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Abstract—We present a novel privacy-preserving data aggre-
gation protocol in wireless networks composed of short-range
devices. These devices provide a collaborative service and conduct
privacy-preserving computations to obtain the aggregated result
of their secret inputs. Our solution uses secure multi-party
primitives as well as a new distributed perturbation technique
to guarantee strong differential privacy against untrustworthy
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I. INTRODUCTION

Although Internet is the prevalent communication network
today connecting billions of different devices worldwide, there
are still several practical cases where Internet connectivity is
scarce and expensive, such as surveillance and monitoring of
rural areas. In such applications, multi-hop wireless networks
using short-range communications still provide a cheaper and
compelling alternative to a global networking infrastructure.
For example, wireless sensor networks are deployed for the
purpose of monitoring agricultural areas in order to facilitate
more responsive intervention and to optimise maintenance
tasks with the aim to increase productivity [1]. However, differ-
ent producers can compete with each other, and hence security,
and in particular, confidentiality is of primary concern.

As a motivational scenario, consider vineyards1 where sen-
sors measure different regional characteristics such as the
pH of the soil or its mineral composition. Across a large
territory, there are several wineries, where winemakers use
different types of fertilisers for their field. The composition
of fertilisers is considered as trade secret among winemakers,
thus revealing some characteristics of the soil can also reveal
this confidential information. Moreover, for geological surveys
as well as various consultancy services, different organizations
periodically collect statistics about a larger territory over
multiple vineyards, belonging to different producers, e.g., in
order to measure soil contamination. Such monitoring service
can also be beneficial for the producers as they may lack of
expertise to deeply analyze the quality of the soil. Importantly,
these organizations are only interested in aggregate measure-
ments over multiple vineyards, and less concerned with sensor
readings of a single producer. To this end, organizations can
use mobile base stations, which move along the perimeter of
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Fig. 1: Aggregation on vineyards. A mobile base station stops
at the perimeter of the area and builds an aggregation tree,
where the base station is the aggregator (root) node.

multiple vineyards without approaching the fields [2]. These
base stations initiate the aggregation protocol through the
sensor nodes they can reach via short-range communication.
That is, a base station builds an aggregation tree having the
base station as root and simply fan-in2 the values from leaves
to the root (see Figure 1).

However, producers do not trust each other or the organi-
zation providing the monitoring service. In particular, they do
not want neither another producer nor the organization to learn
any of their sensor readings. The above simple aggregation
protocol does not provide such privacy guarantees. In fact,
this protocol cannot guarantee privacy even in the presence of
semi-honest participants who follow the aggregation protocol
faithfully but may learn any private sensor reading from the
received messages. For example, a parent of a node in the ag-
gregation tree, where both nodes belong to different producers,
can immediately learn the measurement of its children, or an
eavesdropper can capture a sensor’s incoming and outgoing
aggregates and easily calculate the measurement of the sensor.

In this paper, we propose a privacy-preserving aggregation
protocol for the above scenario. In particular, our protocol
guarantees that (1) sensor nodes cannot learn each other’s read-
ings, (2) a passive eavesdropper cannot infer any measurement

2Fan-in is the algorithm where the values are sent from leaves to the root
and gradually aggregated at each inner node, therefore the total sum appears
at the root at the end of the algorithm.
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in the network, (3) the aggregator node, who is untrusted,
cannot learn any individual sensor reading in the network.
For this purpose, sensor nodes employ secure multiparty
computation as well as add noise to their readings in order
to provide strong differential privacy guarantees against the
aggregator. The variance of the noise is calibrated so that
the aggregator can still learn the aggregate but any of its
constituent measurement. We propose a novel distributed noise
generation algorithm based on the geometric divisibility of the
Laplace distribution, which provides increased robustness as
well as flexibility over state-of-the-art solutions.

Our contributions are summarised as follows.
• We propose a novel mechanism to compute the sum of

measurements (e.g. pH value of the soil, temperature,
etc.) of multiple nodes in a privacy preserving and dis-
tributed manner assuming semi-honest adversaries. Our
solution relies on secure multi-party primitives combined
with homomorphic encryption. In addition, we noise
the aggregate to prevent the untrusted aggregator from
learning individual sensor readings in the network and
hence providing formal privacy guarantees.

• We introduce a novel technique for privacy preserving
distributed noise generation. We use the geometric in-
finite divisibility property of the Laplace distribution to
preserve ε-differential privacy. This new noise generation
method provides increased robustness and flexibility on
distributed systems over earlier solutions.

II. RELATED WORK

Our view of privacy preserving and computational model
derived from a multi-party approach. For a survey of privacy
preserving data mining see e.g. [3] and [4], and on general
multi-party computation see [5] or [6] The basic idea of
Secure Multiparty Computation (SMPC) is that a computation
is secure if at the end of the computation, no party knows
anything except its own input and the results (privacy). Secure
two party computation was first investigated by Yao [7], and
was later generalised to multiparty computation [5], [8]. These
works all use a similar methodology: the function f to be
computed is first represented as a combinatorial circuit, and
then the parties run a short protocol for every gate in the circuit.

The aim of secure multiparty computation is to enable
parties to carry out such distributed computing tasks in a secure
manner. Whereas distributed computing [9] [10] classically
deals with questions of computing under the threat of ma-
chine crashes and other inadvertent faults, secure multiparty
computation is concerned with the possibility of deliberately
malicious behavior by some adversarial entity.

On the combination of SMPC and graph algorithms, see
a weighted case [11], where a protocol with which a set
of n stores, selling l products between them, participate in
joint computation to securely determine cjk, the number of
times product j and product k have sold together in all
stores combined (without revealing any information about the
products that any one store, individually, sells).

Others have only considered some route-planning in a
similar setting: for privacy-preserving computation of APSD

(all pairs shortest distance) and SSSD (single source shortest
distance) see [12]; and in [13] a private computation for
collision-avoiding route planning is introduced.

