
Round-Robin Bloom Filters Based Load Balancing
of Packet Flows

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2016 • VOLUME VIII • NUMBER 3 13

Örs Szabó and Csaba Simon

Round-Robin Bloom Filters Based Load Balancing
of Packet Flows

Round-Robin Bloom Filters Based Load Balancing
of Packet Flows

Örs Szabó, Csaba Simon

Abstract1—SDN gives the possibility to design new solutions for
flow based load balancers, needed by the handling of quickly
growing Internet data, and end user demands. A key element of
this can be the Bloom filters and its probabilistic techniques to
reduce information processing and networking costs. We selected
a Bloom filter variant optimized for low footprint and designed
and implemented a flow based load balancer solution. We
identified an issue of such load balancers during their
initialization phase in case of plug and play deployments. We
propose a solution to alleviate this problem and evaluated its
performance.

Keywords- Bloom Filter; Load Balancing; packet flow

I. INTRODUCTION
Internet data traffic is quickly growing, as more and more

people are getting easy access to different kinds of services,
such as file sharing, video streaming, video-on-demand (VoD),
IPTV, Voice-over-IP (VoIP), etc. Thus the data that needs to
be transported from and to different nodes through a meshed
network is increasing. This may cause capacity and
performance issues on the serving nodes, which leads to the
need of scaling. A commonly used technique is to group the
serving nodes into a cluster, but still offer the service over a
single access point (e.g., well known address). By doing so, the
clients will still reach the service the same way as before. For
this to work, a solution was needed to cleverly distribute the
demand among the server cluster members. This functionality
is provided by the load balancer: it tries to share the load within
the cluster [1]. The packets transported over the Internet can be
viewed as part of a session defined by the endpoints (e.g.,
source and destination addresses, port numbers).

The load balancer should be able to identify the different
sessions (or flows) and should direct the packets belonging to it
to the same server within the cluster. When the load balancer
deals with flows, it has a dual task: it should both balance the
load among the served output ports (assuming that each port
leads to a different server) and to evenly distribute the amount
of traffic among these ports. The problem is that the carried
traffic volume might differ from flow to flow, thus it is not
enough to focus on the per-flow traffic distribution. It is neither
acceptable to focus solely on the equal traffic load distribution,

The authors are with the HSN Lab, Department of Telecommunication and

Media Informatics, Budapest University of Technology and Economics,
Budapest, Hungary (email: simon@tmit.bme.hu)

because then different packets from the same flow would be
sent out on different ports, potentially to different servers.

Most of the theoretical models that address the load
balancing problem try to provide a solution optimizing the
resource usage of the control process and/or focus on the long
term stability of traffic load distribution. (see the rest of this
Section). Nevertheless, the proper operation of a load balancing
mechanism is vulnerable to the initialization of the mechanism
itself, as we learned it during the implementation and testing of
a stateful load balancing proposal (called Round Robin Bloom
Filter) optimized in terms of resource usage. In what follows
we introduce the reader into our motivation to work with and
the environment in which we implemented the particular load
balancing solution. Later on in the paper (see Section IV.C) we
show how does this initialization problem (named startup
transient) manifest in a backbone network by conducting
dedicated experiments with our implementation. Further on we
propose a solution to alleviate this problem and discuss its
applicability using further experiments. Thus the main
contribution of our paper is to show how the startup transient
issue was handled, as it has a crucial role in sustaining the
balance between the dual role of load distribution and flow
integrity preservation of a stateful load balancer.

When we searched for potential environments to design and
deploy a load balancer, we quickly converged to a decision on
selecting Software-Defined Networking (SDN), as it is widely
recognized as an enabler of dynamic network behavior to adapt
to changes in demand [2]. The use of SDN to respond to
increasing load is a natural choice and has already been
investigated by the networking community. Load balancing in
SDN can be achieved in different ways, one of which is to use
Finite State Machine (FSM) models with defined network
policies described in [3]. Nevertheless, the memory footprint
and the required reaction speed for such solution when we have
to control a backbone link of the networks calls for the use of
new mechanisms. We oriented ourselves towards probabilistic
techniques, as many of the network solutions today utilize them
to reduce information processing and networking costs. Having
millions of data elements in any network it became
increasingly important to develop efficient solutions for
storing, updating, and querying them. One great idea
introduced by Bloom filters (BF) is that by allowing the
representation of the set of elements to lose some information,
the storage requirements can be significantly reduced [4]. The
BF is a space-efficient probabilistic data structure that supports

Round-Robin Bloom Filters Based Load Balancing
of Packet Flows

SEPTEMBER 2016 • VOLUME VIII • NUMBER 314

INFOCOMMUNICATIONS JOURNAL

set membership queries. This data structure provides a
probabilistic way to represent a set that can never have false
negatives (saying that an inserted element is not in the set) but
can have false positive returns (saying that an element is part of
the set when in fact it is not).

