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Abstract1—SDN gives the possibility to design new solutions for 
flow based load balancers, needed by the handling of quickly 
growing Internet data, and end user demands. A key element of 
this can be the Bloom filters and its probabilistic techniques to 
reduce information processing and networking costs. We selected 
a Bloom filter variant optimized for low footprint and designed 
and implemented a flow based load balancer solution. We 
identified an issue of such load balancers during their 
initialization phase in case of plug and play deployments. We 
propose a solution to alleviate this problem and evaluated its 
performance. 
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I.  INTRODUCTION 
Internet data traffic is quickly growing, as more and more 

people are getting easy access to different kinds of services, 
such as file sharing, video streaming, video-on-demand (VoD), 
IPTV, Voice-over-IP (VoIP), etc. Thus the data that needs to 
be transported from and to different nodes through a meshed 
network is increasing. This may cause capacity and 
performance issues on the serving nodes, which leads to the 
need of scaling. A commonly used technique is to group the 
serving nodes into a cluster, but still offer the service over a 
single access point (e.g., well known address). By doing so, the 
clients will still reach the service the same way as before. For 
this to work, a solution was needed to cleverly distribute the 
demand among the server cluster members. This functionality 
is provided by the load balancer: it tries to share the load within 
the cluster [1]. The packets transported over the Internet can be 
viewed as part of a session defined by the endpoints (e.g., 
source and destination addresses, port numbers).  

The load balancer should be able to identify the different 
sessions (or flows) and should direct the packets belonging to it 
to the same server within the cluster. When the load balancer 
deals with flows, it has a dual task: it should both balance the 
load among the served output ports (assuming that each port 
leads to a different server) and to evenly distribute the amount 
of traffic among these ports. The problem is that the carried 
traffic volume might differ from flow to flow, thus it is not 
enough to focus on the per-flow traffic distribution. It is neither 
acceptable to focus solely on the equal traffic load distribution, 
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because then different packets from the same flow would be 
sent out on different ports, potentially to different servers.  

Most of the theoretical models that address the load 
balancing problem try to provide a solution optimizing the 
resource usage of the control process and/or focus on the long 
term stability of traffic load distribution. (see the rest of this 
Section). Nevertheless, the proper operation of a load balancing 
mechanism is vulnerable to the initialization of the mechanism 
itself, as we learned it during the implementation and testing of 
a stateful load balancing proposal (called Round Robin Bloom 
Filter) optimized in terms of resource usage. In what follows 
we introduce the reader into our motivation to work with and 
the environment in which we implemented the particular load 
balancing solution. Later on in the paper (see Section IV.C) we 
show how does this initialization problem (named startup 
transient) manifest in a backbone network by conducting 
dedicated experiments with our implementation. Further on we 
propose a solution to alleviate this problem and discuss its 
applicability using further experiments. Thus the main 
contribution of our paper is to show how the startup transient 
issue was handled, as it has a crucial role in sustaining the 
balance between the dual role of load distribution and flow 
integrity preservation of a stateful load balancer. 

When we searched for potential environments to design and 
deploy a load balancer, we quickly converged to a decision on 
selecting Software-Defined Networking (SDN), as it is widely 
recognized as an enabler of dynamic network behavior to adapt 
to changes in demand [2]. The use of SDN to respond to 
increasing load is a natural choice and has already been 
investigated by the networking community. Load balancing in 
SDN can be achieved in different ways, one of which is to use 
Finite State Machine (FSM) models with defined network 
policies described in [3]. Nevertheless, the memory footprint 
and the required reaction speed for such solution when we have 
to control a backbone link of the networks calls for the use of 
new mechanisms. We oriented ourselves towards probabilistic 
techniques, as many of the network solutions today utilize them 
to reduce information processing and networking costs. Having 
millions of data elements in any network it became 
increasingly important to develop efficient solutions for 
storing, updating, and querying them. One great idea 
introduced by Bloom filters (BF) is that by allowing the 
representation of the set of elements to lose some information, 
the storage requirements can be significantly reduced [4]. The 
BF is a space-efficient probabilistic data structure that supports 
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set membership queries. This data structure provides a 
probabilistic way to represent a set that can never have false 
negatives (saying that an inserted element is not in the set) but 
can have false positive returns (saying that an element is part of 
the set when in fact it is not).  