A comparative study has been fairly recently written on the
problem of secure data aggregation in a distributed setting
while preserving differential privacy for the aggregated data
[14]. In their paper, they show the infinite divisibility of the
Laplace distribution, and generate partial noises by drawing
random variables from the gamma, the Gauss and one Laplace
distributions.

In order to read on the application of the Laplace distribution
based on the gamma distribution see [15]; where a privacy-
preserving smart metering scheme that guarantees users’ pri-
vacy while still preserving the benefits and promises of smart
metering is proposed.

III. APPLIED MODEL

A. Network Model
Let P1, P2, ..., PN be parties (i.e., producer) owning private

measurements x1, x2, ..., xN ∈ R. The parties wish to apply
a function to the joint set

⋃
xi without revealing any unnec-

essary information about their individual values. That is, the
only information learned by Pi about x−i (where x−i is any
other measurement except xi) is that which can be learned
from the output of the algorithm, and vice-versa. We do not
assume any trusted third party who computes the joint output
on the raw data.

We also assume that a unique label is given to each party
(or nodes). We do not assume a peer-to-peer system to be
available, e.g. it is not necessary for all the parties to be directly
connected. A channel between two parties is bidirectional and
first in first out (FIFO), i.e. the messages received in the
order in which they have been sent. Each party is represented
by a single sensor node in the network. In case a producer
deploys multiple sensors over his vineyard in our motivational
scenario (see Section I), a single sensor is selected per vineyard
which collects all measurements over the vineyard and can
be reached by either the base station or by a sensor of a
neighboring vineyard. Therefore, the topology of the parties
can be represented with an arbitrary strongly connected graph.

We could also view the model as a multi-hop ad-hoc
network, where nodes cooperate to form a network without
using any infrastructure such as access points or base stations.
Instead, nodes forward packets to each other, allowing com-
munication among nodes outside wireless transmission range.
For a survey on attacks on multi-hop ad-hoc networks see [16].

The channels between any two parties can be secure or
insecure as well. A secure channel is a way of transferring
data that is resistant to overhearing and tampering. In case of
an insecure channel an eavesdropper can overhear any message
(ciphertext) from any existing channel and try to decipher it.

Each party Pi has a set of neighbors, denoted Ni, this
set contains the identities (labels) of these parties. This is
the only knowledge a node (participant) can have of the
global graph, e.g. it cannot "see" any other nodes besides its
direct neighbours, it does not even know the total number of
participants (only if it is the result of a particular protocol).
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This model is partially synchronous (timing-based), i.e. we
assume some restrictions on the relative timing of events,
but execution is not completely lock-step as it is in the syn-
chronous model. These models are the most realistic, but they
are also the most difficult to program. Algorithms designed
using knowledge of the timing of event can be efficient, but
they can also be fragile in that they will not run correctly if
the timing assumptions are violated.

B. Adversary Model

The adversary is assumed to be semi-honest and static,
malicious adversaries are also partly considered [17], [18].
Therefore, semi-honest parties faithfully follow the protocol
specification, yet attempt to learn additional information by
analyzing the messages received during the protocol execution.
Although the semi-honest adversarial model is weaker than the
malicious model (where a party may arbitrarily deviate from
the specification, it is often a realistic one. This is because
deviating from a specified protocol which may be buried in a
complex application is a non-trivial task. Moreover, producers
do not collude with the potentially malicious aggregator.

C. Privacy and Security Model

It is assumed that a protocol execution can be attacked by an
external entity, or even by a subset of the participating parties.
The aim of this attack may be to learn private measurement or
cause the result of the computation to be incorrect. In order to
avoid this, every node can send its output to the trusted party,
who performs the computation. But this is unlikely to happen
in our scenario, thus we use and design algorithms where the
same result can be achieved without using a trusted party.
Different definitions of security for multiparty computation
have been proposed, in this paper we are going to use the
following [18]:

• Privacy: No party should learn anything more than its
prescribed output. In particular, the only information that
should be learned about other parties’ inputs is what
can be derived from the output itself. For example, in
an auction where the only bid revealed is that of the
highest bidder, it is clearly possible to derive that all
other bids were lower than the winning bid. However,
this should be the only information revealed about the
losing bids.

• Correctness: Each party is guaranteed that the output
that it receives is correct.

• Independence of inputs: Corrupted parties must choose
their inputs independently of the honest parties’ inputs.

• Guaranteed output delivery: Corrupted parties should
not be able to prevent honest parties from receiving their
output. For example, the adversary should not be able
to disrupt the computation by carrying out a denial of
service attack.

• Fairness: Corrupted parties should receive their outputs
if and only if the honest parties also receive their outputs.

D. Differential Privacy
The above guarantees still allow the untrusted aggregator to

learn individual sensor readings from the aggregate. Indeed,
knowing a few measurements in the network (e.g., the aggre-
gator may deploy extra sensors in the observed area to replicate
the measurements) may help the aggregator to obtain a more
accurate approximation of the remaining measurements.

Differential privacy ensures that the removal or addition of a
single measurement from the network does not (substantially)
affect the outcome of any analysis performed on the set of all
measurements (such as the output of an aggregate function).
Roughly speaking, this means that even if the aggregator learns
all constituent measurements of the aggregate except one, it
will not be able to infer this unknown measurement if the
aggregate itself is differential private.

Suppose two databases D1 and D2, which differ in at most
one record (measurement), where one is a proper subset of
the other and the larger database contains just one additional
measurement [19].

Definition 1 (Differential Privacy). A randomised algorithm
A gives ε-differential privacy if for all data sets D1 and D2

differing on at most one record, and all S ⊂ Range(A),

Pr[A(D1) ∈ S] ≤ eε × Pr[A(D2) ∈ S]

The probability is taken is over the coin tosses of A.

The above definition guarantees that if one participant’s data
is removed from the dataset no outputs (and thus consequences
of outputs) would become significantly more or less likely (up
to ε). That is, all possible values of the aggregate are almost
equally likely with D1 and D2. If ε is small, we have stronger
privacy guarantee as the output probabilities become closer.