Networking applications of different BFs emerged back in
the late 90s. Broder and Mitzenmacher published a survey [5]
on network applications of BFs in 2004. A very recent survey
[2] by Tarkoma et al. from 2012 reviews over 20 BF variants
and their applications for caching, peer-to-peer systems,
routing and forwarding, and measurement data summarization.
For our work, the interesting application field of Bloom filters
is the flow based load balancing.

Regardless of the wide range of different BF flavors, we
found that apart of the proposal of Szabo in [6] no suitable BF
adaptation for efficiently applying actions consistently to an
event stream, based on past decisions assigned to events within
a time window. This solution retains the control states assigned
to subset of events according to their arrival time slot up to a
time window. The Round-robin Bloom filters (RRBF)
proposed there would suit well the server farm load sharing or
the path load balancing scenarios. An alternative proposal was
the Time-Decaying Bloom filter (DBF) [7], which uses
bounded counters in each filter bit position. It increments by 1
at the hash positions of the tested/inserted item and decreased,
and decreases it periodically each counter. Two proposals were
made to add duplicate flow detection to Bloom Filters. Shen
and Zhang in [8] proposed to use a DBF and a BF in pair
together with a counting sliding window, while Changling et
al. in [9] used a time-based sliding window together with a
Round robin Buddy Bloom Filter structure. Nevertheless, both
these proposals omit the possibility to distribute flows over
multiple filters. A different approach from the above ones,
using the adaptive highest random weight (HRW) method to
account for the uneven flow size popularity, is described in
[10].

Note that it is possible to extend the BF scheme of [6] to
counting sliding windows. Counting filters provide a way to
implement a delete operation on a Bloom filter without
recreating the filter afresh. Counting filters were introduced by
Fan [11], proposing to extend the filter positions from a single
bit to an n-bit counter. These filter variants require more
memory space than the basic Bloom filters, as it have to store
the value of the counter.

In the following Section II we present the Round-Robin
Bloom Filter (RRBF) analysis, summing up those parts of the
RRBF proposal that are interesting for our work. We designed
and implemented a flow based load balancer solution using
RRBF supporting plug and play deployment, the details of
design and implementation being presented in Section III. We
ran a set of experiments in an emulated environment. In
Section IV we discuss the startup transient issue occurring at
the time when starting up or connecting the load balancer to the
network and the evaluation of our solution to this issue. Finally
Section V concludes our work.

II. ROUND-ROBIN BLOOM FILTER

A. Background
The accuracy of the Bloom filter depends on the filter size

(m), the number of hash functions (k), and the number of
elements included (n). The more elements are added to a
Bloom filter, the higher the probability that the query operation
reports false positives. A Bloom filter requires space O(n) and
can answer membership queries in O(k) time. The below
TABLE 1 examines the behavior of the three key parameters
when their values are either decreased or increased.

TABLE 1
BLOOM FILTER KEY PARAMETERS

Bloom Filter parameters Increase
Number of hash functions

(k)

Size of filter (m)

Number of elements in the
set (n)

More computation, lower false positive
probability as optkk

More space is needed, lower false positive
probability

Higher false positive probability

Increasing or decreasing the number of hash functions
towards kopt we can lower the false positive probability but the
computations for the insertions and lookups will increase. The
cost is directly proportional to the number of hash functions. A
larger filter will result in fewer false positives.

The calculation of false positive probabilities and the
optimal number of hash functions for that is derived in [6]. It is
shown that the false positive probability decreases as the size
of the Bloom filter (m) increases, and it increases as more
elements are added (n). In order to maintain a fixed false
positive probability, the length of a Bloom filter must grow
linearly with the number of elements inserted in the filter. The
optimal Bloom filter size (m) for the expected number of
elements (n) and false positive probability (p), is described in
[6].

