metrics and constrains that have to be taken into
account. There could be several OFs active in the same IoT
domain; we call them RPL instances.

The RPL protocol defines new ICMPv6 control messages,
such as DIO (DODAG Information Object), DIS (DODAG
Information Solicitation) and DAO (DODAG Destination Ad-
vertisement Object). The DIOs carry information about the
RPL instance and its configuration parameters; therefore, they
are used for building up and maintaining the topology of the
DODAG. A node can solicit DIO messages from other nodes
by sending a DIS message. Finally, the DAOs are used to
build up and maintain downward routes in the DODAG. Nodes
inside the DODAG can operate either in storing-mode or non-
storing mode. In non-storing mode, nodes do not store any
routing entry; messages sent by any IoT device to any other
Iot device are forwarded up to the root, and then directed
downwards again to the destination, via source routing. In
storing mode, the DAO messages sent by child nodes to their
parents generate routing entries which can be used later to
route packets inside the domain.

B. CAEsAR

In the CAEsAR [5] framework the context parameter values
of the IoT nodes are hashed into Bloom filters (BF) [15] and
aggregated upwards along the DODAG.

A Bloom filter is a space-efficient probabilistic data struc-
ture for representing a set of elements [16]. It is a bit array with
a predefined length and hash functions. Each hash function
hashes an element to a bit position. Inserting an element is
done by hashing it with all the hash functions and setting to
"1" all the resulting bit positions. Checking the membership of
an element in a BF is achieved by the same hashing method.

False positives may occurs in BFs, as all the bit positions
that correspond to a specific element may be set to "1" - by
other elements - , even if this element does not belong to the
set. This probabilistic nature is the price of space efficiency.
If we choose the parameters properly, this probability can be
kept reasonably low, so the space savings are often worth this
tradeoff.

The question is thus how to store efficiently the context
of an individual node, or the aggregated context of an entire
sub-graph, in a BF. Context parameters can have continuous
and discrete value ranges. (The measured temperature is an
example for the former one, while the type of an IoT device is
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Fig. 1: Aggregating BFs - and the corresponding context
parameter values - in a sub-graph of the DODAG

an example for the latter one.) For parameters with continuous
value ranges a limited number of discrete intervals have to be
set, to quantize their values. As a result, we can hash every
context parameter easily into a BF. It is assumed that every
node in the RPL tree uses a BF with predefined length and
structure, and a set of predefined hash functions, specified
and propagated along the tree by the root node. The RPL
root has to specify these parameters according to the possible
maximum number of context-parameters in the network and
the maximum acceptable false positive rate in the aggregate
BF(s) stored at the root node.

Bloom filters - with the same size and same hash functions
- can be aggregated by performing a bitwise OR operation
on them, which is a lightweight operation and suits well the
resource-constrained IoT devices. In CAEsAR every node has
to store a BF for representing its own context, and as many
other BFs as many children it has, as it can be seen in Fig. 1.
Every node in the RPL instance aggregates its stored BFs and
sends this aggregate BF to its parent node, which stores this as
the BF assigned to that particular child. If the topology of the
DODAG is reconfigured, it may initiate new BF aggregation
messages. Similarly, if a context parameter of a node changes
(e.g., the measured temperature value), it has to re-create its
own BF, aggregate all of its stored BFs, and if this currently
created aggregate BF is different from the former one, this has
to be sent to its parent node. The handling of the stored BFs
in the RPL network is discussed in a more detailed way in
our former paper [5].

The aggregate BFs can be used for two different purposes.
On the one hand the aggregate BFs stored at the root represent
the values of the context parameters that are available currently
in the RPL domain. On the other hand the aggregate BFs inside
the network can be used for context-based routing. This means
that we can send a message to a device that has a specific
context, without knowing its address. As each node inside the
RPL tree aggregates in a separate BF the context parameters
of each of its "child subtrees", it can be checked very rapidly if
the desired context corresponds to any node included in a child
subtree, or not. Then, the message will be forwarded only to
the subtree(s) where a match was found. This process is then
repeated until the message reaches one or more devices with
the desired context. With this kind of routing we can support
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routing entry; messages sent by any IoT device to any other
Iot device are forwarded up to the root, and then directed
downwards again to the destination, via source routing. In
storing mode, the DAO messages sent by child nodes to their
parents generate routing entries which can be used later to
route packets inside the domain.
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In the CAEsAR [5] framework the context parameter values
of the IoT nodes are hashed into Bloom filters (BF) [15] and
aggregated upwards along the DODAG.

A Bloom filter is a space-efficient probabilistic data struc-
ture for representing a set of elements [16]. It is a bit array with
a predefined length and hash functions. Each hash function
hashes an element to a bit position. Inserting an element is
done by hashing it with all the hash functions and setting to
"1" all the resulting bit positions. Checking the membership of
an element in a BF is achieved by the same hashing method.

False positives may occurs in BFs, as all the bit positions
that correspond to a specific element may be set to "1" - by
other elements - , even if this element does not belong to the
set. This probabilistic nature is the price of space efficiency.
If we choose the parameters properly, this probability can be
kept reasonably low, so the space savings are often worth this
tradeoff.

The question is thus how to store efficiently the context
of an individual node, or the aggregated context of an entire
sub-graph, in a BF. Context parameters can have continuous
and discrete value ranges. (The measured temperature is an
example for the former one, while the type of an IoT device is
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an example for the latter one.) For parameters with continuous
value ranges a limited number of discrete intervals have to be
set, to quantize their values. As a result, we can hash every
context parameter easily into a BF. It is assumed that every
node in the RPL tree uses a BF with predefined length and
structure, and a set of predefined hash functions, specified
and propagated along the tree by the root node. The RPL
root has to specify these parameters according to the possible
maximum number of context-parameters in the network and
the maximum acceptable false positive rate in the aggregate
BF(s) stored at the root node.

Bloom filters - with the same size and same hash functions
- can be aggregated by performing a bitwise OR operation
on them, which is a lightweight operation and suits well the
resource-constrained IoT devices. In CAEsAR every node has
to store a BF for representing its own context, and as many
other BFs as many children it has, as it can be seen in Fig. 1.
Every node in the RPL instance aggregates its stored BFs and
sends this aggregate BF to its parent node, which stores this as
the BF assigned to that particular child. If the topology of the
DODAG is reconfigured, it may initiate new BF aggregation
messages. Similarly, if a context parameter of a node changes
(e.g., the measured temperature value), it has to re-create its
own BF, aggregate all of its stored BFs, and if this currently
created aggregate BF is different from the former one, this has
to be sent to its parent node. The handling of the stored BFs
in the RPL network is discussed in a more detailed way in
our former paper [5].

The aggregate BFs can be used for two different purposes.
On the one hand the aggregate BFs stored at the root represent
the values of the context parameters that are available currently
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the network can be used for context-based routing. This means
that we can send a message to a device that has a specific
context, without knowing its address. As each node inside the
RPL tree aggregates in a separate BF the context parameters
of each of its "child subtrees", it can be checked very rapidly if
the desired context corresponds to any node included in a child
subtree, or not. Then, the message will be forwarded only to
the subtree(s) where a match was found. This process is then
repeated until the message reaches one or more devices with
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an example for the latter one.) For parameters with continuous
value ranges a limited number of discrete intervals have to be
set, to quantize their values. As a result, we can hash every
context parameter easily into a BF. It is assumed that every
node in the RPL tree uses a BF with predefined length and
structure, and a set of predefined hash functions, specified
and propagated along the tree by the root node. The RPL
root has to specify these parameters according to the possible
maximum number of context-parameters in the network and
the maximum acceptable false positive rate in the aggregate
BF(s) stored at the root node.

Bloom filters - with the same size and same hash functions
- can be aggregated by performing a bitwise OR operation
on them, which is a lightweight operation and suits well the
resource-constrained IoT devices. In CAEsAR every node has
to store a BF for representing its own context, and as many
other BFs as many children it has, as it can be seen in Fig. 1.
Every node in the RPL instance aggregates its stored BFs and
sends this aggregate BF to its parent node, which stores this as
the BF assigned to that particular child. If the topology of the
DODAG is reconfigured, it may initiate new BF aggregation
messages. Similarly, if a context parameter of a node changes
(e.g., the measured temperature value), it has to re-create its
own BF, aggregate all of its stored BFs, and if this currently
created aggregate BF is different from the former one, this has
to be sent to its parent node. The handling of the stored BFs
in the RPL network is discussed in a more detailed way in
our former paper [5].