To provide differential privacy, the output of f (i.e., the
aggregate) needs to be randomised, for example, by adding
noise to that where the noise variance is calibrated to the
sensitivity of the aggregate.

Definition 2 (Global sensitivity). Global sensitivity Sf of f :
D → R is the maximum absolute valued difference between a
function’s maxima and minima on neighboring datasets:

S(f) = max
D1,D2

|f(D1)− f(D2)|

where D1 and D2 differ in a single entry.

It has been shown that by perturbing the output of a
function f , we are able to reach ε-differential privacy [19].
The perturbation shall be a random noise added to the value
of f , furthermore the distribution of the noise is dependent on
the global sensitivity of f .

Theorem 1 (Laplace Mechanism). For all f : D → R, the
following algorithm A is ε-differential private:

A(D) = f(D) + L(S(f)/ε)

where L(λ) is an independently generated random variable
following the Laplace distribution with probability density
function g(x) = 1

2λe
− |x|

λ and S(f) denotes the global sen-
sitivity of f .
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This model is partially synchronous (timing-based), i.e. we
assume some restrictions on the relative timing of events,
but execution is not completely lock-step as it is in the syn-
chronous model. These models are the most realistic, but they
are also the most difficult to program. Algorithms designed
using knowledge of the timing of event can be efficient, but
they can also be fragile in that they will not run correctly if
the timing assumptions are violated.

B. Adversary Model

The adversary is assumed to be semi-honest and static,
malicious adversaries are also partly considered [17], [18].
Therefore, semi-honest parties faithfully follow the protocol
specification, yet attempt to learn additional information by
analyzing the messages received during the protocol execution.
Although the semi-honest adversarial model is weaker than the
malicious model (where a party may arbitrarily deviate from
the specification, it is often a realistic one. This is because
deviating from a specified protocol which may be buried in a
complex application is a non-trivial task. Moreover, producers
do not collude with the potentially malicious aggregator.

C. Privacy and Security Model

It is assumed that a protocol execution can be attacked by an
external entity, or even by a subset of the participating parties.
The aim of this attack may be to learn private measurement or
cause the result of the computation to be incorrect. In order to
avoid this, every node can send its output to the trusted party,
who performs the computation. But this is unlikely to happen
in our scenario, thus we use and design algorithms where the
same result can be achieved without using a trusted party.
Different definitions of security for multiparty computation
have been proposed, in this paper we are going to use the
following [18]:

• Privacy: No party should learn anything more than its
prescribed output. In particular, the only information that
should be learned about other parties’ inputs is what
can be derived from the output itself. For example, in
an auction where the only bid revealed is that of the
highest bidder, it is clearly possible to derive that all
other bids were lower than the winning bid. However,
this should be the only information revealed about the
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not be able to prevent honest parties from receiving their
output. For example, the adversary should not be able
to disrupt the computation by carrying out a denial of
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if and only if the honest parties also receive their outputs.

D. Differential Privacy
The above guarantees still allow the untrusted aggregator to

learn individual sensor readings from the aggregate. Indeed,
knowing a few measurements in the network (e.g., the aggre-
gator may deploy extra sensors in the observed area to replicate
the measurements) may help the aggregator to obtain a more
accurate approximation of the remaining measurements.

Differential privacy ensures that the removal or addition of a
single measurement from the network does not (substantially)
affect the outcome of any analysis performed on the set of all
measurements (such as the output of an aggregate function).
Roughly speaking, this means that even if the aggregator learns
all constituent measurements of the aggregate except one, it
will not be able to infer this unknown measurement if the
aggregate itself is differential private.

Suppose two databases D1 and D2, which differ in at most
one record (measurement), where one is a proper subset of
the other and the larger database contains just one additional
measurement [19].

Definition 1 (Differential Privacy). A randomised algorithm
A gives ε-differential privacy if for all data sets D1 and D2

differing on at most one record, and all S ⊂ Range(A),

Pr[A(D1) ∈ S] ≤ eε × Pr[A(D2) ∈ S]

The probability is taken is over the coin tosses of A.

The above definition guarantees that if one participant’s data
is removed from the dataset no outputs (and thus consequences
of outputs) would become significantly more or less likely (up
to ε). That is, all possible values of the aggregate are almost
equally likely with D1 and D2. If ε is small, we have stronger
privacy guarantee as the output probabilities become closer.

To provide differential privacy, the output of f (i.e., the
aggregate) needs to be randomised, for example, by adding
noise to that where the noise variance is calibrated to the
sensitivity of the aggregate.

Definition 2 (Global sensitivity). Global sensitivity Sf of f :
D → R is the maximum absolute valued difference between a
function’s maxima and minima on neighboring datasets:

S(f) = max
D1,D2

|f(D1)− f(D2)|

where D1 and D2 differ in a single entry.

It has been shown that by perturbing the output of a
function f , we are able to reach ε-differential privacy [19].
The perturbation shall be a random noise added to the value
of f , furthermore the distribution of the noise is dependent on
the global sensitivity of f .

Theorem 1 (Laplace Mechanism). For all f : D → R, the
following algorithm A is ε-differential private:

A(D) = f(D) + L(S(f)/ε)

where L(λ) is an independently generated random variable
following the Laplace distribution with probability density
function g(x) = 1

2λe
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In our case, f represents the aggregate function which is
the sum of sensor measurements, and its sensitivity is the
maximum of any measurement that a sensor can take. If this
value is too large, then every measurement can be truncated to
a pre-defined threshold t by each sensor node, hence ensuring
that the global sensitivity is at most t in the whole network.
Therefore, to guarantee ε-differential privacy, we need to add
a random value to the aggregate which is sampled form a
Laplace distribution with zero mean and variance 2S(f)2/ε2.