B. Round-Robin Bloom Filter
Once a member is added to a BF, it cannot be deleted –

during the lifetime of a BF, after a certain operation time it
starts to be inefficient, because lots of expired flows are still
referenced in the BF. In order to improve the applicability of
BFs, several mechanisms were proposed to allow deleting
members from BFs, as presented in the previous section. One
of the most efficient solutions is the Round-Robin Bloom Filter
(RRBF).

The design of the RRBF is presented based on [6]. The
operations over the RRBF are defined as follows:

• Membership query: we query for the existence of an
event from the oldest to youngest filters and if a match is
found then a corresponding action is executed without
further queries.

• New element insert: if no match is found during the
membership query, then the event is inserted into the
youngest filter.

Round-Robin Bloom Filters Based Load Balancing
of Packet Flows

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2016 • VOLUME VIII • NUMBER 3 15

• Window jump: before entering into the next time slot,
we reset the oldest filter and make a jump to select the next
youngest and oldest filters.

In the following we explain in brief the operation of a
RRBF, summing up the detailed description from [6]. Fig. 1
presents an example of the RRBF operation. In each time slot,
only one filter (red) will be used to insert new elements, while
the others (cyan) are queried in decreasing age order. After N
time slots, the oldest filter is reset and the next oldest and
youngest filter will be selected in a round-robin fashion. When
the event)(e arrives in the 7th time slot, its hash is tested for
containment in filters v4; v5; v1; v2 sequentially. If a match is
found, the corresponding Ai action is executed and further
querying is stopped. If no match is found, the event is inserted
into filter v3 (the latest filter marked with red) and the
corresponding A3 action is executed.

Fig. 1 Round-Robin Bloom Filter design (source: [6])

If we treat the incoming events as IP packets and their
fingerprints being calculated from their IP headers, which we
can call individual flows, then we can see that a consecutive
number of packets of the same flow will have the same action
executed, at least for (N-1)*T times, after which a reroute can
happen. Assigning different output ports for the different
actions means that we can create a load balancing solution
among alternative paths.

III. FLOW BASED LOAD BALANCER: DESIGN & EXPERIMENTS
In the previous sections we introduced RRBF, as a

candidate solution to support efficient load balancing for large
number of flows – typically in the backbone links. In this
section we present an implementation of this system. Since the
packet based networks are very dynamic and diverse, the
implementation should be flexible, easily configurable and
customizable. During the traffic engineering process the
controlled flows, the available paths and the associated ports
may change in time, which results in the request to change the
RRBF configuration and the port assignments.

SDN has been introduced in the last decade in computer
networking to address this issue, separating the control and
data planes from each other, and putting an open interface in-
between [2]. The cornerstone of the SDN framework is the
control protocol over this interface that commands the
switches, called OpenFlow. Having freedom in the control
plane it gives room for innovation and makes the

implementation of such a complex control process practically
feasible.

A. Design
We show the design of the load balancer prototype

supporting plug and play deployment by eliminating the startup
transient at system start time. The issues presented in Section I.
were considered during implementation, and the prototype was
built in a way that the RRBF solution could be verified with
different traffic characteristics. The system consists of the
following modules:

• Emulated environment – provided by Mininet [12].

• Emulated OpenFlow controller – used to configure
the switch with the necessary ports, tables and actions. Each
table will have a different role, e.g., to match IP packets,
select Bloom filters or select output ports.

• Emulated OpenFlow switch [13] – implemented with
internal RRBF system parameters, e.g. expected number of
ingress flows, desired false positive probability, etc.

During the implementation of these modules we reused the
open source Bloom filter code of Virkki [14] and the
MurmurHash2 code of Appleby [15].

Fig. 2 shows the designed internal structure of the RRBF
load balancer. There is only one flow table with one flow
entry. The input port is passing all ingress packets to the flow
entry. All packets are matched against the condition,
eth_type=0x800, that is only IP packets will be processed
further. The flow entry will pass the packets to the first group
entry in the group table. Each bucket of the group entry
contains a Bloom filter. Based on the Round-robin Bloom
filter algorithm one bucket will be selected. Each bucket has
the same action, passing the packets to the next group entry.
The next group entry has a number of buckets, each associated
with an output port. Based on the output port selection
algorithm the packets will be sent out from one of the output
ports.