The aggregate BFs can be used for two different purposes.
On the one hand the aggregate BFs stored at the root represent
the values of the context parameters that are available currently
in the RPL domain. On the other hand the aggregate BFs inside
the network can be used for context-based routing. This means
that we can send a message to a device that has a specific
context, without knowing its address. As each node inside the
RPL tree aggregates in a separate BF the context parameters
of each of its "child subtrees", it can be checked very rapidly if
the desired context corresponds to any node included in a child
subtree, or not. Then, the message will be forwarded only to
the subtree(s) where a match was found. This process is then
repeated until the message reaches one or more devices with
the desired context. With this kind of routing we can support
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low power and lossy networks (LLN), and was standardized
by the IETF in March 2012. It is a distance vector routing
protocol that builds up a Destination Oriented Directed Acyclic
Graph (DODAG) that has a single root. This root is the connec-
tion point, a gateway to other networks. A so called Objective
Function (OF) defines the DODAG formation process, based
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account. There could be several OFs active in the same IoT
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RPL instance and its configuration parameters; therefore, they
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by sending a DIS message. Finally, the DAOs are used to
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inside the DODAG can operate either in storing-mode or non-
storing mode. In non-storing mode, nodes do not store any
routing entry; messages sent by any IoT device to any other
Iot device are forwarded up to the root, and then directed
downwards again to the destination, via source routing. In
storing mode, the DAO messages sent by child nodes to their
parents generate routing entries which can be used later to
route packets inside the domain.

B. CAEsAR

In the CAEsAR [5] framework the context parameter values
of the IoT nodes are hashed into Bloom filters (BF) [15] and
aggregated upwards along the DODAG.

A Bloom filter is a space-efficient probabilistic data struc-
ture for representing a set of elements [16]. It is a bit array with
a predefined length and hash functions. Each hash function
hashes an element to a bit position. Inserting an element is
done by hashing it with all the hash functions and setting to
"1" all the resulting bit positions. Checking the membership of
an element in a BF is achieved by the same hashing method.

False positives may occurs in BFs, as all the bit positions
that correspond to a specific element may be set to "1" - by
other elements - , even if this element does not belong to the
set. This probabilistic nature is the price of space efficiency.
If we choose the parameters properly, this probability can be
kept reasonably low, so the space savings are often worth this
tradeoff.

The question is thus how to store efficiently the context
of an individual node, or the aggregated context of an entire
sub-graph, in a BF. Context parameters can have continuous
and discrete value ranges. (The measured temperature is an
example for the former one, while the type of an IoT device is
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an example for the latter one.) For parameters with continuous
value ranges a limited number of discrete intervals have to be
set, to quantize their values. As a result, we can hash every
context parameter easily into a BF. It is assumed that every
node in the RPL tree uses a BF with predefined length and
structure, and a set of predefined hash functions, specified
and propagated along the tree by the root node. The RPL
root has to specify these parameters according to the possible
maximum number of context-parameters in the network and
the maximum acceptable false positive rate in the aggregate
BF(s) stored at the root node.

Bloom filters - with the same size and same hash functions
- can be aggregated by performing a bitwise OR operation
on them, which is a lightweight operation and suits well the
resource-constrained IoT devices. In CAEsAR every node has
to store a BF for representing its own context, and as many
other BFs as many children it has, as it can be seen in Fig. 1.
Every node in the RPL instance aggregates its stored BFs and
sends this aggregate BF to its parent node, which stores this as
the BF assigned to that particular child. If the topology of the
DODAG is reconfigured, it may initiate new BF aggregation
messages. Similarly, if a context parameter of a node changes
(e.g., the measured temperature value), it has to re-create its
own BF, aggregate all of its stored BFs, and if this currently
created aggregate BF is different from the former one, this has
to be sent to its parent node. The handling of the stored BFs
in the RPL network is discussed in a more detailed way in
our former paper [5].

The aggregate BFs can be used for two different purposes.
On the one hand the aggregate BFs stored at the root represent
the values of the context parameters that are available currently
in the RPL domain. On the other hand the aggregate BFs inside
the network can be used for context-based routing. This means
that we can send a message to a device that has a specific
context, without knowing its address. As each node inside the
RPL tree aggregates in a separate BF the context parameters
of each of its "child subtrees", it can be checked very rapidly if
the desired context corresponds to any node included in a child
subtree, or not. Then, the message will be forwarded only to
the subtree(s) where a match was found. This process is then
repeated until the message reaches one or more devices with
the desired context. With this kind of routing we can support
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such as DIO (DODAG Information Object), DIS (DODAG
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vertisement Object). The DIOs carry information about the
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are used for building up and maintaining the topology of the
DODAG. A node can solicit DIO messages from other nodes
by sending a DIS message. Finally, the DAOs are used to
build up and maintain downward routes in the DODAG. Nodes
inside the DODAG can operate either in storing-mode or non-
storing mode. In non-storing mode, nodes do not store any
routing entry; messages sent by any IoT device to any other
Iot device are forwarded up to the root, and then directed
downwards again to the destination, via source routing. In
storing mode, the DAO messages sent by child nodes to their
parents generate routing entries which can be used later to
route packets inside the domain.
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In the CAEsAR [5] framework the context parameter values
of the IoT nodes are hashed into Bloom filters (BF) [15] and
aggregated upwards along the DODAG.

A Bloom filter is a space-efficient probabilistic data struc-
ture for representing a set of elements [16]. It is a bit array with
a predefined length and hash functions. Each hash function
hashes an element to a bit position. Inserting an element is
done by hashing it with all the hash functions and setting to
"1" all the resulting bit positions. Checking the membership of
an element in a BF is achieved by the same hashing method.

False positives may occurs in BFs, as all the bit positions
that correspond to a specific element may be set to "1" - by
other elements - , even if this element does not belong to the
set. This probabilistic nature is the price of space efficiency.
If we choose the parameters properly, this probability can be
kept reasonably low, so the space savings are often worth this
tradeoff.

The question is thus how to store efficiently the context
of an individual node, or the aggregated context of an entire
sub-graph, in a BF. Context parameters can have continuous
and discrete value ranges. (The measured temperature is an
example for the former one, while the type of an IoT device is
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an example for the latter one.) For parameters with continuous
value ranges a limited number of discrete intervals have to be
set, to quantize their values. As a result, we can hash every
context parameter easily into a BF. It is assumed that every
node in the RPL tree uses a BF with predefined length and
structure, and a set of predefined hash functions, specified
and propagated along the tree by the root node. The RPL
root has to specify these parameters according to the possible
maximum number of context-parameters in the network and
the maximum acceptable false positive rate in the aggregate
BF(s) stored at the root node.

Bloom filters - with the same size and same hash functions
- can be aggregated by performing a bitwise OR operation
on them, which is a lightweight operation and suits well the
resource-constrained IoT devices. In CAEsAR every node has
to store a BF for representing its own context, and as many
other BFs as many children it has, as it can be seen in Fig. 1.
Every node in the RPL instance aggregates its stored BFs and
sends this aggregate BF to its parent node, which stores this as
the BF assigned to that particular child. If the topology of the
DODAG is reconfigured, it may initiate new BF aggregation
messages. Similarly, if a context parameter of a node changes
(e.g., the measured temperature value), it has to re-create its
own BF, aggregate all of its stored BFs, and if this currently
created aggregate BF is different from the former one, this has
to be sent to its parent node. The handling of the stored BFs
in the RPL network is discussed in a more detailed way in
our former paper [5].