Intuitively, if a single measurement can substantially change
the output of f , then larger noise needed to be introduced
to “hide” the contribution of a single record (sensor) to the
aggregate. However, larger noise also deteriorates utility as
the final aggregate will be inaccurate. This is a fundamental
trade-off between utility and privacy: larger/smaller noise
yields stronger/weaker privacy and smaller/larger utility. There
seems to be no free lunch. On the other hand, the relative
error of the aggregate (or “signal-to-noise ratio”) can also
be decreased without degrading privacy by aggregating more
sensor readings. This is because the aggregate (sum) becomes
larger while the added Laplace noise is still calibrated to the
global sensitivity which remains unchanged by adding more
readings to the aggregate.

IV. BUILDING BLOCKS

In this section, we introduce some basic building blocks that
are used in our solution.

A. Privacy Preserving Primitive: Secure Sum
In SMPC, each participant holds onto a number of their own,

and they would like to compute the sum of their inputs. The
aggregator – one of the parties – generates a random number
R, adds R to its local value and sends the result to the next
party. All participants add their local value to the received
number. Finally the aggregator receives the sum, subtracts R
from the result and broadcasts the result. This guarantees that
no one besides the aggregator will learn the correct sum of the
values.

B. Homomorphic Encryption
A homomorphism is a structure-preserving map between

two algebraic structures. Using homomorphic encryption, com-
putations can be carried out on ciphertext, thus generating an
encrypted result which, when decrypted, matches the result
of operations performed on the plaintext. We use the Paillier
cryptosystem [20] in this paper. In this scheme, if the public
key is the modulus m and the base g, then the encryption of
a message x is

Enc(x) = gxrm mod m2

for some random r ∈ {0, . . . ,m − 1}. The homomorphic
property is then

Enc(x1) · Enc(x2) = (gx1rm1 )(gx2rm2 ) mod m2

= gx1+x2(r1r2)
m mod m2

= Enc(x1 + x2)

C. Robust DFS

We build an aggregation tree using a distributed version
of the depth-first search (DFS) algorithm. We need to create
univoque routes between all nodes in order to avoid redundant
packet channelling and to support aggregation. We must note
that this problem is reminiscent of the secure routing problem
in wireless or distributed networks, which has been widely
studied in the literature [16]. Here, we only provide a basic
solution which fits our goal. In particular, a DFS tree results
in a definite order of the messages which property is indis-
pensable for our solution to obtain the correct aggregates. The
distributed version of the BFS algorithm can be found in [9]
[10], the Robust DFS algorithm described below is analogous
to the BFS one:

Building a Depth First Search Tree:
1) At any point during execution, there are some nodes that

are "marked", initially just i0, the root. The root sends a
search message at the first round to one of its neighbours.

2) At any round, if an unmarked node receives a search
message, it marks itself, sets and notifies its parent with
a child message, and sends non-child message to those
nodes from which it received a search message in earlier
rounds.

3) After this, the node sends the search message to one of
its neighbours.

4) This continues until a search message reaches a leaf
node. A leaf node realises that it is indeed a leaf-node
by receiving non-child messages from all of its children
candidates (or have only one neighbour).

5) When a node declares itself as a leaf it sends an end
message back to its parent who then chooses another
neighbour of its own and waits for the next end message.
When it received messages from all of its neighbours, the
node sends the end it to its parent.

6) The algorithm ends when the root could also send the
end message.

REMARK: In the non-secure version of the above protocol,
a node also sends the list of its parent and children to
neighboring nodes, therefore every other node in the graph
may be able to reconstruct the tree (or the whole graph) using
the received lists of parents and children.

Robustness: The network can lose some nodes due to power
failure, hardware or software complications and many more
that can cause the node to be detached from the network.
Moreover, nodes can potentially be mobile, such as in wireless
mobile ad-hoc or vehicular networks. To increase robustness
against these failures and potential node mobility, we extend
the above algorithm as follows. When a node detects that
one (or) some of its neighbours are disconnected, it does the
following:

1) if it is a child node, it does nothing;
2) if it is a parent, then

a) if there is another node during the tree-building phase
who was second to become its parent, i.e. sent the node
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a Search message, then the node notifies them about the
change and becomes its child;

b) if there is none like the above the node notifies one of
its children to search for a new parent and they switch
roles, i.e. the child becomes the parent and vice-versa;

c) if none of the above succeed, or the node has no other
neighbours, then it becomes an isolated node (or tree).

Security in the presence of semi-honest adversaries:
• Privacy: Complies. No node learns anything about the

global graph, they learn only their parent and children
nodes, i.e. the local output.

• Independence of inputs: Complies trivially.
• Output delivery: Complies trivially.
• Correctness: Complies trivially.
• Fairness: Complies trivially.

Security in the presence of malicious adversaries:
Consider the scenario when a node intentionally deviates from
the protocol. The only thing it can do without being detected
is to set several nodes as its parents, which violates the
property of correctness because the malicious node becomes
the child of some nodes of which it should not be thereby
corrupting their output. In particular, circles may be created
in the output graph, which is not a tree and hence an incorrect
output of the protocol.

Complexity: The time complexity is at most 2·diam rounds,
(where diam is the longest shortest path between any two
nodes ). The transmitted messages are composed of 3(e − 1)
search messages, where e denotes the number of edges, i.e.,
neighboring node pairs, one child or non-child message and
one end message between each neighboring pair of nodes.
Thus the time complexity is O(diam) and the communication
complexity is O(e).

D. Distributed Noise Generation

To achieve differential privacy, Theorem 1 suggests that
Laplace noise with scale λ = S(f)/ε needs to be added to the
value of the aggregate function f . A natural question arises:
Which node should add this noise to the aggregate? As the
aggregator is untrusted, the sensor nodes themselves need to
add the required amount of noise in a distributed manner.
A naive solution would be that a single node is selected to
inject all the Laplace noise. However, this approach requires
the cooperation of nodes which can be expensive. Also, this
makes the protocol less robust against privacy attacks as the
selected single node may be malfunctioning (i.e., do not add
the noise) or already left the network.