Fig. 2 Internal architecture of the RRBF based load balancer

B. Control mechanism
The following system parameters are implemented and can

be controlled:

• Number of Bloom filters (B) – it’s set by the
controller via the OpenFlow protocol.
• Number of output ports (P) – it’s set by the controller
via the OpenFlow protocol.

Round-Robin Bloom Filters Based Load Balancing
of Packet Flows

SEPTEMBER 2016 • VOLUME VIII • NUMBER 316

INFOCOMMUNICATIONS JOURNAL

• Packet type – it is set by the controller via the
OpenFlow protocol.
• Period (T) – time period in seconds after which there
is a shift in Bloom filters, and the next one will be the
youngest accepting new flows.
• Epoch (Ep) – time period for the youngest Bloom
filter until it becomes the youngest again, i.e. (B-1)*T
seconds.
• False positive probability (E) – used to calculate the
number of hash functions (K) for the Bloom filters.
• Number of elements (N) – number of expected flows
per Bloom filter and it is used to calculate the size (M) of
the Bloom filters.
• Transient packets (Tr) – used to set the number of
packets to be used at the beginning for flow transient
elimination.
• Redistribution threshold (R) – used to decide if new
output port can be associated with a filter depending on the
number of the ingress packets in the last period (T)
compared to the number of ingress packets in the last epoch
(Ep).

The first two parameters define the structure of the RRBF
mechanism, whereas the T and Ep parameters define its
dynamics. Once the number of BFs within the scheme is fixed,
the memory footprint of the RRBF depends on the E and N
parameters.

The effect of the Tr and R parameters determine the
efficiency of the load balancing process. Tr affects the reaction
of the mechanism at startup, as detailed in Section III.E. Note
that according to the original proposal we should only select a
new port for a BF if all its flows terminate, but in reality this
rarely happens. That is why we need to make a compromise
between the goal of keeping the flows on the same port and
having equal traffic distribution within the output ports. This
tradeoff is controlled by the R parameter and its details are
discussed in Section IV.D.

C. Bloom filter selection
The implemented Bloom filter selection algorithm is

compliant with the OpenFlow standard. The publicly available
BF implementations were re-used and enhanced with the
RRBF algorithm.

Fig. 3 Shifting of Bloom filters after each T period

For each ingress packet, after being matched as an IP packet
by the flow entry and passed to the first group entry, we
calculate the fingerprint as the XOR of source and destination

IP addresses and then we check if it’s time to switch to the
next youngest filter (see Fig. 3). If not, then we go through all
the filters, from oldest to youngest, and do a membership
query operation for the given fingerprint. If the fingerprint is
present in any of the filters, we select that one; otherwise we
do an insert operation to the youngest one. On the other hand,
in case the period (T) has ended, we clear the oldest filter and
recreate it, then shift the youngest filter to the next one and do
the same as described above. Each bucket in the first group
entry containing a filter, has the same action of forwarding the
IP packet to the next group entry.

D. Output port selection
The implementation was designed such as the output port

selection supports our load balancing goal. After the IP packet
arrives to the second group entry, which has a number of
buckets each having an action of forwarding the packet to an
output port, it will be sent out on the selected port. Important
to know, that after each period (T), when the youngest filter is
shifted, we also search and select the least loaded port and
assign it to the filter. So, at any given time, each filter has a
port assigned to it which are continuously sending out packets,
then at timeout, the youngest filter might get a new port
assigned based on the number of transmitted packets on each
port.

E. Startup transient elimination
As introduced in Section I, the startup transient problem

must be solved before load balancing solutions can be
deployed to support packet flows. Startup transient period is
present at the time of connecting (or activating) the load
balancer to the network. The input traffic can contain a lot of
already active flows, and it is a concern that in the first period
(T), the youngest filter can be filled with most of the ingress
flows, and the system can remain unbalanced, because the first
filter will not be cleared until the first epoch (Ep) has ended.
In practice this means that all incoming flows during the first
period (T) will be registered in the first youngest filter, and all
other filters will remain empty. Therefore the youngest filter
may fill up in a short period of time and so the false positive
probability can increase significantly. The other issue
introduced by the startup transient is that the flows present at
the startup of the load balancer will always belong to the same
filter. The system will get balanced only after most of the
original flows decay, which can take time.