The aggregate BFs can be used for two different purposes.
On the one hand the aggregate BFs stored at the root represent
the values of the context parameters that are available currently
in the RPL domain. On the other hand the aggregate BFs inside
the network can be used for context-based routing. This means
that we can send a message to a device that has a specific
context, without knowing its address. As each node inside the
RPL tree aggregates in a separate BF the context parameters
of each of its "child subtrees", it can be checked very rapidly if
the desired context corresponds to any node included in a child
subtree, or not. Then, the message will be forwarded only to
the subtree(s) where a match was found. This process is then
repeated until the message reaches one or more devices with
the desired context. With this kind of routing we can support
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service-discovery and context-based group communication in
the RPL domain.

IV. CAESAR 2.0

IN this section we introduce several new design steps in
order to extend CAEsAR and make it more efficient.

First we make a suggestion to separate the different types of
parameters and store them in distinct data structures. In this
way, if the value of a parameter changes, only its assigned
data structure needs to be propagated upwards in the RPL
tree, not the entire context; thus, the update messages become
shorter. We also make a suggestion to store IP addresses in
Bloom filters as a context parameter, and examine its possible
advantages.

A. Separation of static and dynamic context parameters

In the previous paragraph we differentiated context pa-
rameters based on whether their value ranges are continuous
or discrete. Another way to differentiate them is based on
whether they are static or dynamic. Static parameters do not
change in time (e.g., the type of the device), while dynamic
parameters do (e.g., the current temperature reading). In our
original CAEsAR proposal every parameter was hashed to
one "standard" BF and this BF was aggregated upward along
the DODAG. This means that anytime a change happened
in a context parameter of a device, it had to hash all of
its context parameters into a new BF, calculate the new
aggregated BF from all the BFs it stores (its own, and that of
its child subtrees), and then initiate the sending of a BF update
message upward along the DODAG, if needed. However, it
can be more efficient if we could handle the different types of
parameters in different ways. We suggest thus to separate the
static parameters from every dynamic parameter, by assigning
them individual BFs. . The length of the given BF should
be set according to the expected number of elements in the
BF and the maximum false positive rate at the root after the
aggregation process. For a given false positive probability p
and the number of inserted elements n the required number of
bits m for a BF is [17]:

m =
−n ∗ ln(p)

(ln(2))2 (1)

However, even though Bloom filters are a very space-efficient
way of storing context information, the false positives that are
due to their probabilistic nature are sometimes not acceptable.
Another way to store context information would be to use bit
vectors (BVs). Every bit position in a BV represents a context
category. For example, if a node has a solar panel attached,
the corresponding bit is set to 1; if not, it is set to 0. On the
other hand, if the state of the battery is quantized into three
intervals (low, middle, high), then three bit positions in the
vector are allocated to represent the node’s battery state, and
only one of them could be set to 1. Using BVs is obviously
more resource-hungry than using BFs, but there are no false
positives. The problem is thus to decide when to use BFs and
when to use BVs.

The number of bits m needed in a BV to store a given
context parameter is equal to the number of elements in the

complete value set of this parameter, nmax . This means the
BF is more efficient than a BV if nmax >

−ninser ted∗ln(p)
(ln(2))2 . Let

us examine what does this mean from our point of view.
Regarding the static parameters, assume that k nodes will

join the RPL DODAG (that can be the maximum number of
routing entries in the root).
• Let’s call context parameters of type 1 those that cor-

respond to mutually exclusive choices, from which only
one can be valid for a device at a given moment (e.g., the
type of object). Regarding the values of such a parameter,
we can say that at most k different values will be present
in the network, out of the j possible values that form the
complete value set of that parameter.

• Let’s call context parameters of type 2 those parameters
that correspond to multiple non-exclusive choices. (e.g.,
what kind of sensors has a given device). This means
that all the values of such a parameter can be represented
in the network, and this is independent from the number
of the currently connected devices to the RPL tree, since
even only one device can possess all the possible values of
such a parameter. Let’s denote the number of all possible
values of a given parameter as l.

If we want to represent these parameters in a bit vector (BV),
we need to set its length to: m = l + j, while for a BF
it is: m =

−(l+k )∗ln(p)
(ln(2))2 . In a BV every additional element

(i.e., a new context parameter, or a new value of an already
included parameter) adds one more bit position to the length.
In a BF every "inserted element" means −ln(p)

(ln(2))2 additional
bit positions. Therefore, as a novelty of the CAEsARv2
framework, we propose to store type 1 parameters in BF if
j > −k∗ln(p)

(ln(2))2 , and use a bit vector otherwise. We will store
type 2 parameters always in BVs.

Dynamic parameters can be considered type 1 parameters.
However, for a given parameter its possible values depend on
its quantization density. Let’s denote by qi the quantization
density of parameter i For example, if we represent battery
state in three intervals - low, middle, high - then qi = 3; if we
quantize the temperature by Celsius degrees and readings can
be values between 0 and 100, then qi = 100). We propose to
store the values of parameter i in a BF if: qi >

−k∗ln(p)
(ln(2))2 .

To summarize our reasoning, we proposed to separate the
static parameters on one hand, and every dynamic parameter
on the other hand, where separation means to store them in dis-
tinct data structures. We gave conditions to decide which data
structure should be used in which case, in order to decrease
the needed memory and message length in the network. With
this separation, when a dynamic parameter changes, only its
assigned data structure needs to be propagated upward along
the DODAG.

B. Handling IP addresses as context parameters

In this section we examine why could it be worth to handle
IP addresses as context parameters as well, and why should
we store them also in BFs. We examine the scaling of routing
entries, the compressing of DAO messages, and the way this
solution can be used for traditional- and explicit multicast.
The BFs might include false positives, which in case of
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addressing scheme itself. We also introduce the different types
of context-parameters.

A. The RPL routing protocol

The RPL routing protocol [2] was designed especially for
low power and lossy networks (LLN), and was standardized
by the IETF in March 2012. It is a distance vector routing
protocol that builds up a Destination Oriented Directed Acyclic
Graph (DODAG) that has a single root. This root is the connec-
tion point, a gateway to other networks. A so called Objective
Function (OF) defines the DODAG formation process, based
on different metrics and constrains that have to be taken into
account. There could be several OFs active in the same IoT
domain; we call them RPL instances.

The RPL protocol defines new ICMPv6 control messages,
such as DIO (DODAG Information Object), DIS (DODAG
Information Solicitation) and DAO (DODAG Destination Ad-
vertisement Object). The DIOs carry information about the
RPL instance and its configuration parameters; therefore, they
are used for building up and maintaining the topology of the
DODAG. A node can solicit DIO messages from other nodes
by sending a DIS message. Finally, the DAOs are used to
build up and maintain downward routes in the DODAG. Nodes
inside the DODAG can operate either in storing-mode or non-
storing mode. In non-storing mode, nodes do not store any
routing entry; messages sent by any IoT device to any other
Iot device are forwarded up to the root, and then directed
downwards again to the destination, via source routing. In
storing mode, the DAO messages sent by child nodes to their
parents generate routing entries which can be used later to
route packets inside the domain.

B. CAEsAR

In the CAEsAR [5] framework the context parameter values
of the IoT nodes are hashed into Bloom filters (BF) [15] and
aggregated upwards along the DODAG.

A Bloom filter is a space-efficient probabilistic data struc-
ture for representing a set of elements [16]. It is a bit array with
a predefined length and hash functions. Each hash function
hashes an element to a bit position. Inserting an element is
done by hashing it with all the hash functions and setting to
"1" all the resulting bit positions. Checking the membership of
an element in a BF is achieved by the same hashing method.

False positives may occurs in BFs, as all the bit positions
that correspond to a specific element may be set to "1" - by
other elements - , even if this element does not belong to the
set. This probabilistic nature is the price of space efficiency.
If we choose the parameters properly, this probability can be
kept reasonably low, so the space savings are often worth this
tradeoff.

The question is thus how to store efficiently the context
of an individual node, or the aggregated context of an entire
sub-graph, in a BF. Context parameters can have continuous
and discrete value ranges. (The measured temperature is an
example for the former one, while the type of an IoT device is
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an example for the latter one.) For parameters with continuous
value ranges a limited number of discrete intervals have to be
set, to quantize their values. As a result, we can hash every
context parameter easily into a BF. It is assumed that every
node in the RPL tree uses a BF with predefined length and
structure, and a set of predefined hash functions, specified
and propagated along the tree by the root node. The RPL
root has to specify these parameters according to the possible
maximum number of context-parameters in the network and
the maximum acceptable false positive rate in the aggregate
BF(s) stored at the root node.