Instead, in our solution, each node probabilistically and
independently decides whether it adds some noise share to
this aggregate such that the sum of these added noise shares
yields the required amount Laplace noise needed to guarantee
differential privacy. For that, we rely on the following property
of the Laplace distribution [21]:

Definition 3 (Geometric Infinite Divisibility). A random vari-
able Y (and its probability distribution) is said to be geometric
infinitely divisible if for any p ∈ (0, 1) it satisfies the relation:

Y
d
=

µp∑
i=1

Y (i)
p

where µp is a geometric random variable with mean 1/p,
and the random variables Y

(i)
p are independent and identically

distributed for each p, and µp and Y
(i)
p are independent.

The Laplace distribution exhibits the above geometric in-
finite divisibility, which is shown by the following theorem
[21].

Theorem 2. Let Y possess a Laplace distribution L(λ) with
zero mean. Then, Y is geometric infinitely divisible and for
any p ∈ (0, 1) the above holds with Y

(i)
µp ∼ L(λ√p).

V. SECURE AGGREGATION

Our solution combines the Secure Sum primitive (in Section
IV-A) with homomorphic encryption (in Section IV-B) and
distributed noise injection to preserve differential privacy (in
Section IV-D). A DFS tree is assumed to be already built
(as described in Section IV-C) before running our aggregation
protocol.

A. Basic protocol
The operation of the aggregator and sensor nodes are shown

in Algorithm 1 and 2, respectively.

Algorithm 1 Secure Aggregation: Aggregator node

1: Generate public-secret key pairs (pk1, sk1) and (pk2, sk2)
2: p := 1/N
3: G := 0
4: for all child j ∈ [1,m] do
5: Send {G, p, pk1, pk2} to a child j
6: Receive {Gj , cj1, cj2} from child j
7: G := ∨j

i=1Gi

8: c1 :=
∏m

j=1 cj1 = Encpk1

(∑N
i=1 ri +

∑N
i=1 xi +

∑N
i=1 Yi

)

9: c2 :=
∏m

j=1 cj1 = Encpk2
(
∑N

i=1 ri)
10: Decrypt (c1, c2) to retrieve the noisy aggregate R, where
11: R = Decsk2(c2)−Decsk1(c1) =

∑N
i=1 xi +

∑N
i=1 Yi

12:
∑N

i=1 Yj ∼ L(S/ε)

We assume that the aggregator (root) node knows the size
N of the network. First, the root generates two pairs of
homomorphic asymmetric keys (pk1, sk1) and (pk2, sk2), then
sets the noise parameter p (see Definition 2) to 1/N and sends
the public keys along with p to its children. The children
forward this message to their children and so forth, until the
message reaches the a leaf node.

When a leaf receives the message of the aggregator from
its parent, it tosses a biased coin which results in head with
probability p (denoted by G = 1 in Alg. 2). If the result of
the coin toss is 0, the node generates a Laplace noise with
scale S

√
p/ε, where S denotes the global sensitivity of the
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a Search message, then the node notifies them about the
change and becomes its child;

b) if there is none like the above the node notifies one of
its children to search for a new parent and they switch
roles, i.e. the child becomes the parent and vice-versa;

c) if none of the above succeed, or the node has no other
neighbours, then it becomes an isolated node (or tree).

Security in the presence of semi-honest adversaries:
• Privacy: Complies. No node learns anything about the

global graph, they learn only their parent and children
nodes, i.e. the local output.

• Independence of inputs: Complies trivially.
• Output delivery: Complies trivially.
• Correctness: Complies trivially.
• Fairness: Complies trivially.

Security in the presence of malicious adversaries:
Consider the scenario when a node intentionally deviates from
the protocol. The only thing it can do without being detected
is to set several nodes as its parents, which violates the
property of correctness because the malicious node becomes
the child of some nodes of which it should not be thereby
corrupting their output. In particular, circles may be created
in the output graph, which is not a tree and hence an incorrect
output of the protocol.

Complexity: The time complexity is at most 2·diam rounds,
(where diam is the longest shortest path between any two
nodes ). The transmitted messages are composed of 3(e − 1)
search messages, where e denotes the number of edges, i.e.,
neighboring node pairs, one child or non-child message and
one end message between each neighboring pair of nodes.
Thus the time complexity is O(diam) and the communication
complexity is O(e).

D. Distributed Noise Generation

To achieve differential privacy, Theorem 1 suggests that
Laplace noise with scale λ = S(f)/ε needs to be added to the
value of the aggregate function f . A natural question arises:
Which node should add this noise to the aggregate? As the
aggregator is untrusted, the sensor nodes themselves need to
add the required amount of noise in a distributed manner.
A naive solution would be that a single node is selected to
inject all the Laplace noise. However, this approach requires
the cooperation of nodes which can be expensive. Also, this
makes the protocol less robust against privacy attacks as the
selected single node may be malfunctioning (i.e., do not add
the noise) or already left the network.

Instead, in our solution, each node probabilistically and
independently decides whether it adds some noise share to
this aggregate such that the sum of these added noise shares
yields the required amount Laplace noise needed to guarantee
differential privacy. For that, we rely on the following property
of the Laplace distribution [21]:

Definition 3 (Geometric Infinite Divisibility). A random vari-
able Y (and its probability distribution) is said to be geometric
infinitely divisible if for any p ∈ (0, 1) it satisfies the relation:

Y
d
=

µp∑
i=1

Y (i)
p

where µp is a geometric random variable with mean 1/p,
and the random variables Y

(i)
p are independent and identically

distributed for each p, and µp and Y
(i)
p are independent.

The Laplace distribution exhibits the above geometric in-
finite divisibility, which is shown by the following theorem
[21].

Theorem 2. Let Y possess a Laplace distribution L(λ) with
zero mean. Then, Y is geometric infinitely divisible and for
any p ∈ (0, 1) the above holds with Y

(i)
µp ∼ L(λ√p).

V. SECURE AGGREGATION

Our solution combines the Secure Sum primitive (in Section
IV-A) with homomorphic encryption (in Section IV-B) and
distributed noise injection to preserve differential privacy (in
Section IV-D). A DFS tree is assumed to be already built
(as described in Section IV-C) before running our aggregation
protocol.

