
Android APK on-the-fly tampering
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2016 • VOLUME VIII • NUMBER 4 23

1

Android APK on-the-fly tampering
Zdeněk Řı́ha, Dušan Klinec, Vashek Matyáš

Abstract—The Android operating system is widely deployed
and relied upon by both providers and users of various ap-
plications. These applications get frequently downloaded from
other sources than just Google Play. This makes Android and
its application treatment a popular target for attackers. We
first present an automated offline attack injecting a previously
prepared code to a previously unseen Android application instal-
lation file (APK) in an automatic manner. Moreover, we present a
novel transparent on-the-fly extension of our attack when a proxy
server performs code injection during a new APK download.

Index Terms—Android security, application security, applica-
tion download, code injection, malware contamination

I. INTRODUCTION

The Android mobile operating system has penetrated 88%
of the smartphone operating system market by 2016 [5]. The
bare operating system as delivered by phone manufacturers
typically provides just a basic functionality. Therefore, it
is more-or-less expected that most users install additional
applications either to enhance smartphone features or just for
fun. The official way to obtain Android applications is to use
the Google Play service. Android phones use the pre-installed
application (client) that directly connects to Google Play
servers. Alternative sources of applications are also supported,
but this feature is disabled by default for security reasons.

Still, many users activate the feature allowing installation
of applications from other (often unknown) sources to be
able to install applications with alternative distribution models,
not present on the Google Play Store (e.g., tourist guide
applications are often distributed locally on-site in places
without Internet access).

Various and numerous applications are banned from the
distribution in Google Play (e.g., advanced security scanners
software requiring root privileges, copyright infringement ma-
terials, advertising blocking applications or even privacy tools
aimed at stopping other applications from collecting data on
users).

We demonstrate two methods of automatically injecting
attacker’s code (e.g., backdoor) into the APK files transpar-
ently to the user. See the high-level architecture of the typical
attacker’s setup in Figure 1. The user would see the APK
download phase progress as usual, but receive a modified file.
Since “free” installation of applications from ad hoc sources is
a crucial feature for Android smartphones, we raise this issue
to both the user and developer communities.

Motivations of the attackers to inject a malware into An-
droid applications can vary. The malware can have the form
of a spyware, leaking the location of the user, SMS messages

Affiliation: Masaryk University, Faculty of Informatics, Botanicka 68a, CZ-
602 00 Brno, Czechia. (zriha | xklinec | matyas @fi.muni.cz)

Fig. 1. The high-level architecture of our attacker’s setup. The infrastructure
for the Internet access (typically a WiFi access point) is under the control of
an attacker who can manipulate unprotected communication.

and other sensitive user data, etc.; botnet client, transforming
the mobile phone into a zombie, or anything else that can lead
to economic or other profit (e.g., Bitcoin mining).

APK file integrity is protected with a digital signature.
The list of hashes for practically all the files in a package
is digitally signed and stored as a PKCS#7/CMS signature
file (including the X.509 certificate of the signer). The digital
signature is verified during the installation process and if
the verification fails then the installation is aborted. This
mechanism is able to detect integrity issues within the APK file
(e.g., missing files, extra files or modified files) and addresses
download errors (e.g., a truncated APK file).

Experience from other application domains (most notably,
but not exclusively, the SSL/TLS) shows that users have
serious issues when having to make decisions about Public
Key Infrastructure (PKI) tasks and questions [6], [15]. Android
is based on a very simplified PKI.

For the APK files, the signer certificate is self-signed and is
generated by a developer without any aid of a Certification
Authority (CA). When a new application (a new package
name) is installed, any certificate is accepted. The signer’s
certificate is only important in some particular situations – the
signer must be the same when upgrading an application, to
allow applications to run in the same process and to share
code or data between applications through permissions.

In our scenario, we assume that the user is downloading and
installing a new application. Therefore, it is easily possible to
modify the content of an APK file and afterwards to sign it
with a different private key of attacker’s choice.

As no CA is involved, the values of the name fields in
the (public key) certificate can be arbitrarily chosen by the
attacker. To sign the application, we use the same jarsigner
utility (part of the Java Development Kit) that developers
use. We generated a new private key and certificate for our
experiment described below.

Zdeněk Říha, Dušan Klinec and Vashek Matyáš

Android APK on-the-fly tampering

Android APK on-the-fly tampering

DECEMBER 2016 • VOLUME VIII • NUMBER 424

INFOCOMMUNICATIONS JOURNAL

3

the following elements:
• Manifest: Metadata including versions, permissions and

bindings (file AndroidManifest.xml);
• Compiled portable code: Java classes in DEX format (file
classes.dex);

• Compiled native code: Platform dependent compiled code
– separate folders for particular platforms (folder lib and
its subfolders);

• Precompiled resources: For example compiled XML files
(file resources.arsc);

• Other resources: Images, icons, sounds, etc. (folders res
and assests);

• Package integrity data: The digital signature (folder
META-INF).

In the offline APK modification we automate the use of
commonly available Java tools to decompose the APK file,
modify the package content and build the APK again.

In the very first step, we call the apktool to decompile
the package. This leads to unzipping of the file structure,
conversion of binary XML files to textual formats (including
the AndrodManifest.xml file) and disassembly of the
classes.dex file (containing all compiled Java classes)
into the so-called smali files (textual versions of the Dalvik
bytecode).

The apktool provides a good compatibility for the APK ma-
nipulation, but there are some packages that fail to decompile
with apktool. This basically sets the success rate of the attacks.
Particular numbers depend significantly on the source of the
database of APK files and also on the version of the apktool. In
a database of 500 APKs downloaded from the zippyshare.com
about 15% of the APK files fail to decompile with the apktool.

The next step of the offline attack is the smali files
modification. In this phase we use the pre-prepared smali
code we would like to inject. Those are added to other
disassembled smali files. Usually we also need to modify
the existing smali files in order to start the malicious code
automatically after the application startup, to provide binding
to the original code or to register to system events. Smali
file modification is straightforward and also automated. In
our scenario we tested starting a new service and registering
for interesting intents (e.g., ACTION BOOT COMPLETED,
SMS RECEIVED). The new functionality (the new service) is
separate from the original code and there is no aim to actually
modify the original functionality, so chances of unintended
interactions/malfunctions are very low. We particularly need
to avoid naming collisions.

The AndroidManifest.xml has to be modified in the
following cases: a) our code needs permissions missing in the
original application, then we add the required permissions;
b) new service/activity/IntentReceiver is added, it has to be
registered in AndroidManifest.xml. Once the modifica-
tion is finished, the assembly process takes place to create a
tampered APK. This includes calling the apktool to compile
the AndroidManifest.xml and smali files. Then the
whole package is signed with a newly generated asymmetric
key using the jarsigner utility. An optional step is to use the
zipalign utility that aligns zip entries at 4B boundaries. The
result of this process is a tampered APK file with the injected

code, still correctly signed with a new certificate and private
key.

IV. ONLINE APK MODIFICATION

The previous approach works well in cases where the
attacker has got a big repository of APK files available so they
can be infected and then provided to users. A more universal
approach is to build a proxy server that modifies on-the-fly the
APKs being downloaded in order not to raise any suspicion of
users about the potential malicious activities being performed
on the APK file during the download process.

The online attack works in the streaming mode. Thus the
APK file being downloaded is read by our proxy and on the
other end the proxy produces an infected APK file. The main
idea of this process is the re-ordering of files inside the APK
ZIP file structure.

Usually there is no need to modify resource files in the
APK and typically the resource files occupy a non-negligible
amount of space in the APK. We use this fact to create an
impression of continuous download. Files that have to be
modified (e.g., AndroidManifest.xml, classes.dex,
digital signature files) are stored sideways, postponed from
being sent to the user. The rest of the files (e.g., resources)
are sent to the user directly. We use a stream ZIP parser to
perform this task.

A. Attack launch

Once the whole APK file is available at the proxy side, the
offline attack is launched on to the downloaded APK file. Note
that the user has downloaded only files that are not modified
during the attack and does not have the complete APK file yet.
From the user’s perspective, the download process is still in
progress. When the offline attack finishes, the tampered APK
file is analyzed and files differing from the original APK file
are transmitted to the user. This would normally lead to a
download pattern where a significant part of the APK file is
downloaded with a normal speed, then the connection hangs
for a moment (ranging from seconds to minutes), and then the
download continues with the normal speed again.

To avoid a visible delay in the middle of the download
process, it is possible to artificially reduce the download speed
from the beginning so that the delay in the middle is not
present or minimized.

The main benefit of this approach is that download on the
user side starts quite quickly (i.e., the download progress bar
shows the download has really started). The naı̈ve strategy
would be to use the offline attack on the proxy side and
once the attack finishes the whole infected APK file would
be dumped to the user’s download stream. Yet that could
raise suspicion of users since the modification takes some
time — from a few seconds to a few minutes — the user
would see 0% at the progress bar for a significant time.
This could indicate connectivity problems or indications of
malicious modifications. A cautious user might tend to cancel
the APK download.

2

A. Aims and limitations of our work

The core contribution of this paper is a novel approach
for the on-the-fly automated modification of APK files. In
the case of the offline APK modification we assume to have
the complete APK file at our disposal (i.e., fully downloaded
file) and run a script to inject the payload. Yet our primary
contribution comes with the demonstration of a code injection
(at a proxy) – the online version of the modification modifies
the APK on-the-fly while being downloaded from a remote
server to the Android device of the victim (i.e., during the man-
in-the-middle attack). The online modification must create an
impression of a continuous download of the APK. To our
best knowledge, the on-the-fly attack is a novel approach not
published before.