Bloom filters - with the same size and same hash functions
- can be aggregated by performing a bitwise OR operation
on them, which is a lightweight operation and suits well the
resource-constrained IoT devices. In CAEsAR every node has
to store a BF for representing its own context, and as many
other BFs as many children it has, as it can be seen in Fig. 1.
Every node in the RPL instance aggregates its stored BFs and
sends this aggregate BF to its parent node, which stores this as
the BF assigned to that particular child. If the topology of the
DODAG is reconfigured, it may initiate new BF aggregation
messages. Similarly, if a context parameter of a node changes
(e.g., the measured temperature value), it has to re-create its
own BF, aggregate all of its stored BFs, and if this currently
created aggregate BF is different from the former one, this has
to be sent to its parent node. The handling of the stored BFs
in the RPL network is discussed in a more detailed way in
our former paper [5].

The aggregate BFs can be used for two different purposes.
On the one hand the aggregate BFs stored at the root represent
the values of the context parameters that are available currently
in the RPL domain. On the other hand the aggregate BFs inside
the network can be used for context-based routing. This means
that we can send a message to a device that has a specific
context, without knowing its address. As each node inside the
RPL tree aggregates in a separate BF the context parameters
of each of its "child subtrees", it can be checked very rapidly if
the desired context corresponds to any node included in a child
subtree, or not. Then, the message will be forwarded only to
the subtree(s) where a match was found. This process is then
repeated until the message reaches one or more devices with
the desired context. With this kind of routing we can support
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Fig. 3: Scaling of routing entries in a specific node in the RPL
DODAG as the function of its hierarchy level d and the depth
of the tree s, in case of an increasing number of children f
and a full tree

stored IP addresses means that a packet is possibly forwarded
downwards the DODAG - unnecessarily - even though the
node with the required IP address is not located in that part
of the tree. To decrease its possibility, we have to choose the
BF parameters properly; however, if false positive appears, we
can handle it by a so called false positive recovery mechanism
used in ORPL [18], which is an opportunistic extension of the
traditional RPL protocol. Now let’s see the advantages of the
IP addresses being handled as context parameters.

1) Scaling of routing entries: We can provide formulas
to calculate the number of routing entries in a regular RPL
DODAG for individual nodes at different hierarchy levels, as
well as aggregate numbers for the whole network (fig 2). In
this case we assume of course that nodes in the RPL DODAG
are in storing mode, so they consume memory for these entries

v2

Fig. 4: Scaling of routing entries in the whole network as a
function of depth of the tree "s" and the number of children
"f"

number of routing entries RPL CAEsARv2

in a given node
f ∗ f s−d−1

f −1

s − d, if f = 1
f , if s � d

in the whole network
f s+1∗(s∗ f −s−1)+ f

( f −1)2

s2+s
2 , if f=1

f s+1− f
f −1

s − 1, if f=1

TABLE I: Number of routing entries with closed formulas

but spare a lot of routing messages that are needed in case of
the non-storing mode.

We can see that in RPL, as we increase the number of
hierarchy levels, the number of routing entries in every node -
except the ones at the bottom level - increases exponentially.
This is due to the fact that in traditional RPL routing in the
DODAG is not done based on the IP addresses of the nodes,
but based on the routing tables built by DAO messages. Thus,
separate entries should be stored in those tables for each node
that has sent a DAO message; the hierarchical nature of the
IP address space cannot be used to aggregate routing entries.

As opposed to this, in CAEsARv2, if IP addresses are
stored in BFs as well, the same nodes have to store only f
routing entries, that is the number of children they have in the
DODAG. This is because all the IP addresses from the entire
subtree are aggregated in the same BF at the parent node.

If we sum up these routing entries for every hierarchy level,
then we get the total number of routing entries in the network
for RPL and for CAEsARv2. Using the formulas on summing
up geometric series we can get closed formulas:

• For RPL it is: f ∗ f s−d−1
f −1 (s−d ,if f=1) for a specific node

and f s+1∗(s∗ f −s−1)+ f
( f −1)2 ( s

2+s
2 , if f=1) for the whole network.

• For CAEsARv2 it is: f if s � d for a specific node and
f s+1− f
f −1 (s − 1 ,if f=1) for the whole network

These results are presented in figures 3 and 4. Please note
that the z axis in fig. 3 is exponential. In fig. 4 we can see how
the total number of entries in the network changes in function
of the structure of the DODAG, in RPL and in CAEsARv2
respectively. For every parameter setting there will be fewer
entries in the network if we use CAEsARv2.

The point here is that the total number of routing entries
in the whole network scales better in CAEsARv2, and these
entries are distributed evenly among the nodes (i.e., the nodes
that are closer to the root - and have lots of nodes in their sub-
DODAG - do not have to store much more entries than the
nodes further away from the root. We should note however
that depending on the used BF length, a routing entry in
CAEsARv2 can be larger than a traditional routing entry.

2) Compressing DAO messages: Since in the other parts
of the Internet traditional routing entries are used, we need
the IP addresses from the RPL domain to be stored in their
traditional format at the root, even if we store them in BFs
in the RPL nodes. Therefore, we suggest that when a node
joins for the first time an RPL DODAG, it should send a
traditional DAO message that has to be propagated upward
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stored IP addresses means that a packet is possibly forwarded
downwards the DODAG - unnecessarily - even though the
node with the required IP address is not located in that part
of the tree. To decrease its possibility, we have to choose the
BF parameters properly; however, if false positive appears, we
can handle it by a so called false positive recovery mechanism
used in ORPL [18], which is an opportunistic extension of the
traditional RPL protocol. Now let’s see the advantages of the
IP addresses being handled as context parameters.

1) Scaling of routing entries: We can provide formulas
to calculate the number of routing entries in a regular RPL
DODAG for individual nodes at different hierarchy levels, as
well as aggregate numbers for the whole network (fig 2). In
this case we assume of course that nodes in the RPL DODAG
are in storing mode, so they consume memory for these entries
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Fig. 4: Scaling of routing entries in the whole network as a
function of depth of the tree "s" and the number of children
"f"
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but spare a lot of routing messages that are needed in case of
the non-storing mode.

We can see that in RPL, as we increase the number of
hierarchy levels, the number of routing entries in every node -
except the ones at the bottom level - increases exponentially.
This is due to the fact that in traditional RPL routing in the
DODAG is not done based on the IP addresses of the nodes,
but based on the routing tables built by DAO messages. Thus,
separate entries should be stored in those tables for each node
that has sent a DAO message; the hierarchical nature of the
IP address space cannot be used to aggregate routing entries.

As opposed to this, in CAEsARv2, if IP addresses are
stored in BFs as well, the same nodes have to store only f
routing entries, that is the number of children they have in the
DODAG. This is because all the IP addresses from the entire
subtree are aggregated in the same BF at the parent node.

If we sum up these routing entries for every hierarchy level,
then we get the total number of routing entries in the network
for RPL and for CAEsARv2. Using the formulas on summing
up geometric series we can get closed formulas:

• For RPL it is: f ∗ f s−d−1
f −1 (s−d ,if f=1) for a specific node

and f s+1∗(s∗ f −s−1)+ f
( f −1)2 ( s

2+s
2 , if f=1) for the whole network.

• For CAEsARv2 it is: f if s � d for a specific node and
f s+1− f
f −1 (s − 1 ,if f=1) for the whole network

These results are presented in figures 3 and 4. Please note
that the z axis in fig. 3 is exponential. In fig. 4 we can see how
the total number of entries in the network changes in function
of the structure of the DODAG, in RPL and in CAEsARv2
respectively. For every parameter setting there will be fewer
entries in the network if we use CAEsARv2.