A. Basic protocol
The operation of the aggregator and sensor nodes are shown

in Algorithm 1 and 2, respectively.

Algorithm 1 Secure Aggregation: Aggregator node

1: Generate public-secret key pairs (pk1, sk1) and (pk2, sk2)
2: p := 1/N
3: G := 0
4: for all child j ∈ [1,m] do
5: Send {G, p, pk1, pk2} to a child j
6: Receive {Gj , cj1, cj2} from child j
7: G := ∨j

i=1Gi

8: c1 :=
∏m

j=1 cj1 = Encpk1

(∑N
i=1 ri +

∑N
i=1 xi +

∑N
i=1 Yi

)

9: c2 :=
∏m

j=1 cj1 = Encpk2
(
∑N

i=1 ri)
10: Decrypt (c1, c2) to retrieve the noisy aggregate R, where
11: R = Decsk2(c2)−Decsk1(c1) =

∑N
i=1 xi +

∑N
i=1 Yi

12:
∑N

i=1 Yj ∼ L(S/ε)

We assume that the aggregator (root) node knows the size
N of the network. First, the root generates two pairs of
homomorphic asymmetric keys (pk1, sk1) and (pk2, sk2), then
sets the noise parameter p (see Definition 2) to 1/N and sends
the public keys along with p to its children. The children
forward this message to their children and so forth, until the
message reaches the a leaf node.

When a leaf receives the message of the aggregator from
its parent, it tosses a biased coin which results in head with
probability p (denoted by G = 1 in Alg. 2). If the result of
the coin toss is 0, the node generates a Laplace noise with
scale S

√
p/ε, where S denotes the global sensitivity of the
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Algorithm 2 Secure Aggregation: Non-aggregator (sensor)
node

1: Receive {G, p, pk1, pk2} from the parent
2: for all child j ∈ [1,m] do
3: Send {G, p, pk1, pk2} to a child j
4: Receive {Gj , cj1, cj2} from child j
5: G := ∨j

i=1Gi

6: if G = 1 then
7: Y := 0
8: else
9: G ∼ B(p), where B is the Bernoulli distribution

10: if G = 0 then
11: Y ∼ L(S√p/ε)
12: else
13: Y := 0
14: Generate r uniformly at random
15: Send (G, c1, c2) to the parent, where
16: c1 := Encpk1

(r + x+ Y ) ·
∏m

j=1 cj1
17: c2 := Encpk2

(r) ·
∏m

j=1 cj2

sum (see Theorem 1), which is the maximum value of any
sensor measurement (or its truncation threshold). Afterwards,
the node generates a random number r, which is added to the
node measurement x and encrypted with key pk1 to get c1.
In addition, r is also encrypted with the other key pk2 to get
c2. The encrypted messages c1 and c2 along with the result
G of the coin toss are sent back to the parent as a reply. Any
intermediate node between a leaf and the aggregator repeats the
same steps as the leaf node after receiving all reply messages
from its children, except that it also checks if it receives G = 1
from any of its children, that is, any node in the corresponding
subtree observed head by executing the coin toss. If so, it
will not add Laplace noise to its own measurement before
encryption. As a result, the sensor nodes fan-in the values
along the edges of the built DFS tree. When the root receives
all reply messages from its children it aggregates them likewise
all other sensor nodes, then decrypts the received ciphertexts
with secret keys sk1 and sk2. After decryption, the aggregator
removes the random value

∑N
i=1 ri from the aggregate by

subtracting Decsk1
(c1) from Decsk2

(c2), thus obtaining the
aggregated measurements with the Laplace noise. Specifically,

c1 =

m∏
i=1

ci1 = Encpk1

(
N∑
i=1

ri +

N∑
i=1

xi +

N∑
i=1

Yi

)

c2 =

m∏
i=1

ci1 = Encpk2

(
N∑
i=1

ri

)

where xi and ri are the measurement and random value
generated by node i, respectively, and Yi is the noise share
(which is 0 or follows L(S√p/ε)) added to the aggregate by
node i. Therefore,

Decsk2
(c2)−Decsk1

(c1) =

N∑
i=1

xi +

N∑
i=1

Yi

and hence the aggregator obtains the noisy aggregate which

is ε-differential private due to Theorem 2 and 1. In particular,
each node repeats the coin tossing until the first node succeeds
to get 1 (head), which then notifies the rest of the nodes that
they do not need to generate more noise, hence Y = 0 for
all subsequent nodes. In other words, we have a geometrically
distributed number of random values drawn from the Laplace
distribution with scale L(S√p/ε), which means that

∑N
i=1 Yi

follows a Laplace distribution with L(S/ε) based on Theorem
2. Moreover, as p = 1/N , all nodes generate Laplace noise ex-
actly once with large probability. Nevertheless, p is a parameter
which can be set depending on node failures hence providing
increased robustness and flexibility over prior works.

Notice that, in the geometric distribution, we must have
infinite possibilities to succeed, which might not be the case
if each node tosses the coin exactly once (i.e., with some
positive, albeit small probability none of the nodes have
head after finishing the above protocol, which means that
the Laplace noise shares will not sum up to the required
Laplace noise needed for ε-differential privacy). To alleviate
this problem, we allow the nodes to make as many rounds
as needed for one successful coin toss in the DFS tree.
Therefore, we need to repeat the above protocol until at least
one head occurs at any node where each node adds Laplace
noise to the aggregate (without adding their measurement x
to the random r in Line 16 of Alg. 2).

Motivation of geometric divisibility: There have been
proposed several schemes for distributed noise generation to
guarantee differential privacy [14], all of them are based on the
divisibility of the Laplace distribution. The reason we chose
geometric divisibility for our model lies in its flexibility. In
particular, any network nodes may fail from time to time due
to various reasons; if we used any technique described in [14],
the failed nodes would not add noise to the sum which would
imply extra noise generation tasks from other nodes, or the
resetting of the parameters of the distribution. One workaround
for this problem could be to select a subset of all nodes for
the noise generation task, but this is difficult for distributed
systems. In our scheme, there is no need for such coordination;
upon the detection of the failure of a child node, the parent
can report its own measurement towards its parent without any
modification of the protocol. This is because G in Algorithm
2 is drawn independently at each sensor node. Moreover, the
probability p of this biased coin toss can also be flexibly
adjusted depending on the anticipated number of node failures
which also provides stronger robustness.