Our paper investigates the security consequences of the
feature allowing for installation of applications from unknown
sources and presents a way how to automatically inject mal-
ware into Android applications. Security of the Google Play
service is out of the scope of this paper.

Our ultimate goal is to demonstrate the ease of injecting
an additional code so that it remains hidden from the phone
user. The process of the code injection (even into previously
unseen applications) is fully automated and the download of
the package is not disrupted from the user point of view.
The process of the modification works in a streaming mode,
changing the APK file on-the-fly.

B. Paper roadmap

In Section II, we map related work on the Android attacks
topic. Section III describes the basic offline variant of the
attack, Section IV outlines the on-the-fly variant of the attack.
Technical details are described in Section V and Section VI
demonstrates the practical usability of the proposed approach
in our experiments. Section VII briefly discusses possible
countermeasures and the following section concludes our
paper.

II. RELATED WORK

The APK file modification is not novel. It has been
demonstrated several times that the APK file can be decom-
pressed, disassembled, modified and then reassembled and
repackaged [25], [1]. There are standard Java tools that can
decompress the APK file, disassemble the compiled Java
classes, recompile the source code and repackage the APK
file including the APK signature generation. The analysis of
the source code and its proper modification usually remains a
manual and case-by-case work.

Code injection was also previously demonstrated with other
executable file formats (e.g., Windows EXE [4]).

In [7] E. Aydogen and S. Sen generate repackaged (obfus-
cated) APK files using apktool. The resulting APK files are
used to evaluate the performance of antivirus systems.

A DroidChameleon framework presented in [23] is a tool
for generating malwared versions of the Android applications
with use of transformation techniques, repackaging and re-
assembling APKs. They tested common antivirus products and
commercial antimalware applications with modified APKs. All

APK modifications are offline, the paper does not discuss on-
the-fly APK manipulations.

ADAM [31] is another malware generator framework that
uses repackaging and obfuscation to generate new malware
samples to stress antivirus products. The paper focuses only
on an offline APK repackaging.

In [18] J. Jeon et al. intruduces Dr. Android and Mr. Hide.
Dr. Android is a tool that removes application permissions
and replaces them with calls of fine-grade variants accesible
through Mr. Hide (a set of Android services). Dr. Android is
based on the apktool (to repackage the application) and redexer
(to transform the Dalvik bytecode).

AppSpear [28] is rebuilding packed and protected applica-
tions into normal form so that they can be analyzed by standard
tools.

APK files are often decompiled to analyze the behaviour
of applications. In [13] W. Enck et al. presented the ded
tool for decompiling Android DEX code to the Java source
codes and carried a static code analysis on 1100 Android
applications with the Fortify tool. In [8] L. Batyuk et al.
statically analyze the bytecode and produce precise security
reports. P. Bertholome et al. [9] extend the work and not only
reports the situations where the user’s privacy can be disclose,
but also inject a new code to allow use to decide whether he
want to prevent the operation.

Many Android vulnerabilities have been published in the
past few years, but APK related vulnerabilities are not that
numerous. The most serious bug on this topic is the so-
called Android Master Key vulnerability [16] affecting APK
installation in such a way that the tampered package is
accepted as a valid one. The vulnerability is based on the
fact that the APK file, having the ZIP structure, can contain
multiple entries of the same name, this is quite unusual, but
generally allowed in ZIP files. The existence of such duplicates
is not explicitly checked by the installer. The APK installer
and the signature verifier are separate components, each using
a different third-party ZIP parsing library.

The core problem is that the signature verifier takes into
consideration the first ZIP file entry while the installer takes
the last one. Exploiting this vulnerability is straightforward.
Taking an original APK file, it is sufficient to insert infected
files as second ZIP entries with duplicate names. As a result,
the original ZIP entries are verified while the infected files
are being installed. The Android Master Key vulnerability is
a serious bug that has been fixed in the Android version 4.3
(Jelly Bean).

The Android Master Key vulnerability is an effective way
to infect an APK file. The core advantage of this approach is
based on the fact that no modification of the original signature
is required (even if the installed content has actually changed).
Our approach is also based on the fact that APK file has a
ZIP structure but we are not using the Android Master Key
vulnerability, instead we are generating a new signature as we
are changing some files inside the APK.

III. OFFLINE APK MODIFICATION

Android applications are distributed in the form of APK [2]
files. APK has internally a ZIP structure that includes primarily

Android APK on-the-fly tampering
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2016 • VOLUME VIII • NUMBER 4 25

3

the following elements:
• Manifest: Metadata including versions, permissions and

bindings (file AndroidManifest.xml);
• Compiled portable code: Java classes in DEX format (file
classes.dex);

• Compiled native code: Platform dependent compiled code
– separate folders for particular platforms (folder lib and
its subfolders);

• Precompiled resources: For example compiled XML files
(file resources.arsc);

• Other resources: Images, icons, sounds, etc. (folders res
and assests);

• Package integrity data: The digital signature (folder
META-INF).

In the offline APK modification we automate the use of
commonly available Java tools to decompose the APK file,
modify the package content and build the APK again.

In the very first step, we call the apktool to decompile
the package. This leads to unzipping of the file structure,
conversion of binary XML files to textual formats (including
the AndrodManifest.xml file) and disassembly of the
classes.dex file (containing all compiled Java classes)
into the so-called smali files (textual versions of the Dalvik
bytecode).

The apktool provides a good compatibility for the APK ma-
nipulation, but there are some packages that fail to decompile
with apktool. This basically sets the success rate of the attacks.
Particular numbers depend significantly on the source of the
database of APK files and also on the version of the apktool. In
a database of 500 APKs downloaded from the zippyshare.com
about 15% of the APK files fail to decompile with the apktool.

The next step of the offline attack is the smali files
modification. In this phase we use the pre-prepared smali
code we would like to inject. Those are added to other
disassembled smali files. Usually we also need to modify
the existing smali files in order to start the malicious code
automatically after the application startup, to provide binding
to the original code or to register to system events. Smali
file modification is straightforward and also automated. In
our scenario we tested starting a new service and registering
for interesting intents (e.g., ACTION BOOT COMPLETED,
SMS RECEIVED). The new functionality (the new service) is
separate from the original code and there is no aim to actually
modify the original functionality, so chances of unintended
interactions/malfunctions are very low. We particularly need
to avoid naming collisions.

The AndroidManifest.xml has to be modified in the
following cases: a) our code needs permissions missing in the
original application, then we add the required permissions;
b) new service/activity/IntentReceiver is added, it has to be
registered in AndroidManifest.xml. Once the modifica-
tion is finished, the assembly process takes place to create a
tampered APK. This includes calling the apktool to compile
the AndroidManifest.xml and smali files. Then the
whole package is signed with a newly generated asymmetric
key using the jarsigner utility. An optional step is to use the
zipalign utility that aligns zip entries at 4B boundaries. The
result of this process is a tampered APK file with the injected

code, still correctly signed with a new certificate and private
key.

IV. ONLINE APK MODIFICATION

The previous approach works well in cases where the
attacker has got a big repository of APK files available so they
can be infected and then provided to users. A more universal
approach is to build a proxy server that modifies on-the-fly the
APKs being downloaded in order not to raise any suspicion of
users about the potential malicious activities being performed
on the APK file during the download process.

The online attack works in the streaming mode. Thus the
APK file being downloaded is read by our proxy and on the
other end the proxy produces an infected APK file. The main
idea of this process is the re-ordering of files inside the APK
ZIP file structure.

Usually there is no need to modify resource files in the
APK and typically the resource files occupy a non-negligible
amount of space in the APK. We use this fact to create an
impression of continuous download. Files that have to be
modified (e.g., AndroidManifest.xml, classes.dex,
digital signature files) are stored sideways, postponed from
being sent to the user. The rest of the files (e.g., resources)
are sent to the user directly. We use a stream ZIP parser to
perform this task.

A. Attack launch

Once the whole APK file is available at the proxy side, the
offline attack is launched on to the downloaded APK file. Note
that the user has downloaded only files that are not modified
during the attack and does not have the complete APK file yet.
From the user’s perspective, the download process is still in
progress. When the offline attack finishes, the tampered APK
file is analyzed and files differing from the original APK file
are transmitted to the user. This would normally lead to a
download pattern where a significant part of the APK file is
downloaded with a normal speed, then the connection hangs
for a moment (ranging from seconds to minutes), and then the
download continues with the normal speed again.

To avoid a visible delay in the middle of the download
process, it is possible to artificially reduce the download speed
from the beginning so that the delay in the middle is not
present or minimized.

The main benefit of this approach is that download on the
user side starts quite quickly (i.e., the download progress bar
shows the download has really started). The naı̈ve strategy
would be to use the offline attack on the proxy side and
once the attack finishes the whole infected APK file would
be dumped to the user’s download stream. Yet that could
raise suspicion of users since the modification takes some
time — from a few seconds to a few minutes — the user
would see 0% at the progress bar for a significant time.
This could indicate connectivity problems or indications of
malicious modifications. A cautious user might tend to cancel
the APK download.

2

A. Aims and limitations of our work

The core contribution of this paper is a novel approach
for the on-the-fly automated modification of APK files. In
the case of the offline APK modification we assume to have
the complete APK file at our disposal (i.e., fully downloaded
file) and run a script to inject the payload. Yet our primary
contribution comes with the demonstration of a code injection
(at a proxy) – the online version of the modification modifies
the APK on-the-fly while being downloaded from a remote
server to the Android device of the victim (i.e., during the man-
in-the-middle attack). The online modification must create an
impression of a continuous download of the APK. To our
best knowledge, the on-the-fly attack is a novel approach not
published before.