The point here is that the total number of routing entries
in the whole network scales better in CAEsARv2, and these
entries are distributed evenly among the nodes (i.e., the nodes
that are closer to the root - and have lots of nodes in their sub-
DODAG - do not have to store much more entries than the
nodes further away from the root. We should note however
that depending on the used BF length, a routing entry in
CAEsARv2 can be larger than a traditional routing entry.

2) Compressing DAO messages: Since in the other parts
of the Internet traditional routing entries are used, we need
the IP addresses from the RPL domain to be stored in their
traditional format at the root, even if we store them in BFs
in the RPL nodes. Therefore, we suggest that when a node
joins for the first time an RPL DODAG, it should send a
traditional DAO message that has to be propagated upward
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until the root as it is. (The intermediate nodes insert this IP
address in their proper BF.) From here on, this IP address can
be propagated upward to the traditional Internet. As we saw in
the former paragraph, storing IP addresses in BFs - similarly to
context-parameters - can be beneficial in terms of the number
of routing entries in the nodes and their even distribution in
the network. Nevertheless, an IP address can be considered as
a static parameter, we propose thus to assign a separate BF for
it, since in this way we can support efficient explicit multicast
(described later). This BF can be also used to compress DAO
messages, since when a node has to send routing information
about several routes, it can happen easily that sending its
aggregate BF to its parent node is more efficient - regarding
the message length - than sending several IP addresses in one
or several DAO messages. (However, if the traditional DAO
message is shorter, it also can be sent since the receiver nodes
only have to insert them in the proper BFs.) To illustrate this,
let us take a look at fig. 5. The false positive probability
parameter p (p ≈ (1 − e( −k∗n

m )k ) [19]) can be seen in this
figure as a function of the inserted elements n and the number
of used hash functions k for a 32 bytes and a 64 bytes long
BF(m). This means that if 32 byte long BFs are used in a
network, then if we want to send routing information about
more than two IP addresses, it is more efficient - regarding
the message length - to send the corresponding BF.

3) Traditional- and explicit IP multicast: As we already
mentioned, there are many cases when we would like to
communicate not just with a single IoT device, but with
a group of such devices that share some common context
information for example. In RPL networks we can use the
created DODAG to support multicast communication using the
Stateless Multicast RPL Forwarding scheme (SMRF) [20] for
example. In this solution the multicast addresses are advertised
in a very similar way to unicast addresses; the only difference
between them is that a multicast address can be assigned
to several children in the routing table. If we store the IP
addresses in BFs, then maintaining several multicast groups in
the RPL domain does not mean additional routing entries in
the nodes, as the multicast addresses corresponding to those
groups can also be aggregated in the BF, together with the
unicast addresses of a sub-tree. Explicit multicast [21] [22]
was proposed as a solution to support network-layer group
communication when there is no multicast support from the
network service provider. It can be used when a source wants
to send a message to several nodes, and their IP addresses
are known in advance. This can be done by appending the
individual unicast addresses to the IP header of the packet
one-by-one. By doing so, we can achieve similar operation
as for traditional IP multicast: the packet is duplicated only
where it is needed. However, in LLNs, where the packet sizes
are limited, this is not an efficient solution, as the header with
all the included unicast addresses will be too large compared
to the size of the payload itself. Nevertheless, if we use BFs
to store IP addresses in the RPL domain, we can support more
efficiently the explicit multicast operation in terms of message
length. We only have to hash all the destination addresses into
a single BF and append them to the message. The receiving

Fig. 5: The false positive probability in a BF as function of
the number of inserted elements, the number of hashes k

nodes then compare this received BF with their stored BFs, and
if any of them has an intersection, then this message should be
forwarded to the proper sub-tree; if the BF contains the node’s
own address, than this message is intended to this node as well.

V. SIMULATION AND EXPERIMENTAL RESULTS

IN this section we analyze the efficiency of the proposed
CAEsARv2 framework from several aspects, comparing it

to traditional centralized approaches. Our previous paper [5]
included already some simulation analysis, here we do not
repeat, but extend those results and provide new insights.

First, we examine how CAEsARv2 is affected by the
changes of the node radio ranges, and as a result the changes
of the average hop numbers in the IoT domain. This is
important because in the traditional centralized solutions if
the average hop number increases in the network that means
the messages between the nodes and the central registry (be
that used for service discovery, data-centric communication
or context-based multicast) have to travel over longer routes.
Therefore, more messages have to be sent for instance to report
a context change. As a second point, we have also examined
how efficiently can CAEsARv2 adapt to context changes in
real world circumstances, and not in a simulated environment.
In order to do this, we ran experiments on the IoT Lab testbed
[23].

A. Effect of the radio ranges on the efficiency of aggregation

In several cases there is a correlation between geographic
proximity and the measured values of context parameters (e.g.,
temperature, light conditions, etc.). Therefore, there is a good
chance in CAEsARv2 that if such a parameter changes, the
corresponding BF or BV update messages coming from nearby
IoT nodes will be aggregated. We already examined this phe-
nomenon in our former paper [5]. However, it is an interesting
question to see how is the aggregation efficiency affected by
the node radio ranges, and as a consequence, by the hop
numbers in the IoT domain. We examined this phenomenon
through simulations, and not through experiments, since in this
way we can ensure that the underlying correlation between the
measured values and geographic proximity was the same in
every case (and in every simulation).

In the simulations we used the so called "room heating
up scenario" in the Cooja network simulator [24]. The setup
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stored IP addresses means that a packet is possibly forwarded
downwards the DODAG - unnecessarily - even though the
node with the required IP address is not located in that part
of the tree. To decrease its possibility, we have to choose the
BF parameters properly; however, if false positive appears, we
can handle it by a so called false positive recovery mechanism
used in ORPL [18], which is an opportunistic extension of the
traditional RPL protocol. Now let’s see the advantages of the
IP addresses being handled as context parameters.

1) Scaling of routing entries: We can provide formulas
to calculate the number of routing entries in a regular RPL
DODAG for individual nodes at different hierarchy levels, as
well as aggregate numbers for the whole network (fig 2). In
this case we assume of course that nodes in the RPL DODAG
are in storing mode, so they consume memory for these entries
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the non-storing mode.

We can see that in RPL, as we increase the number of
hierarchy levels, the number of routing entries in every node -
except the ones at the bottom level - increases exponentially.
This is due to the fact that in traditional RPL routing in the
DODAG is not done based on the IP addresses of the nodes,
but based on the routing tables built by DAO messages. Thus,
separate entries should be stored in those tables for each node
that has sent a DAO message; the hierarchical nature of the
IP address space cannot be used to aggregate routing entries.

As opposed to this, in CAEsARv2, if IP addresses are
stored in BFs as well, the same nodes have to store only f
routing entries, that is the number of children they have in the
DODAG. This is because all the IP addresses from the entire
subtree are aggregated in the same BF at the parent node.
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These results are presented in figures 3 and 4. Please note
that the z axis in fig. 3 is exponential. In fig. 4 we can see how
the total number of entries in the network changes in function
of the structure of the DODAG, in RPL and in CAEsARv2
respectively. For every parameter setting there will be fewer
entries in the network if we use CAEsARv2.

The point here is that the total number of routing entries
in the whole network scales better in CAEsARv2, and these
entries are distributed evenly among the nodes (i.e., the nodes
that are closer to the root - and have lots of nodes in their sub-
DODAG - do not have to store much more entries than the
nodes further away from the root. We should note however
that depending on the used BF length, a routing entry in
CAEsARv2 can be larger than a traditional routing entry.