To compensate for this startup transient problem, and to
make plug and play deployment possible, the startup transient
needs to be eliminated. In this paper we propose a solution
that for a configurable amount of packets (Tr) at the
beginning, the system will always rotate the youngest filter, as
it would happen at the end of each period (T). The Bloom
filter selection algorithm will be called for each consecutive
packet, assuring that the existing flows will be associated to
their original filters, and only the new flows will be stored in
the youngest filter.

Round-Robin Bloom Filters Based Load Balancing
of Packet Flows

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2016 • VOLUME VIII • NUMBER 3 17

Rotating the filters at every incoming packet gives the
possibility for the incoming flows to be evenly distributed
within the filters, ameliorating the effect of the startup
phenomenon. The solution can be further enhanced to achieve
even better distribution of flows within the filters, e.g. by
rotating the youngest filter only if the respective incoming
packet was belonging to a new flow. This way we make sure
that each filter will register new flows.

IV. EVALUATION OF THE LOAD BALANCER

A. Testing scenario
A set of experiments were conducted with different system

parameter combinations to test our proposal. The goal was to
prove that the system is performing as expected under real-life
traffic scenarios. We simulated the hot deployment scenario by
running real-life traffic samples through the system. The
publicly available Internet traffic traces were used provided for
the research community from the SimpleWeb project [16]. The
sample traces contain ~8000 to ~16000 TCP/IP packets per
period (T), and the ratio of new flows vs. old flows is around
35% to 92% per period (T) depending on the period length.

In this paper we illustrate our measurement results using
three traffic traces selected from these. Fig. 4 shows the flow
distribution of sample trace #1 we use in this paper to explain
our design decisions. This trace had a 14534 pckt/sec average
packet rate. It can be seen that on average ~65% of the flows in
any period (T) were already active at least in the previous
period (T-1), as well. As for trace #2, ~8% of the flows present
in a particular period were also present at least in the previous
period and the average packet rate was 7804 pckt/sec. Trace
#3 was only used for initial tests, conducted to calibrate the N
and E parameters. It contains ~1000 flows and ~50% of the
flows are longer than 1sec.

When startup transients are eliminated, the Tr parameter has
a value of 10000, meaning that the first seconds (depending on
the actual load) are used only to “initialize” the RRBF.

Fig. 4 Ingress flow distribution for trace #1

B. Round Robin Bloom filters without periodical state reset
We evaluate the effectiveness of the load balancing at packet

level, because that increased the execution speed of our

experiments. This does not affect the generality of our results,
because the decision to associate a new port or not to the filter
at the beginning of a new period is similar in both cases. The
only difference is that instead of counting the number of
packets per port, we would have to count the bytes contained
within the packet. This would neither increase the granularity
of the process.

TABLE 2
EXPERIMENTS WITH DIFFERENT SETTINGS OF THE NUMBER OF EXPECTED

FLOWS (N) AND FALSE POSITIVE RATE (E)

We start with a basic experiment using capture #3 and

consisting of two Bloom filters each assigned to a separate
output port. We want to examine the flow distribution process,
focusing on the false positive rate depending on the BF
configuration. After every incoming new flow the roles of the
oldest and youngest filters were switched, so that each new
flow could be stored in the next filter. Still, the bits of the
filters are never reset, preserving the previous state, the
memory of the all flows inserted earlier. That is the reason why
we refer to these experiments as the ones were the periodical
state reset was avoided. The results, shown in Table II above,
prove that the false positive probability can be influenced by
the Bloom filter parameter values. Because the filters were
never reset, if the number of expected flows (N) was not high
enough, false positives started to appear. We counted the
number of egress packets and flows where the membership
query resulted in false positive matches. This happened in case
N was lower than the total number of ingress flows, or in case
that E was too high.

These results confirm that RRBF with the original BF (i.e.
without periodical reset of the BF bits) is not working and it is
needed the mechanism proposed in [6], indeed.