Our paper investigates the security consequences of the
feature allowing for installation of applications from unknown
sources and presents a way how to automatically inject mal-
ware into Android applications. Security of the Google Play
service is out of the scope of this paper.

Our ultimate goal is to demonstrate the ease of injecting
an additional code so that it remains hidden from the phone
user. The process of the code injection (even into previously
unseen applications) is fully automated and the download of
the package is not disrupted from the user point of view.
The process of the modification works in a streaming mode,
changing the APK file on-the-fly.

B. Paper roadmap

In Section II, we map related work on the Android attacks
topic. Section III describes the basic offline variant of the
attack, Section IV outlines the on-the-fly variant of the attack.
Technical details are described in Section V and Section VI
demonstrates the practical usability of the proposed approach
in our experiments. Section VII briefly discusses possible
countermeasures and the following section concludes our
paper.

II. RELATED WORK

The APK file modification is not novel. It has been
demonstrated several times that the APK file can be decom-
pressed, disassembled, modified and then reassembled and
repackaged [25], [1]. There are standard Java tools that can
decompress the APK file, disassemble the compiled Java
classes, recompile the source code and repackage the APK
file including the APK signature generation. The analysis of
the source code and its proper modification usually remains a
manual and case-by-case work.

Code injection was also previously demonstrated with other
executable file formats (e.g., Windows EXE [4]).

In [7] E. Aydogen and S. Sen generate repackaged (obfus-
cated) APK files using apktool. The resulting APK files are
used to evaluate the performance of antivirus systems.

A DroidChameleon framework presented in [23] is a tool
for generating malwared versions of the Android applications
with use of transformation techniques, repackaging and re-
assembling APKs. They tested common antivirus products and
commercial antimalware applications with modified APKs. All

APK modifications are offline, the paper does not discuss on-
the-fly APK manipulations.

ADAM [31] is another malware generator framework that
uses repackaging and obfuscation to generate new malware
samples to stress antivirus products. The paper focuses only
on an offline APK repackaging.

In [18] J. Jeon et al. intruduces Dr. Android and Mr. Hide.
Dr. Android is a tool that removes application permissions
and replaces them with calls of fine-grade variants accesible
through Mr. Hide (a set of Android services). Dr. Android is
based on the apktool (to repackage the application) and redexer
(to transform the Dalvik bytecode).

AppSpear [28] is rebuilding packed and protected applica-
tions into normal form so that they can be analyzed by standard
tools.

APK files are often decompiled to analyze the behaviour
of applications. In [13] W. Enck et al. presented the ded
tool for decompiling Android DEX code to the Java source
codes and carried a static code analysis on 1100 Android
applications with the Fortify tool. In [8] L. Batyuk et al.
statically analyze the bytecode and produce precise security
reports. P. Bertholome et al. [9] extend the work and not only
reports the situations where the user’s privacy can be disclose,
but also inject a new code to allow use to decide whether he
want to prevent the operation.

Many Android vulnerabilities have been published in the
past few years, but APK related vulnerabilities are not that
numerous. The most serious bug on this topic is the so-
called Android Master Key vulnerability [16] affecting APK
installation in such a way that the tampered package is
accepted as a valid one. The vulnerability is based on the
fact that the APK file, having the ZIP structure, can contain
multiple entries of the same name, this is quite unusual, but
generally allowed in ZIP files. The existence of such duplicates
is not explicitly checked by the installer. The APK installer
and the signature verifier are separate components, each using
a different third-party ZIP parsing library.

The core problem is that the signature verifier takes into
consideration the first ZIP file entry while the installer takes
the last one. Exploiting this vulnerability is straightforward.
Taking an original APK file, it is sufficient to insert infected
files as second ZIP entries with duplicate names. As a result,
the original ZIP entries are verified while the infected files
are being installed. The Android Master Key vulnerability is
a serious bug that has been fixed in the Android version 4.3
(Jelly Bean).

The Android Master Key vulnerability is an effective way
to infect an APK file. The core advantage of this approach is
based on the fact that no modification of the original signature
is required (even if the installed content has actually changed).
Our approach is also based on the fact that APK file has a
ZIP structure but we are not using the Android Master Key
vulnerability, instead we are generating a new signature as we
are changing some files inside the APK.

III. OFFLINE APK MODIFICATION

Android applications are distributed in the form of APK [2]
files. APK has internally a ZIP structure that includes primarily

Android APK on-the-fly tampering

5

APK file Original
size

New
size

Time
(orig.
file)

Time
(modified

file)

Time
(modif’d file

with speed lim.)
Navigation
utility (‘C’) 293 kB 793 kB 1 s 13 s 51 s

Game (‘F’) 4126 kB 4626 kB 2 s 19 s 53 s
Antivirus
solution (‘E’) 3523 kB 4023 kB 2 s 31 s 62 s

TABLE I
THE TIME STATISTICS OF THE DOWNLOAD PROCESS OF THREE TYPES OF APPLICATIONS.

slowing down the user download speed from the beginning so
that the on-the-fly modification can be masked by a slow link
behavior.

Table I illustrates the times needed to download our sample
APK files (injecting a sample privacy-related malicious code):

• File ‘C’ is a very basic navigation utility.
• File ‘F’ is a basic game with rich graphics and a simple

logic.
• File ‘E’ is a leading provider’s antivirus solution with a

complex code.
These three files represent various characteristics of appli-
cations, in particular the size of the application and the
proportion of the code and resources. Note that the sizes of
files ‘E’ and ‘F’ are similar, but the processing times of the
files differ significantly. We need to emphasize that the most
time consuming part of this effort is the DEX file processing.
The more Java code (the larger the classes.dex file) the
longer the package processing takes as the decompilation and
compilation of the Java/smali code is more complex than
processing of other files (e.g., images and other resources).
This explains the longer processing time of the file ‘E’, which
contains more Java code than file ‘F’.

Our tests were performed using a very low performance
computer to imitate single purpose devices acting as routers
or access points (e.g., Linux based APs). A more powerful
computer can perform better. E.g., we ran some of the tests
on a notebook based on Intel Core i7-3540 (3GHz) and an
SSD disc – such a setting can reduce the modification times
by about one half.

The speed limitation needs to estimate the ideal speed that
can be achieved constantly. The time needed to process the
package depends on the proportion of the files that need not
be modified (and can be therefore sent directly) and files
that will be (potentially) modified (and will be sent after the
package modification and resigning). The speed also depends
on the size of the Java code that significantly influences the
decompilation and compilation times. Setting the compression
level may introduce another dimension to choose between the
compression level and slowdown in the modification/transfer
speed.

Figure 2 demonstrates one of the performed tests. It rep-
resents the download process of the file ‘F’ in three tested
situations. The green (solid) graph line shows the download
without the proxy, the red (dotted) line shows the download
process when the proxy modifies the file, and the yellow
(dashed) line shows the download process with a modified

file and with the speed limitation enabled. Note that the file
size of the modified file is about 500 kB bigger (the injected
code is accessing local resources/data and transmitting them
to a remote server).

Our speed estimate is conservative and is suitable also for
packages with a larger amount of Java code (like the file ‘E’).
Looking at Figure 2, it is possible to conclude that in this
particular case the download speed could be faster and the
download would still not suffer from the download stall in the
middle.

VII. POSSIBLE COUNTERMEASURES

The simplest countermeasure is to use the SSL/TLS to
protect the communication (e.g., the HTTPS protocol). The
security issues of SSL/TLS (including possible attacks) are
out of the scope of this paper.

Requesting permissions at run time in newer versions of
Android may reveal undesired hidden functionality of an
application, but only if that feature is active and the user pays
attention to the popping up messages.

The application can check the signing certificate at runtime
(so called certificate pinning) [3]. An attacker could modify the
reference certificate during the repackaging attack, but doing
so automatically would assume a particular process of the
certificate verification in the application.

Y. Zhauniarovich et al. [29] are suggesting the use of a
secondary signature of the APK file that would be added by the
application store. This method requires a trusted certificate of
the store to be available in the Android before the application
installation.

M. Conti et al. introduce OASIS [11], a trusted component
processing sensitive data on behalf of applications. Appli-
cations cannot access data directly, but only via a handle.
Therefore the OASIS system can enforce complex policies
like allowing access to contacts to display them but prohibiting
sending contacts over the Internet (even if Internet access is
generally allowed).

Increasingly popular are anti-decompilation, anti-cracking
and anti-reverse-engineering mechanisms. These can be as
simple as calling one particular method in the Java code (e.g.,
[27]) or more complex (e.g., [22], [28]).

A detection that the APK file was modified and repackaged
can be based on multiple principles. A significant effort has
been spent to detect repackaged APK files in Android markets.
In these cases researchers and providers have a large number
of APK files and analyze their statistical properties, e.g.,

4

B. File size issue
There are two major ways of transfer encoding using

HTTP as the download protocol. The server can use either
the chunked encoding or the normal mode. In the chunked
encoding, the overall content length of the payload is not
sent to the user in the HTTP headers. This mode of trans-
port enables to generate the content dynamically or support
scenarios where the content length is not known to the server
at the beginning. The downside of this approach is the missing
progress illustration of the download. The other option is to use
the normal transfer encoding with the content length header
present among the HTTP headers.