2) Compressing DAO messages: Since in the other parts
of the Internet traditional routing entries are used, we need
the IP addresses from the RPL domain to be stored in their
traditional format at the root, even if we store them in BFs
in the RPL nodes. Therefore, we suggest that when a node
joins for the first time an RPL DODAG, it should send a
traditional DAO message that has to be propagated upward
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until the root as it is. (The intermediate nodes insert this IP
address in their proper BF.) From here on, this IP address can
be propagated upward to the traditional Internet. As we saw in
the former paragraph, storing IP addresses in BFs - similarly to
context-parameters - can be beneficial in terms of the number
of routing entries in the nodes and their even distribution in
the network. Nevertheless, an IP address can be considered as
a static parameter, we propose thus to assign a separate BF for
it, since in this way we can support efficient explicit multicast
(described later). This BF can be also used to compress DAO
messages, since when a node has to send routing information
about several routes, it can happen easily that sending its
aggregate BF to its parent node is more efficient - regarding
the message length - than sending several IP addresses in one
or several DAO messages. (However, if the traditional DAO
message is shorter, it also can be sent since the receiver nodes
only have to insert them in the proper BFs.) To illustrate this,
let us take a look at fig. 5. The false positive probability
parameter p (p ≈ (1 − e( −k∗n

m )k ) [19]) can be seen in this
figure as a function of the inserted elements n and the number
of used hash functions k for a 32 bytes and a 64 bytes long
BF(m). This means that if 32 byte long BFs are used in a
network, then if we want to send routing information about
more than two IP addresses, it is more efficient - regarding
the message length - to send the corresponding BF.

3) Traditional- and explicit IP multicast: As we already
mentioned, there are many cases when we would like to
communicate not just with a single IoT device, but with
a group of such devices that share some common context
information for example. In RPL networks we can use the
created DODAG to support multicast communication using the
Stateless Multicast RPL Forwarding scheme (SMRF) [20] for
example. In this solution the multicast addresses are advertised
in a very similar way to unicast addresses; the only difference
between them is that a multicast address can be assigned
to several children in the routing table. If we store the IP
addresses in BFs, then maintaining several multicast groups in
the RPL domain does not mean additional routing entries in
the nodes, as the multicast addresses corresponding to those
groups can also be aggregated in the BF, together with the
unicast addresses of a sub-tree. Explicit multicast [21] [22]
was proposed as a solution to support network-layer group
communication when there is no multicast support from the
network service provider. It can be used when a source wants
to send a message to several nodes, and their IP addresses
are known in advance. This can be done by appending the
individual unicast addresses to the IP header of the packet
one-by-one. By doing so, we can achieve similar operation
as for traditional IP multicast: the packet is duplicated only
where it is needed. However, in LLNs, where the packet sizes
are limited, this is not an efficient solution, as the header with
all the included unicast addresses will be too large compared
to the size of the payload itself. Nevertheless, if we use BFs
to store IP addresses in the RPL domain, we can support more
efficiently the explicit multicast operation in terms of message
length. We only have to hash all the destination addresses into
a single BF and append them to the message. The receiving

Fig. 5: The false positive probability in a BF as function of
the number of inserted elements, the number of hashes k

nodes then compare this received BF with their stored BFs, and
if any of them has an intersection, then this message should be
forwarded to the proper sub-tree; if the BF contains the node’s
own address, than this message is intended to this node as well.

V. SIMULATION AND EXPERIMENTAL RESULTS

IN this section we analyze the efficiency of the proposed
CAEsARv2 framework from several aspects, comparing it

to traditional centralized approaches. Our previous paper [5]
included already some simulation analysis, here we do not
repeat, but extend those results and provide new insights.

First, we examine how CAEsARv2 is affected by the
changes of the node radio ranges, and as a result the changes
of the average hop numbers in the IoT domain. This is
important because in the traditional centralized solutions if
the average hop number increases in the network that means
the messages between the nodes and the central registry (be
that used for service discovery, data-centric communication
or context-based multicast) have to travel over longer routes.
Therefore, more messages have to be sent for instance to report
a context change. As a second point, we have also examined
how efficiently can CAEsARv2 adapt to context changes in
real world circumstances, and not in a simulated environment.
In order to do this, we ran experiments on the IoT Lab testbed
[23].

A. Effect of the radio ranges on the efficiency of aggregation

In several cases there is a correlation between geographic
proximity and the measured values of context parameters (e.g.,
temperature, light conditions, etc.). Therefore, there is a good
chance in CAEsARv2 that if such a parameter changes, the
corresponding BF or BV update messages coming from nearby
IoT nodes will be aggregated. We already examined this phe-
nomenon in our former paper [5]. However, it is an interesting
question to see how is the aggregation efficiency affected by
the node radio ranges, and as a consequence, by the hop
numbers in the IoT domain. We examined this phenomenon
through simulations, and not through experiments, since in this
way we can ensure that the underlying correlation between the
measured values and geographic proximity was the same in
every case (and in every simulation).

In the simulations we used the so called "room heating
up scenario" in the Cooja network simulator [24]. The setup
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of routing entries in the nodes and their even distribution in
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it, since in this way we can support efficient explicit multicast
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about several routes, it can happen easily that sending its
aggregate BF to its parent node is more efficient - regarding
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mentioned, there are many cases when we would like to
communicate not just with a single IoT device, but with
a group of such devices that share some common context
information for example. In RPL networks we can use the
created DODAG to support multicast communication using the
Stateless Multicast RPL Forwarding scheme (SMRF) [20] for
example. In this solution the multicast addresses are advertised
in a very similar way to unicast addresses; the only difference
between them is that a multicast address can be assigned
to several children in the routing table. If we store the IP
addresses in BFs, then maintaining several multicast groups in
the RPL domain does not mean additional routing entries in
the nodes, as the multicast addresses corresponding to those
groups can also be aggregated in the BF, together with the
unicast addresses of a sub-tree. Explicit multicast [21] [22]
was proposed as a solution to support network-layer group
communication when there is no multicast support from the
network service provider. It can be used when a source wants
to send a message to several nodes, and their IP addresses
are known in advance. This can be done by appending the
individual unicast addresses to the IP header of the packet
one-by-one. By doing so, we can achieve similar operation
as for traditional IP multicast: the packet is duplicated only
where it is needed. However, in LLNs, where the packet sizes
are limited, this is not an efficient solution, as the header with
all the included unicast addresses will be too large compared
to the size of the payload itself. Nevertheless, if we use BFs
to store IP addresses in the RPL domain, we can support more
efficiently the explicit multicast operation in terms of message
length. We only have to hash all the destination addresses into
a single BF and append them to the message. The receiving
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nodes then compare this received BF with their stored BFs, and
if any of them has an intersection, then this message should be
forwarded to the proper sub-tree; if the BF contains the node’s
own address, than this message is intended to this node as well.

V. SIMULATION AND EXPERIMENTAL RESULTS

IN this section we analyze the efficiency of the proposed
CAEsARv2 framework from several aspects, comparing it

to traditional centralized approaches. Our previous paper [5]
included already some simulation analysis, here we do not
repeat, but extend those results and provide new insights.

First, we examine how CAEsARv2 is affected by the
changes of the node radio ranges, and as a result the changes
of the average hop numbers in the IoT domain. This is
important because in the traditional centralized solutions if
the average hop number increases in the network that means
the messages between the nodes and the central registry (be
that used for service discovery, data-centric communication
or context-based multicast) have to travel over longer routes.
Therefore, more messages have to be sent for instance to report
a context change. As a second point, we have also examined
how efficiently can CAEsARv2 adapt to context changes in
real world circumstances, and not in a simulated environment.
In order to do this, we ran experiments on the IoT Lab testbed
[23].

A. Effect of the radio ranges on the efficiency of aggregation

In several cases there is a correlation between geographic
proximity and the measured values of context parameters (e.g.,
temperature, light conditions, etc.). Therefore, there is a good
chance in CAEsARv2 that if such a parameter changes, the
corresponding BF or BV update messages coming from nearby
IoT nodes will be aggregated. We already examined this phe-
nomenon in our former paper [5]. However, it is an interesting
question to see how is the aggregation efficiency affected by
the node radio ranges, and as a consequence, by the hop
numbers in the IoT domain. We examined this phenomenon
through simulations, and not through experiments, since in this
way we can ensure that the underlying correlation between the
measured values and geographic proximity was the same in
every case (and in every simulation).

In the simulations we used the so called "room heating
up scenario" in the Cooja network simulator [24]. The setup
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communication when there is no multicast support from the
network service provider. It can be used when a source wants
to send a message to several nodes, and their IP addresses
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individual unicast addresses to the IP header of the packet
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as for traditional IP multicast: the packet is duplicated only
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nodes then compare this received BF with their stored BFs, and
if any of them has an intersection, then this message should be
forwarded to the proper sub-tree; if the BF contains the node’s
own address, than this message is intended to this node as well.