B. Extension to a malicious aggregator
In Algorithm 1, the aggregator can easily decrypt the partial

sums, corresponding to each of its children, before forwarding
that to other children, thus it can learn the partial sums of
the aggregate. To overcome this problem, the children of the
aggregator can add additional random value that cancel out
when their partial sums are summed. For example, if node Pi

adds +Ri,j , then another child Pj of the root node needs to add
−Ri,j to its partial sum3. This way the aggregator must add all

3A similar method is used in [15]
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the partial sums belonging to each of its children in order to get
the correct aggregate. This implies that a secure channel needs
to be established between any pair of children to agree on the
value of Ri,j . For example, the children of the aggregator can
derive a shared secret key K, using any key exchange protocol
such as Diffie-Hellman, which is known to all the children
of the aggregator except the aggregator4. Then, similarly to
[15], Ri,j can be computed as Ri,j = PRF (K,Pi, Pj) where
PRF (·) is a pseudo-random function.

If the aggregator is malicious, it can also misbehave by lying
to one of its child node that G = 1 (i.e., it falsely claims that
there has been a sensor node before whose coin toss resulted
in head). This causes less Laplace noise to be added in the
network than what is required to achieve ε-differential privacy.
We can however easily amend Algorithm 1 to resist against
such attack by using key K shared between all children of the
aggregator. In particular, the children of the aggregator can
compute a message authentication code (MAC) using K on
the value of G and attach this MAC to the message sent to
the aggregator. This MAC is required to be forwarded by the
aggregator to other children as part of the message in Line
5 of Algorithm 1, and hence, any child node can detect, by
verifying the MAC, if the aggregator modifies G.

C. Analysis
First, consider the requirements of security based on secure

multi-party computation described in our Privacy and Security
Model.

Security in the presence of semi-honest adversaries:
• Privacy: Complies. No node learns anything more than

its prescribed output. The root learns some additional
information - the partial sums of its children and the
partial sums of the random numbers-, but it cannot derive
the individual inputs.

• Independence of inputs: Complies. All inputs are en-
crypted, one node has to break the encryption in order
to learn anything.

• Output delivery: Complies trivially.
• Correctness: Complies trivially.
• Fairness: Complies trivially.

Security in the presence of malicious adversaries: The
privacy of the above SMPC still complies. If the root is the
adversary unfortunately even independence fails, since the root
can in any way alter the result depending on the received sum.
Moreover, with this kind of an adversary we cannot guarantee
any other requirement. Although, if an inner node is malicious
independence complies, but the rest are do not regarding the
subtree under the malicious node.

The reason for adding random numbers to the output in the
algorithm is the following. Assume that we expect the inputs
to be in a closed, short interval, taking discrete values. In such
a case anyone could try all values by applying brute-force
attack to get the information. The pairs of keys are used for the

4Notice that sensor nodes (i.e., producers) do not collude with the aggregator
(i.e., organization)

following reason. If we used no encryption, noise nor random
numbers we could face several attack scenarios. For example,
if the inputs were very diverse, then a partial sum at an inner
node would not carry any information about the underlying
sub-tree or the global graph for a node. However if the values
are similar one could easily approximate the size of a subtree
or even the whole graph. Finally, if an eavesdropper had access
to one node’s incoming and outgoing messages it could easily
calculate the node’s input, and also the partial sum sent to the
node.

The second key which encrypts the (sum of) random num-
bers is necessary because we can eliminate the first attack
mentioned above. The first key - which encrypts the sum of the
measurements, the noise and the random number(s) - is used
for preventing the eavesdropper’s attack, but if we used solely
this key, then an eavesdropper could still capture the incoming
and the outgoing messages of one node, encrypt the random
numbers with the broadcasted key, and by simple subtraction
learn that nodes measurement. Thus the need for two different
homomorphic encryption keys.

Differential privacy: According to Theorem 2 on the
geometric divisibility of the Laplace distribution with L(λ),
the algorithm generates µp values drawn from the Laplace
distribution with parameters L(λ√p), where µp is a random
variable having geometric distribution. The sum of these values
has distribution L(s). The aggregated result with the noise is
in line 11 of algorithm 1:

N∑
i=1

xi +

µp∑
j=1

Yj =

N∑
i=1

xi + YL(λ)

where Y has Laplace distribution L(λ).
We used a biased coin with probability p = 1/N , because

the geometric distribution is the probability distribution of
the number X of Bernoulli trials needed to get one success,
supported on the set 1, 2, 3, ...; therefore we get a geometric
random variable number of nodes. Therefore the nodes align in
a sequence of the DFS tree and keep on sequentially flipping
a biased coins independently from each other until they get
the first success. Furthermore, we want to set the probability
of success of the geometric distribution to 1/N , where N is
the number of nodes in the graph. Thus the expected value
of a random variable with geometric distribution is 1/p = N ,
hence with high probability we are going to have all the nodes
in the graph adding noise to their output exactly once. Since
the geometric distribution has infinite support we cannot limit
the number of trials to N . Therefore if all nodes have already
tossed a coin but none succeeded, then we must restart the
experiment from the first node until we succeed, thus we gain
the infinite support of trials.

In summary, since Theorem 2 is fulfilled by the algorithm
it follows that differential privacy is preserved.

VI. CONCLUSION

In this paper we have presented a new method for preserving
ε-differential privacy in a distributed sensor system. We have
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the partial sums belonging to each of its children in order to get
the correct aggregate. This implies that a secure channel needs
to be established between any pair of children to agree on the
value of Ri,j . For example, the children of the aggregator can
derive a shared secret key K, using any key exchange protocol
such as Diffie-Hellman, which is known to all the children
of the aggregator except the aggregator4. Then, similarly to
[15], Ri,j can be computed as Ri,j = PRF (K,Pi, Pj) where
PRF (·) is a pseudo-random function.