Since we want to mimic the normal file download with the
progress displayed to the user, we need to use the latter option.
The problem is that the APK modification inflates the APK
file by some amount of data, from bytes to kilobytes. Since
estimation of the difference of the file sizes is not reliable,
we cannot tell the resulting APK file size precisely before the
APK tampering takes place.

Our approach is to estimate the resulting APK size by
adding some extra space as a reserve. It should hold that
real APK size is smaller than the APK size sent in headers,
otherwise the user receives an incomplete and thus invalid
APK file. Then we have additional bytes of data that need
to be added to the APK somehow. Each ZIP file entry has
an Extra field according to the ZIP standard [21]. This Extra
field is of a variable size, taking at most 65535 B. It serves for
storing a special application/platform information in a ZIP file
and provides extensibility to the ZIP format. In most APK files
it is usually unused. This is the place where we put additional
bytes to obtain a “padded” version of the APK file where file
size matches the one sent in the beginning of the transfer.

Padding is done once the APK tampering has been finished
on the server side and the size of padding bytes is calculated.
In this phase of the attack we have the list of files that need to
be sent to the victim. The padding bytes are spread across the
extra fields of this file entries and sent to the user. As the ZIP
structure itself is not a subject of the signature the padding or
the order of files in the ZIP does not affect the sigature of the
package.

V. TECHNICAL DETAILS

The offline attack as described above was implemented in
Java. The attacker has to prepare the code to be injected.
The code being injected needs to be expressed in the smali
language, but an attacker can prepare the malware code in Java,
compile it (using standard development tools) and decompile
it (using the apktool) to obtain the needed smali code. This
needs to be done only once and the same malware smali code
can be injected into many APK files.

The offline attack wraps the whole process of decom-
pression, decompilation, injection, compilation, signature and
compression. The process is a simple sequence of a few
steps heavily using the standard apktool utility, thus providing
good compatibility with APK files of various types. The
disadvantages of the utility include the complexity (of what
it is doing in a single command) and therefore also relatively
slow speed.

The online attack was also implemented in order to demon-
strate its applicability. Please note that it works only for HTTP,
not for HTTPS. In our setup we have used a dedicated proxy
server (a Fedora Linux box1) with two network interfaces.
Interface 1 is an Ethernet type connected to the Internet.
Interface 2 is a WiFi card for a hotspot emulation. We
have chosen the hostap2 software that emulates a wireless
access point on this interface.

The hostap is connected to the TinyProxy3, which is an
open-source lightweight transparent proxy. We modified the
source code of the TinyProxy to hook all HTTP GET re-
quests for files with the APK extension. If an APK is being
downloaded, it invokes the Java implementation of the online
attack and passes the download stream to its standard input
while sending its standard output to the user. TinyProxy also
estimates the final file size of the APK after modification by
adding a fixed amount of bytes to the total size.

The online attack application is written in Java, using the
ZIP stream parser from the Apache Commons4 Library. It
implements the attack described earlier, together with a simple
download speed limit algorithm.

Our testbed implementation is placed into public domain
under the Apache License v2 hosted on GitHub:
https://github.com/ph4r05/ZIPStream.

VI. EXPERIMENTAL VALIDATION

In order to validate our approach, we tested our setup with
a dozen of real APK files on real smartphones (Samsung
Galaxy S3, HTC One X, Samsung Galaxy S2 mini, Motorola
Moto G and Sony XPeria Z2) with Android of versions 2.3.7,
4.2.2, 4.3, 4.4.4 and 5.0.2. The principles of the APK file
modification are independent on the Android version and do
not depend on a particular vulnerability of the OS. As long as
the signature of the APK file can be made by any signer, the
attack will basically work. All tested APK files worked on all
tested phones.

As the repackaging itself is automated, it is easy to perform
in a larger scale. We repackaged over 100 of APK files.
On other hand, installation, running and verification that the
original functionality of the APK was not affected is a manual
work. We tested that on few dozens of applications.

Our tests aim to show the times needed to download sample
APK files. We performed these tests with our transparent proxy
server connected to a fast local network with the web server.
The download of the original file that was not intervened by
the proxy server was very fast. When the file was modified
on-the-fly on the server then the modification needed a non-
trivial amount of time and the download took significantly
more time (and the file being downloaded was larger). The
on-the-fly modification suffers from a well visible signature
of the download process when the download practically stops
for a long moment. Our solution to this problem is based on

1The basic hardware configuration was intentionally chosen as a low
performance (router-like) computer: Intel Pentium 4 CPU 3GHz Dual Core,
2GB RAM, 7200 RPM SATA hard disk.

2http://wireless.kernel.org/en/users/Documentation/hostapd
3https://banu.com/tinyproxy/
4https://commons.apache.org/

5

APK file Original
size

New
size

Time
(orig.
file)

Time
(modified

file)

Time
(modif’d file

with speed lim.)
Navigation
utility (‘C’) 293 kB 793 kB 1 s 13 s 51 s

Game (‘F’) 4126 kB 4626 kB 2 s 19 s 53 s
Antivirus
solution (‘E’) 3523 kB 4023 kB 2 s 31 s 62 s

TABLE I
THE TIME STATISTICS OF THE DOWNLOAD PROCESS OF THREE TYPES OF APPLICATIONS.

slowing down the user download speed from the beginning so
that the on-the-fly modification can be masked by a slow link
behavior.

Table I illustrates the times needed to download our sample
APK files (injecting a sample privacy-related malicious code):

• File ‘C’ is a very basic navigation utility.
• File ‘F’ is a basic game with rich graphics and a simple

logic.
• File ‘E’ is a leading provider’s antivirus solution with a

complex code.
These three files represent various characteristics of appli-
cations, in particular the size of the application and the
proportion of the code and resources. Note that the sizes of
files ‘E’ and ‘F’ are similar, but the processing times of the
files differ significantly. We need to emphasize that the most
time consuming part of this effort is the DEX file processing.
The more Java code (the larger the classes.dex file) the
longer the package processing takes as the decompilation and
compilation of the Java/smali code is more complex than
processing of other files (e.g., images and other resources).
This explains the longer processing time of the file ‘E’, which
contains more Java code than file ‘F’.

Our tests were performed using a very low performance
computer to imitate single purpose devices acting as routers
or access points (e.g., Linux based APs). A more powerful
computer can perform better. E.g., we ran some of the tests
on a notebook based on Intel Core i7-3540 (3GHz) and an
SSD disc – such a setting can reduce the modification times
by about one half.

The speed limitation needs to estimate the ideal speed that
can be achieved constantly. The time needed to process the
package depends on the proportion of the files that need not
be modified (and can be therefore sent directly) and files
that will be (potentially) modified (and will be sent after the
package modification and resigning). The speed also depends
on the size of the Java code that significantly influences the
decompilation and compilation times. Setting the compression
level may introduce another dimension to choose between the
compression level and slowdown in the modification/transfer
speed.

Figure 2 demonstrates one of the performed tests. It rep-
resents the download process of the file ‘F’ in three tested
situations. The green (solid) graph line shows the download
without the proxy, the red (dotted) line shows the download
process when the proxy modifies the file, and the yellow
(dashed) line shows the download process with a modified

file and with the speed limitation enabled. Note that the file
size of the modified file is about 500 kB bigger (the injected
code is accessing local resources/data and transmitting them
to a remote server).

Our speed estimate is conservative and is suitable also for
packages with a larger amount of Java code (like the file ‘E’).
Looking at Figure 2, it is possible to conclude that in this
particular case the download speed could be faster and the
download would still not suffer from the download stall in the
middle.

VII. POSSIBLE COUNTERMEASURES

The simplest countermeasure is to use the SSL/TLS to
protect the communication (e.g., the HTTPS protocol). The
security issues of SSL/TLS (including possible attacks) are
out of the scope of this paper.

Requesting permissions at run time in newer versions of
Android may reveal undesired hidden functionality of an
application, but only if that feature is active and the user pays
attention to the popping up messages.

The application can check the signing certificate at runtime
(so called certificate pinning) [3]. An attacker could modify the
reference certificate during the repackaging attack, but doing
so automatically would assume a particular process of the
certificate verification in the application.

Y. Zhauniarovich et al. [29] are suggesting the use of a
secondary signature of the APK file that would be added by the
application store. This method requires a trusted certificate of
the store to be available in the Android before the application
installation.

M. Conti et al. introduce OASIS [11], a trusted component
processing sensitive data on behalf of applications. Appli-
cations cannot access data directly, but only via a handle.
Therefore the OASIS system can enforce complex policies
like allowing access to contacts to display them but prohibiting
sending contacts over the Internet (even if Internet access is
generally allowed).

Increasingly popular are anti-decompilation, anti-cracking
and anti-reverse-engineering mechanisms. These can be as
simple as calling one particular method in the Java code (e.g.,
[27]) or more complex (e.g., [22], [28]).

A detection that the APK file was modified and repackaged
can be based on multiple principles. A significant effort has
been spent to detect repackaged APK files in Android markets.
In these cases researchers and providers have a large number
of APK files and analyze their statistical properties, e.g.,

DECEMBER 2016 • VOLUME VIII • NUMBER 426

INFOCOMMUNICATIONS JOURNAL

Android APK on-the-fly tampering

5

APK file Original
size

New
size

Time
(orig.
file)

Time
(modified

file)

Time
(modif’d file

with speed lim.)
Navigation
utility (‘C’) 293 kB 793 kB 1 s 13 s 51 s

Game (‘F’) 4126 kB 4626 kB 2 s 19 s 53 s
Antivirus
solution (‘E’) 3523 kB 4023 kB 2 s 31 s 62 s

TABLE I
THE TIME STATISTICS OF THE DOWNLOAD PROCESS OF THREE TYPES OF APPLICATIONS.

slowing down the user download speed from the beginning so
that the on-the-fly modification can be masked by a slow link
behavior.