V. SIMULATION AND EXPERIMENTAL RESULTS

IN this section we analyze the efficiency of the proposed
CAEsARv2 framework from several aspects, comparing it

to traditional centralized approaches. Our previous paper [5]
included already some simulation analysis, here we do not
repeat, but extend those results and provide new insights.

First, we examine how CAEsARv2 is affected by the
changes of the node radio ranges, and as a result the changes
of the average hop numbers in the IoT domain. This is
important because in the traditional centralized solutions if
the average hop number increases in the network that means
the messages between the nodes and the central registry (be
that used for service discovery, data-centric communication
or context-based multicast) have to travel over longer routes.
Therefore, more messages have to be sent for instance to report
a context change. As a second point, we have also examined
how efficiently can CAEsARv2 adapt to context changes in
real world circumstances, and not in a simulated environment.
In order to do this, we ran experiments on the IoT Lab testbed
[23].

A. Effect of the radio ranges on the efficiency of aggregation

In several cases there is a correlation between geographic
proximity and the measured values of context parameters (e.g.,
temperature, light conditions, etc.). Therefore, there is a good
chance in CAEsARv2 that if such a parameter changes, the
corresponding BF or BV update messages coming from nearby
IoT nodes will be aggregated. We already examined this phe-
nomenon in our former paper [5]. However, it is an interesting
question to see how is the aggregation efficiency affected by
the node radio ranges, and as a consequence, by the hop
numbers in the IoT domain. We examined this phenomenon
through simulations, and not through experiments, since in this
way we can ensure that the underlying correlation between the
measured values and geographic proximity was the same in
every case (and in every simulation).

In the simulations we used the so called "room heating
up scenario" in the Cooja network simulator [24]. The setup
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Fig. 6: An example setup for the room heating up simulation

is shown in fig. 6. One of the walls represented the body
of the heater (x=0, y=0...100). We have put the RPL root
node in the middle of the room and added nodes inside
the room with random positions. The nodes have organized
themselves into an RPL DODAG. We modelled that the
room is heated by 10 degrees Celsius in every simulation.
The temperature was quantized by 1 Celsius degrees, so any
time the measured temperature value of a node changed to
another Celsius degree value it sent an update message. At
the beginning of this process the temperature was constant in
every position of the room; after the heating was turned on,
the temperature started to increase in different ways in the
different locations, according to the proximity to the heater.
Linear heating characteristics were used.

We ran simulations in the following way: we started with a
simulation that contained 5 nodes in addition to the root, and
ran it 5 times, with different radio ranges (tx_power=10, 15,
20, 25, 30). Then, we added randomly 5 more nodes to the
simulation setup, paying attention to the fact that the newly
added nodes should be able to connect to the DODAG even if
the lowest radio ranges are used. With this new setup we also
ran 5 different simulations with 5 different tx_power parameter
settings. We continued this process until we reached 50 nodes
in the simulations. (fig. 7) We considered this as being one
iteration process, and we ran three such iterations.

We measured how the average hop numbers and the number
of sent messages changed with the different parameter settings.
The results can be seen in figures 8, 9 and 10 for one
iteration. Every point in the figures represents the result of
one simulation. (The tendencies were very similar in the other
two iterations as well.)

Regarding the average hop numbers (fig. 8), we can see that
as we decreased the tx_power parameter in the simulations, the
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Fig. 8: The average hop number as a function of tx_power and
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approach as a function of tx_power and number of nodes
parameters

hop numbers increased. Moreover, it seems that this increase
is getting "leap-like" as we increase the number of nodes
(especially for the lowest value of the t x_power parameter).
This can be caused by the fact that with a larger node number
it is more likely that more nodes get further away from the
root, positioned in the middle of the area; with the decreasing
radio ranges, they could not connect to the root with direct,
short routes, but only along longer, roundabout routes. Also
as the node number further increased the average hop number
slightly decreased since some of the newly added nodes could
be better (closer to the root) RPL parents for some of the
nodes.

We can see in fig. 9 how many messages have to be sent if
a centralized registry is used to maintain the state of the RPL
nodes. We assumed here that this registry is co-located with
the RPL root. If that registry is outside the IoT domain, then
the route between the RPL root and the registry is constant,
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function of tx_power and number of nodes parameters
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and it is not affected by the node radio ranges or the hop
numbers inside the IoT domain. Thus, it is interesting to see
only what happens inside the domain. In the figure we can
see that, as we heated up the room by 10 degrees Celsius,
the number of messages was equal to 10 times the average
hop number, multiplied by the node number. As this number
depends linearly on the average hop number, we can also see
here the "leap-like" increase with short radio ranges and with
large node numbers.

Regarding the BF and BV update messages in CAEsARv2
(fig. 10), we can see that the number of sent messages depends
mostly on the number of nodes in the simulations and not -
or at least much less - on the average hop numbers. This
means that CAEsARv2 is not affected very much by the longer
routes in the RPL domain. Longer routes could appear nut
just because of shorter radio ranges, but as a consequence of
noisy communication channels as well, if the Minimum Rank
with Hysteresis Objective Function (MRHOF) [25] is used to
build the DODAG. This objective function optimizes routes
according to the so called expected number of transmissions
(ETX) [26].

B. Experimental results

In order to validate how CAEsARv2 can adapt to context
changes in real world circumstances, we implemented it for
the IoTlab [23] version of ContikiOS [27], one of the most
deployed operating systems for the IoT. IoT-LAB is a large
scale IoT testbed in France with over 2700 wireless sensor
nodes at six different sites. Nodes are either fixed or mobile
and can be allocated in various topologies throughout all sites.

We had run 24 hour long experiments at two different
sites of IoTlab: Lille and Grenoble. Regarding the Lille
experiments, we chose a random number of nodes with random
locations for every experiment. We chose one node as being
the RPL root, and the RPL DODAG was built up from that
node. After the DODAG built up phase has finished, the nodes
started to measure periodically the light conditions. We quan-
tized the measured values by 300 luxes. In the experiments
the measured light conditions typically were between 0 and
4500 luxes. We hashed the categories into BFs and these BFs
were aggregated along the DODAG. We measured the sent
messages for CAEsARv2 and for the traditional centralized
data-centric communication approaches (e.g., MQTT). We
have also measured the number of category changes during
the experiments. The results can be seen in fig. 12 and in
fig. 13. We used polynomial surface fitting with degree 21, in
order to make the figures more illustrative. The fitted surfaces
are relatively plain (the points fit on them with little error),
and show well the dependence of the signaling overhead on
the average hop number and the number of nodes and also the
dependence of the number of category changes on the average
hop number and the number of nodes in the experiments. We
chose the Lille site for this type of experiments since the
testbed is surrounded there by windows; therefore, during the
day we expected the light conditions to change a lot.

At the Grenoble testbed we did similar experiments; the
only difference was that the nodes measured temperature
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periodically and we quantized the measured values by 1 degree
Celsius. We chose this testbed for this case since the distances
between nodes were larger, and it was expected thus that the
measured temperature values will differ more. The results can
be seen in fig. 11 and in fig. 14 with the similar surface fitting.

We ran approximately 60 experiments for both cases. As
we see from the results, CAEsARv2 can utilize the correlation
between the geographical proximity and the measured values
in both cases, the aggregation was thus efficient. In several
cases the number of sent messages was lower than the actual
number of context category changes, and we can say that in
general these two numbers were close to each other. To explain
this, let us imagine a situation in which a device just sensed
a category change. It hashes the new context category into
the proper BF or BV, and aggregates all the data structures
that are stored by this node and are assigned to that specific
parameter. If the resulted aggregate BF or BV is the same
as the former one that has been previously sent to the parent
node, the node does not need to send it again. As opposed
to this, obviously, in the centralized approach every context
category change must be reported to the central registry.