Networking applications of different BFs emerged back in 
the late 90s. Broder and Mitzenmacher published a survey [5] 
on network applications of BFs in 2004. A very recent survey 
[2] by Tarkoma et al. from 2012 reviews over 20 BF variants 
and their applications for caching, peer-to-peer systems, 
routing and forwarding, and measurement data summarization. 
For our work, the interesting application field of Bloom filters 
is the flow based load balancing. 

Regardless of the wide range of different BF flavors, we 
found that apart of the proposal of Szabo in [6] no suitable BF 
adaptation for efficiently applying actions consistently to an 
event stream, based on past decisions assigned to events within 
a time window. This solution retains the control states assigned 
to subset of events according to their arrival time slot up to a 
time window. The Round-robin Bloom filters (RRBF) 
proposed there would suit well the server farm load sharing or 
the path load balancing scenarios. An alternative proposal was 
the Time-Decaying Bloom filter (DBF) [7], which uses 
bounded counters in each filter bit position. It increments by 1 
at the hash positions of the tested/inserted item and decreased, 
and decreases it periodically each counter. Two proposals were 
made to add duplicate flow detection to Bloom Filters. Shen 
and Zhang in [8] proposed to use a DBF and a BF in pair 
together with a counting sliding window, while Changling et 
al. in [9] used a time-based sliding window together with a 
Round robin Buddy Bloom Filter structure. Nevertheless, both 
these proposals omit the possibility to distribute flows over 
multiple filters. A different approach from the above ones, 
using the adaptive highest random weight (HRW) method to 
account for the uneven flow size popularity, is described in 
[10]. 

Note that it is possible to extend the BF scheme of [6] to 
counting sliding windows. Counting filters provide a way to 
implement a delete operation on a Bloom filter without 
recreating the filter afresh. Counting filters were introduced by 
Fan [11], proposing to extend the filter positions from a single 
bit to an n-bit counter. These filter variants require more 
memory space than the basic Bloom filters, as it have to store 
the value of the counter. 

In the following Section II we present the Round-Robin 
Bloom Filter (RRBF) analysis, summing up those parts of the 
RRBF proposal that are interesting for our work. We designed 
and implemented a flow based load balancer solution using 
RRBF supporting plug and play deployment, the details of 
design and implementation being presented in Section III. We 
ran a set of experiments in an emulated environment. In 
Section IV we discuss the startup transient issue occurring at 
the time when starting up or connecting the load balancer to the 
network and the evaluation of our solution to this issue. Finally 
Section V concludes our work. 

II. ROUND-ROBIN BLOOM FILTER 

A. Background 
The accuracy of the Bloom filter depends on the filter size 

(m), the number of hash functions (k), and the number of 
elements included (n). The more elements are added to a 
Bloom filter, the higher the probability that the query operation 
reports false positives. A Bloom filter requires space O(n) and 
can answer membership queries in O(k) time. The below 
TABLE 1 examines the behavior of the three key parameters 
when their values are either decreased or increased. 

TABLE 1 
BLOOM FILTER KEY PARAMETERS 

Bloom Filter parameters Increase 
Number of hash functions 

(k) 
 

Size of filter (m) 
 

Number of elements in the 
set (n) 

More computation, lower false positive 
probability as optkk   

More space is needed, lower false positive 
probability 

 
Higher false positive probability 

Increasing or decreasing the number of hash functions 
towards kopt we can lower the false positive probability but the 
computations for the insertions and lookups will increase. The 
cost is directly proportional to the number of hash functions. A 
larger filter will result in fewer false positives. 

The calculation of false positive probabilities and the 
optimal number of hash functions for that is derived in [6]. It is 
shown that the false positive probability decreases as the size 
of the Bloom filter (m) increases, and it increases as more 
elements are added (n). In order to maintain a fixed false 
positive probability, the length of a Bloom filter must grow 
linearly with the number of elements inserted in the filter. The 
optimal Bloom filter size (m) for the expected number of 
elements (n) and false positive probability (p), is described in 
[6]. 

B. Round-Robin Bloom Filter 
Once a member is added to a BF, it cannot be deleted – 

during the lifetime of a BF, after a certain operation time it 
starts to be inefficient, because lots of expired flows are still 
referenced in the BF. In order to improve the applicability of 
BFs, several mechanisms were proposed to allow deleting 
members from BFs, as presented in the previous section. One 
of the most efficient solutions is the Round-Robin Bloom Filter 
(RRBF). 