Table I illustrates the times needed to download our sample
APK files (injecting a sample privacy-related malicious code):

• File ‘C’ is a very basic navigation utility.
• File ‘F’ is a basic game with rich graphics and a simple

logic.
• File ‘E’ is a leading provider’s antivirus solution with a

complex code.
These three files represent various characteristics of appli-
cations, in particular the size of the application and the
proportion of the code and resources. Note that the sizes of
files ‘E’ and ‘F’ are similar, but the processing times of the
files differ significantly. We need to emphasize that the most
time consuming part of this effort is the DEX file processing.
The more Java code (the larger the classes.dex file) the
longer the package processing takes as the decompilation and
compilation of the Java/smali code is more complex than
processing of other files (e.g., images and other resources).
This explains the longer processing time of the file ‘E’, which
contains more Java code than file ‘F’.

Our tests were performed using a very low performance
computer to imitate single purpose devices acting as routers
or access points (e.g., Linux based APs). A more powerful
computer can perform better. E.g., we ran some of the tests
on a notebook based on Intel Core i7-3540 (3GHz) and an
SSD disc – such a setting can reduce the modification times
by about one half.

The speed limitation needs to estimate the ideal speed that
can be achieved constantly. The time needed to process the
package depends on the proportion of the files that need not
be modified (and can be therefore sent directly) and files
that will be (potentially) modified (and will be sent after the
package modification and resigning). The speed also depends
on the size of the Java code that significantly influences the
decompilation and compilation times. Setting the compression
level may introduce another dimension to choose between the
compression level and slowdown in the modification/transfer
speed.

Figure 2 demonstrates one of the performed tests. It rep-
resents the download process of the file ‘F’ in three tested
situations. The green (solid) graph line shows the download
without the proxy, the red (dotted) line shows the download
process when the proxy modifies the file, and the yellow
(dashed) line shows the download process with a modified

file and with the speed limitation enabled. Note that the file
size of the modified file is about 500 kB bigger (the injected
code is accessing local resources/data and transmitting them
to a remote server).

Our speed estimate is conservative and is suitable also for
packages with a larger amount of Java code (like the file ‘E’).
Looking at Figure 2, it is possible to conclude that in this
particular case the download speed could be faster and the
download would still not suffer from the download stall in the
middle.

VII. POSSIBLE COUNTERMEASURES

The simplest countermeasure is to use the SSL/TLS to
protect the communication (e.g., the HTTPS protocol). The
security issues of SSL/TLS (including possible attacks) are
out of the scope of this paper.

Requesting permissions at run time in newer versions of
Android may reveal undesired hidden functionality of an
application, but only if that feature is active and the user pays
attention to the popping up messages.

The application can check the signing certificate at runtime
(so called certificate pinning) [3]. An attacker could modify the
reference certificate during the repackaging attack, but doing
so automatically would assume a particular process of the
certificate verification in the application.

Y. Zhauniarovich et al. [29] are suggesting the use of a
secondary signature of the APK file that would be added by the
application store. This method requires a trusted certificate of
the store to be available in the Android before the application
installation.

M. Conti et al. introduce OASIS [11], a trusted component
processing sensitive data on behalf of applications. Appli-
cations cannot access data directly, but only via a handle.
Therefore the OASIS system can enforce complex policies
like allowing access to contacts to display them but prohibiting
sending contacts over the Internet (even if Internet access is
generally allowed).

Increasingly popular are anti-decompilation, anti-cracking
and anti-reverse-engineering mechanisms. These can be as
simple as calling one particular method in the Java code (e.g.,
[27]) or more complex (e.g., [22], [28]).

A detection that the APK file was modified and repackaged
can be based on multiple principles. A significant effort has
been spent to detect repackaged APK files in Android markets.
In these cases researchers and providers have a large number
of APK files and analyze their statistical properties, e.g.,

4

B. File size issue
There are two major ways of transfer encoding using

HTTP as the download protocol. The server can use either
the chunked encoding or the normal mode. In the chunked
encoding, the overall content length of the payload is not
sent to the user in the HTTP headers. This mode of trans-
port enables to generate the content dynamically or support
scenarios where the content length is not known to the server
at the beginning. The downside of this approach is the missing
progress illustration of the download. The other option is to use
the normal transfer encoding with the content length header
present among the HTTP headers.

Since we want to mimic the normal file download with the
progress displayed to the user, we need to use the latter option.
The problem is that the APK modification inflates the APK
file by some amount of data, from bytes to kilobytes. Since
estimation of the difference of the file sizes is not reliable,
we cannot tell the resulting APK file size precisely before the
APK tampering takes place.

Our approach is to estimate the resulting APK size by
adding some extra space as a reserve. It should hold that
real APK size is smaller than the APK size sent in headers,
otherwise the user receives an incomplete and thus invalid
APK file. Then we have additional bytes of data that need
to be added to the APK somehow. Each ZIP file entry has
an Extra field according to the ZIP standard [21]. This Extra
field is of a variable size, taking at most 65535 B. It serves for
storing a special application/platform information in a ZIP file
and provides extensibility to the ZIP format. In most APK files
it is usually unused. This is the place where we put additional
bytes to obtain a “padded” version of the APK file where file
size matches the one sent in the beginning of the transfer.

Padding is done once the APK tampering has been finished
on the server side and the size of padding bytes is calculated.
In this phase of the attack we have the list of files that need to
be sent to the victim. The padding bytes are spread across the
extra fields of this file entries and sent to the user. As the ZIP
structure itself is not a subject of the signature the padding or
the order of files in the ZIP does not affect the sigature of the
package.

V. TECHNICAL DETAILS

The offline attack as described above was implemented in
Java. The attacker has to prepare the code to be injected.
The code being injected needs to be expressed in the smali
language, but an attacker can prepare the malware code in Java,
compile it (using standard development tools) and decompile
it (using the apktool) to obtain the needed smali code. This
needs to be done only once and the same malware smali code
can be injected into many APK files.

The offline attack wraps the whole process of decom-
pression, decompilation, injection, compilation, signature and
compression. The process is a simple sequence of a few
steps heavily using the standard apktool utility, thus providing
good compatibility with APK files of various types. The
disadvantages of the utility include the complexity (of what
it is doing in a single command) and therefore also relatively
slow speed.

The online attack was also implemented in order to demon-
strate its applicability. Please note that it works only for HTTP,
not for HTTPS. In our setup we have used a dedicated proxy
server (a Fedora Linux box1) with two network interfaces.
Interface 1 is an Ethernet type connected to the Internet.
Interface 2 is a WiFi card for a hotspot emulation. We
have chosen the hostap2 software that emulates a wireless
access point on this interface.

The hostap is connected to the TinyProxy3, which is an
open-source lightweight transparent proxy. We modified the
source code of the TinyProxy to hook all HTTP GET re-
quests for files with the APK extension. If an APK is being
downloaded, it invokes the Java implementation of the online
attack and passes the download stream to its standard input
while sending its standard output to the user. TinyProxy also
estimates the final file size of the APK after modification by
adding a fixed amount of bytes to the total size.

The online attack application is written in Java, using the
ZIP stream parser from the Apache Commons4 Library. It
implements the attack described earlier, together with a simple
download speed limit algorithm.

Our testbed implementation is placed into public domain
under the Apache License v2 hosted on GitHub:
https://github.com/ph4r05/ZIPStream.

VI. EXPERIMENTAL VALIDATION

In order to validate our approach, we tested our setup with
a dozen of real APK files on real smartphones (Samsung
Galaxy S3, HTC One X, Samsung Galaxy S2 mini, Motorola
Moto G and Sony XPeria Z2) with Android of versions 2.3.7,
4.2.2, 4.3, 4.4.4 and 5.0.2. The principles of the APK file
modification are independent on the Android version and do
not depend on a particular vulnerability of the OS. As long as
the signature of the APK file can be made by any signer, the
attack will basically work. All tested APK files worked on all
tested phones.

As the repackaging itself is automated, it is easy to perform
in a larger scale. We repackaged over 100 of APK files.
On other hand, installation, running and verification that the
original functionality of the APK was not affected is a manual
work. We tested that on few dozens of applications.

Our tests aim to show the times needed to download sample
APK files. We performed these tests with our transparent proxy
server connected to a fast local network with the web server.
The download of the original file that was not intervened by
the proxy server was very fast. When the file was modified
on-the-fly on the server then the modification needed a non-
trivial amount of time and the download took significantly
more time (and the file being downloaded was larger). The
on-the-fly modification suffers from a well visible signature
of the download process when the download practically stops
for a long moment. Our solution to this problem is based on

1The basic hardware configuration was intentionally chosen as a low
performance (router-like) computer: Intel Pentium 4 CPU 3GHz Dual Core,
2GB RAM, 7200 RPM SATA hard disk.

2http://wireless.kernel.org/en/users/Documentation/hostapd
3https://banu.com/tinyproxy/
4https://commons.apache.org/

5

APK file Original
size

New
size

Time
(orig.
file)

Time
(modified

file)

Time
(modif’d file

with speed lim.)
Navigation
utility (‘C’) 293 kB 793 kB 1 s 13 s 51 s

Game (‘F’) 4126 kB 4626 kB 2 s 19 s 53 s
Antivirus
solution (‘E’) 3523 kB 4023 kB 2 s 31 s 62 s

TABLE I
THE TIME STATISTICS OF THE DOWNLOAD PROCESS OF THREE TYPES OF APPLICATIONS.

slowing down the user download speed from the beginning so
that the on-the-fly modification can be masked by a slow link
behavior.