If the aggregator is malicious, it can also misbehave by lying
to one of its child node that G = 1 (i.e., it falsely claims that
there has been a sensor node before whose coin toss resulted
in head). This causes less Laplace noise to be added in the
network than what is required to achieve ε-differential privacy.
We can however easily amend Algorithm 1 to resist against
such attack by using key K shared between all children of the
aggregator. In particular, the children of the aggregator can
compute a message authentication code (MAC) using K on
the value of G and attach this MAC to the message sent to
the aggregator. This MAC is required to be forwarded by the
aggregator to other children as part of the message in Line
5 of Algorithm 1, and hence, any child node can detect, by
verifying the MAC, if the aggregator modifies G.

C. Analysis
First, consider the requirements of security based on secure

multi-party computation described in our Privacy and Security
Model.

Security in the presence of semi-honest adversaries:
• Privacy: Complies. No node learns anything more than

its prescribed output. The root learns some additional
information - the partial sums of its children and the
partial sums of the random numbers-, but it cannot derive
the individual inputs.

• Independence of inputs: Complies. All inputs are en-
crypted, one node has to break the encryption in order
to learn anything.

• Output delivery: Complies trivially.
• Correctness: Complies trivially.
• Fairness: Complies trivially.

Security in the presence of malicious adversaries: The
privacy of the above SMPC still complies. If the root is the
adversary unfortunately even independence fails, since the root
can in any way alter the result depending on the received sum.
Moreover, with this kind of an adversary we cannot guarantee
any other requirement. Although, if an inner node is malicious
independence complies, but the rest are do not regarding the
subtree under the malicious node.

The reason for adding random numbers to the output in the
algorithm is the following. Assume that we expect the inputs
to be in a closed, short interval, taking discrete values. In such
a case anyone could try all values by applying brute-force
attack to get the information. The pairs of keys are used for the

4Notice that sensor nodes (i.e., producers) do not collude with the aggregator
(i.e., organization)

following reason. If we used no encryption, noise nor random
numbers we could face several attack scenarios. For example,
if the inputs were very diverse, then a partial sum at an inner
node would not carry any information about the underlying
sub-tree or the global graph for a node. However if the values
are similar one could easily approximate the size of a subtree
or even the whole graph. Finally, if an eavesdropper had access
to one node’s incoming and outgoing messages it could easily
calculate the node’s input, and also the partial sum sent to the
node.

The second key which encrypts the (sum of) random num-
bers is necessary because we can eliminate the first attack
mentioned above. The first key - which encrypts the sum of the
measurements, the noise and the random number(s) - is used
for preventing the eavesdropper’s attack, but if we used solely
this key, then an eavesdropper could still capture the incoming
and the outgoing messages of one node, encrypt the random
numbers with the broadcasted key, and by simple subtraction
learn that nodes measurement. Thus the need for two different
homomorphic encryption keys.

Differential privacy: According to Theorem 2 on the
geometric divisibility of the Laplace distribution with L(λ),
the algorithm generates µp values drawn from the Laplace
distribution with parameters L(λ√p), where µp is a random
variable having geometric distribution. The sum of these values
has distribution L(s). The aggregated result with the noise is
in line 11 of algorithm 1:

N∑
i=1

xi +

µp∑
j=1

Yj =

N∑
i=1

xi + YL(λ)

where Y has Laplace distribution L(λ).
We used a biased coin with probability p = 1/N , because

the geometric distribution is the probability distribution of
the number X of Bernoulli trials needed to get one success,
supported on the set 1, 2, 3, ...; therefore we get a geometric
random variable number of nodes. Therefore the nodes align in
a sequence of the DFS tree and keep on sequentially flipping
a biased coins independently from each other until they get
the first success. Furthermore, we want to set the probability
of success of the geometric distribution to 1/N , where N is
the number of nodes in the graph. Thus the expected value
of a random variable with geometric distribution is 1/p = N ,
hence with high probability we are going to have all the nodes
in the graph adding noise to their output exactly once. Since
the geometric distribution has infinite support we cannot limit
the number of trials to N . Therefore if all nodes have already
tossed a coin but none succeeded, then we must restart the
experiment from the first node until we succeed, thus we gain
the infinite support of trials.

In summary, since Theorem 2 is fulfilled by the algorithm
it follows that differential privacy is preserved.

VI. CONCLUSION

In this paper we have presented a new method for preserving
ε-differential privacy in a distributed sensor system. We have
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presented our model as a strongly connected graph having pro-
cessing units at the nodes. These participants want to engage in
a privacy preserving computation to gain the aggregated result
of their measurements. We have applied secure multiparty
computation protocols as basic building blocks to preserve
security; moreover, we have introduced a new distributed noise
generation protocol, where we used the geometric infinite
divisibility of the Laplace distribution. This distribution has a
property, namely the geometrically distributed number of noise
segments, that we utilised to make our protocol more robust
against node failures, and flexible in the expected value of the
number of nodes participating in the noise generation.

Building an even more secure version of an algorithm as
always is a challenge. Here the next step could be to create
secure versions under the assumption of malicious nodes.
Considering pseudo-random generators and synchronization in
order to test a node’s honesty is a possible approach.

Future work: This paper has focused on the feasibility of
privacy preserving data aggregation over Multi-hop networks.
Performance evaluation of the proposed algorithms in both
wireless and wired multi-hop networks, incorporating energy
efficiency and computational constraints, constitutes important
future work.
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segments, that we utilised to make our protocol more robust
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Building an even more secure version of an algorithm as
always is a challenge. Here the next step could be to create
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Performance evaluation of the proposed algorithms in both
wireless and wired multi-hop networks, incorporating energy
efficiency and computational constraints, constitutes important
future work.
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