The design of the RRBF is presented based on [6]. The 
operations over the RRBF are defined as follows: 

• Membership query: we query for the existence of an 
event from the oldest to youngest filters and if a match is 
found then a corresponding action is executed without 
further queries. 

• New element insert: if no match is found during the 
membership query, then the event is inserted into the 
youngest filter. 
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• Window jump: before entering into the next time slot, 
we reset the oldest filter and make a jump to select the next 
youngest and oldest filters. 

In the following we explain in brief the operation of a 
RRBF, summing up the detailed description from [6]. Fig. 1 
presents an example of the RRBF operation. In each time slot, 
only one filter (red) will be used to insert new elements, while 
the others (cyan) are queried in decreasing age order. After N 
time slots, the oldest filter is reset and the next oldest and 
youngest filter will be selected in a round-robin fashion. When 
the event )(e  arrives in the 7th time slot, its hash is tested for 
containment in filters v4; v5; v1; v2 sequentially. If a match is 
found, the corresponding Ai action is executed and further 
querying is stopped. If no match is found, the event is inserted 
into filter v3 (the latest filter marked with red) and the 
corresponding A3 action is executed. 

 
Fig. 1 Round-Robin Bloom Filter design (source: [6]) 

If we treat the incoming events as IP packets and their 
fingerprints being calculated from their IP headers, which we 
can call individual flows, then we can see that a consecutive 
number of packets of the same flow will have the same action 
executed, at least for (N-1)*T times, after which a reroute can 
happen. Assigning different output ports for the different 
actions means that we can create a load balancing solution 
among alternative paths.  

III. FLOW BASED LOAD BALANCER: DESIGN & EXPERIMENTS 
In the previous sections we introduced RRBF, as a 

candidate solution to support efficient load balancing for large 
number of flows – typically in the backbone links. In this 
section we present an implementation of this system. Since the 
packet based networks are very dynamic and diverse, the 
implementation should be flexible, easily configurable and 
customizable. During the traffic engineering process the 
controlled flows, the available paths and the associated ports 
may change in time, which results in the request to change the 
RRBF configuration and the port assignments. 

SDN has been introduced in the last decade in computer 
networking to address this issue, separating the control and 
data planes from each other, and putting an open interface in-
between [2]. The cornerstone of the SDN framework is the 
control protocol over this interface that commands the 
switches, called OpenFlow. Having freedom in the control 
plane it gives room for innovation and makes the 

implementation of such a complex control process practically 
feasible.  

A. Design 
We show the design of the load balancer prototype 

supporting plug and play deployment by eliminating the startup 
transient at system start time. The issues presented in Section I. 
were considered during implementation, and the prototype was 
built in a way that the RRBF solution could be verified with 
different traffic characteristics. The system consists of the 
following modules: 

• Emulated environment –  provided by Mininet [12].  

• Emulated OpenFlow controller – used to configure 
the switch with the necessary ports, tables and actions. Each 
table will have a different role, e.g., to match IP packets, 
select Bloom filters or select output ports.  

• Emulated OpenFlow switch [13] – implemented with 
internal RRBF system parameters, e.g. expected number of 
ingress flows, desired false positive probability, etc. 

During the implementation of these modules we reused the 
open source Bloom filter code of Virkki [14] and the 
MurmurHash2 code of Appleby [15]. 

Fig. 2 shows the designed internal structure of the RRBF 
load balancer. There is only one flow table with one flow 
entry. The input port is passing all ingress packets to the flow 
entry. All packets are matched against the condition, 
eth_type=0x800, that is only IP packets will be processed 
further. The flow entry will pass the packets to the first group 
entry in the group table. Each bucket of the group entry 
contains a Bloom filter. Based on the Round-robin Bloom 
filter algorithm one bucket will be selected. Each bucket has 
the same action, passing the packets to the next group entry. 
The next group entry has a number of buckets, each associated 
with an output port. Based on the output port selection 
algorithm the packets will be sent out from one of the output 
ports. 