Table I illustrates the times needed to download our sample
APK files (injecting a sample privacy-related malicious code):

• File ‘C’ is a very basic navigation utility.
• File ‘F’ is a basic game with rich graphics and a simple

logic.
• File ‘E’ is a leading provider’s antivirus solution with a

complex code.
These three files represent various characteristics of appli-
cations, in particular the size of the application and the
proportion of the code and resources. Note that the sizes of
files ‘E’ and ‘F’ are similar, but the processing times of the
files differ significantly. We need to emphasize that the most
time consuming part of this effort is the DEX file processing.
The more Java code (the larger the classes.dex file) the
longer the package processing takes as the decompilation and
compilation of the Java/smali code is more complex than
processing of other files (e.g., images and other resources).
This explains the longer processing time of the file ‘E’, which
contains more Java code than file ‘F’.

Our tests were performed using a very low performance
computer to imitate single purpose devices acting as routers
or access points (e.g., Linux based APs). A more powerful
computer can perform better. E.g., we ran some of the tests
on a notebook based on Intel Core i7-3540 (3GHz) and an
SSD disc – such a setting can reduce the modification times
by about one half.

The speed limitation needs to estimate the ideal speed that
can be achieved constantly. The time needed to process the
package depends on the proportion of the files that need not
be modified (and can be therefore sent directly) and files
that will be (potentially) modified (and will be sent after the
package modification and resigning). The speed also depends
on the size of the Java code that significantly influences the
decompilation and compilation times. Setting the compression
level may introduce another dimension to choose between the
compression level and slowdown in the modification/transfer
speed.

Figure 2 demonstrates one of the performed tests. It rep-
resents the download process of the file ‘F’ in three tested
situations. The green (solid) graph line shows the download
without the proxy, the red (dotted) line shows the download
process when the proxy modifies the file, and the yellow
(dashed) line shows the download process with a modified

file and with the speed limitation enabled. Note that the file
size of the modified file is about 500 kB bigger (the injected
code is accessing local resources/data and transmitting them
to a remote server).

Our speed estimate is conservative and is suitable also for
packages with a larger amount of Java code (like the file ‘E’).
Looking at Figure 2, it is possible to conclude that in this
particular case the download speed could be faster and the
download would still not suffer from the download stall in the
middle.

VII. POSSIBLE COUNTERMEASURES

The simplest countermeasure is to use the SSL/TLS to
protect the communication (e.g., the HTTPS protocol). The
security issues of SSL/TLS (including possible attacks) are
out of the scope of this paper.

Requesting permissions at run time in newer versions of
Android may reveal undesired hidden functionality of an
application, but only if that feature is active and the user pays
attention to the popping up messages.

The application can check the signing certificate at runtime
(so called certificate pinning) [3]. An attacker could modify the
reference certificate during the repackaging attack, but doing
so automatically would assume a particular process of the
certificate verification in the application.

Y. Zhauniarovich et al. [29] are suggesting the use of a
secondary signature of the APK file that would be added by the
application store. This method requires a trusted certificate of
the store to be available in the Android before the application
installation.

M. Conti et al. introduce OASIS [11], a trusted component
processing sensitive data on behalf of applications. Appli-
cations cannot access data directly, but only via a handle.
Therefore the OASIS system can enforce complex policies
like allowing access to contacts to display them but prohibiting
sending contacts over the Internet (even if Internet access is
generally allowed).

Increasingly popular are anti-decompilation, anti-cracking
and anti-reverse-engineering mechanisms. These can be as
simple as calling one particular method in the Java code (e.g.,
[27]) or more complex (e.g., [22], [28]).

A detection that the APK file was modified and repackaged
can be based on multiple principles. A significant effort has
been spent to detect repackaged APK files in Android markets.
In these cases researchers and providers have a large number
of APK files and analyze their statistical properties, e.g.,

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2016 • VOLUME VIII • NUMBER 4 27

Android APK on-the-fly tampering

DECEMBER 2016 • VOLUME VIII • NUMBER 428

INFOCOMMUNICATIONS JOURNAL

7

an arbitrary APK provided at the time of the attack. Without
seeing a particular APK file before, we are able to inject a
prepared code to the application and infect it this way. The
practicality of this attack was demonstrated with a transparent
HTTP proxy in the middle performing an APK tampering on-
the-fly for all HTTP downloaded APK files.

IX. ACKNOWLEDGEMENTS

The authors thank to the anonymous reviewers for their
comments. Vashek Matyáš was partly supported by the Czech
Science Foundation project GBP202/12/G061.

REFERENCES

[1] Inserting keylogger code in Android SwiftKey using apktool. Online
[Accessed Dec 14, 2016], Mar 2013. http://www.android-app-
development.ie/blog/2013/03/06/inserting-keylogger-code-in-android-
swiftkey-using-apktool/.

[2] Android Developers Reference. Online [Accessed Dec 14, 2016], 2015.
http://developer.android.com/guide/developing.

[3] Retrieve the apk signature at runtime for An-
droid. Online [Accessed Dec 14, 2016], Jun 2015.
http://stackoverflow.com/questions/8682731/retrieve-the-apk-signature-
at-runtime-for-android.

[4] Backdooring EXE Files. Online [Accessed Dec 14, 2016], Dec 2016.
https://www.offensive-security.com/metasploit-unleashed/backdooring-
exe-files/.

[5] Smartphone OS Market Share, 2016 Q2. Online [Accessed Dec 14,
2016], Sep 2016. http://www.idc.com/prodserv/smartphone-os-market-
share.jsp.

[6] D. Akhawe and A. P. Felt. Alice in warningland: A large-scale field study
of browser security warning effectiveness. In Presented as part of the
22nd USENIX Security Symposium (USENIX Security 13), Washington,
D.C., 2013. USENIX.

[7] E. Aydogan and S. Sen. Automatic generation of mobile malwares
using genetic programming. In A. M. Mora and G. Squillero, editors,
Applications of Evolutionary Computation, volume 9028 of Lecture
Notes in Computer Science. Springer, 2015.

[8] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D. Schmidt,
and S. Albayrak. Using static analysis for automatic assessment
and mitigation of unwanted and malicious activities within android
applications. In Proceedings of the 2011 6th International Conference
on Malicious and Unwanted Software, MALWARE ’11, Washington,
DC, USA, 2011. IEEE Computer Society.

[9] P. Berthom, T. Fcherolle, N. Guilloteau, and J.-F. Lalande. Repackaging
android applications for auditing access to private data. In ARES. IEEE
Computer Society, 2012.

[10] J. Chen, M. Alalfi, T. Dean, and Y. Zou. Detecting android malware
using clone detection. Journal of Computer Science and Technology,
30(5), 2015.

[11] M. Conti, E. Fernandes, J. Paupore, A. Prakash, and D. Simionato.
Oasis: Operational access sandboxes for information security. In
Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices, SPSM ’14, New York, NY, USA, 2014.
ACM.

[12] J. Crussell, C. Gibler, and H. Chen. Attack of the clones: Detecting
cloned applications on android markets. In S. Foresti, M. Yung, and
F. Martinelli, editors, Computer Security ESORICS 2012, volume 7459
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012.

[13] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of Android
application security. In Proceedings of the 20th USENIX Conference on
Security, SEC’11, Berkeley, CA, USA, 2011. USENIX Association.

[14] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09, pages 235–245,
New York, NY, USA, 2009. ACM.

[15] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja,
A. Bettes, H. Harris, and J. Grimes. Improving SSL Warnings:
Comprehension and Adherence. In Proceedings of the Conference on
Human Factors and Computing Systems, 2015.

[16] J. Forristal. Android Master Key Exploit – Uncovering
Android Master Key That Makes 99% of Devices Vul-
nerable. Online [Accessed Dec 14, 2016], Mar 2013.
https://uwnthesis.wordpress.com/2013/07/04/uncovering-android-
master-key-that-makes-99-of-devices-vulnerable/.

[17] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song. Juxtapp: A
scalable system for detecting code reuse among android applications.
In U. Flegel, E. Markatos, and W. Robertson, editors, Detection of
Intrusions and Malware, and Vulnerability Assessment, volume 7591 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.

[18] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein. Dr. Android and Mr. Hide: Fine-grained Permissions
in Android Applications. In ACM CCS Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), Raleigh, NC,
USA, October 2012.

[19] S. Jiao, Y. Cheng, L. Ying, P. Su, and D. Feng. A rapid and scalable
method for android application repackaging detection. In J. Lopez and
Y. Wu, editors, Information Security Practice and Experience, volume
9065 of Lecture Notes in Computer Science. Springer, 2015.

[20] D. Papp, B. Kcs, T. Holczer, L. Buttyn, and B. Bencsth. Rosco:
Repository of signed code. In Proceedings of the Virus Bulletin
Conference, Prague, Czech Republic, 2015.

[21] PKWARE. Zip file format specification. Tech-
nical Report version 6.3.2, PKWARE, 2007.
http://www.pkware.com/documents/casestudies/APPNOTE.TXT.

[22] M. Protsenko and T. Muller. Protecting android apps against reverse
engineering by the use of the native code. In S. Fischer-Hbner,
C. Lambrinoudakis, and J. Lpez, editors, Trust, Privacy and Security in
Digital Business, volume 9264 of Lecture Notes in Computer Science.
Springer, 2015.