C. RRBF and startup transients
In this sub-section we illustrate the effect on the original

RRBF proposal of the flow transient problem. Based on our
experiments we set the main parameters of the RRBF as
follows: we used 10 hashes (K = 10), the false probability rate
was reduced to E = 0,01% and the number of elements was set
N = 1000. These parameters were used in all experiments
presented from now on in this paper. The results in this sub-
section were obtained by using traffic trace #1.

Fig. 6 shows the number of registered new flows per Bloom
filter (bf_flow N) in every period (T). In the beginning the first

RRBF with two BFs
N=100,
E=0.01%

N=1000,
E=0.01%

N=1000,
E=1%

BF1 egress packets 37547 35652 35499
BF2 egress packets 40943 42838 42991
Egress packets due to false positive
membership query 13593 0 1236

BF1 egress flows 637 602 599
BF2 egress flows 310 469 465
Egress flows due to false positive
membership query 124 0 7
Total flows 1195 1071 1078

Round-Robin Bloom Filters Based Load Balancing
of Packet Flows

SEPTEMBER 2016 • VOLUME VIII • NUMBER 318

INFOCOMMUNICATIONS JOURNAL

Bloom filter from a RRBF mechanism with five BFs will carry
more flows than the other ones, because it “keeps locked in”
the long flows and so the flow distribution gets unbalanced.
After an epoch has passed the first filter will be the youngest
again and it will keep carrying its old flows.

Fig. 5 Flows per Bloom filter with periodical state reset

Note that this impacts the per-packet load balancing
performance of the mechanism, as well (Fig. 6). Within each
epoch the port associated to the youngest filter will be loaded
with the packets of the heaviest flows. Since we have 5 BFs
and T = 1, the curve breaks at each 5 seconds.

Fig. 6 Packets per output port with periodical state reset

These results illustrate our motivation to handle the
transients during the startup.

D. RRBF with elimination of the startup transient
The experiments discussed in this sub-section deploy our

solution to eliminate the startup transient phenomenon. For this
we used our implementation of the method proposed in Section
III. E and traces in Section IV. A. The implementation features
the initialization until the first Tr packets are received, as
described earlier. Additionally, we also use a mechanism that is
controlled through the R parameter. This mechanism measures
the ratio of the incoming packets during the last period T and
those received during the whole epoch. If it is less than R, then
we consider that the BF can be associated to a new port (i.e.,
the least loaded one), otherwise we do not change the
association. After several test runs and based on empirical
results we set the value of R to 10%.

Fig. 7 below shows the number of registered new flows per
Bloom filter in every period (T). During the first period the
incoming flows are evenly distributed within the Bloom filters,
and this distribution keeps the system balanced throughout the
measurement. Long flows (longer at least than one epoch) are
carried by multiple filters.

Fig. 7 Flows per Bloom filter with elimination of the startup transients

Applying our proposal also improves the quality of load
balancing, as well. As seen in Fig. 8, the number of packets
sent over the three ports has more even distribution.

Fig. 8 Packets per output port with elimination of the startup transient

We repeated the experiment using trace #2, as well. The
results were similar. Based on the theoretical results we started
from this was expected for the flow distribution. But it proved
that it works for the load distribution, too, as shown in Fig. 9.

Fig. 9 Packets per port with elimination of the startup transient (trace #2)

Note that by increasing the number of BFs we obtain finer
granularity and we can make a balance between the two goals:
distribute flows among different ports and evenly distribute the
traffic volume. By increasing R we have better load balancing,

Round-Robin Bloom Filters Based Load Balancing
of Packet Flows

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2016 • VOLUME VIII • NUMBER 3 19

but this will affect some longer flows, as they might be
distributed among several output ports. To remedy that, we can
increase the number of filters from 5 to 15, while keeping R
down at 10%. We run an experiment, where the only change
compared to the one analysed in this sub-section above was the
use of 15 Bloom filters, and it slightly better balanced the load
of the flows. Nevertheless, if there were elephant flows in the
traffic mix whose lifetime exceeded the epoch duration, then
this change could not fully eliminate the effect of it.

We also tested higher R parameter values (e.g., 30% instead
of 10%), which results in more aggressive port selection
behavior, leading to better load sharing among the ports.
Nevertheless, this affects more often the longer flows,
forwarding their packets over different ports.