Fig. 2 Internal architecture of the RRBF based load balancer 

B. Control mechanism 
The following system parameters are implemented and can 

be controlled: 

• Number of Bloom filters (B) – it’s set by the 
controller via the OpenFlow protocol. 
• Number of output ports (P) – it’s set by the controller 
via the OpenFlow protocol. 
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• Packet type – it is set by the controller via the 
OpenFlow protocol. 
• Period (T) – time period in seconds after which there 
is a shift in Bloom filters, and the next one will be the 
youngest accepting new flows. 
• Epoch (Ep) – time period for the youngest Bloom 
filter until it becomes the youngest again, i.e. (B-1)*T 
seconds. 
• False positive probability (E) – used to calculate the 
number of hash functions (K) for the Bloom filters. 
• Number of elements (N) – number of expected flows 
per Bloom filter and it is used to calculate the size (M) of 
the Bloom filters. 
• Transient packets (Tr) – used to set the number of 
packets to be used at the beginning for flow transient 
elimination. 
• Redistribution threshold (R) – used to decide if new 
output port can be associated with a filter depending on the 
number of the ingress packets in the last period (T) 
compared to the number of ingress packets in the last epoch 
(Ep). 

The first two parameters define the structure of the RRBF 
mechanism, whereas the T and Ep parameters define its 
dynamics. Once the number of BFs within the scheme is fixed, 
the memory footprint of the RRBF depends on the E and N 
parameters.  

The effect of the Tr and R parameters determine the 
efficiency of the load balancing process. Tr affects the reaction 
of the mechanism at startup, as detailed in Section III.E. Note 
that according to the original proposal we should only select a 
new port for a BF if all its flows terminate, but in reality this 
rarely happens. That is why we need to make a compromise 
between the goal of keeping the flows on the same port and 
having equal traffic distribution within the output ports. This 
tradeoff is controlled by the R parameter and its details are 
discussed in Section IV.D. 

C. Bloom filter selection 
The implemented Bloom filter selection algorithm is 

compliant with the OpenFlow standard. The publicly available 
BF implementations were re-used and enhanced with the 
RRBF algorithm. 

 
Fig. 3 Shifting of Bloom filters after each T period 

For each ingress packet, after being matched as an IP packet 
by the flow entry and passed to the first group entry, we 
calculate the fingerprint as the XOR of source and destination 

IP addresses and then we check if it’s time to switch to the 
next youngest filter (see Fig. 3). If not, then we go through all 
the filters, from oldest to youngest, and do a membership 
query operation for the given fingerprint. If the fingerprint is 
present in any of the filters, we select that one; otherwise we 
do an insert operation to the youngest one. On the other hand, 
in case the period (T) has ended, we clear the oldest filter and 
recreate it, then shift the youngest filter to the next one and do 
the same as described above. Each bucket in the first group 
entry containing a filter, has the same action of forwarding the 
IP packet to the next group entry.  

D. Output port selection 
The implementation was designed such as the output port 

selection supports our load balancing goal. After the IP packet 
arrives to the second group entry, which has a number of 
buckets each having an action of forwarding the packet to an 
output port, it will be sent out on the selected port. Important 
to know, that after each period (T), when the youngest filter is 
shifted, we also search and select the least loaded port and 
assign it to the filter. So, at any given time, each filter has a 
port assigned to it which are continuously sending out packets, 
then at timeout, the youngest filter might get a new port 
assigned based on the number of transmitted packets on each 
port.  

E. Startup transient elimination 
As introduced in Section I, the startup transient problem 

must be solved before load balancing solutions can be 
deployed to support packet flows. Startup transient period is 
present at the time of connecting (or activating) the load 
balancer to the network. The input traffic can contain a lot of 
already active flows, and it is a concern that in the first period 
(T), the youngest filter can be filled with most of the ingress 
flows, and the system can remain unbalanced, because the first 
filter will not be cleared until the first epoch (Ep) has ended. 
In practice this means that all incoming flows during the first 
period (T) will be registered in the first youngest filter, and all 
other filters will remain empty. Therefore the youngest filter 
may fill up in a short period of time and so the false positive 
probability can increase significantly. The other issue 
introduced by the startup transient is that the flows present at 
the startup of the load balancer will always belong to the same 
filter. The system will get balanced only after most of the 
original flows decay, which can take time. 