[23] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: Evaluating
Android anti-malware against transformation attacks. In Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, New York, NY, USA, 2013.
ACM.

[24] X. Sun, Y. Zhongyang, Z. Xin, B. Mao, and L. Xie. Detecting code reuse
in android applications using component-based control flow graph. In
N. Cuppens-Boulahia, F. Cuppens, S. Jajodia, A. Abou El Kalam, and
T. Sans, editors, ICT Systems Security and Privacy Protection, volume
428 of IFIP Advances in Information and Communication Technology.
Springer Berlin Heidelberg, 2014.

[25] D. Taitelbaum. Hacking for fun and for profit (mostly
for fun). Online [Accessed Dec 14, 2016], Dec 2012.
http://www.slideshare.net/davtbaum/hacking-for-fun-and-for-profit.

[26] F. Tchakounté. Permission-based malware detection mechanisms on
Android: Analysis and perspectives. Journal of computer science and
software application, 1(2), Dec 2014.

[27] J. Xu, S. Li, and T. Zhang. Security analysis and protection based
on smali injection for android applications. In X.-h. Sun, W. Qu,
I. Stojmenovic, W. Zhou, Z. Li, H. Guo, G. Min, T. Yang, Y. Wu, and
L. Liu, editors, Algorithms and Architectures for Parallel Processing,
volume 8630 of Lecture Notes in Computer Science. Springer, 2014.

[28] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu. Appspear:
Bytecode decrypting and dex reassembling for packed android malware.
In H. Bos, F. Monrose, and G. Blanc, editors, Research in Attacks,
Intrusions, and Defenses, volume 9404 of Lecture Notes in Computer
Science. Springer, 2015.

[29] Y. Zhauniarovich, O. Gadyatskaya, and B. Crispo. DEMO: Enabling
Trusted Stores for Android. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13, 2013.

[30] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina, and E. Moser.
Fsquadra: Fast detection of repackaged applications. In V. Atluri and
G. Pernul, editors, Data and Applications Security and Privacy XXVIII,
volume 8566 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014.

[31] M. Zheng, P. P. C. Lee, and J. C. S. Lui. ADAM: an automatic
and extensible platform to stress test Android anti-virus systems. In
Detection of Intrusions and Malware, and Vulnerability Assessment -
9th International Conference, DIMVA 2012, Heraklion, Crete, Greece,
July 26-27, 2012, Revised Selected Papers, 2012.

[32] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged smart-
phone applications in third-party Android marketplaces. In Proceedings
of the Second ACM Conference on Data and Application Security and
Privacy, CODASPY ’12, New York, NY, USA, 2012. ACM.

6

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 2 5 7 10 12 14 17 19 22 24 26 29 31 34 36 38 41 43 46 48 51 53

Ki
lo

by
te

s

Seconds

Original download Modified file Modified file with speed limitation

Fig. 2. The download process of a sample APK file (the game ‘F’). The solid green line shows the download without the proxy, the dotted red line shows
the download process when the proxy does modify the file and the yellow dashed line shows the download process with a modified file and with the speed
limitation enabled.

similarity between code (including the dependency graphs
between method) and resources (typically images) in packages
[32], [19], [12], [30], [24], [17], [10]. The online on-the-fly
attack is modifying the APK file during a particular download
of a user. Focusing on the markets or file repositories does not
solve the problem.

At the side of the Android device the detection can benefit
from the changes the attacker has to do in the APK file. During
the attack some Java code is added, the Android manifest
is modified and the signature is updated with a new private
key and certificate. The injected code depends strongly on the
attacker and her aims. The attacker has to balance the power of
the code and its detectability. The more power of the injected
code the bigger is the size of the new code, the more hooks
appear in the Android Manifest and the more permissions are
required in the Android Manifest. Permission-based malware
detection is common these days [26]. Therefore, requiring too
many powerfull permissions can lead to a quick detection of
an antivirus solution.

In targeted attacks, the attackers do not usually need ex-
cessive permissions and rely on commonly used permissions
to get access to personal data (e.g., READ SMS). The code
is tailor-made and therefore signature based detection using
known malware signature databases is not of a significant help.

In our experiment, we coded two variants of the additional
functionality5. The first was a simple “Hello World” text
appearing from time to time on the screen. The second was a
realistic privacy attack collecting messages, contacts and call
logs, and transmitting these to a web server located in the

5These codes are not available for download.

Internet. We tested both variants with three leading antivirus
solutions and no alert was raised during our tests.

Kirin [14] is a mobile application certification service
used during application installation to check for potentially
dangerous combinations of permissions.

The detection techniques can also focus on the signer. If
the application is new, then the signer cannot be matched
with the previous one as is the case of an application update.
Basically all signers are equal and the operating system itself
has difficulties deciding where a particular application should
be signed by a particular signer or not. A reputation system of
the signers (or of the APK files) can help [20]. The rarer is the
signer or the APK the more suspicious the application is. This
technique requires a community support, but is already used
in some common PC-based antivirus or firewall solutions.

In our implementation of the online on-the-fly attack we
estimate the total new size of the file and then pad the file with
zeros in the ZIP extra fields to match exactly the estimated
file size. The extra fields are used also in normal APK
files. The zipalign utility (a part of the Android Developer
Tools) aligns all uncompressed data in the APK file on 4-
byte boundaries by changing the size of the extra fields. After
applying the zipalign utility the extra fields occupy single
bytes, our implementation is currently adding extra fields in
the order of 10 kB. This can lead to an easy detection. Once
this feature leads to detections a more accurate estimation of
the new file size would be needed.

VIII. CONCLUSION

In this paper, we practically demonstrated new fully auto-
mated offline and on-the-fly attacks on the Android APK for

Android APK on-the-fly tampering
INFOCOMMUNICATIONS JOURNAL

DECEMBER 2016 • VOLUME VIII • NUMBER 4 29

7

an arbitrary APK provided at the time of the attack. Without
seeing a particular APK file before, we are able to inject a
prepared code to the application and infect it this way. The
practicality of this attack was demonstrated with a transparent
HTTP proxy in the middle performing an APK tampering on-
the-fly for all HTTP downloaded APK files.

IX. ACKNOWLEDGEMENTS

The authors thank to the anonymous reviewers for their
comments. Vashek Matyáš was partly supported by the Czech
Science Foundation project GBP202/12/G061.

REFERENCES

[1] Inserting keylogger code in Android SwiftKey using apktool. Online
[Accessed Dec 14, 2016], Mar 2013. http://www.android-app-
development.ie/blog/2013/03/06/inserting-keylogger-code-in-android-
swiftkey-using-apktool/.

[2] Android Developers Reference. Online [Accessed Dec 14, 2016], 2015.
http://developer.android.com/guide/developing.

[3] Retrieve the apk signature at runtime for An-
droid. Online [Accessed Dec 14, 2016], Jun 2015.
http://stackoverflow.com/questions/8682731/retrieve-the-apk-signature-
at-runtime-for-android.

[4] Backdooring EXE Files. Online [Accessed Dec 14, 2016], Dec 2016.
https://www.offensive-security.com/metasploit-unleashed/backdooring-
exe-files/.

[5] Smartphone OS Market Share, 2016 Q2. Online [Accessed Dec 14,
2016], Sep 2016. http://www.idc.com/prodserv/smartphone-os-market-
share.jsp.

[6] D. Akhawe and A. P. Felt. Alice in warningland: A large-scale field study
of browser security warning effectiveness. In Presented as part of the
22nd USENIX Security Symposium (USENIX Security 13), Washington,
D.C., 2013. USENIX.

[7] E. Aydogan and S. Sen. Automatic generation of mobile malwares
using genetic programming. In A. M. Mora and G. Squillero, editors,
Applications of Evolutionary Computation, volume 9028 of Lecture
Notes in Computer Science. Springer, 2015.

[8] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D. Schmidt,
and S. Albayrak. Using static analysis for automatic assessment
and mitigation of unwanted and malicious activities within android
applications. In Proceedings of the 2011 6th International Conference
on Malicious and Unwanted Software, MALWARE ’11, Washington,
DC, USA, 2011. IEEE Computer Society.

[9] P. Berthom, T. Fcherolle, N. Guilloteau, and J.-F. Lalande. Repackaging
android applications for auditing access to private data. In ARES. IEEE
Computer Society, 2012.

[10] J. Chen, M. Alalfi, T. Dean, and Y. Zou. Detecting android malware
using clone detection. Journal of Computer Science and Technology,
30(5), 2015.

[11] M. Conti, E. Fernandes, J. Paupore, A. Prakash, and D. Simionato.
Oasis: Operational access sandboxes for information security. In
Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices, SPSM ’14, New York, NY, USA, 2014.
ACM.

[12] J. Crussell, C. Gibler, and H. Chen. Attack of the clones: Detecting
cloned applications on android markets. In S. Foresti, M. Yung, and
F. Martinelli, editors, Computer Security ESORICS 2012, volume 7459
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012.

[13] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of Android
application security. In Proceedings of the 20th USENIX Conference on
Security, SEC’11, Berkeley, CA, USA, 2011. USENIX Association.

[14] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09, pages 235–245,
New York, NY, USA, 2009. ACM.

[15] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja,
A. Bettes, H. Harris, and J. Grimes. Improving SSL Warnings:
Comprehension and Adherence. In Proceedings of the Conference on
Human Factors and Computing Systems, 2015.