V. CONCLUSIONS

We designed an OpenFlow compatible flow based load
balancer with Round Robin Bloom filters supporting plug and
play deployment scenarios. We demonstrated in an emulated
SDN environment, using real-life traffic traces that the
solution can eliminate the startup transient problem during
initialization and the system remains balanced, meaning that
the ingress flows are more evenly distributed within the
Bloom filters.

Our future plan is to further investigate our solution in more
complex traffic conditions. Our main focus will be on
separating elephant flows that carry large traffic volumes and
have longer duration. We are considering the possibility to
deploy separate RRBF systems in parallel and use on-the-fly
traffic classification (e.g. short – HTTP, long – video) by
controller to feed the different systems with such
homogeneous traffic.

ACKNOWLEDGMENT

The authors thank to Robert Szabó for his valuable
comments during the implementation work of the Round Robin
Bloom filters.

REFERENCES

[1] Cardellini, V., Colajanni, M. and Philip, S.Y., 1999. Dynamic load
balancing on web-server systems. IEEE Internet computing, 3(3), p.28-
39.

[2] Open Networking Foundation: Software-defined Networking: The new
norm for networks, (accessed on April 2016).

[3] Yuanhao Zhou, Li Ruan, Limin Xiao, Rui Liu, “A Method for Load
Balancing based on Software Defined Network”, Advanced Science and
Technology Letters Vol.45 (CCA 2014), pp.43-48.

[4] S. Tarkoma, C. Rothenberg, and E. Lagerspetz, “Theory and Practice of
Bloom Filters for Distributed Systems”, IEEE Communications Surveys
& Tutorials, Vol. 14. no. 1., 2012.

[5] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters:A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[6] R. Szabó, “A Round-Robin Bloom Filter for Stateful Control over Event
Streams”, 2013 IEEE 4th International Conference on Cognitive
Infocommunications (CogInfoCom), 2013.

[7] K. Cheng, L. Xiang, and M. Iwaihara, “Time-decaying bloom filters for
data streams with skewed distributions,” in 15th International Workshop
on Research Issues in Data Engineering: Stream Data Mining and
Applications, 2005. RIDE-SDMA 2005, Apr. 2005, pp. 63–69.

[8] H. Shen and Y. Zhang, “Improved approximate detection of duplicates
for data streams over sliding windows,” Journal of Computer Science
and Technology, vol. 23, no. 6, pp. 973–987, 2008.

[9] Z. Changling, X. Jianguo, C. Jian, Z. Bei, and L. Feng, “Approximate
discovery of service nodes by duplicate detection in flows,” China
Communications, vol. 9, no. 5, pp. 75–89, Jul. 2012. [Online].
Available:
 http://www.chinacommunications.cn/EN/abstract/article 7912.shtml

[10] Chengcheng G. et al., „A load-balancing scheme based on Bloom
Filters”, in. proc. of the IEEE Second International Conference on
Future Networks, Washington DC, USA, 2010, pp. 404-407.

[11] Fan L., Cao P., Almeida J., Broder A., "Summary Cache: A Scalable
Wide-Area Web Cache Sharing Protocol", IEEE/ACM Transactions on
Networking, 8 (3): 281–293, 2000.

[12] Mininet, http://www.mininet.org/, (accessed on April 2016).
[13] CPqD OpenFlow switch: http://cpqd.github.io/ofsoftswitch13/ (accessed

on April 2016).
[14] Jyri J. Virkki’s Bloom filter: https://github.com/jvirkki/libbloom

(accessed on April 2016).
[15] Austin Appleby’s MurmurHash2:

https://sites.google.com/site/murmurhash/ (accessed on April 2016)
[16] SimpleWeb, http://www.simpleweb.org/wiki/Traces/

http://cpqd.github.io/ofsoftswitch13/ (accessed on April 2016).

Örs Szabó has graduated as an MSc
software engineer from the Budapest
University of Technology and Economics.
During his last student years he worked as
a part-time employee in the field of
packet-switched voice communication
over 4G mobile networks at Ericsson
Hungary. Currently he works at the same
company as a system engineer.

Csaba Simon is a software engineer and he
earned his PhD in 2012 at the Doctoral
School of Informatics of the Budapest
University of Technology and Economics
and currently works as an assistant
professor at the Department of
Telecommunication and Media Informatics
of the same university. His research area
includes the topics of Future Internet, 5G
networks and cloud systems.