To compensate for this startup transient problem, and to 
make plug and play deployment possible, the startup transient 
needs to be eliminated. In this paper we propose a solution 
that for a configurable amount of packets (Tr) at the 
beginning, the system will always rotate the youngest filter, as 
it would happen at the end of each period (T). The Bloom 
filter selection algorithm will be called for each consecutive 
packet, assuring that the existing flows will be associated to 
their original filters, and only the new flows will be stored in 
the youngest filter. 
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Rotating the filters at every incoming packet gives the 
possibility for the incoming flows to be evenly distributed 
within the filters, ameliorating the effect of the startup 
phenomenon. The solution can be further enhanced to achieve 
even better distribution of flows within the filters, e.g. by 
rotating the youngest filter only if the respective incoming 
packet was belonging to a new flow. This way we make sure 
that each filter will register new flows. 

IV. EVALUATION OF THE LOAD BALANCER 

A. Testing scenario 
A set of experiments were conducted with different system 

parameter combinations to test our proposal. The goal was to 
prove that the system is performing as expected under real-life 
traffic scenarios. We simulated the hot deployment scenario by 
running real-life traffic samples through the system. The 
publicly available Internet traffic traces were used provided for 
the research community from the SimpleWeb project [16]. The 
sample traces contain ~8000 to ~16000 TCP/IP packets per 
period (T), and the ratio of new flows vs. old flows is around 
35% to 92% per period (T) depending on the period length.  

In this paper we illustrate our measurement results using 
three traffic traces selected from these. Fig. 4 shows the flow 
distribution of sample trace #1 we use in this paper to explain 
our design decisions. This trace had a 14534 pckt/sec average 
packet rate. It can be seen that on average ~65% of the flows in 
any period (T) were already active at least in the previous 
period (T-1), as well. As for trace #2, ~8% of the flows present 
in a particular period were also present at least in the previous 
period and the average packet rate was 7804 pckt/sec.  Trace 
#3 was only used for initial tests, conducted to calibrate the N 
and E parameters. It contains ~1000 flows and ~50% of the 
flows are longer than 1sec.  

When startup transients are eliminated, the Tr parameter has 
a value of 10000, meaning that the first seconds (depending on 
the actual load) are used only to “initialize” the RRBF.  

 
Fig. 4 Ingress flow distribution for trace #1 

B. Round Robin Bloom filters  without periodical state reset 
We evaluate the effectiveness of the load balancing at packet 

level, because that increased the execution speed of our 

experiments. This does not affect the generality of our results, 
because the decision to associate a new port or not to the filter 
at the beginning of a new period is similar in both cases. The 
only difference is that instead of counting the number of 
packets per port, we would have to count the bytes contained 
within the packet. This would neither increase the granularity 
of the process. 

TABLE 2  
EXPERIMENTS WITH DIFFERENT SETTINGS OF THE NUMBER OF EXPECTED 

FLOWS (N) AND FALSE POSITIVE RATE (E) 

 
We start with a basic experiment using capture #3 and 

consisting of two Bloom filters each assigned to a separate 
output port. We want to examine the flow distribution process, 
focusing on the false positive rate depending on the BF 
configuration. After every incoming new flow the roles of the 
oldest and youngest filters were switched, so that each new 
flow could be stored in the next filter. Still, the bits of the 
filters are never reset, preserving the previous state, the 
memory of the all flows inserted earlier. That is the reason why 
we refer to these experiments as the ones were the periodical 
state reset was avoided. The results, shown in Table II above, 
prove that the false positive probability can be influenced by 
the Bloom filter parameter values. Because the filters were 
never reset, if the number of expected flows (N) was not high 
enough, false positives started to appear. We counted the 
number of egress packets and flows where the membership 
query resulted in false positive matches. This happened in case 
N was lower than the total number of ingress flows, or in case 
that E was too high.  

These results confirm that RRBF with the original BF (i.e. 
without periodical reset of the BF bits) is not working and it is 
needed the mechanism proposed in [6], indeed.  

C. RRBF and startup transients 
In this sub-section we illustrate the effect on the original 

RRBF proposal of the flow transient problem. Based on our 
experiments we set the main parameters of the RRBF as 
follows: we used 10 hashes (K = 10), the false probability rate 
was reduced to E = 0,01% and the number of elements was set 
N = 1000. These parameters were used in all experiments 
presented from now on in this paper. The results in this sub-
section were obtained by using traffic trace #1.  