VI. CONCLUSION

IN this paper we proposed CAEsARv2, an extension of our
formerly proposed context-aware addressing and routing

scheme for RPL networks. A major change compared to the
original version was the separation of the different context
parameters and the assignment of different data structures to
them. We showed what are the benefits of storing IP ad-
dresses in Bloom filters, similarly to other context parameters.
Through simulations we also proved that efficiency of Bloom
filter aggregation in CAEsARv2 is not affected significantly
by the radio ranges in the network. We have also validated
through experiments that CAEsARv2 can adapt to context
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Fig. 6: An example setup for the room heating up simulation

is shown in fig. 6. One of the walls represented the body
of the heater (x=0, y=0...100). We have put the RPL root
node in the middle of the room and added nodes inside
the room with random positions. The nodes have organized
themselves into an RPL DODAG. We modelled that the
room is heated by 10 degrees Celsius in every simulation.
The temperature was quantized by 1 Celsius degrees, so any
time the measured temperature value of a node changed to
another Celsius degree value it sent an update message. At
the beginning of this process the temperature was constant in
every position of the room; after the heating was turned on,
the temperature started to increase in different ways in the
different locations, according to the proximity to the heater.
Linear heating characteristics were used.

We ran simulations in the following way: we started with a
simulation that contained 5 nodes in addition to the root, and
ran it 5 times, with different radio ranges (tx_power=10, 15,
20, 25, 30). Then, we added randomly 5 more nodes to the
simulation setup, paying attention to the fact that the newly
added nodes should be able to connect to the DODAG even if
the lowest radio ranges are used. With this new setup we also
ran 5 different simulations with 5 different tx_power parameter
settings. We continued this process until we reached 50 nodes
in the simulations. (fig. 7) We considered this as being one
iteration process, and we ran three such iterations.

We measured how the average hop numbers and the number
of sent messages changed with the different parameter settings.
The results can be seen in figures 8, 9 and 10 for one
iteration. Every point in the figures represents the result of
one simulation. (The tendencies were very similar in the other
two iterations as well.)

Regarding the average hop numbers (fig. 8), we can see that
as we decreased the tx_power parameter in the simulations, the
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hop numbers increased. Moreover, it seems that this increase
is getting "leap-like" as we increase the number of nodes
(especially for the lowest value of the t x_power parameter).
This can be caused by the fact that with a larger node number
it is more likely that more nodes get further away from the
root, positioned in the middle of the area; with the decreasing
radio ranges, they could not connect to the root with direct,
short routes, but only along longer, roundabout routes. Also
as the node number further increased the average hop number
slightly decreased since some of the newly added nodes could
be better (closer to the root) RPL parents for some of the
nodes.

We can see in fig. 9 how many messages have to be sent if
a centralized registry is used to maintain the state of the RPL
nodes. We assumed here that this registry is co-located with
the RPL root. If that registry is outside the IoT domain, then
the route between the RPL root and the registry is constant,
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and it is not affected by the node radio ranges or the hop
numbers inside the IoT domain. Thus, it is interesting to see
only what happens inside the domain. In the figure we can
see that, as we heated up the room by 10 degrees Celsius,
the number of messages was equal to 10 times the average
hop number, multiplied by the node number. As this number
depends linearly on the average hop number, we can also see
here the "leap-like" increase with short radio ranges and with
large node numbers.

Regarding the BF and BV update messages in CAEsARv2
(fig. 10), we can see that the number of sent messages depends
mostly on the number of nodes in the simulations and not -
or at least much less - on the average hop numbers. This
means that CAEsARv2 is not affected very much by the longer
routes in the RPL domain. Longer routes could appear nut
just because of shorter radio ranges, but as a consequence of
noisy communication channels as well, if the Minimum Rank
with Hysteresis Objective Function (MRHOF) [25] is used to
build the DODAG. This objective function optimizes routes
according to the so called expected number of transmissions
(ETX) [26].

B. Experimental results

In order to validate how CAEsARv2 can adapt to context
changes in real world circumstances, we implemented it for
the IoTlab [23] version of ContikiOS [27], one of the most
deployed operating systems for the IoT. IoT-LAB is a large
scale IoT testbed in France with over 2700 wireless sensor
nodes at six different sites. Nodes are either fixed or mobile
and can be allocated in various topologies throughout all sites.

We had run 24 hour long experiments at two different
sites of IoTlab: Lille and Grenoble. Regarding the Lille
experiments, we chose a random number of nodes with random
locations for every experiment. We chose one node as being
the RPL root, and the RPL DODAG was built up from that
node. After the DODAG built up phase has finished, the nodes
started to measure periodically the light conditions. We quan-
tized the measured values by 300 luxes. In the experiments
the measured light conditions typically were between 0 and
4500 luxes. We hashed the categories into BFs and these BFs
were aggregated along the DODAG. We measured the sent
messages for CAEsARv2 and for the traditional centralized
data-centric communication approaches (e.g., MQTT). We
have also measured the number of category changes during
the experiments. The results can be seen in fig. 12 and in
fig. 13. We used polynomial surface fitting with degree 21, in
order to make the figures more illustrative. The fitted surfaces
are relatively plain (the points fit on them with little error),
and show well the dependence of the signaling overhead on
the average hop number and the number of nodes and also the
dependence of the number of category changes on the average
hop number and the number of nodes in the experiments. We
chose the Lille site for this type of experiments since the
testbed is surrounded there by windows; therefore, during the
day we expected the light conditions to change a lot.

At the Grenoble testbed we did similar experiments; the
only difference was that the nodes measured temperature
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periodically and we quantized the measured values by 1 degree
Celsius. We chose this testbed for this case since the distances
between nodes were larger, and it was expected thus that the
measured temperature values will differ more. The results can
be seen in fig. 11 and in fig. 14 with the similar surface fitting.

We ran approximately 60 experiments for both cases. As
we see from the results, CAEsARv2 can utilize the correlation
between the geographical proximity and the measured values
in both cases, the aggregation was thus efficient. In several
cases the number of sent messages was lower than the actual
number of context category changes, and we can say that in
general these two numbers were close to each other. To explain
this, let us imagine a situation in which a device just sensed
a category change. It hashes the new context category into
the proper BF or BV, and aggregates all the data structures
that are stored by this node and are assigned to that specific
parameter. If the resulted aggregate BF or BV is the same
as the former one that has been previously sent to the parent
node, the node does not need to send it again. As opposed
to this, obviously, in the centralized approach every context
category change must be reported to the central registry.

VI. CONCLUSION

IN this paper we proposed CAEsARv2, an extension of our
formerly proposed context-aware addressing and routing

scheme for RPL networks. A major change compared to the
original version was the separation of the different context
parameters and the assignment of different data structures to
them. We showed what are the benefits of storing IP ad-
dresses in Bloom filters, similarly to other context parameters.
Through simulations we also proved that efficiency of Bloom
filter aggregation in CAEsARv2 is not affected significantly
by the radio ranges in the network. We have also validated
through experiments that CAEsARv2 can adapt to context
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This can be caused by the fact that with a larger node number
it is more likely that more nodes get further away from the
root, positioned in the middle of the area; with the decreasing
radio ranges, they could not connect to the root with direct,
short routes, but only along longer, roundabout routes. Also
as the node number further increased the average hop number
slightly decreased since some of the newly added nodes could
be better (closer to the root) RPL parents for some of the
nodes.

We can see in fig. 9 how many messages have to be sent if
a centralized registry is used to maintain the state of the RPL
nodes. We assumed here that this registry is co-located with
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Fig. 13: The category changes in the different light measuring
experiments taken at the IoTlab Lille testbed
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Fig. 14: The category changes in the different temperature
measuring experiments taken at the IoTlab Grenoble testbed

changes more efficiently than the centralized publish/subscribe
messaging systems if there is a correlation between geograph-
ical proximity and measured values.
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Fig. 13: The category changes in the different light measuring
experiments taken at the IoTlab Lille testbed

38

Fig. 14: The category changes in the different temperature
measuring experiments taken at the IoTlab Grenoble testbed

changes more efficiently than the centralized publish/subscribe
messaging systems if there is a correlation between geograph-
ical proximity and measured values.
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