[16] J. Forristal. Android Master Key Exploit – Uncovering
Android Master Key That Makes 99% of Devices Vul-
nerable. Online [Accessed Dec 14, 2016], Mar 2013.
https://uwnthesis.wordpress.com/2013/07/04/uncovering-android-
master-key-that-makes-99-of-devices-vulnerable/.

[17] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song. Juxtapp: A
scalable system for detecting code reuse among android applications.
In U. Flegel, E. Markatos, and W. Robertson, editors, Detection of
Intrusions and Malware, and Vulnerability Assessment, volume 7591 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.

[18] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein. Dr. Android and Mr. Hide: Fine-grained Permissions
in Android Applications. In ACM CCS Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), Raleigh, NC,
USA, October 2012.

[19] S. Jiao, Y. Cheng, L. Ying, P. Su, and D. Feng. A rapid and scalable
method for android application repackaging detection. In J. Lopez and
Y. Wu, editors, Information Security Practice and Experience, volume
9065 of Lecture Notes in Computer Science. Springer, 2015.

[20] D. Papp, B. Kcs, T. Holczer, L. Buttyn, and B. Bencsth. Rosco:
Repository of signed code. In Proceedings of the Virus Bulletin
Conference, Prague, Czech Republic, 2015.

[21] PKWARE. Zip file format specification. Tech-
nical Report version 6.3.2, PKWARE, 2007.
http://www.pkware.com/documents/casestudies/APPNOTE.TXT.

[22] M. Protsenko and T. Muller. Protecting android apps against reverse
engineering by the use of the native code. In S. Fischer-Hbner,
C. Lambrinoudakis, and J. Lpez, editors, Trust, Privacy and Security in
Digital Business, volume 9264 of Lecture Notes in Computer Science.
Springer, 2015.

[23] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: Evaluating
Android anti-malware against transformation attacks. In Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, New York, NY, USA, 2013.
ACM.

[24] X. Sun, Y. Zhongyang, Z. Xin, B. Mao, and L. Xie. Detecting code reuse
in android applications using component-based control flow graph. In
N. Cuppens-Boulahia, F. Cuppens, S. Jajodia, A. Abou El Kalam, and
T. Sans, editors, ICT Systems Security and Privacy Protection, volume
428 of IFIP Advances in Information and Communication Technology.
Springer Berlin Heidelberg, 2014.

[25] D. Taitelbaum. Hacking for fun and for profit (mostly
for fun). Online [Accessed Dec 14, 2016], Dec 2012.
http://www.slideshare.net/davtbaum/hacking-for-fun-and-for-profit.

[26] F. Tchakounté. Permission-based malware detection mechanisms on
Android: Analysis and perspectives. Journal of computer science and
software application, 1(2), Dec 2014.

[27] J. Xu, S. Li, and T. Zhang. Security analysis and protection based
on smali injection for android applications. In X.-h. Sun, W. Qu,
I. Stojmenovic, W. Zhou, Z. Li, H. Guo, G. Min, T. Yang, Y. Wu, and
L. Liu, editors, Algorithms and Architectures for Parallel Processing,
volume 8630 of Lecture Notes in Computer Science. Springer, 2014.

[28] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu. Appspear:
Bytecode decrypting and dex reassembling for packed android malware.
In H. Bos, F. Monrose, and G. Blanc, editors, Research in Attacks,
Intrusions, and Defenses, volume 9404 of Lecture Notes in Computer
Science. Springer, 2015.

[29] Y. Zhauniarovich, O. Gadyatskaya, and B. Crispo. DEMO: Enabling
Trusted Stores for Android. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13, 2013.

[30] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina, and E. Moser.
Fsquadra: Fast detection of repackaged applications. In V. Atluri and
G. Pernul, editors, Data and Applications Security and Privacy XXVIII,
volume 8566 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014.

[31] M. Zheng, P. P. C. Lee, and J. C. S. Lui. ADAM: an automatic
and extensible platform to stress test Android anti-virus systems. In
Detection of Intrusions and Malware, and Vulnerability Assessment -
9th International Conference, DIMVA 2012, Heraklion, Crete, Greece,
July 26-27, 2012, Revised Selected Papers, 2012.

[32] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged smart-
phone applications in third-party Android marketplaces. In Proceedings
of the Second ACM Conference on Data and Application Security and
Privacy, CODASPY ’12, New York, NY, USA, 2012. ACM.

6

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 2 5 7 10 12 14 17 19 22 24 26 29 31 34 36 38 41 43 46 48 51 53

Ki
lo

by
te

s

Seconds

Original download Modified file Modified file with speed limitation

Fig. 2. The download process of a sample APK file (the game ‘F’). The solid green line shows the download without the proxy, the dotted red line shows
the download process when the proxy does modify the file and the yellow dashed line shows the download process with a modified file and with the speed
limitation enabled.

similarity between code (including the dependency graphs
between method) and resources (typically images) in packages
[32], [19], [12], [30], [24], [17], [10]. The online on-the-fly
attack is modifying the APK file during a particular download
of a user. Focusing on the markets or file repositories does not
solve the problem.

At the side of the Android device the detection can benefit
from the changes the attacker has to do in the APK file. During
the attack some Java code is added, the Android manifest
is modified and the signature is updated with a new private
key and certificate. The injected code depends strongly on the
attacker and her aims. The attacker has to balance the power of
the code and its detectability. The more power of the injected
code the bigger is the size of the new code, the more hooks
appear in the Android Manifest and the more permissions are
required in the Android Manifest. Permission-based malware
detection is common these days [26]. Therefore, requiring too
many powerfull permissions can lead to a quick detection of
an antivirus solution.

In targeted attacks, the attackers do not usually need ex-
cessive permissions and rely on commonly used permissions
to get access to personal data (e.g., READ SMS). The code
is tailor-made and therefore signature based detection using
known malware signature databases is not of a significant help.

In our experiment, we coded two variants of the additional
functionality5. The first was a simple “Hello World” text
appearing from time to time on the screen. The second was a
realistic privacy attack collecting messages, contacts and call
logs, and transmitting these to a web server located in the

5These codes are not available for download.

Internet. We tested both variants with three leading antivirus
solutions and no alert was raised during our tests.

Kirin [14] is a mobile application certification service
used during application installation to check for potentially
dangerous combinations of permissions.

The detection techniques can also focus on the signer. If
the application is new, then the signer cannot be matched
with the previous one as is the case of an application update.
Basically all signers are equal and the operating system itself
has difficulties deciding where a particular application should
be signed by a particular signer or not. A reputation system of
the signers (or of the APK files) can help [20]. The rarer is the
signer or the APK the more suspicious the application is. This
technique requires a community support, but is already used
in some common PC-based antivirus or firewall solutions.

In our implementation of the online on-the-fly attack we
estimate the total new size of the file and then pad the file with
zeros in the ZIP extra fields to match exactly the estimated
file size. The extra fields are used also in normal APK
files. The zipalign utility (a part of the Android Developer
Tools) aligns all uncompressed data in the APK file on 4-
byte boundaries by changing the size of the extra fields. After
applying the zipalign utility the extra fields occupy single
bytes, our implementation is currently adding extra fields in
the order of 10 kB. This can lead to an easy detection. Once
this feature leads to detections a more accurate estimation of
the new file size would be needed.

VIII. CONCLUSION

In this paper, we practically demonstrated new fully auto-
mated offline and on-the-fly attacks on the Android APK for

Android APK on-the-fly tampering

Zdeněk Říha is teaching at the Masaryk Universi-
ty, Faculty of Informatics, in Brno, Czech Republic.
He received his PhD degree from the Faculty of
Informatics, Masaryk University. In 1999 he spent
6 months on an internship at Ubilab, the research
lab of the bank UBS, focusing on security and us-
ability aspects of biometric authentication systems.
Between 2005 and 2008 he was seconded as a De-
tached National Expert to the European Commis-
sion’s Joint Research Centre in Italy. Zdenek can be
contacted at zriha AT fi.muni.cz.

Dušan Klinec is security consultant, developer and
research fellow at the Centre for Research on Cryp-
tography and Security, Masaryk University, CR.
Dusan focuses on secure end-to-end communica-
tion, secure cloud solutions, cryptanalysis, white-
box cryptography and software security in general.
He also participated projects focused on wireless
sensor networks and cryptanalysis using genetic
algorithms. Dusan received his Master degree from
Masaryk University, with his Master thesis on
whitebox attack resistant cryptography and graduat-

ed with honours. He was an intern at CERN where he worked on projects
related to GRID computing and IPv6 compliance. He can be contacted at
dusan.klinec AT gmail.com.

Václav (Vashek) Matyáš is a Professor at the
Masaryk University, Brno, CZ, and Vice-Dean for
Industrial and Alumni Relations, Faculty of Infor-
matics. His research interests relate to applied cryp-
tography and security, where he published over 150
peer-reviewed papers and articles, and co-authored
several books. He was a Fulbright-Masaryk Visiting
Scholar with Harvard University, Center for Re-
search on Computation and Society in 2011-12,
and previously he worked also with Microsoft Re-
search Cambridge, University College Dublin, Ubi-

lab at UBS AG, and was a Royal Society Postdoctoral Fellow with the
Cambridge University Computer Lab. Vashek edited the Computer and
Communications Security Reviews, and worked on the development of
Common Criteria and with ISO/IEC JTC1 SC27. He received his PhD
degree from Masaryk University, Brno and can be contacted at matyas
AT fi.muni.cz.

DECEMBER 2016 • VOLUME VIII • NUMBER 430

INFOCOMMUNICATIONS JOURNAL