Fig. 6 shows the number of registered new flows per Bloom 
filter (bf_flow N) in every period (T). In the beginning the first 

RRBF with two BFs  
N=100,  
E=0.01% 

N=1000,  
E=0.01% 

N=1000,  
E=1% 

BF1 egress packets 37547 35652 35499 
BF2 egress packets 40943 42838 42991 
Egress packets due to  false positive 
membership query 13593 0 1236 

BF1 egress flows 637 602 599 
BF2 egress flows 310 469 465 
Egress flows due to  false positive 
membership query 124 0 7 
Total flows 1195 1071 1078 
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Bloom filter from a RRBF mechanism with five BFs will carry 
more flows than the other ones, because it “keeps locked in” 
the long flows and so the flow distribution gets unbalanced. 
After an epoch has passed the first filter will be the youngest 
again and it will keep carrying its old flows.  

 
Fig. 5 Flows per Bloom filter with periodical state reset 

Note that this impacts the per-packet load balancing 
performance of the mechanism, as well (Fig. 6). Within each 
epoch the port associated to the youngest filter will be loaded 
with the packets of the heaviest flows. Since we have 5 BFs 
and T = 1, the curve breaks at each 5 seconds. 

 
Fig. 6 Packets per output port with periodical state reset 

These results illustrate our motivation to handle the 
transients during the startup. 

D. RRBF with elimination of the startup transient 
The experiments discussed in this sub-section deploy our 

solution to eliminate the startup transient phenomenon. For this 
we used our implementation of the method proposed in Section 
III. E and traces in Section IV. A. The implementation features 
the initialization until the first Tr packets are received, as 
described earlier. Additionally, we also use a mechanism that is 
controlled through the R parameter. This mechanism measures 
the ratio of the incoming packets during the last period T and 
those received during the whole epoch. If it is less than R, then 
we consider that the BF can be associated to a new port (i.e., 
the least loaded one), otherwise we do not change the 
association. After several test runs and based on empirical 
results we set the value of R to 10%. 

Fig. 7 below shows the number of registered new flows per 
Bloom filter in every period (T). During the first period the 
incoming flows are evenly distributed within the Bloom filters, 
and this distribution keeps the system balanced throughout the 
measurement. Long flows (longer at least than one epoch) are 
carried by multiple filters.  

 
Fig. 7 Flows per Bloom filter with elimination of the startup transients  

Applying our proposal also improves the quality of load 
balancing, as well. As seen in Fig. 8, the number of packets 
sent over the three ports has more even distribution.  

 
Fig. 8 Packets per output port with elimination of the startup transient  

We repeated the experiment using trace #2, as well. The 
results were similar. Based on the theoretical results we started 
from this was expected for the flow distribution. But it proved 
that it works for the load distribution, too, as shown in Fig. 9. 

 
Fig. 9 Packets per port with elimination of the startup transient (trace #2) 

Note that by increasing the number of BFs we obtain finer 
granularity and we can make a balance between the two goals: 
distribute flows among different ports and evenly distribute the 
traffic volume. By increasing R we have better load balancing, 
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but this will affect some longer flows, as they might be 
distributed among several output ports. To remedy that, we can 
increase the number of filters from 5 to 15, while keeping R
down at 10%. We run an experiment, where the only change 
compared to the one analysed in this sub-section above was the 
use of 15 Bloom filters, and it slightly better balanced the load 
of the flows. Nevertheless, if there were elephant flows in the 
traffic mix whose lifetime exceeded the epoch duration, then 
this change could not fully eliminate the effect of it.

We also tested higher R parameter values (e.g., 30% instead 
of 10%), which results in more aggressive port selection 
behavior, leading to better load sharing among the ports. 
Nevertheless, this affects more often the longer flows, 
forwarding their packets over different ports.  

V. CONCLUSIONS

We designed an OpenFlow compatible flow based load 
balancer with Round Robin Bloom filters supporting plug and 
play deployment scenarios. We demonstrated in an emulated 
SDN environment, using real-life traffic traces that the 
solution can eliminate the startup transient problem during 
initialization and the system remains balanced, meaning that 
the ingress flows are more evenly distributed within the 
Bloom filters.  

Our future plan is to further investigate our solution in more 
complex traffic conditions. Our main focus will be on 
separating elephant flows that carry large traffic volumes and 
have longer duration. We are considering the possibility to 
deploy separate RRBF systems in parallel and use on-the-fly 
traffic classification (e.g. short – HTTP, long – video) by 
controller to feed the different systems with such 
homogeneous traffic.
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